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Popular summary

Of all things on the celestial vault, the greatest and most striking is the diffuse band
of stars that make up the Milky Way, our home Galaxy. To understand how it
formed and evolved we need, among other things, a detailed description of how the
stars move and where they are located, the field of research called astrometry. The
first stellar catalogue was created in 200 BCE by Hipparchus in ancient Greece.
A little over two millennia later we began measuring stars with space telescopes,
the first of which was named Hipparcos. This was succeeded by the space telescope
Gaia which was launched in 2013 and revolutionized the field of astrometry, pro-
viding a truly great catalogue of stellar motions and positions. This catalogue has
significantly contributed to the research behind this thesis. Gaia gives us a very
precise picture of how the Milky Way kinematics look today. To complete the
picture one also uses numerical simulations to recreate and interpret the features
found in observations. The union of theory and observations then reinforce one
another and is critical for our understanding of the Milky Way.

The first article in this thesis uses numerical simulations to study how inter-
actions with the Galaxy’s spiral arms and bar transport stars radially in the plane
of the disc. We find that this migration depends on the Galactic disc’s strength
and how vertical extended the stellar orbit is. With over 100 simulated discs we
could determine that in less massive discs it is mostly the stars close to the disc that
migrate and in the opposite case of massive discs they migrate regardless of how
far above the disc the orbit goes.

In the second and third articles, we use data from Gaia. By using positions and
velocities along the celestial sphere, without needing velocities in the line-of-sight
direction, we have access to extremely large amounts of data. This way, we obtain
an estimate for the local stellar velocity distribution, despite lacking one velocity
component. We do this for three samples of data. In the second article, we used
white dwarfs, which are the remains of low mass dead stars, and could discover
that there were two separate kinematic populations. In the third article, we used
the Solar neighbourhood of stars in the disc and a local part of the Galaxy’s halo.
We were able to identify many known structures in the velocity distribution, as
well as some new ones which then belong to the accreted halo, and could be the
remains of accreted dwarf galaxies.
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Populärvetenskaplig sammanfattning

Utav alla ting på himlavalvet så är det största och mest slående det diffusa band av
stjärnor som uppgör Vintergatan, vår hemgalax. För att förstå hur den skapades
och utvecklas behöver vi, bland annat, förstå i detalj hur stjärnorna rör sig och var
det befinner sig, ett forskningsfält som kallas astrometri. Den första stjärnkatalo-
gen kom 200 f.v.t. från Hipparkos i antika Grekland. Två millennier senare så
började vi mäta stjärnor med rymdteleskop, det första då döpt till just Hipparcos.
Detta efterföljdes av rymdteleskopet Gaia som sattes i omloppsbana 2013 och
har revolutionerat astrometrin genom att bidra med en fantastisk stjärnkatalog
av positioner och hastigheter. Denna katalog har bidragit stort till forskningen
bakom denna avhandling. Gaia ger oss en väldigt noggran bild av hur Vinter-
gatans kinematik ser ut idag. För att fullända bilden, använder man sig dessutom
utav numeriska simuleringar som kan återskapa och förklara de resultat som vi ser
i mätdatan. Föreningen av teori och observationer förstärker då varandra och är
kritisk för vår förståelse av Vintergatan.

Den första artikeln i denna avhandling använder just numeriska simuleringar
för att studera hur interaktioner med Galaxens spiral armar och centrala stav förfly-
ttar stjärnor radiellt i skivans plan. Vi visar att denna migrering beror på Galaxski-
vans styrka och hur vertikalt utsträckt stjärnans omloppsbana är. Med över 100
simulerade skivor kunde vi bestämma att i mindre massiva skivor migrerar stjärnor
mest nära skivan och i motsatt fall med en massiv skiva migrerar de oavsett hur
långt utanför skivan som omloppsbanan går.

I den andra och tredje artikeln använder vi mätdatan från Gaia. Genom
att vi använder positioner och hastigheter längst med himlavalvet, utan att kräva
hastigheter i siktriktningen, får vi tillgång till extremt stora mängder data. Vi
kan då uppskatta stjärnornas lokala hastighetsfördelning, trots att vi saknar en
hastighet. Detta gjorde vi för tre olika urval av data. I den andra artikeln använ-
der vi vita dvärgar, som är kvarlevorna av mindre massiva döda stjärnor, och kunde
upptäcka att där fanns två separata kinematiska populationer. I tredje artikeln an-
vänder vi Solens kvarter av stjärnor i skivan och en lokal del av Galaxens halo.
Där lyckas vi identifiera många kända strukturer i hastighetsfördelningen, samt
några nya som tillhör den ansamlade halon, och skulle kunna vara kvarlevorna av
uppslukade dvärggalaxer.

v



Acknowledgements

I am forever grateful to who is probably my greatest supporter, my beloved partner
Tina Sörensen who has been by my side ever since I started my doctoral journey.
Your unwavering support has been with me through difficult times with debug-
ging, writing, contemplating, and a global pandemic. I would not be where I am
today without you.

My supervisor, David Hobbs. You have mastered the art of knowing when to
give a push and when to encourage letting go and taking a step back. You have
inspired my work ethic and taken the best care of me as a student of yours. Your
door has always been open to me and so has your ear. I will miss walking around
the corner to have a chat about just anything.

My co-supervisor, Paul McMillan. Your guidance has been invaluable to me
ever since we started working together during my master’s project. I am ever im-
pressed by your intuition when looking at new results and to me, you have always
been a bottomless fount of knowledge. I regret that this is our last project together,
however I think I now know what a good enough scientist would do.

I want to thank the friends I made at Lund Observatory during my stay here.
There are too many master students, fellow PhDs, and staff members I want to
thank for me to name them all here. Especially I want to thank Eric Andersson
whose thesis has been in tandem with mine, which led to good friendship over the
years. My first and second office-mates Iryna Kushniruk and Bibiana Prinoth, my
closest colleagues in almost all matters besides research. You were the ones I could
always ‘turn’ to and have a chat about either work or life in general. Wherever I
end up in the future I am certain I will not have such a great office situation as the
one you have given me.

I must not forget to thank the Physics & Lasershow. For almost ten years the
show has let me mix work with incredible amounts of fun and given me some of
my closest friends. Thank you Per-Olof, Johan Z, Stina, Odd, Johan K, Jonas,
Alexandra, Frida, Rebecca, Vassily, Matteus, Lina, David, Elin, and Anna-Maria.

My friends outside of work: Anton, Sara, Fredrik, Marielle, Rasmus, Anna,
Jesper, Lovisa, Johan. You have always made sure to keep me humble and to ask
me any and all astrology-related questions, much to my bemusement. Adrian, I am
thankful we reconnected during our PhDs and could share many hours working
out or betraying each other in board games.

To conclude, I want to extend my deepest gratitude to the people who made
sure I got here today: my family. First, my parents Marita and Seppo, who always
made sure to let me explore while providing all the support I needed. My bonus-

vi



mother Suzie, I aspire to have your fortitude. My five brothers: Nicholas, Robert,
Christopher, Mattias, and Alexander. Of course also my extra family in Halmstad
who have always welcomed me.

vii





Preface

In this thesis, the primary question we seek to understand better is ”how do stars
move in the Galaxy?”. To shed light on this I have examined radial migration in
simulated Milky Way-like galaxies to constrain its dependencies. Furthermore,
I have estimated the full 3D velocity distributions of different samples of local
stars using the largest available astrometric catalogues from the Gaia mission. The
velocity distributions have allowed us to demonstrate unknown properties of the
white dwarf population as well as identify new velocity substructures which can
tentatively be linked to accretion events.

This thesis summarises the work which has been published in two papers and is to
be submitted in a third. Here follows a brief description of each paper to give the
reader an overview of the thesis.

1. Paper I: Radial migration and vertical action in N-body simulations - My first
paper seeks to determine how effectively stars are radially migrated as a
function of how vertically extended their orbit is and how gravitationally
dominant their stellar disc is. This was an interesting question since the
current understanding of radial migration, following works by Solway et al.
(2012); Vera-Ciro et al. (2014, 2016), especially the latter two, had firmly
argued for what they call provenance bias; radial migration primarily affects
stars with small vertical excursions. We investigated whether this prove-
nance bias exists regardless of the strength of the spiral arms that cause the
radial migration. This had also been investigated in the third of the cited
papers, which found that it indeed was. To do this we set up our own sim-
ulations with a pure N -body bulge, halo, and disc. We used 11 different
set-ups where the halo mass is varied. This allowed the force ratio of halo
to disc, Fh/Fd to vary between 0.5 to 3.2 at a Solar orbit. In other words,
we went from strongly disc-dominated systems to halo-dominated systems.
We could then quantify the radial migration by comparing the final and
initial angular momentum ∆Lz = Lz,f − Lzi , and compare it to the ver-
tical action. For a region of the disc, the migration is better described by
the spread of ∆Lz , described by its standard deviation σ∆Lz . We looked at
the slope of the function that relates the migration efficiency parameter to
the vertical action, Jz , at various radii of the disc in all of our simulations.
This lets us show that the as the disc becomes more dominant, the slope
flattens, and the provenance bias disappears across the whole disc. This was
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not the case when migration efficiency was compared to radial action, which
implied that there is a difference in the response of migration to increased
actions in the various directions. We also recreated the simulations used by
Vera-Ciro et al. (2016) and were able to reproduce our results there as well.

2. Paper II: The velocity distribution of white dwarfs in Gaia EDR3 - In the sec-
ond paper, the goal is to determine accurate velocity distributions for white
dwarfs (WDs) without having to rely on measured line-of-sight velocities.
The data releases of Gaia have revolutionised the field of astrometry and
have produced a truly great catalogue of stellar motions and positions. Al-
ready in EDR3, the catalogue contained the full astrometric solution for up
to ∼1.5 billion sources which completely dwarfs the sample when limited
to measured line-of-sight velocities which is about ∼7.2 million or about
0.5%. It is typically difficult to get radial velocities for WDs since their spec-
tra have few and broad lines, which means that working with pure proper
motions is preferred in order to access a large sample of them. Doing this
allows us to use a large sample of 129 675 WDs within 500 pc. Inferring
the velocity distribution from proper motions and positions was done for
Hipparcos data by Dehnen (1998) using a penalised maximum likelihood
estimate. The method requires a sample that can be assumed to have proper
motions uncorrelated to the on-sky positions. In this case the proper mo-
tions in one part of the sky compensate for the missing line-of-sight veloci-
ties of another. We applied this method and the related method of Dehnen
& Binney (1998) to determine the velocity distributions and velocity disper-
sions for the WD population. Gaia DR2 had already shown that the WDs
have a bifurcation in the colour-magnitude diagram, so the difference be-
tween the two sequences was something we chose to investigate. We were
able to show that the bluer sequence has lower velocity dispersion, across
all magnitudes where the bifurcation exists, than the redder sequence. This
means that they comprise two separate kinematic populations. Further-
more, we determined the statistical independence of the two populations
with a KS-test. The current best explanation for the bifurcation is atmo-
spheric composition, which would not have a bearing on the kinematics.
Our results, therefore, provide support for alternative explanations.

3. Paper III: New stellar halo substructures from Gaia DR3 proper motions - The
third paper expands the use of the penalised likelihood estimate from Pa-
per II. The benefits of using proper motion catalogues warranted further
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exploitation and so we decided to apply the method towards two new sam-
ples: the Solar neighbourhood and the local stellar halo. For the Solar neigh-
bourhood, this results in 1 171 846 stars within 200 pc with 10% parallax
uncertainty. This sample gives a very accurate view of what the velocity dis-
tribution looks like at ‘face-value’, with all of the most well-known moving
groups featuring in the distribution. This also demonstrates that to find ad-
ditional velocity substructure in the Solar neighbourhood special methods
must be applied and in our case, we made use of conditional probabilities
of one velocity component of the distribution upon the other. This effec-
tively normalises the distribution along either the rows or the columns of
the 2D map and reveals further structure in high-velocity regions. Selecting
the local (within 3 kpc distance) stellar halo with a velocity cut of vT > 200
km s−1 provides us with 456 273 stars. This also reveals the double main
sequences which have been previously identified in the colour-magnitude
diagram in Gaia DR2 Gaia Collaboration et al. (2018b). The sequences
are typically associated with a redder ‘in-situ’ halo and a blue ‘accreted’ halo
which matches well a lower metallicity isochrone. This second sequence has
been shown to have significant amounts of accreted substructure (see e.g.,
Koppelman et al. 2019 and links therein). We create a sample for each se-
quence with 239 115 and 194 507 stars in left and right sequences respec-
tively. We focus on the accreted population and identify the majority of
substructures available in literature. Using the conditional probabilities, we
can identify two new features the the accreted halo which have no match in
literature: MMH-1 at (vr, vφ, vθ) ≈ (±220, 20, 300) km s−1 and MMH-
2 at (vr, vφ, vθ) ≈ (−20, 180,−100) km s−1.

Since the first of the articles is on dynamics in N -body simulations while the
second and third are on statistical analysis of astrometric data, the thesis is divided
into chapters reflecting this. Chapter 1 gives a structural overview of the Milky
Way and explains radial migration. This follows naturally into Chapter 2 which
summarises the first article. Chapter 3 gives historical context for the field of
astrometry and background for the second and third article’s method. Finally,
Chapters 4 and 5 summarise the second and third articles respectively.
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Chapter 1

The Milky Way as a Galaxy

“I know, it doesn’t make any sense, I wish there were sense. Where did all the sense go?”
- Tribore, Final Space

1.1 Components

Throughout history, mankind has sought to understand the night sky and its many
features such as stars, clumps, planets or ‘wanderers’. But no feature is as large and
noticeable as the great spray of stars that make up the Milky Way Galaxy, named
so for the milk from Hera’s breast in Greek mythology (Leeming, 1998). The sug-
gestion that this milky band of stars was a rotating body that we, the observers, are
inside of did not come until Wright (1750). Since then our understanding of our
home Galaxy has increased tremendously and we can present stunningly detailed
views of it like the map shown in Fig. 1.1. This map is made possible thanks to
measurements from Gaia’s second data release (Gaia Collaboration et al. 2018a,
hereafter DR2). As the figure shows, the Milky Way is composed of several differ-
ent components with stars differing in spatial distribution, kinematics, chemistry,
and age. In the three papers in this thesis, I touch upon almost every component
mentioned in Fig. 1.1 and so I will provide a brief description of each one.

1.1.1 Thin disc

The thin disc is what visually makes up the Milky Way and, since it is where the
Sun is located, it is the most well-studied of the stellar components. The thin
disc is also the site of ongoing star formation which recent estimates place as high
as ∼3.3 M"yr−1 (Zari et al., 2022). As the name suggests it is relatively thin
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Figure 1.1: All-sky view of the Milky Way Galaxy from Gaia based on measure-
ments of nearly 1.7 billion stars. We mark the location of different components
of the Galaxy with different colours. Image adapted from Gaia Data processing
and Analysis Consortium (DPAC) (CC BY-SA 3.0 IGO).

with a scale length of Rt ≈ 2.6 kpc, scale height of zt ≈ 300 pc, and with a
mass Mt ≈ 3.5× 1010 M" (Bland-Hawthorn & Gerhard, 2016). The thin disc
stars are generally young and have abundances of elements produced by the α-
process (Burbidge et al., 1957) relative to iron similar to the Sun. These elements
have nuclei which are multiples of four, the atomic mass number of the Helium
nucleus or α-particle. We measure the relative abundances relative to iron as:

[α/Fe] = log10

(
Nα

NFe

)

star
− log10

(
Nα

NFe

)

"
, (1.1)

where N is the number of atoms per unit of volume of the respective species.

1.1.2 Thick disc

The second disc of the Galaxy fulfills its name with a scale height of zT ≈ 900
pc, scale length RT ≈ 2 kpc, and mass MT ≈ 6 M" (Bland-Hawthorn & Ger-
hard, 2016). Its stars are older (Bensby et al., 2014; Martig et al., 2016) and
kinematically hotter than those of the thin disc, since age and velocity dispersion
are correlated (Martig et al. 2014; Aumer et al. 2016). In metallicity space, thick
disc stars occupy regions of higher [α/Fe] and are usually linked to the high-α se-
quence (Katz et al., 2021). How the thick and thin discs formed is still a debated
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topic, particularly so the former as explained in Helmi (2020) who also shows that
the formation may be related to the evolution of the stellar halo through mergers
with nearby galaxies.

1.1.3 Stellar halo

The most extended stellar component is the stellar halo which contains 1.3+0.3
−0.2×

109 M" within 2 < r < 70 kpc (Mackereth & Bovy, 2020) and is host to the
oldest and most metal-poor stars in the Galaxy (e.g., Da Costa et al. 2019; Horta
et al. 2022). The orbits of halo stars are less flattened towards the disc and so
can be told apart locally by their kinematics. Relative to the discs, the halo stars
appear to move with a typical velocity of ∼200 km s−1. A commonly used cos-
mological model is Λ cold dark matter (ΛCDM) which successfully explains, for
example, the cosmic microwave background (Planck Collaboration et al., 2020)
and the large-scale structure of galaxies (Springel et al., 2005). This theory also
explains how stellar halos can form through hierarchical growth with minor and
major mergers (White & Rees, 1978; Fall & Efstathiou, 1980). This view matches
well with the current understanding of the stellar halo as having an in situ compo-
nent of stars as well as an accreted component that becomes extremely dominant
at larger distances from the disc (Naidu et al., 2020). It has also been shown that
this accreted component has a plethora of substructures in it attributed to vari-
ous accreted stellar populations (e.g., Koppelman et al. 2019; Feuillet et al. 2021;
Dodd et al. 2022). We will touch more upon this in sections 5.2 and 5.3.

1.1.4 Dark matter halo

There is another halo that is not visible to our telescopes. If we only look at the
stellar matter of a galaxy like the Milky Way, the rotational velocity of stars in its
outer parts is expected to decrease with distance similarly to Keplerian rotation,
in which v2rot ∝ M/R. This is not what we observe however, and instead, the
rotation curve flattens out which is attributed to the existence of a dark matter halo.
Current results place the mass of the dark matter halo at Mdh ≈ 1.3× 1012 M"
(Posti & Helmi, 2019) and its shape is still a topic of much debate as explained in
McMillan (2017). While the debate is ongoing, it is very common in simulations
to assume a spherically symmetric halo (e.g., Andersson et al. 2020).
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1.1.5 The bulge

In the central regions of the Galaxy lies the bulge, heavily obscured by dust as
is clearly visible in Fig. 1.1. The original explanation of the bulge was that of a
spherical structure built up through early mergers, which is called a classical bulge.
This also made sense given the old ages of bulge stars known at the time (Clarkson
et al., 2008). More recent results have shown that the bulge has several differ-
ent metallicity populations (Ness et al., 2013a) including young metal-rich stars
(Ness et al., 2014). These younger stars instead suggest that the bulge could have
formed through internal disk instabilities. Other works have also shown that parts
of the bulge can be formed from the disc through interactions that slowly rearrange
energy, angular momentum, and mass, otherwise known as secular evolution (Ko-
rmendy, 2013). Following star counts in the bulge, it has been established that
the majority of bulge stars participate in a box/peanut-shaped structure, related to
the three-dimensional Galactic bar, with cylindrical rotation (Wegg & Gerhard
2013; Ness et al. 2013b) and Shen et al. (2010) uses the kinematics to constrain
its contribution to be less than 8% of the disc mass. In light of these discoveries,
it is unclear if the Milky Way even has a classical bulge.

1.2 The bar & spiral arms

Beyond the components mentioned in the previous sections, there are the non-
axisymmetric features. In other galaxies they are clearly visible but since we reside
inside our Galaxy we struggle to see them as clearly. As an example, we show a sim-
ulated galaxy in Fig. 1.2 which has a bar and two spiral arms that can be seen very
clearly and represents a typical disc galaxy. Since non-axisymmetric features play
an important role in secular evolution we will take a closer look at these features
in the Milky Way.

The boxy/peanut-shaped bulge mention in section 1.1.5 is an inner, vertical
extension of the Galactic bar (Bland-Hawthorn & Gerhard, 2016). The bulge
region reaches to about ∼2 kpc (Wegg & Gerhard, 2013) while the bar may reach
as far as 5 kpc (Wegg et al., 2015). For this reason, it is sometimes referred to as
the ‘long’ bar. Current estimates for the bar puts its mass at ∼1.6 ± 0.3 × 1010

M" (Kipper et al., 2020) and using Gaia’s third data release (Gaia Collaboration
et al. 2022b, hereafter DR3) the bar angle with respect to the Sun-Galactic Centre
(GC) is estimated to be −19.2◦ ± 1.5◦ (Gaia Collaboration et al., 2022a). The
bar is not static however and is rotating with a specific angular velocity, called its
pattern speed. The pattern speed of the bar is subject to much debate with many

8



Figure 1.2: An example of a simulated Milky-Way like disc Galaxy with pro-
nounced spiral arms and a central bar.

attempts at determining it. Bland-Hawthorn & Gerhard (2016) review many of
the estimates and conclude with an estimated pattern speed of Ωb & 43 ± 9 km
s−1 kpc−1. More recent estimates place the pattern speed of the bar at Ωb =
33.29±1.81 km s−1 kpc−1 (Clarke & Gerhard, 2022) and Ωb = 41±3 km s−1

kpc−1 (Bovy et al., 2019; Sanders et al., 2019), in agreement with the previous
value. Pattern speeds of this scale have been called a ‘slow’ bar scenario.

The other major non-axisymmetric feature of the Milky Way is the spiral arms.
They likely wind around the whole disc and as such, we do not have a full picture
of them to date and instead must look to whatever parts of them are visible to
us from our position as observers in the Galactic plane. Current evidence within
the community is that the Milky Way has four approximately symmetric spiral
arms (Reid et al., 2019) rather than just two. The names for these four arms as
in literature are Perseus, Sagittarius-Carina, Scutum-Centaurus, and Norma-Outer.
The Sun is believed to lie between Perseus and Sagittarius-Carina in an inter-arm
region. In addition to these arms, very close to the Sun lies the local arm, initially
believed to be a spur of the Perseus arm. It has since been understood to be more
similar to the nearby arms with comparable qualities and is perhaps a branch of
one of them (Xu et al., 2013). In spiral galaxies, the highest densities of gas and
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High-  diskα

Low-  diskα

Figure 1.3: An illustration of the distribution of abundance of α-elements vs the
abundance of iron. The dotted line shows the location of the Sun and the gray
solid line the expected evolution of an isolated region of the ISM.

stars lie along the arms which is the site for most star formation in the disc.

1.3 Radial migration

Since the spiral arms and the Galactic bar are such very prominent features of our
Galaxy and in other similar spiral galaxies, it is no surprise that they have a pro-
found impact upon the disc in which they are found and the stars that live therein.
One such effect which occurs because of the dynamical interplay between disc and
the non-axisymmetric features is radial migration, which is the displacement of a
star in the radial direction from the Galactic plane. We will soon explain the major
processes which cause radial migration but first the importance of radial migration
as an ingredient of galaxy evolution, and the evidence to support it, should be dis-
cussed.

Let us consider the chemical evolution of the Galactic disc. The abundances of
α-elements and Fe over time in an isolated region of the interstellar matter (ISM)
are affected by the life and death of its stars through what is called stellar nucle-
osynthesis (for a review see Edvardsson et al. 1993). In short, stars create elements
and enhance the abundances of the next generation. Initially, core-collapse super-
novae produce similar amount of α and Fe, but [Fe/H] increases. Eventually, type
Ia supernovae begin, which produce Fe but no α-elements and thus in the region
[α/Fe] starts to drop. This behaviour produces a trend like the grey line seen in
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Fig. 1.3. If we are in a very isolated region, we would expect to see that the stars
follow this narrow trend. Neighbouring regions radially inside and outside of the
region would however have higher and lower [Fe/H] ranges as it has been shown
that [Fe/H] increases radially inwards in the Galaxy (e.g., Hayden et al., 2015).
In observations of the Solar neighbourhood (e.g., Edvardsson et al. 1993; Hayden
et al. 2015; Bensby et al. 2014) we see a range of different Fe abundances at each
[α/Fe], similar to the illustration shown in Fig. 1.3. Similarly, the age-metallicity
relationship (AMR) can be expected to follow a narrow line for an isolated region
but shows a wide scatter. This can be quite easily explained if the different re-
gions of the disc are not isolated from each other, but rather there is radial mixing
between them.

Beyond this rather straightforward example of radial migration, it has been
suggested that several other observed features of the Milky Way disc are caused
by it. These include the observed bimodality of [α/Fe] in plots like Fig. 1.3
(Schönrich & Binney, 2009; Toyouchi & Chiba, 2016) and the flaring of the outer
disc in mono-age populations (Minchev et al., 2012). It is clear that some form
of radial migration occurs in the Milky Way and we are today able to estimate the
radial displacement of individual stars, such as in Frankel et al. (2018) who find
that the Sun has likely migrated from a birth radius of ∼5.2 kpc. Therefore it is
important to understand the processes by which migration occurs.

1.3.1 Radial heating

One rather simple cause of radial migration is what is called radial heating, some-
times called blurring. Stars are born in Giant Molecular Clouds (GMCs) which
move on nearly circular orbits around the disc. This means that the stars them-
selves are born on nearly circular orbits. But through the evolution of stellar orbits,
they can scatter by interaction with things like other GMCs, clusters, or spiral arms
which will lead them onto slightly eccentric orbits, called epicycle orbits as they can
be described by the epicycle approximation. The epicycle refers to the radial and
azimuthal oscillations of the perturbed orbit, occurring with an epicycle frequency,
κ. The reason a perturbed star does not simply move to a different radius when
scattered is because of the fine balance between centrifugal and gravitational force
keeping it in place. If the star is pushed radially outwards, the centrifugal force
decreases faster than gravity and the star moves back in. The star now overshoots
to an interior radius where the centrifugal force increases faster than gravity which
pushes it back out. In other words, we say that the star is stable to small veloc-
ity changes. Because of the oscillations the star will visit different radii than its

11



Figure 1.4: A simple sketch of the radial evolution of an orbit that undergoes
migration. Left: The effect of radial heating or blurring, i.e. the increase of
random motion due to dynamical scattering. This process increases or decreases
the amplitude of the radial oscillations of the orbit. The shaded regions mark
the time during which the radial heating occurs. The average radius, or guiding
centre radius, Rg, is never changed during the process. Right: The effect of cold
torquing or churning by scattering at a corotation resonance, which displaces the
guiding centre radius, Rg, but does not increases the amplitude of oscillations
and therefore does not increase the radial action, JR.

original radius, called the guiding radius, Rg = Lz/vc, where Lz is the angular
momentum perpendicular to the disc and vc is the circular velocity. It is the pro-
cess of increasing the amplitude of the oscillations that we call radial heating and
we show how this might look in the left panel of 1.4. The scattering process will
not change the guiding radius on average but in the cases in which it does, this
increases the random motions of the star, including the amplitude of the radial
oscillations. In short, while the process of radial heating does not directly relate to
a change in guiding radius, such a change can in certain instances also occur.

Given that the stars visit other regions of the Galaxy, they can obviously en-
rich those regions as well which leads to the conclusion that radial heating can
contribute to the width observed in the chemical evolutionary tracks discussed in
the previous section. It can, however, be shown, as in Binney (2007), that radial
heating will only account for around 50% of the observed scatter in the metal-
licity and instead there must be some additional source of mixing to explain the
measured scatter.
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Figure 1.5: The concept of horseshoe orbits and angular momentum transfer
near corotation of a non-axisymmetric feature with constant angular speed. The
grey bar is a non-axisymmetric feature, with the Galactic centre towards its bot-
tom. The dashed linemarks the corotation radius and the pink points are positions
along the horseshoe orbit right before angular momentum transfer. The vectors
for r and F which gives the torque is indicated

1.3.2 Cold torquing

Another source of radial mixing was described first in a seminal paper by Sellwood
& Binney (2002) where it was shown that disc heating is not the dominant effect of
the spiral arms. Instead, non-axisymmetric features like the bar and spiral arms can
shift the guiding radii of stars without significantly altering their dynamics. This
process occurs through resonant interactions with the non-axisymmetric features.
The spiral arms or bar will exert a torque that changes the angular momentum of
the star’s orbit since:

d

dt
L =

d

dt
(r × p) = r × F = Γ. (1.2)

Axisymmetric features like bars and spirals move with constant angular velocity,
which means that the non-angular velocity increases further out. This means that
for stars with approximately constant circular velocity there is a radius at which the
velocity of a star and spiral/bar is the same, called corotation. Beyond this point,
stars move more slowly than the spiral and within it they move faster. Faster stars
catch up to the feature and will have a force, F , directed towards it. Slower stars
instead fall into it with a force in the opposite direction. We illustrate this in Fig.
1.5 which shows that for the fast stars, the torque will be directed inwards, i.e.,
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θi

A = 2πJi

Figure 1.6: A polar coordinate analogy of action-angle variables to phase-space
coordinate. An orbit oscillating in some coordinate qi will have a velocity, vi which
also oscillates. A point on the same orbit can be described with a constant area,
2πJi, since the action Ji is a conserved quantity, and an angle θi.

negative which decreases the angular momentum and transfers it to a smaller Rg

orbit where it moves faster. It eventually catches up to the spiral/bar and is given
a positive torque, migrating outwards. In this simple view, the orbit would go
back and forth but due to the transient nature of spiral arms and the plurality of
axisymmetric features, this is not a likely outcome.

This provides the ‘torquing’ part. The cold part of the term comes from the
fact that the migration does not increase the random motion of the affected stars,
leaving them kinematically unscathed from the interaction. To properly explain
this concept, we introduce action-angle variables to describe a stellar orbit. A sim-
ple polar-coordinate analogy is given in Fig. 1.6 which shows that an orbit in
a certain dimension, i, can be described with two oscillating phase-space coordi-
nates (qi, vi) or one constant and one oscillating, (Ji, θi). For disc orbits the three
actions usually used are: Jr which describes the extent of the radial motion, Jz ,
the extent of the vertical motion, and Jφ which is equivalent to Lz .

If we place ourselves in the rotating frame of a Galaxy, moving with a pat-
tern speed Ωp relative to the inertial frame, we can describe its total energy or
Hamiltonian, EJ , using the Hamiltonian of the inertial frame, E:

EJ = E − ΩpL, (1.3)
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Where L is the angular momentum. We call EJ the Jacobi integral (see Binney &
Tremaine 2008 chapter 3.3.2 for a full derivation) and it is constant in time. So
the difference in energy between two points in time is:

∆E = Ωp∆L. (1.4)

Now we consider the energy separated into a radial and an azimuthal part

∆E =
∂H

∂L
∆L+

∂H

∂JR
∆JR, (1.5)

where JR is the radial action. If we use Hamilton’s equations with J as the mo-
mentum and θ as the coordinate we find:

J̇i = −∂H(J)

∂θi
= 0 θ̇i =

∂H(J)

∂Ji
= Ωi(J). (1.6)

where Ωi is an angular velocity. This can be understood considering the total
energy or Hamiltonian of an orbit is a function of the action, but not of the angle;
the energy does not change during an orbit. If the actions, which describe velocities
and positions, change then of course so must the energy. We have that ∂H/∂Jr =
ωR and ∂H/∂L = Ω, the radial and azimuthal frequencies. Combining this with
eq. (1.5) gives

∆E = Ω∆L+ ωR∆Jr, (1.7)

which when put into eq. (1.4) yields

∆Jr =
Ωp − Ω

ωR
∆L. (1.8)

It is the implications of eq. (1.8) that provides the ‘cold’ part.
Stars have almost constant circular velocity across the disc which means that

angular momentum corresponds to guiding radius, (approximately, Lz ∝ Rg).
We know that torquing provides a change in the angular momentum from our
discussion above, so this will correspond to a change in the radial action of the orbit
unless the angular velocity of the star matches that of the axisymmetric feature,
Ω = Ωp, which is the case near corotation. This behaviour was demonstrated
and detailed in Sellwood & Binney (2002) which showed also that the migration
caused by the cold torquing can displace the star on kiloparsec scales, without
imparting any increased random motions. The nature of cold torquing is therefore
not only impressive but also frustrating since if stars can change their guiding
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radius by large scales without having any kinematic evidence of such a process, the
history of different regions of the Galaxy becomes much more complex.

As an aside, it is worth mentioning the influence of other resonances that
exist besides corotation. A particularly strong such resonance is when the radial
frequency, ωR (identical to κ in the epicyclic approximation), is a multiple of the
frequency with which the star encounters the non-axisymmetric feature (Ωp−Ω).
In other words when

ωR = ±m(Ωp − Ω). (1.9)

These resonances are called Lindblad resonances after Swedish astronomer Bertil
Lindblad (1895 - 1965). The value of m is set by the symmetry of the perturber.
For example, m = 2 is a two-armed spiral or bar and m = 4 is a four-armed
spiral. The positive sign corresponds to an orbit in which the rotating feature
sweeps by the slower star as it completes m radial oscillations and is known as an
Outer Lindblad Resonances (OLR). The negative sign is when the fast star rotates
past the rotating feature by the time it completes its m radial oscillations and is
then called an Inner Lindblad Resonance (ILR). At these resonances, we have from
eq. (1.8)

∆Jr = ± 1

m
∆L, (1.10)

which shows how migration at these resonances increases the radial action, there-
fore making them a potential source of migration by radial heating as discussed
previously.

Clearly, we must understand how stars are radially migrated. In particular, the
process of cold torquing must be well understood since it is unique in the fact that
it leaves no dynamical trace. Without these insights we cannot have a full picture
of the history and evolution of our Galaxy.
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Chapter 2

Paper I

2.1 Introduction

In my first paper, the aim is to establish the relationship between the efficiency
of radial migration by cold torquing and the vertical action of stars. We seek to
answer the question: do stars with large vertically extended obits migrate equally,
or less efficiently, than those with smaller vertical extensions? Radial migration
is a complicated process which can not be accurately described with an analytical
expression. It is also a process which occurs over hundreds of millions of years,
so we cannot observe it directly. For these reasons, we make use of numerical or
‘N -body’ simulations. In addition, using isolated disc galaxy simulations lets us
have a great deal of control over the parameter space.

The paper particularly focuses on determining the efficiency of radial migra-
tion as a function of the kinematics of their orbits. This is not a topic that has gone
entirely without study, of course. The efficiency of radial migration as a function
of radial velocity dispersion is investigated in Solway et al. (2012), Vera-Ciro et al.
(2014), and Daniel & Wyse (2018) who all agree that migration is reduced with
increased radial motion. A similar trend can be seen when investigating vertical
motion or vertical scale height. This is studied by several articles including Solway
et al. (2012); Vera-Ciro et al. (2014); Halle et al. (2015); Vera-Ciro et al. (2016)
and the conclusion is the same: radial migration is reduced with increased ver-
tical excursion measured either through scale height or velocity dispersion. This
is dubbed the provenance bias by Vera-Ciro et al. (2014). However, Solway et al.
(2012) found that this effect was rather minor and was even used by Schönrich
& McMillan (2017) as justification for migration to be independent of actions in
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their model. They also speculate on the difference between the works of Solway
et al. (2012) and Vera-Ciro et al. (2014) being due to the strength and morphology
of the spiral arms.

The idea of a provenance bias can be understood by considering the interaction
between a star and a spiral arm. Cold, circular orbits will spend more time near
the corotation resonance of the spiral and be more prone to migration. However,
a sufficiently strong spiral arm from a massive stellar disc could perhaps be strong
enough to migrate stars that reach larger vertical excursions as well. In Vera-Ciro
et al. (2016) they create three different simulations of live discs in static dark matter
halo potentials. These go from a lighter disc to a heavier disc, with the heavier
disc resulting in fewer, stronger, spirals (D’Onghia, 2015). They claim that the
provenance bias is present regardless of morphology which does not provide an
explanation for the result of Solway et al. (2012).

In the paper, we seek to answer how this provenance bias is affected by spiral
morphology and disc dominance. To do this, we generate a large number of N -
body simulations where the ratio of the halo to disc strength is varied to produce
discs with different strengths and morphology. We investigate the radial migration
that occurs in these simulations and quantify it as a function of disc dominance.
Specifically, we quantify the provenance bias of the migration. We determine that
the slope of radial migration efficiency as a function of vertical action is itself a
function of the dominance of the disc. The slope is steep for weaker discs (i.e.,
a provenance bias exists) and flattens for stronger discs, supporting the idea that
strong spirals can migrate stars on vertically extended orbits. For radial action, we
find that there is a provenance bias regardless of disc dominance.

2.2 Setting up simulations

All of our simulations are set up and run using packages available as part of the
NEMO1(Teuben, 1995) toolbox. We start with a pure N -body isolated galaxy sys-
tem designed to be similar to the Milky Way. The scale lengths and masses of
components we use are chosen with inspiration from McMillan (2017). The full
specifics of each component and the chosen parameters are found in paper I.

We follow the procedure of McMillan & Dehnen (2007) which describes the
production of an equilibrium system of bulge, halo, and disc. The paper de-
scribes the procedure used in the NEMO package MkgALAxy, which in turn uses
MkwD99DISc and MkHALO to create the different components. This disc has a

1https://teuben.github.io/nemo/
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standard shape with a density profile that decreases exponentially in radius and
has a sech2 vertical profile:

ρdisc(R, z) =
1

2zd
Σ0 exp

(
− R

Rd

)
sech2

(
z

zd

)
. (2.1)

The dark matter halo and bulge are both designed to have a spherical density dis-
tribution:

ρ(r) =
ρ0

xγi (x
η + 1)(γo−γi)/η

sech
(
r

rt

)
, (2.2)

with the parameters chosen for the halo to provide a Dehnen-McLaughlin profile
(Dehnen & McLaughlin, 2005) which has the advantage of being fully analytic
with a smooth transition between inner and outer parts of the distribution. It
also matches very well to simulated dark matter halos. The bulge uses a standard
Hernquist profile (Hernquist, 1990).

Starting from these initial conditions we change only the mass of the dark
matter halo. We create eleven different setups with halo masses ranging from 1.7×
1011 M" to 1.02 × 1012 M" which corresponds to the ratio of the radial force
from the halo to the disc,Fh/Fd, ranging from around 0.5 to 3.2 atR = 8 kpc and
z = 0. In other words, we go from disc-dominated systems to halo-dominated
systems. Each dark matter halo setup is also generated with ten different random
seeds to estimate stochasticity, resulting in a total of 110 simulations.

2.3 Evolution of non-axisymmetric features

To capture the evolution of the simulated galaxies and their spiral arms and bars we
use two approaches. The first is a direct visual inspection of the disc morphology in
the plane of rotation at three different times, which correspond to ‘early’, ‘evolved’,
and ‘late’ times or 0.3 Gyr, 1 Gyr, and 4 Gyr respectively. This is shown in Fig. 2.1.
Since we are in a pure N -body simulation, we do not get much secular evolution
beyond this time as the disk kinematics become too heated to participate in the
dynamical interactions with the spiral arms. For this analysis we also only look at
the lightest halo, 1.7×1011 M"; the heaviest halo, 1.02×1012 M"; and the one
in between, 5.1 × 1011 M" as representative cases. This gives a disc-dominated
case, a halo-dominated case, and something in between.

These simulations highlight that a very halo-dominated system leads to many,
weaker arms rather than grand-design spirals and is unable to form a bar as well.
In contrast to this, the disc-dominated system shows impressive arms, a bar, as
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Figure 2.1: Three simulated galaxies seen face-on with masses: 1.02× 1012 M!,
5.1 × 1011 M!, 1.02 × 1012 M! in each row. The time of the snapshots for
each column is indicated on the top. The different evolution of non-axisymmetric
features is seen.

well as the heating mentioned before as the disc becomes extended by comparison
to its quiescent counterparts.

The second approach is using a Fourier analysis to extract the power spectrum
of different modes, m, or number of spiral arms (m = 2 is a two-armed spiral
or bar). This method is described thoroughly in Roškar et al. (2012) and our
paper. This analysis further strengthens what is already discussed above. The disc-
dominated system sees a strong m = 2 resonance arise already at around 0.3 Gyr,
probably a mixture between the spirals and bar. It has a pattern speed of ∼30 km
s−1 kpc−1, comparable to that of the Milky Way bar. The intermediate disc takes
until after 2 Gyr to form a m = 2 feature with weaker multi-arm features prior
to this time. Finally, the halo-dominated system barely sees any significant modes
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Figure 2.2: Change in angular momentum, ∆Lz, between two points in time as
a function of initial angular momentum, Lz,i. The rows correspond to the same
simulations as in Fig. 2.1 and the time of angular momentum change is shown at
the top. The amount of angular momentum change in each case is closely related
to the evolution of strong non-axisymmetric features in the simulation.

appear apart from a very weak m = 6 feature briefly around 0.2 Gyr. Our results
agree with D’Onghia (2015) that the disc-dominated systems form fewer, stronger
spirals. This, of course, has implications for radial migration.

2.4 Quantifying radial migration

To gauge the amount of radial migration that occurs across the disc, we use a
common approach of looking at the change in angular momentum, ∆Lz =
Lz(t2) − Lz(t1), between two points in time t1 and t2. This can be compared
against the initial angular momentum of the particles, Lz,i, which is a proxy for
the guiding radius. This is seen in 2.2 for the three simulations mentioned in sec-
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Figure 2.3: Change in angular momentum, ∆Lz, between two points in time as
a function of initial angular momentum, Lz,i. The rows correspond to the same
simulations as in Fig. 2.1 and the time of angular momentum change is shown at
the top. The amount of angular momentum change in each case is closely related
to the evolution of strong non-axisymmetric features in the simulation.

tion 2.3 and shows how the strength of the secular features affects the migration.
Note that diagonal features in this space corresponds to migration across a coro-
tation resonance since particles interior to the resonance are migrated outwards,
gaining a positive ∆Lz and vice-versa for the particles exterior. For example, con-
sider the intermediate case. As was shown in the previous section, the bar forms
not until after 2 Gyrs to form its largest m = 2 mode. We can see here that the
most significant migration does not transpire until after this. We also see that the
disc-dominated system has strong early migration which calms down as the disc
has become heated. Since we have quantified the amount of migration as a func-
tion of angular momentum and shown how it relates to the disc morphology, we
are equipped to tackle the primary question, the provenance bias.

We want to see how the migration changes as a function of the vertical ac-
tion Jz across the disc. The particles are therefore binned 100x100 in the space
of initial vertical action, Jz,i, and initial angular momentum, Lz,i. In each of
these bins, the amount of migration occurring is quantified by the dispersion of
angular momentum changes, σ∆Lz , which we call the radial migration efficiency.
We can then separate different bins in Lz,i into separate cases and investigate the
behaviour of migration efficiency σ∆Lz as a function of initial vertical action Jz,i.
In the paper we use three values of Lz,i as representative of separate radial disc
regions: 0.4, 0.6, and 0.8 of the maximum Lz,i, corresponding to about 15 kpc.
In this overview, we will show the 0.6Lmax

z case only. There are also inconsis-
tencies between the simulations and in radius that require special attention. At
smaller guiding radius particles reach much larger extents in vertical action due to
the gravitational potential. To correct for this Jz is normalized such that it ranges
from 0 to 1 with 1 corresponding to the largest extent in Jz . We also know that
total migration is less in the halo-dominated simulations (as seen in Fig. 2.2). We
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wish to know how migration is biased to higher vertical actions, rather than how
much migration occurs in total, and so we also normalize σ∆Lz by dividing it by
its value at Jz = 0 km s−1 kpc−1. The result as seen in Fig. 2.3 allows us to
determine the slope in this space, which is a measure of the provenance bias. A
flat slope means that migration is equally efficient at all values of Jz and a strong
negative slope means that migration preferentially affects low Jz particles.

This result shows that the provenance bias is a function of the disc dominance
of the simulated system. We see the same trend in the slopes at the two other angu-
lar momentum slices considered, 0.4Lmax

z and 0.8Lmax
z . We compare our results

with Vera-Ciro et al. (2016) by reproducing their Milky Way-like simulation and
altering the disc dominance through the disc mass. We then apply our analysis
approach to these simulations and quantify the migration in the same way as for
our own simulations. This leads us to the same conclusion as above: the slope of
migration efficiency flattens with disc dominance. The fact that we see this and
they do not is likely because of the lengths we go to in order to quantify the migra-
tion. We also investigate the radial bias of migration efficiency to find that there is
a provenance bias that is independent of disc dominance, suggesting different re-
sponses to cold torquing efficiency with increased action in the disc plane instead
of orthogonal to it.

These results have significant implications for galaxy evolution. If stars on
vertically extended orbits, which are typically older, can be migrated then any
interpretation of stellar distributions as a function of age is contaminated. The
results also provide necessary constraints for analytical modelling of radial migra-
tion, which is a necessary part of any analytical galaxy evolution model.
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Chapter 3

Motions of stars

“The stars are far brighter, Than gems without measure.”
- J. R. R. Tolkien, The Hobbit

3.1 The oldest science

The fascination of mankind with the celestial sphere has undoubtedly been around
for far longer than historical records can demonstrate. Beyond a scientific curiosity,
the night sky has had practical purposes that have been used throughout history.
Polaris points the way north for travellers of all sorts. The blurring of stars can tell
sailors that it is windy at sea. Agriculture heavily relies on the use of calendars based
around the Sun and Moon. The relationship between astronomy and humans was
arguably more tangible and transparent in the past than it is today when non-
astronomers do not need to think about these matters very often.

In the last few decades, the study of prehistoric astronomy has boomed into
its own field called archaeoastronomy and revolves around the study of prehistoric
sites and their possible astronomical association (see Magli 2020 for a review).
These sites have origins dating back several millennia BCE. The earliest histor-
ically verified accounts of astronomy come from Mesopotamia and the ancient
kingdoms of Sumer, Assyria, and Babylonia. From this region have been found
clay tablets noting down positions and locations for constellations and planets.
One significant example of such is the Mul-Apin clay tablet, shown in Fig. 3.1,
which dates back to a little over 1000 BCE (de Jong, 2007).

Around 200 BCE the first star catalogue was made by Hipparchus in ancient
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Figure 3.1: The Mul-Apin clay tablet, tablet 1. The tablet has sections locating
constellations in relation to each other and lists stars and constellations according
to celestial latitude among other entries. © The Trustees of the British Museum.
Shared under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International (CC BY-NC-SA 4.0) licence.

Greece1. This catalogue contained positions of stars and is often linked to the
birth of astrometry as a subject, the study of positions and movements of celestial
bodies with precise measurements. As the Roman empire fell and the Dark Ages
began, astrometric advances were made to wait. In 1428 a 36-meter sextant was
constructed in Uzbekistan by the grandson of the Mongol conqueror Tamarkand,
Ulugh Beg. This provided a new star catalogue of 994 stellar positions accurate to
a degree. The next advancement came from Scandinavia as Tycho Brahe (1546-
1601) on the Danish island of Hven, using a quadrant of around seven meters at
his Uraniborg observatory, measured a thousand stellar positions. His accuracy
reached about 20′′. In order to perfect the art of navigation, it was necessary to
determine the longitude of various places. For this purpose, the Royal Greenwich
Observatory was founded in 1675 and its first Astronomer Royal was John Flam-
steed (1646-1719), tasked with determining the motions of the heavens. After
his passing was published a catalogue of 2935 stellar positions accurate to 10′′-
20′′, the Historia Coelestis Brittanica (Flamsteed, 1725), the first catalogue using

1The history of astrometry is described in much greater detail in Perryman (2012) than it is here
and we encouraged the interested reader to have a look.
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a telescope. This expanded rapidly thereafter and had reached 50 000 stars with
3′′accuracy in Histoire Céleste Française by Jérôme Lalande (1732 - 1807) (de La-
lande, 1801).

The next step is not an increasingly large catalogue. Instead, through sep-
arate works by Wilhelm Struve (1793-1864), Friedrich Bessel (1784-1846), and
Thomas Henderson (1798-1844) the first stellar parallaxes ()) were published be-
tween 1837 to 1839. The parallax is the apparent angular displacement of an
object due to the displacement of the observer. When driving down a highway,
you will notice that as you move, the mountains in the background move more
slowly across your field of vision than the trees by the side of the road. This angular
displacement is the parallax, larger for nearby objects, and smaller for more distant
ones. The same can be done for the stars, as the closer a star is the more it is dis-
placed across the celestial sphere as the Earth orbits the Sun. The distance to stars
based on their apparent motions could now be measured, albeit for individual stars
at first. It is worth noting the scale of these distances. Bessel’s measurement of 61
Cygni’s parallax was 0.314′′, corresponding to ∼3 pc or roughly 90 trillion kilo-
metres. The enormity of the Universe could no longer be questioned. During the
next century and a half, the number of available ground-based parallax measure-
ments grows rapidly and culminates in 1995, when the Yale Trigonometric parallax
Catalogue is published by William van Altena (van Altena et al., 1995). The par-
allax measurements are then limited to an accuracy of 0.5′′ due to the flickering
of the Earth’s atmosphere which is reduced to 0.01′′ when averaging over many
measurements. One workaround is adaptive optics, distorting the mirror to com-
pensate for the atmosphere, which is used in the gRAvITy instrument (Eisenhauer
et al., 2011) to achieve up to 0.003′′. Even then however, the entire sky cannot be
covered. Furthermore, it is not the most precise astrometry we can get. Further
precision requires that the next advancements be made using space telescopes.

3.2 Hipparcos & Gaia

In 1989, following a little over two millennia of astrometric catalogues, the first
astrometric satellite was launched by ESA with the name Hipparcos, named after
the author of the first catalogue. Eight years later the catalogue was published in
Perryman et al. (1997), containing positions, proper motions (the on-sky angular
motions), and distances for 117 955 stars, accurate to a milliarcsecond (mas). This
mission was also used to produce the lower-precision Tycho catalogue (named
for Tycho Brahe), which expanded the number of stars with proper motions and
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positions to 2.5 million (Høg et al., 2000). The scientific gifts of Hipparcos were
many, and the achievements made possible are reviewed in Perryman (2009).

The opportunities awarded to astronomers by Hipparcos perhaps left the com-
munity hungry for more because not long after, in 2013, its successor was launched
and was designed to provide the single largest improvement on past available as-
trometry, by a wide margin. This mission is called Gaia (Gaia Collaboration et al.,
2016a) and currently provides the largest available set of astrometric data.

The Gaia mission has so far had three full data releases (DRs). DR1 (Gaia
Collaboration et al., 2016b) released with the five-parameter astrometric solution
(positions, parallax, proper motions) for 2 million sources. The total number of
sources was closer to 1.1 billion, but getting the astrometric solution using one
year’s worth of data required the adoption of the Tycho-Gaia Astrometric Solution,
described in Michalik et al. (2015). Two years later DR2 (Gaia Collaboration
et al., 2018a) released with∼1.3 billion five-parameter sources. Not only that, but
the onboard spectrometer provided ∼7.2 million radial velocities, completing the
full 6D phase-space information for these stars in addition to 3D position with on-
sky velocities. Two years later again, the Early Data Release 3 (Gaia Collaboration
et al., 2021) arrived with five-parameter solutions for ∼1.4 billion sources. The
radial velocities came with DR3 (Gaia Collaboration et al., 2022b) and we now
have ∼33 million sources with RVs. The precision of Gaia is of course also a
massive improvement on that of previous catalogues. From brightest to faintest
sources, Gaia now has an uncertainty of 0.01-1 mas in position, and 0.02-1.3 mas
in parallax, 0.02-1.4 mas yr−1 in proper motion. The astrometry of the faintest
stars is about as accurate as Hipparcos could provide for any star, and the ratio
of sources in Hipparcos to those in Gaia is about 8 × 10−5 : 1, representing an
increase of about 12 000 times.

In addition to astrometry and spectroscopy, Gaia also provides photometry,
variable sources, as well as some parameters for Solar system objects2. Gaia is not
done quite yet and the future is sure to be exciting with a successor mission being
planned which would conduct astrometry in the infrared (Hobbs et al., 2021). It
does not seem like the exponential growth of astrometry is stopping anytime soon,
much to the benefit of our understanding of the universe.

For everything Gaia does well, we need to discuss a shortcoming of the data
with respect to studying Galactic dynamics that is central to the work in Papers II
and III. Radial velocities were not available in the Gaia catalogue until DR2, and

2For a more exhaustive list of everything in the data releases, see the ‘info’ section of each release
on https://www.cosmos.esa.int/web/gaia/data
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Figure 3.2: The number density distribution of sources from DR3 with radial
velocities in the Solar neighbourhood. There is clearly a great deal of structure
present already in close proximity to the Sun. The colour scale shows

√
N and

the axes show Galactic velocities U , towards the Galactic centres, and V , in the
direction of Galactic rotation.

when released was only available for about 0.5% of the astrometric solutions. This
was slightly improved with DR3, which reached closer to 2%. This still leaves
the vast majority of the data without 6D phase-space information. Full phase-
space information is important because, as Dehnen (1998) puts it, ”The dynamical
state of a stellar system is completely described by its phase-space distribution function
F (x,v)”. Practically we cannot determine the full distribution in a realistic way
and instead, we seek to determine more local variations of the velocity distribution
f(v).

Now comes the issue; we do not have 3D velocities for the majority of these
sources. How can we hope to determine the velocity distribution? To begin with,
we can simply work with the sources that have radial velocities. This has been
done of course and for DR2 it was in one of the demonstration papers, (Gaia
Collaboration et al., 2018c). We use DR3 to recreate the same plot here, using
a similar Solar neighbourhood sample we have around 500 000 stars, whereas
in DR2 the sample contained ∼350 000 stars. The velocity distribution can be
seen in Fig. 3.2. This figure shows us that the velocity structure of the Galaxy,
even locally, is anything but straightforward. Structure in velocity space can be
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caused by a variety of processes (see, e.g., Antoja et al., 2010). Originally it was
thought to come from disrupted stellar clusters. Newer suggestions have been
accreted dwarf galaxies and close passings by external galaxies. Last but not least,
the resonances of the spiral arms and bar, as discussed in the context of Paper I,
can cause substructure in velocity space as well. We can with ease understand how
decoding the velocity structure of the Galaxy will provide valuable insight into its
evolution and history. It is therefore vital that we have access to as many stars as
possible.

So what about the remainder of the sources? It turns out that all hope is not
lost. Already in Dehnen (1998) the velocity distribution from Hipparcos was de-
termined, despite the lack of radial velocities, by employing a clever approximation
of a velocity distribution which is isotropic across the sky and then inferring f(v)
with a penalized maximum likelihood estimate (MPLE) (we will return to this
in section 4.3). Similarly the average velocities and the velocity dispersion were
determined in Dehnen & Binney (1998). Other studies that work around the
absence of measured radial velocities include Antoja et al. (2017) with estimates
of disc velocity asymmetries, Koppelman & Helmi (2021) who determined the
Milky Way’s escape velocity, and McMillan et al. (2022) who looked to the outer
parts of the disc near the anti-centre and showed that the velocities exhibit prop-
erties that match well with being perturbed by a dwarf galaxy. At least for now,
it is necessary to use proper motion-limited samples if we wish to have access to
catalogues that span a greater part of our Galaxy, and if we wish to have access to
all kinds of stars.

The astrometric renaissance is now and it is an exciting time for all fields of
astronomy that can make use of the impressive data that is not only currently
released but is sure to arrive in the foreseeable future.
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Chapter 4

Paper II

4.1 Introduction

In Paper II we deal with the velocity distribution of local stars which was discussed
in the previous chapter. Specifically, we determine the velocity distribution and
velocity moments of Solar neighbourhood white dwarfs (WDs) in Gaia EDR3.
In order to do this, we make use of the methods derived in Dehnen (1998) and
Dehnen & Binney (1998) the first of which has not been employed for the Gaia
data prior. Since the method does not rely on any measurements of radial veloc-
ity the WDs are ideal candidates since they very rarely have such measurements
available.

The velocity distribution is a powerful tool to decode the evolution of the
Milky Way’s components, as the community has been able to show in the past few
decades. Recent research has been able to show a staggering amount of substruc-
ture in the velocity distributions (Antoja et al., 2012; Kushniruk et al., 2017; Gaia
Collaboration et al., 2018c) where we can see individual velocity structures up to
hundreds of km s−1 away from Solar motion as well as horizontal arches in (U, V )
that span across the distribution. In addition to classical motions in U, V,W , the
field has grown to include distributions in actions and angles, called orbit space
(e.g., Trick et al. 2019, 2021; Trick 2022). In orbit space, we can see clear ridges
that are linked closely to the various structures in velocity space. Going forwards,
both of these spaces will be important to understand the dynamical structure of
the Milky Way.

The velocity distribution of WDs has, as mentioned, not been as easy to probe
as that of the rest of the stars in the Solar neighbourhood. This leads to smaller
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samples which a couple of decades ago were only in the few hundreds (Sion &
Liebert, 1977; Sion et al., 1988) and more recently samples which range from a
couple of thousand to a few tens of thousands (Rowell & Hambly, 2011; Anguiano
et al., 2017). Recent works that investigate the kinematics of WDs are Torres
et al. (2019) who used Gaia to identify the Hercules stream in the WDs and Raddi
et al. (2022) who determined the age-velocity dispersion relation of WDs. These
samples are about as large as any that have been used, with ∼14 000 and ∼3000
for the two papers respectively. In my second paper, our method provides us with a
sample of 129 675 WDs, the largest to date. We use this sample to identify known
substructures as well as some novel features in velocity space. In addition to this,
we also manage to identify two kinematically separate WD populations, which are
attributed to two parallel cooling sequences seen in the colour-magnitude diagram
(CMD) of WDs and demonstrated in section 4.2. We tentatively linked this to
recent star formation which, it has been suggested, matches the times of flybys of
nearby dwarf galaxies (Ruiz-Lara et al., 2020).

4.2 White dwarfs

Stars can be called ‘nuclear foundries’, as they fuse hydrogen into helium, ‘shaping’
metals from other metals through nuclear processes. This process creates outward
thermal pressure which holds the star up against gravitational pressure in hydro-
static equilibrium. The hydrogen is not infinite and eventually runs out and the
star contracts, shedding its outer layers while the core begins fusing helium into
heavier elements, creating a planetary nebula around it. For massive stars, the core
is large enough that many heavier elements can start fusing but for stars between
about 0.6 − 10 M", at some point this is insufficient and ‘electron degeneracy’1
occurs and provides the necessary outward pressure. The star no longer fuses and
all that is left is the core, a stellar ‘corpse’ called a white dwarf. This is the fate of
97% of all stars in the Milky Way (Fontaine et al., 2001). The WD will live for
a long time, but cools slowly, growing fainter and redder over time which can be
seen in the CMD of WDs, shown in Fig. 4.1. The WD will be difficult to ob-
serve photometrically, as it is rather faint, and spectroscopically, due to the metals
sinking below the observable photosphere as well as thermal broadening.

Despite this, Gaia is able to observe quite a large number of WDs photomet-
rically. In the Solar Neighbourhood (within 500 pc) we can, after some quality
cuts, find about 130 000 WDs in EDR3. However, if we use an even closer sample

1Electron degeneracy pressure and more is explained in Kippenhahn et al. (2012)
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Figure 4.1: Colour-magnitude diagram of stars available as part of the Gaia data.
The colour shows the square root of the number density. The left panel shows
all stars in DR3 that are within 200 pc overlaid with a 500x500 histogram. The
red box shows the WD region which is then shown on the right in a similar style
but for stars within 100pc and with increased bin width. A separation into two
sequences can clearly be seen.

limited to 100 pc, we can observe that the WD sequence is in fact not singular, but
split into two. This result was first identified in Gaia Collaboration et al. (2018b)
and has had two major suggestions put forth to explain it. Explanation a) sug-
gests that the second sequence arises due to atmospheric differences in WDs. The
upper, redder, sequence have hydrogen-dominated spectra (called DAs and consti-
tutes ∼80% of observed WDs) whereas the lower, bluer, sequence contains WDs
with Helium (called DBs) or heavier elements dominating their atmospheres. We
can refer to this simply as DAs or non-DAs for the purposes of Paper II. For a full
description of spectral classes of WDs and their meaning, see table 4.12 This expla-
nation has shown to be able to explain the CMD bifurcation very well in works
like that of Kilic et al. (2018, 2020) and Gentile Fusillo et al. (2019). Another
recent discovery about the WDs is that their mass distribution is bimodal, with a
main Gaussian centred on ∼0.6 M" and a secondary, smaller Gaussian around
∼0.8M" (e.g., El-Badry et al. 2018; Kilic et al. 2018, 2020). This led to the expla-

2The ‘D’ in the spectral classifications stands for degenerate.
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Table 4.1: Spectral classification of white dwarfs. The name of the spectral class
and its definition.

Spectral class Definition
DA Hydrogen dominated spectrum
DB Helium dominated spectrum
DC Continuous spectrum, featureless
DO He II and He I or H features
DZ Metal lines dominate spectrum
DQ Carbon lines dominate spectrum

nation b) that the second sequence could consist of heavier mass WDs, which have
fainter and bluer cooling tracks. In single-star evolution, the more massive WDs
would come from more massive progenitors, which then become WDs much on
shorter timescales. For this reason, they would have colder kinematics due to the
age-dispersion relation (Aumer et al., 2016). Mergers were suggested as a source
of massive WDs but was ruled out by Kilic et al. (2020) who failed to discover sig-
nificant massive WDs with hot kinematics. Instead El-Badry et al. (2018) shows
that with the right choice of initial-final mass relation and continuous star forma-
tion, the second sequence can be populated by late-forming WDs. In summary,
the second sequence can be explained as massive WDs formed recently. The two
scenarios can be distinguished by their kinematics. The atmospheric composition
should not have any bearing on the kinematics while, as explained above, the mass
of WDs does. Therefore, we can investigate the kinematics of the two populations
and try to provide insight into the cause of the CMD bifurcation.

4.3 Inferring fv
As shown in Dehnen & Binney (1998), the mean motion 〈v〉 and velocity dis-
persion σ can be determined for a sample of stars given a few caveats. The on-sky
positions have to be uncorrelated with the velocities, which means that we see the
same velocity distribution regardless of where on the sky we look. Consider the
regions shown in Fig. 4.2. If there is a general mean motion for all parts of the
sky, the line-of-sight motion of the red region will be given by the tangential mo-
tion of either pink or green regions in the direction of the red region, shown here
using red arrows on the pink/green regions. Conversely, the tangential motion
components of the red region that points to the left and right will give, approxi-
mately, the line-of-sight motion of the other two components, as indicated by the
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Figure 4.2: An illustration of positions on the celestial sphere from the point of
view of a Solar system observer.

colouring of the arrows.
The same concept was used for the even more impressive feat of inferring the

velocity distribution of Hipparcos stars in Dehnen (1998). We can write the prob-
ability distribution of tangential or transverse velocities in a given direction r̂ as
ρ(q|r̂) where q is the 2D vector of tangential velocities. To relate this distribution
to the full velocity distribution we can write

ρ(q|r̂) =
∫

dvrf(v) =
∫

dvrf(p+ vrr̂), (4.1)

where p is the 3D projection of the tangential motion. The true distribution can
of course not be determined precisely using transverse motion alone but it can be
estimated with a log-likelihood maximization of some model of it. We do this
numerically by defining the velocity distribution to be

f(v) = eφ(v), (4.2)

where φ(v) is given on a 3D velocity grid with LU ×LV ×LW cells with widths
hU × hV × hW . The final expression for the function we seek to maximize, as a
function of φ(v), is:

Q̃α(φ) =
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∑

k
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−
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Here, N is the sample size, α is the smoothing parameter, (
∑

n φnΞnl) is a nu-
merical approximation for the second derivative of φ(v) for a given cell. This
term, therefore, penalizes unsmooth solutions and is scaled by the smoothing pa-
rameter, α. For each star k, K(k|l) is the length of the line (p+ vrr̂) in velocity
space through each cell, l, formed by its tangential velocity and all possible radial
velocities.

To determine α, we make use of a calibration sample of main sequence stars in
the Solar neighbourhood that had measured radial velocities from Gaia DR2. We
select some reasonable range of test values for α and run the maximization on this
sample. Since we know the velocity distribution of this calibration sample, we can
then choose the α that best reproduces it. Since the best choice of α depends on
sample size, the calibration sample is picked so as to have about the same number
of sources as the WD sample and uses an identical grid.

We chose a grid of n = [100, 100, 72] cells with velocity ranges:

U ∈[−150, 150] km s−1

V ∈[−150, 50] km s−1

W ∈[−80, 60] km s−1,

which provides a resolution of about∆v = [3, 2, 2] km s−1. The algorithm is also
set up to use a so-called multigrid approach, where the solution is first found on a
coarser grid which is interpolated and used as an initial guess for the maximization
on a finer grid. This refinement occurs 3− 5 times depending on the grid size.

We split the WD sample along the bifurcation in the colour-magnitude di-
agram (between 12th and 14th magnitude where it is strongest) as well as into
three equally sized magnitude bins, which we simply call A, B, and C from bright-
est to faintest. The resulting velocity distributions in (U, V ) are seen in Fig. 4.3.
While the other velocity projections are also calculated (and shown in the paper)
the (U, V ) space shows the most structure. The overall shape can be quickly iden-
tified to match well with the known distribution of the main-sequence stars as seen
in Fig. 3.2. The magnitude bins can be seen increasing in velocity dispersion as
they go from A to C, reflecting the age-dispersion relation. As the dispersion be-
comes larger, C appears to have arch-like features as well, marked in the plot with
red lines. The relative distributions on the third row have an unexpected result.
We naturally would expect the more centrally fixated samples A and B to domi-
nate close to the origin and C would dominate further out. This is mostly the case
apart from a small region around (U, V ) ≈ (7,−19) km s−1. The region does
not match conclusively with any known moving group and only Kushniruk et al.
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Figure 4.3: Velocity distributions of the WDs in the U − V plane. Purple crosses
show identified features. Shown also are the different sub-samples with the top
row showing the different bifurcated sequences, the middle row shows the mag-
nitude bins mentioned in section 4.3. The bottom row shows the distribution of
the same magnitude bins subtracted by the mean of the three distributions, to
highlight where each bin is strongest or weakest. At the bottom are shown the
first nine groups identified in Antoja et al. (2012) for comparison.

(2017) provides a nearby link to Coma Berenices which has a suggested dynamical
origin from a pericenter passing of the Sagittarius dwarf galaxy in Monari et al.
(2018).

The regions on either side of the CMD bifurcation are seen in the top row
and show similar dynamical features. However, the velocity dispersion of the red
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Figure 4.4: Moving velocity dispersion calculated in the three directions of U , V ,
and W , for the bifurcated sequences between 12th and 14th magnitude where
they are visible. a. shows the moving dispersion for the red and blue sequences
as well as the joint sample using WDs which are closer than 100 pc. The shaded
regions show the 1σ uncertainty regions. b. same as the a. but for WDs up to
200 pc. Both plots show clearly a separation between the red and blue samples
and when the 200 pc sample is used, they barely even overlap within 1σ.

sample is clearly larger than the blue. This hints at hotter kinematics and as such,
we look to the dispersion of the samples rather than the full distribution for further
analysis.

4.4 Two kinematic populations

We use the same method as in Dehnen & Binney (1998) to determine the velocity
dispersion for a sample of stars. But we also employ a moving window across
the CMD bifurcation to better compare the sequences as they cool. The velocity
distributions shown in Fig. 4.3 were found for WDs within 500 pc, whereas here
we use WDs limited to either 100 pc or 200 pc, the result of which can be seen in
Fig. 4.4. Here it can be clearly seen for the 200 pc sample that the red sequence
has a higher velocity dispersion across all magnitudes. For the 100 pc sample, this
is also visible but less so. We can however show that the two samples are drawn
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from the same underlying distribution. We determine the following Q-statistic
for the two dispersion of the samples at various points:

Q =
σd1 − σd2√
∆σ2

d1
+∆σ2

d2

, (4.4)

where d1 is the 100 pc sample and d2 are stars between 100-200 pc. Both the red
and blue Cumulative Distribution Functions (CDF) match well with a Gaussian
distribution, and using a Kolmogorov-Smirnov test gives P -values between them
and a true Gaussian which all lie above 0.8. Therefore, the difference between the
two figures is consistent with simple statistical noise.

This shows that the two sequences between magnitudes 12 and 14 are kinemat-
ically separate and distinct populations. In regards to the discussion in section 4.2,
this would agree neatly with the two sequences being comprised of WDs different
masses where the heavier WDs are formed recently, giving them less time to be
heated dynamically and thus forming the blue sample we have seen here. It cannot
be ruled out the atmospheric composition is partly responsible for the bifurcation
in the CMD but it cannot be the sole explanation. In our 100 pc samples, we
cross-matched with the Montreal White Dwarf Database (Dufour et al., 2017) to
find that 85% of the cross-matched red sample and 39% of the blue are DAs, so
there are undoubtedly non-DAs in the second sequence. If they truly correspond
to 60%, they still do not significantly alter the kinematics of the sample as a whole.
It can be argued that the crystallization of massive WDs would provide massive
WDs which are still visible in our range due to cooling delays (e.g., Tremblay et al.
2019; Bergeron et al. 2019; Bauer et al. 2020). If this were the case, these mas-
sive WDs would have been around for long enough to have significant dynamical
heating. If this process is contaminating the sample, the fact that we still see the
kinematic split is arguably even more significant.

Further insight into the CMD bifurcation of the WD sequence will likely
require a combination of both spectroscopic and kinematic studies. Here, we
have demonstrated the possibilities of working with only proper motions when
analysing the vast Gaia datasets.
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Chapter 5

Paper III

5.1 Introduction

Following on from the previous paper, we wished to apply our implemented MPLE
to other interesting subsamples of the Gaia data. We were also able to make use
of the improved Gaia DR3.

The study of kinematic space can be divided into the study of the Galactic disc
and the stellar halo. This division guides our choice of samples and is understand-
able since the two regions are affected by different dynamical processes. The disc
we have already described in section 4.1. The stellar halo, on the other hand, is
where the evidence of past mergers between the Galaxy and its neighbours will be
found (Helmi, 2020). These mergers can, for example, contribute to the velocity
distribution and cause enhanced star formation (Ruiz-Lara et al., 2020). This is
what inspires our chosen samples of data: the Solar neighbourhood disc sample
and the local stellar halo.

Since our method requires only measured astrometry for the stars and not
radial velocities, we can then utilise larger sets of data for these populations. Lim-
iting the Solar neighbourhood to ) > 5 mas (or 200 pc) we can use as many as
1 171 846 stars, after having applied all of our quality cuts. This is comparable to
current results using the Gaia RVS like Lucchini et al. (2022) which has 982 879
stars in the Solar neighbourhood. However, they do not apply any quality filters
on photometry or astrometry, apart from a criteria of 20% parallax uncertainty
()/σ& > 5). We restrict our results to only 10% uncertainty and if we were
to use 20%, we would have 3 592 434 sources before applying our quality filters,
which highlights the benefits of our method.
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For the stellar halo, a recent similar sample is Dodd et al. (2022) which limits
their halo to 2.5 kpc with<20% relative parallax uncertainty as well as imposing a
velocity cut whereby the motions of the star with respect to the Local Standard of
Rest (LSR) must be greater than 210 km/s. Since the circular speed at the position
of the sun is ∼233 km s−1 (McMillan, 2017), this cut removes the vast majority
of the disc stars. Our cuts on distance and velocity are slightly more generous
with a distance limit of 3 kpc and velocity limit of at least 200 km s−1, albeit on
transverse velocity rather than full space velocity. Their sample contains 72 274
stars, whereas ours contains 456 273.

We use these two samples to estimate their velocity distributions. For the
Solar neighbourhood, this is done in the same manner as for the WDs in the
previous paper. The stellar halo distribution is inferred in spherical coordinates
rather than Cartesian since it is more spherically symmetric around the Galaxy.
We also divide the stellar halo into in situ and accreted components (e.g., Naidu
et al. 2020). The velocity distributions are studied closely to determine if known
structure is detected and what new structure we are able to identify. Some novel
structures do appear in our analysis, specifically in the accreted halo where we find
two new features that we call MMH-1 and MMH-2.

5.2 Gaia’s view of the local Galaxy

There has been plenty of work done to try and characterise the velocity sub-
structure that exists in the disc and stellar halo. We briefly discussed the Solar
neighbourhood in chapter 4 and showed several moving groups from Antoja et al.
(2012) in Fig. 4.3. Above Lucchini et al. (2022) was mentioned which is one
of the more recent works that investigates the disc structure. The current picture
of the local disc velocity distribution is one with multiple arch-like structures, of
which many fractured individual substructures can be identified (see e.g., Table 1
from Lucchini et al. 2022).

For the stellar halo, things look slightly different. This is currently a very
active field, but some smaller discoveries were made already 20 years ago using
Hipparcos to identify the Helmi streams (Helmi et al., 1999). It is, perhaps, not
surprising that Gaia has had a significant impact on this field as well. When DR2
was released, an important finding for the stellar halo came soon thereafter. By
selecting stars with vT > 200 km s−1 Gaia Collaboration et al. (2018b) showed
that in the CMD appears two separate main sequences, a finding that we recreate
and show in Fig. 5.1. Rather than a main sequence with binaries adding a brighter,
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Figure 5.1: Colour-magnitude diagram of our filtered halo sample. The colour
shows the number density. The right panel shows selected regions for the left
and right sequences overlaid with shaded areas.

redder sequence the new sequence appears on the left, consistent with isochrones
of a lower metallicity. Based on its kinematics, chemistry, and age the left sequence
was found to be connected to an accretion event from a single object (Belokurov
et al., 2018; Helmi et al., 2018) which is called Gaia-Sausage-Enceladus or GSE.
This led to a successful hunt for other accreted populations in the stellar halo
which matched very well to the notion of a Galaxy formed through hierarchical
growth, suggested by the ΛCDM model mentioned in Section 1.1.3. At the time
of writing, some of the larger discovered structures include Sequoia (Myeong et al.,
2019), Antaeus (Oria et al., 2022), Thamnos 1 and 2 (Koppelman et al., 2019), and
Typhon (Tenachi et al., 2022), to name a few. We show the expected positions of
these features as well as some smaller ones in Fig. 5.2. This puts into perspective
how structured the Galactic stellar halo has been revealed to be with the use of
Gaia data.

Since we have access to the most expansive catalogue of sources from Gaia, we
aim to expand the view of substructure in the local parts of the Galaxy’s disc and
stellar halo.
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Figure 5.2: Estimated typical positions of known velocity structures in the stellar
halo. Figures show the velocity spaces of (vr, vφ) (top left), (vr, vθ) (top right), and
(vφ, vθ) (bottom). Here vr points outwards from the Galactic centre, vφ increases
in the direction of Galactic rotation, and vθ increases from south to north Galactic
poles.

5.3 Structures: The old and the new

When we investigated the velocity distribution of the Solar neighbourhood we
found that the distribution is heavily dominated by the typical major moving
groups: Sirius, Coma Berencies, Hyades, Pleiades, and Hercules. The distributions
also contains weaker traces of Dehnen98 and Wolf630. A curious feature that stood
out is a strong overdensity near Pleiades, close to (U, V ) = (−10,−15) km s−1

which is not found in literature. This may be a new moving group that we can
discern due to our 1 km s−1 resolution. However, since the distribution is so
heavily dominated by the major features, a better way of unravelling the low-level
structure that these representations of the velocity distribution may have missed
is to renormalize the plots. This implies that rather than showing the full 2D
probability density of U and V , we show the conditional probabilities of V or U
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ϵInd Dehnen98

Bobylev16

Antoja12

Figure 5.3: The conditional probability of one velocity component in (U, V )
against the other. Left shows P (V |U) and right shows P (U |V ) which reveals
rich substructure beyond the central dominating groups. The color shows the
density scaled as P (v)0.25.

for each U or V , respectively. That is, the colour represents the probability of
the star having a specific V given that it has a certain U velocity (or vice versa).
The result is probability maps that can reveal structure that is otherwise blotted
out by the major groups and we show this in Fig. 5.3. Here can be seen much
richer structure like εInd (e.g., Antoja et al. 2012; Kushniruk et al. 2017; Bobylev
& Bajkova 2016) at (U, V ) = (−100,−50) km s−1, Dehnen98 (Antoja et al.,
2012) at (U, V ) = (50,−30) km s−1, a group from Bobylev & Bajkova (2016)
at (U, V ) = (−100,−10) km s−1, and likely Antoja12 from e.g. Kushniruk et al.
(2017) at (U, V ) = (100,−30) km s−1. The conditional probability maps are
clearly a useful tool for the outer regions.

The velocity distributions of the two halo samples were determined and as
expected, the right sequence shows very little accreted structure and as such we
only focus on the left sequence. The velocity distributions are shown in Fig. 5.4
and are overlaid with the expected positions of stellar halo substructure from Fig.
5.2. These distributions show clearly a lot of the known velocity substructures such
as GSE, Sequoia, and the Helmi streams. Particularly the GSE in (vr, vφ) shows a
lot of structure with significant peaks marked as G1-G5. The groups at largest vr,
1 and 5, are placed where the GSE is typically associated (e.g., Feuillet et al. 2021).
G2 and G4 lie near the region which is removed by our cut of vT < 200 km s−1

and are therefore probably contaminants from the disc population. Finally G3
matches with Cluster 3 of Lövdal et al. (2022) which is also called L-RL3 in Dodd
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Figure 5.4: Velocity distributions of our left halo sample in (vr, vφ) (top row),
(vr, vθ) (middle row), and (vφ, vθ (bottom row). The right column shows the same
distributions overlaid with the positions of expected substructures from literature,
in a similar style to what is done in Naidu et al. (2020) and Mardini et al. (2022).
Significant peaks are marked with purple crosses and in the top left figure five
significant groups belonging to the GSE are marked as G1-G5.

et al. (2022). The distributions do show some of the smaller features as well and
particularly the low vθ-component of the Helmi stream is very pronounced here.
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Figure 5.5: Conditional probability distributions of the velocities from Fig. 5.4
with the left column showing the conditional probability distribution of the y-axis
velocity on the x-axis velocity. The right column shows the inverted conditional
probabilities. Density is scaled as P (v)0.25. The arrows show features discussed
in Section 5.3. This map is used to unveil further information in the phase-space
structure and as such the other features of Fig. 5.4 are not labelled here.

These figures give a good impression of what the accreted stellar halo looks like at
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‘face value’.
Beyond these larger structures, there are three additional ones that we are able

to identify. The first is ED-2 from Dodd et al. (2022) at roughly (vr, vφ, vθ) =
(−150,−300,−100) km s−1. In Dodd et al. (2022) they note that it occupies
about 0.05% of their sample with 33 proposed members. This region of velocity
space makes up around 0.075% in our sample, suggesting that the group is slightly
larger than previously believed. We are also able to make out two new velocity
features which we call MMH-1 and MMH-2 which have no prior associations in
literature. The first, MMH-1, lies at about (vr, vφ, vθ) = (±225, 25, 325) km
s−1 and is visible in the spaces of (vr, vθ) and (vφ, vθ). It is placed in the dense
regions in (vr, vφ) and is therefore difficult to spot there. The second is MMH-
2 which is around (vφ, vθ) ≈ (150,−100) km s−1 and is a challenge to trace
into vr. However, its vr component became clear when we again looked to the
conditional probability of the velocities, seen in Fig. 5.5. Here, the sloped feature
centred around (vr, vθ) = (0,−150) km s−1 stands out in both P (vr|vθ) and
P (vθ|vr), and is the representation of MMH-2 in this space. This shows also that
the full extent of MMH-2 is obscured in Fig. 5.4 and that its actual velocities are
instead centred on (vr, vφ, vθ) = (0, 150,−125) km s−1. These maps also reveal
some parts of Thamnos up to (vr, vφ) = (0,−200) km s−1 which could previously
not be seen. The extended nature of MMH-1 at vθ = 300 km s−1 is uncovered
as well, stretching to even larger values of vθ in both P (vr|vθ) and P (vφ|vθ) and
has what appears to be a symmetrical component at large negative vθ, which if real
would likely imply that this feature has considerable vertical action. This view also
shows the strength of MMH-1 as it appears in both P (vθ|vφ) and P (vφ|vθ).

The distributions and the insight into the Galaxy that we gain from them
clearly advocate for the benefits of working with pure proper-motion limited cata-
logues. Until such a time that comparable 6D catalogues are available, these types
of methods provide the largest possible data sets for kinematic studies.
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ABSTRACT
We study the radial migration of stars as a function of orbital action as well as the structural properties of a large suite of N-body
simulations of isolated disc galaxies. Our goal is to establish a relationship between the radial migration efficiency of stars and
their vertical action. We aim to describe how that relationship depends on the relative gravitational dominance between the
disc and the dark matter halo. By changing the mass ratio of our disc and dark matter halo, we find a relationship between
disc dominance, number, and strength of spiral arms, and the ensuing radial migration as a function of the vertical action. We
conclude that the importance of migration at large vertical action depends on the strength of the spiral arms and therefore the
dominance of the disc. Populations with more radial action undergo less radial migration, independently of disc dominance. Our
results are important for the future of analytical modelling of radial migration in galaxies and further the understanding of radial
migration that is a key component of the restructuring of galaxies, including the Milky Way.

Key words: methods: numerical – Galaxy: disc – Galaxy: formation – Galaxy: kinematics and dynamics – galaxies: evolution –
galaxies: spiral.

1 IN T RO D U C T I O N

During the evolution of a galaxy there are a number of external
and internal factors that play a part in shaping its chemodynamical
structure. One of these factors is called radial migration and is capable
of displacing stars over large radial distances. Because of this radial
migration plays an important part in the restructuring of a galaxy
over time. In this paper, we will study radial migration over large
time-scales to determine which stars migrate and in what way this is
affected by the strength and number of the spiral arms present.

A galaxy can suffer mergers with other galaxies and has significant
evolution from within, through giant molecular clouds (GMCs) and
secular features like bars and spiral arms. Both in the context of an
isolated galaxy and when there is a dynamic galactic environment, the
local regions of a galaxy do not evolve independently. This has been
clearly seen in studies of the chemical properties of the Milky Way,
particularly in the age–metallicity relationship (Edvardsson et al.
1993; Bensby, Feltzing & Oey 2014; Bergemann et al. 2014). Studies
of this nature show that there is a significant scatter in abundances at
almost all ages. Such a scatter would not exist in an isolated setting
and instead supports the existence of a restructuring process.

An important process that restructures galaxies is radial migration.
Sellwood & Binney (2002) showed that significant angular momen-
tum changes could occur when the pattern speeds of stars and spirals
match at corotation, in addition to the angular momentum changes at
the Lindblad resonances previously known (Lynden-Bell & Kalnajs
1972). This process is able to move stars by kiloparsecs and does not
leave dynamical traces.

! E-mail: mikkola@astro.lu.se

The importance of radial migration has been shown not only by its
role in broadening abundance distributions across the Galaxy, but has
been suggested as an explanation for the bimodality of stars in the
[α/Fe]–[Fe/H] plane (Schönrich & Binney 2009; Toyouchi & Chiba
2016) and as cause for mono-age population flaring in the outer disc
(Minchev et al. 2012, 2015). The effects of radial migration has been
studied extensively by simulations (Roškar et al. 2008; Halle et al.
2015; Aumer, Binney & Schönrich 2016a, b; Aumer & Binney 2017;
Aumer, Binney & Schönrich 2017), analytical models (Sellwood &
Binney 2002; Schönrich & Binney 2009; Schönrich & McMillan
2017), and real data (Frankel et al. 2018; Minchev et al. 2018) but
still requires further understanding of which stars are more likely to
undergo migration.

Radial migration is driven by secular features such as spiral arms
and bars and is therefore going to affect stars differently depending
on their positions and velocities within the disc of a galaxy. Studies
that utilize analytical models like Schönrich & Binney (2009) and
Schönrich & McMillan (2017) therefore rely upon a sound under-
standing of which stars are migrated and to which extent. The extent
of radial migration as a function of position or velocity about the
mid-plane has been studied previously by, e.g. Solway, Sellwood &
Schönrich (2012), Vera-Ciro et al. (2014), Vera-Ciro, D’Onghia &
Navarro (2016) and in Daniel & Wyse (2018), the link between radial
migration and dynamical temperature was investigated.

In this paper, we perform a large suite of N-body galaxy simula-
tions to probe radial migration in terms of kinematics and its effects
on the structure of galactic discs. We look at the migration of stars
as a function of their vertical and radial actions, Jz and Jr, which
quantifies the oscillations about the mid-plane of the disc and the
average radius along an orbit, respectively. The structure of this paper
is as follows; in Section 2 we outline the two processes commonly
referred to as radial migration, in Section 3 we go through the details

C© 2020 The Author(s).
Published by Oxford University Press on behalf of The Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited.
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of the simulations we have performed and a subsequent Fourier
analysis of them, in Section 4 we present our simulation results in
terms of structural properties, actions, and action conservation before
comparing them to those of Solway et al. (2012) and Vera-Ciro et al.
(2014, 2016) who studied closely related topics, and in Section 5 we
give our conclusions.

2 R A D I A L M I G R AT I O N

We will consider the two processes most commonly referred to as
radial migration in disc galaxies namely blurring (Schönrich &
Binney 2009) and churning (Sellwood & Binney 2002). Both are
processes related to the orbits of stars and are significantly different.
In this section, we approximate for simplicity’s sake that a disc
galaxy is a flat disc and use angular momentum to refer to the vector
perpendicular to this disc, Lz = Rvφ , where R and vφ are the radius
and azimuthal velocity of a particle, respectively.

Blurring is the change in amplitude of radial oscillations around
an average radius for an orbit, called the guiding radius, Rg. A star
will be born on a nearly circular orbit and very likely scattered at
some point in its life from a GMC or similar, placing it on to a
slightly more or less radially extended orbit. The guiding radius and
therefore angular momentum, since Lz is directly related to Rg, does
not change through this process, and it is the change in amplitude
of the oscillations between closest and furthest galactic radius that
define blurring.

The second source of radial migration is churning, first described
by Sellwood & Binney (2002), which is caused by non-axisymmetric
features such as bars and spiral arms exerting a torque on a star. In
contrast to blurring, churning can change the angular momentum of
an orbit without changing its eccentricity. Sellwood & Binney (2002)
showed that conservation of the Jacobi integral, EJ = E − $pLz, in
the presence of a steady non-axisymmetric perturbation with pattern
speed $p implies the relationship

%JR = $p − $

ωR

%Lz. (1)

Here, %JR is a measure of the extent of radial oscillations. %Lz is
the change in angular momentum, $p is the pattern speed of the
spiral/bar, $ is the angular speed of a star, and ωR is the frequency of
radial oscillations. A change in %JR will follow from radial migration
where the angular momentum is changed, %Lz #= 0, but is made less
pronounced if such a migration occurs near corotation where the
angular velocity of the star is the same as the spiral arm/bar, $ =
$p, in which case there is close to zero change in radial action.
This feature of churning is perhaps also the most frustrating, as it
means stars are able to radially migrate with no dynamical trace
of the procedure, which removes the possibility of dynamically
discerning a migrated star in the Solar neighbourhood from a local
one. The direction of the migration is determined by whether the
star is inside or outside the corotation resonance as the sign of the
exerted torque will change. A star inside corotation moves outwards
and vice versa. A more rigorous demonstration of churning was given
in Sellwood & Binney (2002) with spiral arms churning stars and
gas without changing the overall angular momentum distribution or
increasing the random motions significantly.

We mentioned in the previous section the importance of under-
standing which stars migrate and this is not fully understood. It is
important to further increase our understanding of which gradients
in radial migration exist if we are to use analytical models of it. In
Daniel & Wyse (2018), they use a series of analytical disc galaxy
models and study the fraction of stars trapped at corotation depending

on the velocity dispersion. They find that this fraction declines
with increasing radial velocity dispersion. Their analysis is 2D and
therefore does not make any statements about the vertical distribution
of migrators.

Two articles that study the vertical gradient of radial migration are
Solway et al. (2012) and Vera-Ciro et al. (2014). Solway et al. (2012)
uses an N-body disc in a static potential halo. They include both a
thick and thin disc and conclude that the root mean square angular
momentum changes are gradually reduced. That radial migration
is reduced by vertical motion is also supported by Vera-Ciro et al.
(2014) and subsequently by Vera-Ciro et al. (2016) who use three
different simulations of live discs embedded in static halo potentials.
These systems vary in the dominance of the disc and this creates
different spiral morphologies (e.g. D’Onghia 2015). The result in
all three simulations is what is called a ‘provenance bias’, i.e. that
migration primarily concerns stars with small vertical excursions
regardless of spiral pattern. This is at first glance not surprising since
stars with small vertical excursions should spend more time closer to
the mid-plane where the spirals are strongest. However, sufficiently
strong spirals, which could arise in very disc dominated systems,
could migrate stars of larger vertical excursions as well. How much
radial migration is a function of its vertical excursions depending on
the spiral morphology and disc dominance has not previously been
established. To investigate this, we use a large suite of simulations
that span a broad range in disc dominance. We use N-body discs
as well as haloes and bulges and investigate the effects on spiral
strength and structure. To probe the effect of vertical excursions on
radial migration, we calculate actions for our stars and compare the
vertical action, Jz, to the amount of migration that occurs in different
parts of our galaxies.

2.1 Action variables

Instead of characterizing the vertical and radial gradients of radial
migration by position or velocities we use actions. Take for example
the vertical action:

Jz = 1
2π

∮

γz

vz dz, (2)

where the line integral is over a path, γ z, of phase-space coordinates
that the orbit can go through and which goes through a full vertical
oscillation. This can be, for example, the heights and vertical
velocities (z, vz) that an orbit can have as it goes through a given
radius R (the surface of section, e.g. Binney & Tremaine 2008,
section 3.2.2). However, it is enormously difficult to calculate the
actions using a surface of section directly. We use a more accurate
and robust approach available in the software library AGAMA. This
allows us to approximate the gravitation potential of our simulation as
an axisymmetric expansion in spherical harmonics, and to calculate
actions by applying the ‘Stäckel fudge’ from Binney (2012), which
uses the approximation that any orbit in a realistic galactic potential
can be closely approximated by one in a Stäckel potential.

This allows us to use vertical action instead of vertical position
and velocity which has the advantage of not oscillating along an orbit
and is a good measure of how vertically heated an orbit is. The same
is true for Jr in the radial direction.

3 SI M U L AT I O N S

In order to study radial migration, we generate a number of N-
body galaxies that were numerically integrated using the tree code
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Table 1. Parameters of the N-body disc. The mass of the disc, Md, the number
of particles, Nd, the scale length, Rd, the scale height, zd, the normalization
constant of σR, Toomre’s Q, the number of bodies per orbit, and the softening
length, ε.

Md Nd Rd zd Rσ Q Nbpo ε

(M$) (kpc) (kpc) (kpc) (kpc)

5 × 1010 106 3 0.3 9 1.7 50 0.03

GYRFALCON (Dehnen 2000, 2002) which is available as part of the
NEMO1 (Teuben 1995) toolbox.

3.1 Initial conditions

To generate the initial conditions, three packages within NEMO were
used: MKWD99DISC, MKHALO, and MKGALAXY (McMillan & Dehnen
2007), the first two for the disc and halo/bulge, respectively, and the
latter combines the two for systems containing a disc, halo, and
bulge.

3.2 The disc

The disc is generated using the procedure laid out in McMillan &
Dehnen (2007). This method uses the distribution function described
in Dehnen (1999) which has the advantage that it avoids using a
Maxwellian approximation, and therefore starts close to equilibrium.
The disc is generated iteratively in the potential of the halo and bulge,
tending towards the specified profile. It is designed to be stable to
axisymmetric perturbations, but not stable to the non-axisymmetric
perturbations that are expected to arise.

The density profile is of the form

ρdisc(R, z) = 1
2zd

+0 exp
(

− R

Rd

)
sech2

(
z

zd

)
, (3)

where the disc mass corresponds to Md = 2πR2
d+0 with +0 being

the scale density, Rd is the scale radius, and zd is the scale height.
The radial velocity dispersion profile is σ R ∝ exp (− R/Rσ ) where
the parameters Rσ and Q, the selected value for Toomre’s Q (Toomre
1964), determine the constant of proportionality. The vertical velocity
dispersion is σ 2

z = πG+(R)zd. The number of bodies in a single
orbit is set with Nbpo and the gravitational softening length is ε. The
parameters used when generating the disc are listed in Table 1.

3.3 The halo and bulge

Both halo and bulge are generated within MKGALAXY and the
spheroids are created with spherical density distribution:

ρ(r) = ρ0

xγi (xη + 1)γo−γi /η
sech

(
r

rt

)
, (4)

with x = r/rs, rs being scale radius, ρ0 is the scale density, rt is the
truncation radius, γ i and γ o are the inner and outer exponents, and η

is the transition strength between them. For the halo these parameters
are selected to produce a Dehnen–McLaughlin dark matter halo
(Dehnen & McLaughlin 2005) which can be seen in Table 2. Further
explanation of the parameters can be found in McMillan & Dehnen
(2007). The sech factor of the profile is a truncation. For the bulge, a
Hernquist profile (Hernquist 1990) is used with parameters in Table 2.
To constrain the parameters for the different components and achieve

1https://github.com/teuben/nemo

Table 2. Parameters of the fiducial dark matter halo and bulge components.
The mass of the component, Mtot, the scale radius, rs, the truncation radius,
rt, the total number of particles in the component, Ntot, the inner exponent, γ i,
the outer exponent, γ o, the transition exponent, η, and the softening length,
ε.

Mtot rs rt Ntot γ i γ o η ε

(M$) (kpc) (kpc) (kpc)

Halo
3.4 × 1011 17 30 2 × 106 7/9 31/9 4/9 0.02

Bulge
1.5 × 1010 1 3 5 × 105 1 4 1 0.03

10
.2 8.
5

6.
8

5.1

3.4

1.7

Figure 1. Ratio of the radial force from the dark matter halo and the disc at
z = 0 against radius in simulations varying in dark matter halo total mass.
The mass of the dark matter halo is written above its respective line for every
other simulation in units of 1011 M$.

Milky Way-like initial conditions, values from McMillan (2017) are
used. The mass of the halo is altered from this fiducial galaxy set-up,
as discussed below.

3.4 Simulation types

In order to create systems of varying number and strength of spiral
modes, we generate galaxies where the dominance of the disc in
relation to the halo is varied. This is achieved by simply increasing
or decreasing the mass of the dark matter halo without changing any
other parameters. The ratio of the radial force contributed by disc
and dark matter halo at z = 0, as a function of radius can be seen
in Fig. 1. Halo masses are picked in order to have a large spread in
this ratio, including both disc dominant systems and halo dominant
ones. Fig. 1 shows these ratios for the different halo mass simulations
performed. The lightest halo starts at 1.7 × 1011 M$ and increases
by 0.85 × 1011 M$ up until 1.02 × 1012 M$. In accordance with
literature (e.g. D’Onghia 2015), the systems can be expected to form
a larger number of spiral arms as the mass is increased. The strength
of the spirals are expected to decrease as their number increases. For
each system we generate 10 additional initial conditions varying only
in random seed to give a sense of how the stochasticity of the initial
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conditions affects our results. In total this results in 121 simulations
with 11 different seeds per halo mass used.

3.5 Spiral strength analysis

A key question is the link between how dominant the disc of a system
is, the strength of corresponding bars/spirals, and the migration that
ensues. To answer this the strength of the resonances that arise in
the simulations must be measured. This is done using an extended
Fourier analysis borrowing elements from Press et al. (1992) and
described thoroughly in Roškar et al. (2012).

The disc is divided into annuli of equal widths such that the
distribution of particles can be expanded into a Fourier series

+(R, φ) =
∞∑

m=0

cm(R) exp(−imφm(R)), (5)

with pattern multiplicity, m and φm the phase of the m-th mode at the
given radius. The coefficient cm(R) is given by

cm(R) = 1
M(R)

N∑

j=1

mj exp(imφj ), (6)

with the mass in the annuli M(R), the mass of particle j as mj, and
the azimuth angle relative to the x-axis of the particle as φj. N is
the total number of particles in the annuli. This method can be
expected to identify bars at close radii and spirals at larger ones. Other
azimuthal structures that can be identified through this method are
ignored as any strong patterns appearing should be due to spirals or
a bar.

At this point only patterns at a given time can be detected but
performing the above analysis at different points in time creates a
time series out of the coefficients, cm(R), from which one can obtain
a discrete Fourier transform

Ck,m(R) =
S−1∑

j=0

cj (R,m)wj exp(2πijk/s), (7)

where cj(R, M) = cm(R) at a given time t = t0 + j%t. The number
of snapshots identified is the sample size, S, Ck, m are the Fourier
coefficients for the discrete frequencies $k, and w is a Gaussian
window function,

wj (x) = exp(−(x − S/2)2/(S/4)2), (8)

where x is the current snapshot.
The frequency sampling is determined by the sample size, S, and

the time between samples, %t such that

$k = 2π
k

S%t
m, k = 0, 1, . . . ,

S

2
, (9)

avoiding high-frequency spectral leakage. Care is taken not to
overstep the Nyquist frequency since $Ny = $S/2. The complete
power spectrum is then

P ($k, R) = 1
W

[
|Ck(R)|2 + |CS−k(R)|2

]
, k = 1, 2, . . . ,

S

2
− 1.

(10)

The power is normalized by W =
∑S

j=0 wj . Using P, $k, and R it is
possible to construct a contour plot of the power spectrum, allowing
identification of the pattern speed and extent of a certain mode.

In addition to this, the strength of a certain mode over time can be
retrieved through the absolute value of the coefficients, cm(R), at a
given time. This gives the amplitude of the wave,

Am(R) = |cm(R)|. (11)

Dividing the maximum value of the amplitude by the amplitude of
the zeroth mode for each snapshot gives the growth and evolution of
a certain mode. However, this will only identify the strongest pattern
for a given mode at any given time. That is, if for example the bar
forms it will overshadow a previously identified m = 2 spiral. For
this reason, the disc is separated into an inner, R < 6 kpc, and outer
R ≥ 6 kpc region. Generally, the bar will be the dominant feature in
the inner region and will not appear in the outer one, leaving spirals
to be identified.

4 R ESULTS

4.1 Disc evolution and migration

The results are shown at different times up to ∼5 Gyr, where it is
ensured that non-axisymmetric interactions have taken place. That
is, spiral arms have grown, churned, and faded, leaving a cumulative
radial migration effect upon the galaxy. Since our simulations are
pure N-body, there is no need to integrate further as new spiral
arms are not excited at later times. Three different simulations are
presented in Fig. 2 and show the evolution of secular resonances.
These three galaxies are chosen to show examples of disc dominance,
halo dominance, and something intermediate. It therefore shows
different number and strengths of spiral arms, as we expect. It is
clearly visible that as the dark matter halo starts to dominate, the disc
is unable to form larger, grand-design type spiral arms and instead
form many weaker spiral arms. When the disc dominates there is
also a significant radial ‘puffing’ up of the disc leading to a radially
extended structure at later times.

The evolution is shown at three different points in time. The first
two snapshots are taken from within the first fifth of the integration
time (t ≈ 0.3 Gyr and t ≈ 1 Gyr, respectively) as there is very little
significant secular evolution beyond that point. The last snapshot is
at t ≈ 4 Gyr, and does not change significantly after.

To allow for secular evolution and its effect on the migration, a few
different combinations of ‘initial’ and ‘final’ times are investigated
in %Lz–Lz,i space, that is the change in angular momentum compared
to the initial angular momentum. This can be seen in Fig. 3 and here
spirals arms manifest as diagonal lines near the corotation radius of
a spiral or bar. Particles located exactly at corotation show no change
to the angular momentum and those inside corotation would migrate
outwards and vice versa. So particles inside have a positive change
in angular momentum and stars outside have a negative one, giving
rise to the diagonal ridges.

Fig. 3 shows that as the simulations produce different number and
strength of spiral arms, the radial migration that takes place also
differs. It is clear that a more massive halo produces many smaller
spiral arms, as seen in Fig. 2, which produce the weak diagonal
features. When the halo dominance grows there is much less total
migration as evident in the spread in %Lz. This result is to be expected
since a weaker arm produces a smaller torque and hence, smaller
changes to the angular momentum.

As can be seen in the upper two rows of Fig. 2, a bar eventually
forms in some of these simulations and appears to do so whenever
the galaxy can readily form spirals. The prominent formation
of a bar could potentially be prevented with a stronger bulge,
creating an inner Lindblad resonance to serve as a barrier against
formation. Once the bar forms it grows to be a rather large m =
2 resonance which has a tendency to overshadow smaller spiral
features.

We can investigate the appearance of a bar and spirals more
closely using the Fourier analysis outlined in Section 3.5. The power
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Figure 2. Face-on view of three of the different simulated galaxies, these are the disc corresponding to dark matter halo masses of 1.7 × 1011, 5.1 × 1011, and
1.02 × 1012 M$ in descending order along the rows. The columns show snapshots taken at t ≈ 0.3 Gyr, t ≈ 1 Gyr, and t ≈ 4 Gyr, respectively, as indicated at
the top, and the colour shows the stellar density. In general we find that the number of spiral arms increases with the halo mass while their strength appears to
decline.

spectrum and amplitudes of the dominant modes are shown in Fig. 4.
The growth of a stable bar is seen very clearly in the amplitude
of the m = 2 mode in the lightest two halo mass simulations. The
evolution of the m = 2 mode is shown for each simulation, as this
is usually the dominant mode when a bar forms. Also shown is the
evolution of other prominent modes in each respective simulation.
The lower mass simulation has a few occasions with m = 3 modes
which are rather short-lived. The noisiness observed in this plot
could well be due to the presence of material arms which are short-
lived and therefore are difficult to capture in the power spectrum,
but are very readily visible in plots such as Figs 2 and 3. It is
still possible to observe a hint of a large m = 6 mode at the start
of the heaviest halo mass simulation, which is in line with the

predictions for the multitude of spiral arms when the disc dominance
is low.

4.2 Migration and action

4.2.1 Vertical action

The appearance of different spiral structures depending on dom-
inance of the disc has been established in our simulations. In
Section 2, we made the argument that the amount of radial migration
at various heights above the mid-plane of the disc could be linked
to the spiral strength. To characterize the vertical distribution of our
migrators, we use vertical action instead of position or velocity as
the vertical action does not oscillate on orbital time-scales while
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M = 1.7×10  M h ც
11

M = 5.1×10  M h ც
11

M = 1.02×10  M h ც
12

≈ ≈ ≈ ≈

Figure 3. The change in angular momentum %Lz against initial angular momentum, Lz,i compared at various times in the simulation. The simulations are the
same as in Fig. 2 and shown in the same order. The snapshot times compared are seen above the first row. The shading corresponds to number density. We can
see that the weaker spirals seen in Fig. 2, here generate less radial migration as is to be expected.

position and velocity does. The data are binned in initial vertical
action, Jz, and initial angular momentum, Lz, as a proxy for radius.
For each bin we calculate the standard deviation of the change in
angular momentum, σ%Lz , which quantifies the amount of radial
migration or radial migration efficiency. The result of this is seen
in Fig. 5. For the lightest halo that showed strong spirals and
an eventual bar, there is strong migration at almost all Jz and in
almost all of the disc in Lz, save for the innermost parts. The
migration at high vertical action gets weaker as the halo grows in
mass and once the halo becomes relatively dominant in the bottom
plot radial migration appears to decrease as the vertical action is
increased.

The different behaviours described here can be quantified more
clearly by recognizing that the discussion of migration at various
vertical actions is a discussion of a slope in σ%Lz with Jz. To investi-
gate any possible radial dependences, three slices in Lz with widths
(1/50)Lmax

z at 0.4, 0.6, and 0.8 of the maximum Lz are taken, while the
innermost cut at 0.2 is omitted as it contains orbits which belong to a
bar once it forms. The disc does not extend beyond ∼15 kpc, so the
maximum Lz corresponds to that of near circular orbits at this radius.
To clarify, we take the particles within a (1/50)Lmax

z width of the

specified locations regardless of their Jz, creating three ‘slices’. The
separation into these three different slices allows for the comparison
of migration as a function of Jz at different distances from the centre
of the galaxy. The particles in the slices are binned again in the Jz

direction, with 300 particles in each bin. We perform a least-squares
linear fit for σ%Lz as a function of Jz where the gradient of the line we
fit will reflect how the vertical action of a particle affects its radial
migration.

However, comparing the slope of the lines in σ%Lz and Jz as
is would not prove very informative, because different parts of a
galaxy in Lz reach different maximum Jz due to the difference in the
gravitational potential, as clearly seen in Fig. 5. In order to correct
for this we divide Jz in the slices by close to their largest value.2 This
correction normalizes Jz across the disc.

2The normalizing value is the median of Jz values in their second highest bin
in the slice, which is chosen to avoid outliers. Our results are robust to the
specific choice of normalization. Normalizing against a differentpercentile
would not affect the result as it is the behaviour across the disc which is of
interest.
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Figure 4. Upper row: For each simulation in Fig. 2, with mass indicated at the top, the power spectrum of the mode indicated above the plot. Shown are the
angular velocities against radius. Solid lines indicate the corotation resonance with the disc and dashed lines mark the inner and outer Lindblad resonances.
Multiple patterns can be seen across the various power spectra as horizontal lines since bars and spiral patterns have a fixed angular velocity. A bar can be seen
in the two leftmost simulations for m = 2 at $ ≈ 33 km s−1 kpc−1 and $ ≈ 50 km s−1 kpc−1 for the leftmost and middle simulations, respectively. Bottom row:
The corresponding amplitudes of the modes. Just like the power spectra above it is divided into an inner and outer part divided at 6 kpc. The growth and decay
of many different modes is visible. The two leftmost simulations show the rise of a prominent bar in the m = 2 mode. They are even more apparent within 6 kpc,
reinforcing that it matches the patterns in the upper row figures. Some patterns are seen outside 6 kpc for these simulations as well and the lightest simulation
shows a rise in an m = 3 mode that dies after 2 Gyr. For the heaviest simulation, a very brief spike in m = 6 can be observed in the amplitude but is difficult to
discern in the spectogram.

It is also problematic that the different simulations have different
ranges of σ%Lz , since total migration decreases when the spiral
arms become weaker (i.e. with increasing halo mass). For this
correction σ%Lz is divided by its mean around Jz = 0 in each
slice, which normalizes the results across different dark matter halo
masses.

We wish to know the vertical gradient of radial migration regard-
less of the total amount of radial migration or galactocentric radius,
which this normalization will allow.

To give an example of this normalization Fig. 6 shows the slices at
0.6 Lmax

z . The slices and linear fits are seen for simulations with six
different dark matter halo masses, ranging from lightest to heaviest.
The gradient in radial migration as a function of vertical action
is shown as red lines. As the halo mass is increased and the disc
dominance is decreased, we see that the slope becomes steeper and
migration less significant for high Jz particles, making the changes
hinted at in Fig. 5 clear.

The three slices of the disc are compiled to show the slopes in Fig. 7
for the various dark matter halo masses and at the different angular
momenta. The slope is calculated for each random initialization with
the same halo mass set-up and the standard deviation of those values
is used to give the error bars shown.

Fig. 7 shows a quantified version of the arguments made above
regarding the vertical gradient of the radial migration. For the lower
halo masses, we have strongly self-gravitating discs that result in
normalized slopes closer to zero. These cases of low halo mass
correspond to the situation seen in the top plot, and to some extent
the middle, of Fig. 5. A separate regime appears as the halo mass
increases and the disc is less dominant. Now the slopes are larger,

showing a radial migration bias for low-Jz,i stars much like the
‘provenance bias’ of Vera-Ciro et al. (2014) discussed in Section 2.
There is a smooth transition between the two different regimes
discussed and the trend is too strong to be explained by the random
scatter that we can see.

It can be clearly seen in Fig. 7 that by changing the relative
gravitational influence of the halo and the disc in a galaxy simulation,
and therefore the resulting spiral morphology, you can change the
extent to which stars with lower vertical action are preferentially
radially migrated.

4.2.2 Radial action

It is also useful to perform an investigation into the behaviour of radial
migration as a function of the radial action in our simulations. Just as
the vertical action is a good measure of how vertically heated an orbit
is (see Section 2.1) the radial action is a radial equivalent and is related
to the eccentricity of a stellar orbit. Daniel & Wyse (2018) found that
radial migration was less efficient in populations with larger radial
velocity dispersion. A similar result was also found by Solway et al.
(2012) who looked at the angular momentum changes compared to
initial eccentricity. They showed that angular momentum changes
were larger for particles with smaller eccentricities.

These results can be understood within the theory as well. If the
eccentricity of a particle is large its angular velocity will oscillate as
it orbits and will only match that of a steadily rotating spiral for a
brief period of time making it less likely to enter corotation with the
spiral. The more circular the orbit of the particle the more readily it
responds to the resonance. This argument is similar to the arguments
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Figure 5. Initial vertical action and angular momentum of the same three
galaxies shown in Fig. 2 and in the same order. The space is binned 100 × 100
to show the standard deviation of angular momentum changes between t =
0 Gyr and t ≈ 5 Gyr. For the top plot with lightest halo the migration appears
to stay the same across all Jz in contrast to the bottom plot with the heaviest
halo which shows a clear decrease in radial migration as Jz increases.

made regarding the vertical bias of migrators with a key difference
being that a vertical oscillation brings the particle away from the disc
which a radial oscillation will not.

To perform this analysis, we use the same procedure as in the
preceding section for vertical action. Three slices at separate Lz,i

are cut in the space of Jr,i and Lz,i. Within these slices the standard
deviation of the angular momentum changes, σ%Lz , are taken within
bins of 300 particles each. The linear slope is normalized in the same
manner and calculated for each halo mass simulation and for all the
different random initializations.

We present the result in Fig. 8. Here, the gradient of migration
shows no strong trend with increasing halo mass. The value of the
slope is almost constant at around −0.25, which means that radial
migration is more efficient for less eccentric orbits, in agreement
with the results and theory stated in the previous paragraphs. The

innermost part of the galaxy contains orbits that belong to the bar
and has strongly non-linear behaviour between the radial action and
the migration efficiency. Fitting a line to that region of the disc yields
a large scatter in slope values which give no real information on the
migration process and as such is not shown here.

When comparing Fig. 8 with Fig. 7 it is clear that there is a
difference in the response to disc dominance and stronger/weaker
spirals between the two axes which could be caused by the former
being confined to the disc while the other is not.

4.2.3 Action conservation

In the previous sections, the radial migration has been compared
between snapshots taken at t = 0 and t ≈ 5 Gyr, while the vertical
action has been calculated for t = 0, assuming it has not changed
by the time the particle migrates. To be certain of this we must
investigate how well the vertical action is conserved over the duration.
Conservation of vertical action was studied by Solway et al. (2012)
who concluded that vertical action is conserved on average while
it may change for individual particles. This work was expanded on
by Vera-Ciro & D’Onghia (2016) who compared two N-body spiral
galaxies. One was set up to form multi-armed spirals and the other,
more Milky Way-like galaxy, to form a bar. They found that with the
formation of a bar, the actions are not very well conserved.

For six of our different halo mass simulations, we compare the
value of the vertical action at t ≈ 0 Gyr and t ≈ 3 Gyr (called here
Jz,i and Jz,f respectively)3 as a binned density map in Fig. 9. Beyond
t ≈ 3 Gyr the data are only blurred by noise. We include the median
and 1σ range of Jz,f for 20 bins in Jz,i as blue solid and dashed lines,
respectively. This can be compared to exact action conservation Jz,f =
Jz,i shown as a solid green line.

The lightest halo masses in Fig. 9 show that when the disc is
dominant and a bar forms, as seen in Fig. 2, there is a large spread in
vertical action around action conservation, in agreement with Vera-
Ciro & D’Onghia (2016). However, the median lies close to the line
Jz,i = Jz,f. The heavier haloes show a smaller spread about the line
of conservation, and in agreement with Solway et al. (2012) their
medians align almost exactly with Jz,i = Jz,f. While individual bins
show a large spread the median is sufficiently close to Jz,i = Jz,f that
Jz,i is a good predictor of a typical Jz for all halo masses.

It is however clear that vertical action can, for individual particles,
change significantly. We investigate to what extent radial migration
can cause this by again comparing the same initial and final vertical
actions in a binned histogram as above but coloured by radial
migration efficiency, σ%Lz , instead of density. This is shown in Fig. 10
with the median and 1σ range from the density histogram overplotted.

From the discussion in Section 2, churning is not expected to
change the radial action. Fig. 10 shows that the most significant
migration is around the line of conservation of Jz in all simulations.
For the lighter haloes there is still a spread to larger Jz,f where
migration efficiency is also lower, so the most migrated particles do
not change their action significantly. Thus, the change of vertical
action is likely due to heating in the bar or a similar process and
not due to the migration itself. The fact that most of the particles
are located near the line of conservation, and that this is where most
of the radial migration occurs, supports the idea that the behaviour
in Fig. 7 is a gradient for radial migration by churning and is not
significantly polluted by another process

3As in e.g. Trick, Coronado & Rix (2019), we use
√

J to reveal structure at
lower actions.
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Figure 6. Standard deviation of the change in angular momentum, σ%Lz normalized by the value at Jz = 0 against the vertical action normalized to the largest
vertical action within the slice. Slices are vertical in Fig. 5 taken at 0.6 of Lmax

z and shown for a representative range of different halo mass simulations, ranging
from the lightest on the left to the heaviest on the right. These slopes are taken when comparing angular momentum at t ≈ 0 Gyr and t ≈ 5 Gyr. The red lines
show the linear fits from which we get the slopes.
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Figure 7. Compilation of all slopes calculated as described in Section 4.2.1 and seen as red lines in Fig. 6. Slopes are plotted against halo mass showing a
tendency for flatter gradients for disc-dominated systems and a steeper ones for halo-dominated ones.
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Figure 8. Similar to Fig. 7 using radial action instead of vertical action to investigate the gradient of migration. The radial action slope appears to be independent
of halo mass, contrary to the vertical action counterpart.

4.3 Comparison to Vera-Ciro

As was shown in Section 4.2.1, the vertical gradient of radial
migration changes depending on the disc dominance of the initial
conditions. Despite this, literature results generally claim that there is
less migration at larger vertical excursions as discussed in Section 2.
Particularly, Vera-Ciro et al. (2014, 2016) has studied the radial
migration in simulations with different spiral morphologies where
they find a significant negative vertical gradient for radial migration
regardless of spiral morphology, contrasting our results, and we wish
to understand our results within this context. We have shown that
high vertical action will prevent a star from being churned in cases
where the disc is less dominant in the galaxy. The galaxies that
are set up in these papers may simply be in a regime where this is
the case. In order to investigate this thoroughly we have chosen to
recreate and compare with the galaxy from Vera-Ciro et al. (2016)

labelled HD-MW or ‘Milky Way-like’. The dominance of the disc
is changed directly through the disc mass and we have used five
set-ups with [0.245, 0.45, 1, 1.5, 2] times the original disc mass,
4 × 1010 M$. 10 extra seeds are again generated for each simulation
to test for stochastic robustness and the same procedure described in
Section 4.2.1 is performed to generate Fig. 11. Now the slope flattens
along the x-axis as they are plotted against disc mass instead of halo
mass. It can be seen that while there is a tendency for larger vertical
action to reduce radial migration at Md = 4 × 1010 M$, it is not very
prominent and becomes stronger/weaker if the mass of the disc is
smaller/larger.

In fig. 4 of Vera-Ciro et al. (2016), the distribution of velocity
dispersion is shown in terms of initial guiding centre radius, Rg,i, and
fractional change in guiding centre radius, δRg = ln (Rg/Rg,i) between
an initial time and at t ∼ 2 Gyr. The velocity dispersion is the initial
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Figure 9. Number density distribution of
√

Jz,i and
√

Jz,f in units of (kpc
km s−1)1/2 calculated at t = 0 and t ≈ 3 Gyr, respectively. Also shown is the
median value of

√
Jz,f in 20 bins of

√
Jz,i as a solid blue line. Dashed blue

lines show the 1σ range and exact action conservation Jz,f = Jz,i is shown
in green. The results are shown for the same simulations as in Fig. 6 and
indicated above each individual plot.

one in units of the average velocity dispersion at that radius. That is

δσz,i = ln
σz,i(Rg,i, δRg)

|σz,i(Rg,i)|
. (12)

Using this they claim a lower velocity dispersion for particles of
larger δRg. For comparison the three simulations shown in Fig. 3
are investigated to show the distribution in vertical action, using a
similar procedure such that

δJz = ln
Jz,i(Lz,i,%Lz)

|Jz,i(Lz,i)|
. (13)

This equation normalizes the vertical action in a manner similar to
how the normalization in Jz was carried out for the slope calculation.
The result of this can be seen in Fig. 12. It is clear also here that
disc dominance flattens the gradient in radial migration and vertical
action, as seen in the previous results.

5 C O N C L U S I O N S

In this paper, we have studied radial migration efficiency as a function
of vertical and radial action as well as how these functions depend on
disc dominance. We have used a large suite of N-body simulations

Figure 10. Same as Fig. 9 with the colour corresponding to the same radial
migration efficiency as Fig. 5 instead of number density.

of isolated galaxies where we have varied the total amount of mass
within the dark matter halo in order to change the dominance of
the disc and thereby create spiral structures of different number and
strength.

The main focus of this study has been to identify a relationship
between disc dominance and the subsequent radial migration for
different heights above the disc mid-plane, measured through the
vertical action, Jz. This link has not been previously established
and we have shown that if the disc of a galaxy is made more
dominant, and therefore the spiral arms within it made stronger
and fewer, radial migration can occur at larger vertical extents.
This adds to our current understanding of radial migration in
galaxies like the Milky Way and is instrumental in the imple-
mentation of radial migration in analytical studies of galactic
dynamics.

Previous studies that have looked at the vertical gradient of radial
migration have not reached the same conclusion (Solway et al. 2012;
Vera-Ciro et al. 2014; Halle et al. 2015; Vera-Ciro et al. 2016). To
understand this we have studied the results of Vera-Ciro et al. (2016)
extensively within the context of our findings as they also investigate
the role of different non-axisymmetric patterns on radial migration,
partly in terms of vertical velocity dispersion, σ z. They find that
migrators are a subset of stars with small vertical velocity dispersions
regardless of the observed spiral morphology achieved, in contrast
to our findings. One of their simulations was reconstructed here and
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Figure 11. Similar to Fig. 7 but instead slopes are plotted against disc mass, meaning that the disc becomes more dominant along the x-axis. The simulations
used to evaluate the slopes are recreations of the HD-MW simulation of Vera-Ciro et al. (2016). It is clear that the slope flattens with disc dominance.
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Figure 12. Same as the rightmost column of Fig. 3 but coloured by the log
of the vertical action divided by the mean of the vertical action at that angular
momentum. In the more disc dominated systems, we can see that the particles
that migrate do not have very significantly different Jz than those that do not
migrate as much. When the disc becomes less dominant, migration is more
prominent among particles of low vertical action.

tested with different disc dominance to produce the results we have
seen. We show that we are able to create different vertical gradients
of radial migration depending on the disc dominance in this case
as well. Within these findings, the results of Vera-Ciro et al. (2016)
likely stems from a sampling of a specific part of the parameter space
where there is less variation in the vertical gradient of migration.

In addition we studied the gradient of radial migration with radial
action as a proxy for eccentricity. This relationship has previously
been studied by Daniel & Wyse (2018) who showed that radial
migration was less efficient in populations with larger radial velocity
dispersion and before that by Solway et al. (2012) who compared
%Lz with eccentricity to find similar results. Our simulations are in
agreement with these two results regardless of the initial conditions.
The strength of the spiral arms does not have a noticeable effect on
which particles are radially migrated.

Our result for the radial action and vertical action contrast one
another. This means that there is a difference in the response to
corotation with increasing action due to the direction being along the
disc or orthogonal to it. This discrepancy is interesting and invites
further analysis.

The vertical action is less well conserved in our disc dominant
simulations with a bar. The method by which the vertical gradient in
Fig. 7 is determined relies on the initial vertical action, Jz,i, reflecting
the vertical action around the time of migration. However, as the
action is well conserved on average for the majority of the simulations
and only slightly deviates from average conservation in our most disc
dominant simulations, our vertical gradient determinations should
not be severely affected. One method to eliminate this issue would
be to determine the vertical action as closely as possible to the time
of migration, a feat which demands more detailed analysis.

These findings matter for stars with large vertical excursions,
which are typically part of the oldest populations in the disc. Our
results imply that, if the disc is sufficiently dominant, stars can be
migrated despite being part of such a vertically extended population.
Any interpretation of the distribution of stars as a function of age
in the Milky Way would be affected by this, and it has significant
implications for the formation and evolution of thick discs.

Previous work studying radial migration and its implications
have made use of various combinations of analytical models and
simulations both hydrodynamical and N-body, full or using static
potentials. Here, we present the combined result of over a hundred
full N-body simulations to reduce the stochasticity of our findings.
Results like these which aid in describing the nature of radial
migration are necessary to further the analytical modelling which
relies on descriptions provided by studies of this kind.

Radial migration is still not fully understood and will certainly be
the subject of future studies both numerical and analytical. Through
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the results we have presented here, the desired vertical gradient
of radial migration can be tuned through the choice of relative
gravitational strength of the disc to that of the dark matter halo.
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Paper II: The velocity distribution of white dwarfs in Gaia EDR3

Mikkola, D.; McMillan, P. J.; Hobbs, D.; Wimarsson, J (2022)
Monthly Notices of the Royal Astronomical Society, Volume 512, Issue 4, pp.
6201-6216

My contribution:

The original idea came from PM to apply the method of Dehnen (1998) to DR2
(Gaia Collaboration et al., 2018a). John Wimarsson (JW) wrote the initial, core
parts of the code with support from DM and PM. DM took over responsibility
for the code, finished writing it as well as developed all of the analysis tools. Fur-
ther developments for the code were implemented with input from PM and DH,
including the multigrid approach. DM and PM chose white dwarfs as targets and
DM acquired the data from the Gaia archive. DM carried out the analysis with
guidance from his supervisors DH and PM. DM reviewed existing literature on
velocity distributions as well as white dwarfs and their bifurcation. DM wrote
the paper, with rounds of review between DM, PM, and DH. DM submitted the
report and went through editing rounds with an anonymous referee’s useful com-
ments which lead to further clarity and discussion in the paper. The paper was
then accepted for publication.
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The velocity distribution of white dwarfs in Gaia EDR3
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A B S T R A C T 
Using a penalized maximum likelihood, we estimate, for the first time, the velocity distribution of white dwarfs in the solar 
neighbourhood. Our sample consists of 129 675 white dwarfs within 500 pc in Gaia Early Data Release 3. The white dwarf 
velocity distributions reveal a similar structure to the rest of the solar neighbourhood stars, reflecting that white dwarfs are 
subject to the same dynamical processes. In the velocity distribution for three magnitude-binned subsamples, we, ho we ver, find 
a no v el structure at ( U , V ) = (7, −19) km s −1 in fainter samples, potentially related to the Coma Berenices stream. We also
see a double-peaked feature in U − W at U ≈ −30 km s −1 and in V − W at V ≈ −20 km s −1 for fainter samples. We determine
the velocity distribution and velocity moments as a function of absolute magnitude for two samples based on the bifurcation 
identified in Gaia Data Release 2 in the colour–magnitude diagram. The brighter, redder sequence has a larger velocity dispersion 
than the fainter, bluer sequence across all magnitudes. It is hard to reconcile this kinematic difference with a bifurcation caused 
purely by atmospheric composition, while it fits neatly with a significant age difference between the two sequences. Our results 
pro vide no v el insights into the kinematic properties of white dwarfs and demonstrate the power of analytical techniques that 
work for the large fraction of stars that do not have measured radial velocities in the current era of large-scale astrometric surv e ys. 
Key words: methods: data analysis – methods: statistical – stars: kinematics and dynamics – Galaxy: kinematics and dynamics –
solar neighbourhood – Galaxy: structure. 

1  I N T RO D U C T I O N  
The present-day structure and the history of the Galaxy are encoded 
not just in the positions of its stars but also in their kinematics. 
It is well established that the present velocity distribution in the 
solar neighbourhood has a great deal of structure in it (e.g. Gaia 
Collaboration 2018c ) for which there are multiple possible causes. 
Suggested origins for o v erdensities include dissolving open clusters, 
resonances from large-scale density waves such as the Galactic 
bar and spiral arms, accreted populations from galaxy mergers, 
and phase mixing from nearby satellite galaxies (e.g. Antoja et al. 
2012 ; Kushniruk, Schirmer & Bensby 2017 ). Understanding this 
substructure is a part of understanding the dynamical history of the 
Milky Way. 

The phase-space distribution of stars within the Milky Way has 
been studied e xtensiv ely o v er the last decades (see Gaia Collab- 
oration 2018c and references therein) to reveal this complicated 
structure, especially since the Hipparcos mission (Perryman et al. 
1997 ) and more so with its successor Gaia ’s (Gaia Collaboration 
2016 ) recent second and third data release (henceforth DR2 and 
EDR3, respectively; Gaia Collaboration 2018a , 2021a ). 

The astrometry of Gaia provides proper motions and positions for 
∼1.5 billion sources with great precision, which is an enormous leap

! E-mail: mikkola@astro.lu.se

forward from its predecessor, which observed ∼120 000 sources. 
The Gaia data have only been available for a few years but the 
potential for kinematic study has already been demonstrated. For 
e xample, Bo vy ( 2017 ) accurately measured the Oort constants A 
and B as well as for the first time the non-axisymmetric constants 
C and K . In Monari et al. ( 2018 ), it was shown that the moving 
group Coma Berenices is limited to ne gativ e Galactic latitudes and 
likely has not undergone phase mixing in the Galactic potential. The 
kinematic structure of the solar neighbourhood has been studied in 
unprecedented detail to reveal many new and old structures (e.g, 
Kushniruk et al. 2017 ; Gaia Collaboration 2018c ) as well as arches 
(Antoja et al. 2018 ). Beyond velocity space, the solar neighbourhood 
has also been explored in orbit space (e.g. Trick, Coronado & Rix 
2019 ; Trick et al. 2021 ; Trick 2022 ), showing ridges which can 
manifest themselves as streams and structures in velocity space. 
Understanding the kinematic substructure of the Galaxy will require 
exploration in both velocity and orbit space, which becomes far more 
accessible due to the wealth of data provided by missions such as 
Gaia . 

Even though EDR3 provides accurate astrometry and photometry 
for a great number of sources, it does not contain full 3D phase- 
space information for all of them as some lack measured radial 
velocity. This means that for most individual stars only the position 
and proper motions are available as in the Hipparcos catalogue. In 
fact, the number of sources with radial velocities in Gaia EDR3, 
∼7.2 million, is dwarfed by the number of sources with at least
position and proper motions, ∼1.5 billion. This means that the radial

© The Author(s) 2022. 
Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative 
Commons Attribution License ( http://cr eativecommons.or g/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, 
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velocity sample contains only ∼0.5 per cent of sources with the full 
astrometric solution. 

This limitation can be circumnavigated by studying properties of 
an entire sample rather than the individual stars. This was demon- 
strated in two seminal papers, Dehnen & Binney ( 1998 ) (hereafter 
DB98 ) and the follow-up paper Dehnen ( 1998 ) for Hipparcos . DB98 
calculated the mean motion and velocity dispersions for populations 
taken from a sample of 11 865 single main-sequence stars, and 
Dehnen ( 1998 ) estimated the velocity distribution f ( v v v ) for a similar 
sample of stars. Both of these papers use the approximation that the 
velocity distribution is consistent for the full sample and is spread 
across the full sky. 

As previously mentioned, there are ∼1.5 billion sources in EDR3. 
This sample includes stars in Gaia ’s G -band magnitude system as 
faint as G ≈ 21, which means that it contains samples of stars 
that have been previously unavailable for kinematic studies. This 
includes the a large number of white dwarfs (WDs) which, following 
DR2, revealed that the colour–magnitude diagram (CMD) of WDs 
has more structure than previously thought and displays a clear 
bifurcation as well as a crystallization branch (Gaia Collaboration 
2018b , Tremblay et al. 2019 ). 

Since then, there have been a few different explanations put 
forward and we will briefly summarize a few here. Shortly after 
DR2 released, El-Badry, Rix & Weisz ( 2018 ) used a cross-match 
of the 100 pc Gaia WD sample with the Montreal White Dwarf 
Database (MWDD; Dufour et al. 2017 ) to show that part of the 
bifurcation could be explained by an initial–final mass ratio (IFMR) 
that produces a bimodal WD mass distribution with peaks at both 
∼0.6 and ∼0.8 M $ if the age distribution in multimodal. The 
different-mass WDs would populate different cooling tracks and 
produce the bifurcation. This would not produce a bifurcation in 
mono-age clusters, ho we ver, as massi ve WDs would cool before 
young WDs appear on the CMD. 

Around the same time, Kilic et al. ( 2018 ) used a similar sample and 
showed that atmospheric composition explains the bifurcation well 
for 0.6 M $ WDs. Ho we v er, the y also conclude that the WD mass 
distribution is indeed bimodal. They suggest that this bimodality 
can be explained at least partly through the merger of WD binaries. 
More recently, Kilic et al. ( 2020 ) revisited the 100 pc WD sample and 
conducted a spectroscopic follow-up surv e y, thereby being able to 
constrain the atmospheric composition reliably. They found that the 
mass distribution of WDs that have H lines as the primary feature of 
their spectrum (DA WDs) has a sharp peak at 0.59 M $ with a broad 
shoulder, best fitted with a secondary Gaussian at 0.76 M $, again 
demonstrating the existence of a bimodal mass distribution. They 
test a WD model including mergers and find that it cannot produce a 
good fit to the observed mass distribution. They also investigate the 
transv erse v elocities of WDs, since merger products should appear 
as massive WDs with larger velocities than those formed from single 
main-sequence stars. Ho we ver, the lack of young, massive WDs 
with large velocities coupled with the model predictions leads them 
to conclude that mergers are unable to explain the bimodal mass 
distribution of WDs. Instead, it is shown in Tremblay et al. ( 2019 ), 
Bergeron et al. ( 2019 ), and Kilic et al. ( 2020 ) that the effects of 
crystallization are able to create the o v erabundance of massiv e WDs 
in the 0.7–0.9 M $ range. In this scenario, the massive WDs that 
should already have reached the bottom of the WD sequence are 
subjected to cooling delays (for a detailed explanation of these 
effects, see e. g. Bauer et al. 2020 ; Blouin, Daligault & Saumon 
2021 ). 

The bifurcation in the WD CMD is well described by atmospheric 
differences and the bimodal WD mass distribution can arise due to 

core crystallization and its related effects. We explore a new direction 
to probe the WD bifurcated sequences using their kinematics, which 
could provide additional insight into the bifurcation problem. While 
kinematics could be affected in complex ways by the processes that 
produce binary merger systems, the second, fainter, sequence of 
the CMD should have the same velocity dispersion as the brighter 
sequence if it is caused by mergers or atmospheric composition. 
Pre viously, Ro well & Kilic ( 2019 ) performed a kinematic study of 
WDs in DR2 using the method of DB98 to determine the mean 
velocity and velocity dispersion of the WDs. Ho we ver, as they only 
split the WD CMD in M G their results reflect a mixture of the 
two sequences and we expand upon this analysis by splitting the 
WDs across the visible bifurcation and computing the full velocity 
distributions in addition to velocity moments. 

The paper is organized as follows: In Section 2 , we briefly present 
the techniques of DB98 and Dehnen ( 1998 ) used to determine the 
moments and velocity distribution. The WD samples that we have 
used and how they are selected are presented in Section 3 . Then, in 
Section 4 we present the moments for the bimodal sequences and 
in Section 5 the velocity distribution of nearby WDs is presented 
for the first time. The implication and significance of our results is 
discussed in Section 6 and our conclusion are in Section 7 . 
2  T H E O RY  
2.1 Moments of phase space 
In Galactic dynamics, we decompose the space velocity into velocity 
towards the Galactic Centre, U , in the direction of rotation, V , and, 
north of the Galactic plane, W . Galactic observ ations, ho we ver, use 
a combination of the line-of-sight velocity, v r , and the combined on- 
sk y v elocity, p p p . With the release of Gaia , we have access to a large 
sample of stars for which positions ( " , b ), parallax ( # ), and proper 
motions ( µ" ∗, µb ) have been measured. A subset of these will also 
have measurements of radial velocity v r and with these properties 
combined one can determine a star’s space velocity v v v i . Without the 
full 3D velocity vector, we can only know a star’s tangential velocity 
p p p i . Despite this, it is still possible to determine the moments of phase 
space, the mean velocity components, and the velocity dispersions, 
and we do this by making use of a deprojection technique from 
DB98 . 

To correct for Galactic rotation, we use equation (1) of DB98 
with values for Oort’s constants taken from Bovy ( 2017 ) ( A = 
15.3 km s −1 kpc −1 and B = −11.9 km s −1 kpc −1 ). We express the 
tangential velocity in 3D Galactic coordinates as 
p p p = 1 

# 
 
 − sin " µ" ∗ − cos " sin b µb 

cos " µ" ∗ − sin " sin b µb 
cos b µb 

 
 , (1) 

and it is related to the space velocity through the projection 
p p p = A v v v . (2) 
The transformation matrix, A , is defined by 
A ≡ I − ˆ r ˆ r ˆ r · ˆ r ˆ r ˆ r T , (3) 
where I is a 3x3 identity matrix and ˆ r ˆ r ˆ r is the unit vector to the star, 
given by 
ˆ r ˆ r ˆ r = 

 
 cos b cos " 

cos b sin " 
sin b 

 
 . (4) 
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The symmetric matrix A is a projection operator and is thus singular 
and non-invertible, which means that equation ( 2 ) cannot be inverted. 
This comes as no surprise; we cannot determine the space velocity 
of a star v v v with its tangential velocity alone. 
2.1.1 Mean velocities 
If the on-sky positions ˆ r ˆ r ˆ r of a sample of stars are uncorrelated with 
their velocities v v v , then so is the projection matrix. Then, by taking 
the average of equation ( 2 ) 
〈 p p p 〉 = 〈 A v v v 〉 = 〈 A 〉〈 v v v 〉 , (5) 
the matrix 〈 A 〉 can be inverted, which means that the average space 
velocity can be determined from the average tangential velocity 
〈 v v v 〉 = 〈 A 〉 −1 〈 p p p 〉 . (6) 
The assumption of uncorrelated positions and velocities holds under 
the approximation that the velocity distribution is constant o v er the 
volume in question. 
2.1.2 Velocity dispersions 
We can now calculate the motion relative to the mean, known as the 
peculiar velocity 
p p p ′ ≡ p p p − A 〈 v v v 〉 , v v v ′ ≡ v v v − 〈 v v v 〉 , (7) 
which allows us to determine the following 3 x 3 matrix 
B = 〈 p p p ′ p p p ′ T 〉 = 1 

N 
N ∑ 

i= 1 p p p ′ i p p p ′ T i . (8) 
In a similar manner to how we could reconstruct 〈 v v v 〉 from 〈 p p p 〉 , we 
can estimate the dispersion tensor D from the matrix B . 

Combining equation ( 7 ) with equation ( 2 ) and writing it in 
component form, using Einstein summation convention gives 
p ′ k = A km v ′ m . (9) 
This allows us to specify the different components of B as 
B kl = 〈 p ′ k p ′ l 〉 = 〈 A km v ′ m A ln v ′ n 〉 = 〈 A km A ln 〉〈 v ′ m v ′ n 〉 , (10) 
where in the final step we again use the assumption of independence. 
We get the elements of the dispersion matrix as D mn = 〈 v ′ m v ′ n 〉 and 
can simply write 
B kl = 〈 A km A ln 〉 D mn . (11) 
This can be inverted to find the elements of the dispersion tensor 
that correspond to the second-order moment ( D 11 , D 22 , D 33 ) = 
( σ 2 

U , σ 2 
V , σ 2 

W ). 
This approach is very similar to that of DB98 , with the only 

difference being that here the sample is not assumed to be perfectly 
isotropic. This method has seen use in, e.g., Rowell & Kilic ( 2019 ) 
for a similar sample of stars to ours. 
2.2 Inferring velocity distributions 
Just as we were able to determine the mean velocity and velocity 
dispersions from the tangential projection of the space velocities, 
we can infer the velocity distribution of a sample of stars without 
known radial velocities under the approximation that distribution is 
consistent for the whole sample and is spread across the sky. This 
method of finding f ( v v v ) was demonstrated already by Dehnen ( 1998 ) 

for Hipparcos stars. Since we use the same method, we will outline 
only key details here. Consider now the probability distribution of 
tangential velocities in a given direction ̂  r ˆ r ˆ r as ρ( q q q | ̂ r ˆ r ˆ r ) and express it in 
terms of the full velocity distribution with the integral 
ρ( q q q | ̂ r ˆ r ˆ r ) = ∫ d v r f ( v v v ) = ∫ d v r f ( p p p + v r ̂ r ˆ r ˆ r ) . (12) 
An estimate of the true distribution f 0 ( v v v ) is the result of maximizing 
the log-likelihood for a given model of it, f ( v v v ) 
L ( f ) = N −1 N ∑ 

k= 1 ln P ( q q q k | ̂ r ˆ r ˆ r k , f ) , (13) 
where 
P ( q q q k | ̂ r ˆ r ˆ r k , f ) = ∫ d v r f ( p p p k + v r ̂ r ˆ r ˆ r k ) (14) 
is the probability for a star k , in direction ̂  r ˆ r ˆ r k and with velocity drawn 
from f ( v v v ), to be observed with tangential velocity p p p k . In principle, 
this log-likelihood could be maximized with a distribution function 
that has a series of delta functions, one for each star. We therefore 
introduce a penalty function to enforce smoothness. This function is 
given a weight α that acts as a smoothing parameter. 
Q α( f ) = L ( f ) − 1 

2 αS ( f ) , (15) 
where S ( f ) is the penalty function and a measure of the smoothness 
of f ( v v v ). There are two constraints to the function that maximizes 
Q α( f ): It must be non-ne gativ e, 
f ( v v v ) ≥ 0 , (16) 
and it must be unity, 
N ( f ) ≡ ∫ 

d 3 v v v f ( v v v ) = 1 . (17) 
As is shown in Dehnen ( 1998 ), we can meet these conditions in rather 
elegant ways. The condition of equation ( 17 ) is met by maximizing 
˜ Q α( f ) ≡ Q α( f ) − N ( f ) , (18) 

instead of Q α( f ), and the condition of equation ( 16 ) is met by 
defining 
f ( v v v ) ≡ e φ( v v v ) , (19) 
with ˜ Q α now a function of φ( v v v ). 

The numerical approach to the problem is as follo ws: Vie w φ( v v v ) 
on a 3D grid that has L U × L V × L W cells and widths of h U × h V ×
h W . With each cell denoted by l l l comprising three integers that label 
the cell, we then write 
φ( v v v ) = ∑ 

l l l φl l l W l l l ( v v v ) , (20) 
where W l l l ( v v v ) is the window function 
W l l l ( v v v ) = { 1 

h U h V h W , if ∀ i| v i − l i h i − v 0 i | ≤ 1 
2 h i , v i ∈ { U, V , W } 

0 , otherwise , 
(21) 

where v 0 i is the velocity at the centre of the first cell [ l l l = (0 , 0 , 0)], 
meaning all cells’ positions are relative to it in v v v -space. This criterion 
simply means that the window function is zero if the velocity 
components do not fit into the grid cell in question. Combining 
equations ( 20 ) and ( 14 ), we have 
P ( q q q k | ̂ r ˆ r ˆ r k , f ) = ∑ 

l l l e φl l l K( k| l l l ) , (22) 
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where K( k| l l l ) is simply the length of the segment of the line v v v = p p p k + 
v r ̂  r ˆ r ˆ r k that lies in cell l l l , divided by ( h U h V h W ). The penalty function is 
approximated as 
S ( f ) / ∫ d 3 v v v ( 

∑ 
n n n φn n n ( n n n l l l 

) 2 
, (23) 

where 
( n n n l l l = ∑ 

i = x ,y ,z 
˜ σ 2 
i 

h 2 i ( −2 δn n n , l l l + δn n n , l l l + ̂ e ˆ e ˆ e i + δn n n , l l l −ˆ e ˆ e ˆ e i ) . (24) 
Here, ˆ e ˆ e ˆ e i denotes the unit vector in the i th direction. Putting it all 
together gives us the numerical approximation to the function we 
seek to maximize: 
˜ Q α( φφφ) = N −1 ∑ 

k ln [ 
∑ 

l l l e φφφl l l K( k| l l l ) ] 
−

∑ 
l l l e φφφl l l 

−1 
2 αh x h y h z ∑ 

l l l 
( 
∑ 

n n n φφφn n n ( n n n l l l 
) 2 

. (25) 
2.2.1 Maximizing the likelihood 
In order to maximize the value of equation ( 25 ), we make use 
of the conjugate gradient method (e.g. Press et al. 2002 ). The 
value of the smoothing parameter α in equation ( 25 ) determines 
the balance between goodness of fit and smoothness. In order to 
determine an appropriate value, we use the Gaia Radial Velocity 
Spectrometer (R VS) sample. W e create two subsamples by randomly 
selecting 130 000/30 000 sources (to match our all 500 and 
red 500 / blue 500 sample sizes) and maximize the likelihood 
with a range of α values to determine the optimal v alue gi ven a 
different number of sources. Since the actual velocity distribution can 
be determined for the RVS sample, we can determine an appropriate 
α by visual inspection. We find that the values α = 10 −11 and α = 3 
× 10 −11 appropriately reconstruct the velocity distribution and use 
these for our WD and red/blue samples, respectively. 

We reduce the number of operations required considerably by 
using an approach with an increasing grid size. This method uses 
the initial guess of φφφ on a crude Cartesian grid. The solution, ˆ φφφ, 
which maximizes ˜ Q α , is then interpolated on a finer grid and used 
as the initial guess for a new maximization on that finer grid. We 
allow for up to six different grids, each grid being twice as big 
in each dimension. This means the initial grid, n n n initial , will be of 
shape n n n final / 2 k , where k is the number of grid steps and is chosen 
such that no dimension in n n n initial is less than 10. For our velocity 
distributions, we use a grid of n n n = [100 , 100 , 72] range. Our velocity 
distribution is found, following two stages of refinement, on a grid 
of n n n = [100 , 100 , 72] o v er the range U ∈ [ −150, 150] km s −1 , V ∈ 
[ −150, 50] km s −1 , and W ∈ [ −80, 60] km s −1 . 

Our set-up is broadly consistent with the one used by Dehnen 
( 1998 ), with a few differences. Our algorithm is built without the 
original rejection criterion that any star’s K( k| l l l ) must pass through 
96 cells. This means our distributions might take into account stars 
that lie outside the grid. Instead of discarding these stars, we simply 
omit the outermost layers of the grid when we present our results 
to reduce the impact of numerical edge effects. Our choice of grid 
size and ranges also provides us with a slightly better resolution of 
* v v v ∼ [3 , 2 , 2] km s −1 . 

Since the algorithm itself does not take into account the measured 
uncertainties of the parameters, we statistically resample every 
source that we use. To do this, we draw alternative parameters for 

each source from a multi v ariate Gaussian in µα∗, µδ , and # , with 
the measured values as means and the uncertainty and correlation 
coefficients in the covariance matrix. We ignore the uncertainties 
on RA and Dec. as they are negligible. By comparing the inferred 
velocity distribution of these resamples with the original sample, we 
can estimate how significant the observed features are. We find no 
significant deviations from the initial sample. One example using a 
resampled distribution can be seen in Appendix C . 
3  SAMPLE  SELECTION  
We use the data from Gaia EDR3 (Gaia Collaboration 2021a ) and 
select a solar neighbourhood sample as this allows us to approximate 
the velocity distribution as constant across the sample, which is 
required for the analysis. To achieve this, we set a minimum parallax 
of 2 mas. We apply several quality filters to select a good sample. 
The renormalized unit weight error (RUWE) described in Lindegren 
( 2018 ) is a goodness-of-fit statistic; we require that it is less than 1.15 
based on an inspection of the distribution of values in an unfiltered 
sample and of the CMD. The corrected flux excess in Gaia magnitude 
bands BP and RP, C ∗, is calculated following the procedure laid out in 
Riello et al. ( 2021 ) as part of our Astronomical Data Query Language 
(ADQL) query into the column excess flux (the full query can 
be seen in Appendix A ). We use their selection criterion and require 
that 
| excess flux | < 3 | c 0 + c 1 G m | , (26) 
where c 0 = 0.005 989 8, c 1 = 8.817 481 × 10 −12 , and m = 7.618 399. 

We create the WD sample by setting M g > 9.6 + 3.7( G BP −
G RP ). As an additional test, we compare our WD sample to that of 
Gentile Fusillo et al. ( 2021 ) and find that 99.5 per cent of our WDs 
are available within their catalogue. In their paper, they calculate the 
probability that each source is a WD, P WD , and we find that of the 
cross-matched sample 98 per cent of stars have P WD > 0.9, indicating 
a high degree of confidence that our sources are WDs. 

The WDs are split along the bimodal sequences along a line 
selected by eye into an upper and lower sequence (hereafter referred 
to as the red and blue sequences). We limit these cuts to 12 ! M G 
! 14, where the bifurcation is clearest. All samples and the number 
of sources in them are listed in Table 1 . To ensure that we are robust 
to the specific choice of line, we shift the line ±0.05 mag in colour, 
creating two different versions of the red and blue samples. We find 
that our results do not change when we shift the line. For WDs with 
d < 100 pc we show the red and blue sequences on top of the CMD 
in Fig. 1 . 
Table 1. The names of the various samples used and the number of sources 
in them. 
Name N WD Description 
all 500 129 675 WDs with d < 500 pc 
all 200 54 330 WDs with d < 200 pc 
all 100 14 985 WDs with d < 100 pc 
red 500 32 640 Red seq. WDs with d < 500 pc 
red 200 19 883 Red seq.WDs with d < 200 pc 
red 100 2909 Red seq. WDs with d < 100 pc 
blue 500 27 809 Blue seq. WDs with d < 500 pc 
blue 200 18 653 Blue seq. WDs with d < 200 pc 
blue 100 2842 Blue seq. WDs with d < 100 pc 
A 43 225 WDs with 7.4 mag < M G < 11.9 mag 
B 43 225 WDs with 11.9 mag < M G < 13.3 mag 
C 43 225 WDs with 13.3 mag < M G < 18.3 mag 
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Figure 1. Top: CMD for the WDs within 100 pc. The colour shows the 
density of WDs on a 150 × 150 grid. Middle: the red and blue selections used 
to split across the bifurcation. The vertices of the two regions can be seen in 
Appendix B . Bottom: three different bins in absolute magnitude shown on 
top of the CMD. 

Our selection includes WDs at distances up to ∼500 pc. In Gaia , 
the nominal brightness limit is G = 20.7 (Gaia Collaboration 2021a ), 
which in an ideal case would allow Gaia to detect sources as faint as 
M G = 15.7 within 100 pc and M G = 14.2 within 200 pc. In addition to 
this, we place a parallax uncertainty criterion of # / σ# > 10, which 
means that at 100 and 200 pc the uncertainties must be smaller than 1 
and 0.5 mas, respectively. In Gaia , the typical parallax uncertainty at 

G = 20.7 for five-parameter solutions is 1.3 mas (Gaia Collaboration 
2021a ). The brightness and uncertainty limits mean that beyond 
100 pc we will start to be affected by incompleteness, and therefore 
Malmquist bias. Conversely, our samples within 100 pc are free of 
this bias, especially the red and blue samples, which only go as faint 
as M G = 14. We also use two WD samples limited in distance to 200 
and 500 pc, which are limited by this bias. The effect of the bias will 
not be exactly the same for the two sequences as the blue sequence is 
slightly fainter than the red. Ho we ver, the shift in magnitude between 
the sequences is sufficiently small that we can neglect it and assume 
they share the same bias. This means that any difference we see 
between the two sequences is not be due to the Malmquist bias as 
it affects the sequences in ef fecti vely the same w ay. A tw o-sample 
Kolmogoro v–Smirno v (KS) test on the velocity dispersion of the 
samples between 0 and 100 pc and between 100 and 200 pc shows 
that these are drawn from the same population, so we can be confident 
that Malmquist bias has not had a significant effect on our sample 
out to 200 pc (see the following). 

We also split the sample into three bins in absolute magnitude. 
These bins are chosen such that they have an equal number of WDs 
from the all 500 sample. The bins are illustrated in Fig. 1 , labelled 
A , B , and C, and represent a brighter, intermediate, and faint selection 
of WDs, respectively. As the WDs grow older, they will cool and 
become fainter, so by looking at different magnitudes we should be 
able to detect age-dependent variation in the velocity distribution. 
4  VELOCITY  DISPERSION  
In Section 2.1 , we showed how we can calculate the velocity 
dispersion of a sample of stars using only their positions and 
tangential velocities. We calculate 3D velocity dispersions for a 
moving window in absolute magnitude separately for the WD 
samples limited to 100 and 200 pc. We estimate the uncertainty 
within the windowed sample by calculating the moments for 500 
bootstrapped samples. The standard deviation of all of the resulting 
statistics is used to provide a 1 σ uncertainty. The complete 100 pc 
sample’s velocity dispersions are seen in Fig. 2 a. Generally, we would 
expect the velocity dispersion to increase with fainter magnitude 
due to dynamical heating o v er time. This is true o v erall, though 
the component σ V is approximately constant for the red and black 
sequences o v er the range of magnitudes considered. 

The red sequence has a larger velocity dispersion than the blue at 
low magnitudes in all directions to the extent that their 1 σ regions do 
not o v erlap. Be yond this, the separation is not as great and harder to 
make out. In both U and V , the median places the red sequence abo v e 
the blue. For a comparison, we look also at the velocity dispersion for 
all the WDs within 200 pc in panel (b), in which the separation is very 
clear at all magnitudes and for all three velocity components. The 
1 σ regions of the red and blue barely o v erlap with the joint sample. 
To determine whether or not the two distance-limited samples probe 
the same underlying distribution, we calculate the statistic 
Q = σA − σB √ 

*σ 2 
A + *σ 2 

B , (27) 
where σ A,B is the velocity dispersion for samples A or B and *σ A,B 
their uncertainties estimated through bootstrapping. We calculate Q 
for both sequences with A being the 100 pc limited samples and B 
selected to be the stars between 100 and 200 pc to a v oid o v erlapping 
sources. We calculate Q for a number of binned points in M G and if 
the two distance-limited samples are drawn from similar underlying 
distrib utions the distrib ution of Q should be Gaussian, with µ = 0 
and σ = 1. The cumulative distribution of Q can be seen in Fig. 3 
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Figure 2. (a) Dispersions in U , V , and W calculated for samples all 100 , red 100 , and blue 100 using a moving window in absolute magnitude and 
shown with black, red, and blue colours, respectiv ely. The shaded re gion shows the 1 σ uncertainty. The red and blue lines appear to be separate for brighter 
WDs in all three directions but become mixed towards the fainter end of the sequence. (b) Same as (a) but for the samples all 200 , red 200 , and blue 200 . 
For these WDs, the split between the red and the blue sequences is much more pronounced and now clearly so at all absolute magnitudes. The red sequence 
appears to have a larger velocity dispersion in all directions and at almost all absolute magnitudes. 

Figure 3. Cumulative distribution of the Q statistic described in the text for 
the red and blue sequences when comparing samples limited to within 100 pc 
or between 100 and 200 pc. The black line shows the Gaussian CDF with 
µ = 0 and σ = 1. 
for the red and blue sequences and shows good alignment with 
the analytical Gaussian Cumulative Distribution Function (CDF). 
In addition to this, we perform a KS test between the different 
samples and the Gaussian CDF under the null hypothesis that they 
arise from the same distribution. The KS testing yields a P -value of 
0.936, 0.834, and 0.936 when testing the red/blue, red/Gaussian, and 
blue/Gaussian Q distributions, respectively, clearly demonstrating 

that they arise from the same Gaussian distribution and therefore 
the difference between our two samples is simply due to statistical 
noise. In summary, there is a statistically significant separation in the 
velocity dispersion between the red and blue sequences. 

If the bifurcation is caused by a bimodal WD mass distribution, this 
could be explained by the progenitors of the WDs in the two different 
sequences. The lower mass WDs will come from less massive main- 
sequence stars, which would mean that these progenitors will have 
been dynamically heated for a longer duration of time and the lower 
mass WDs would be born with larger dispersions. 

The separation between red and blue sequences is larger at brighter 
magnitudes, which correspond to younger WDs. This can be expected 
if the blue sequence comes from massive WDs that are younger than 
their red-sequence, less massive, counterparts. Most of the dynamical 
heating occurs during the first few Gyr of a stars life (e.g. Nordstr ̈om 
et al. 2004 ; Binney & Tremaine 2008 ) and so would already have 
occurred for the red-sequence WDs but still be occurring for the 
blue-sequence ones. Over time as WDs on both sequences cool to 
fainter magnitudes, their heating tracks would align to become more 
parallel, which is visible in our figures. 

Undeniably, the bifurcation in the CMD is well described by a 
difference in the atmospheric composition of WDs (B ́edard et al. 
2021 ). It is ho we ver dif ficult to reconcile with the observed difference 
in the kinematics that we display here, which requires significantly 
different dynamical heating histories between the two sequences. If 
there is a significant age difference between the two populations, 
ho we ver, this would result from the expected heating from the 
Galactic disc. We can estimate the age difference of stars in the 
two sequences using the age–velocity dispersion relationship from 
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Aumer & Binney ( 2009 ) and applying it to the total velocity 
dispersion of the two samples, red 500 and blue 500 . This 
suggests a typical age of ∼7.7 Gyr and ∼4.9 Gyr respectively for 
the red and blue sequences. We are unaware of any mechanism that 
could explain these kinematics purely by a difference in atmospheric 
composition. 

As mentioned in Section 3 , we also selected WDs out to # = 
2 mas or 500 pc. Beyond 200 pc, the separation between red and blue 
sequences remains the same and did not pro vide an y further insights. 
5  VELOC ITY  D I S TR I BUTION  O F  W H I T E  
DWAR F S  
We apply the maximum penalized likelihood estimate to all of the 
samples to produce a full 3D velocity distribution for which we 
show the projections in the planes U –V , U –W , and V –W . To identify 
where the peaks of the distribution are, we apply the peak local max 
function available as part of the SCIKIT-IMAGE 1 PYTHON package (van 
der Walt et al. 2014 ). The results in the U–V plane are presented first 
in Fig. 4 . In the first row, we compare the velocity distribution of all 
our WDs with those of WDs identified as belonging to the red and 
blue sequences as laid out in Section 3 . It is immediately clear that 
the WD velocity distribution is overall very similar to the rest of the 
solar neighbourhood (e.g. Gaia Collaboration 2018c ), which is not 
too surprising considering that the WDs are older stars of the same 
population. 

We can identify a few familiar moving groups such as the Hyades, 
Pleiades, and Hercules across all three samples very clearly. To a 
lesser extent, we can also identify higher v elocity mo ving groups 
beyond U > 25 km s −1 such as Wolf 630 and Dehnen98.The moving 
groups in the blue sequence are more narrowly distributed around 
their group mean o v erall than those of the red sequence, where the 
groups are spread out more across the central regions in the space 
due to the o v erall larger velocity dispersion shown in Section 4 . 

We show the three samples of different absolute magnitudes in 
the second row of Fig. 4 , going from brightest ( A ) to faintest ( B ). 
For the individual distributions, we see the same type of structure 
as we did for the whole sample. It appears as though there is more 
structure in these subsamples than in the former three. Ho we ver, as 
the samples contain less stars than the all 100 sample but use 
the same smoothing parameter α they have a noisier distribution. 
The fainter sample, C , has older stars and thus a larger velocity 
dispersion, as expected, which ‘smears’ out the distribution, which 
reveals an arch-like structure in C , with three horizontal arches at V of 
0, −20, and −40 km s −1 , which are illustrated in the plot. This type 
of structure has been shown to exist in the solar neighbourhood (Gaia 
Collaboration 2018c ) and can be attributed to dynamical resonances 
with the spiral arms and Galactic bar (Trick et al. 2019 ). 

The third row takes the three samples A , B , and C , and subtracts 
the mean of all three to emphasize the parts of the distribution that 
are shared between the samples or are independently significant. Our 
expectation is that the bright, young sample with low velocity disper- 
sion ( A ) should be o v erabundant near the centre of the distribution 
and the faint sample should show the opposite. Stars with very large 
| V | belong to populations with their guiding centres at significantly 
larger/smaller Galactocentric radii and would be visiting the solar 
neighbourhood when their orbits are sufficiently dynamically heated. 
Thus, they would be older and part of a fainter sample. This effect 
can be seen in the third row, where samples A and B dominate the 
1 ht tps://scikit -image.org/

centre of the distribution while C is represented more in the wings 
with, for example, the Hercules moving groups being overabundant. 
Asymmetric drift also causes the mode of the distribution to shift 
towards more ne gativ e V . 

The region around ( U , V ) ≈ (7, −19) km s −1 is underdense in A 
and B but surprisingly is o v erabundant in C , with an identified peak 
in that region as well. A re vie w of recent articles that investigate the 
velocity distribution in U − V for the solar neighbourhood reveals 
that Antoja et al. ( 2012 ) and Gaia Collaboration ( 2018c ) do not 
identify a known moving group in this region, while Kushniruk et al. 
( 2017 ) does and attributes it to the Coma Berenices stream. 

The distributions in U − W and V − W in Figs 5 and 6 are not as rich 
in structure as the U − V plane, but we can, ho we ver, identify Coma 
Berenices and Pleiades by comparing the two planes. Our choice of 
smoothing parameter α is chosen to fit best with the sample all 500 
and hence will be underestimated for the smaller samples ( red 500 
and blue 500 ) and as such the features seen in them may disappear 
with an α that is appropriate for smaller samples. A feature identified 
by Dehnen ( 1998 ) is a double-peaked feature along W in the U − W 
plane at U ≈ −30 km s −1 and in the V − W plane at V ≈ −20 km s −1 . 
This double-peaked feature is very vaguely present in U − W for 
sample C . In the V − W plane, ho we ver, we can identify the feature 
clearly in both red 500 and blue 500 , and perhaps vaguely in B 
and C . We mark the proposed double-peak feature with circles around 
the involved features. This seems to imply that the double-peaked 
feature, of which the Pleiades appears a part, is limited to fainter, 
possibly older stars. 

In Table 2 , we summarize the features we can see and mark 
whether we can see them clearly, somewhat, or not at all. We also list 
their locations in all three velocity dimensions (see for comparison 
table 2 from Dehnen 1998 ). For most of the moving groups, we 
are able to associate a previously known one following Kushniruk 
et al. ( 2017 ), but no known group accurately describes feature 5 in 
the table, meaning that it may be a new feature. Compared with 
previous results, the features presented here are located mostly at 
lower velocities ( | v| < 50 km s −1 ). It may be that the WDs in 
groups at larger velocities are not numerous enough to appear in 
the distributions or that their dispersion is too great. 
5.1 The stellar warp 
In his analysis of Hipparcos data, Dehnen ( 1998 ) found evidence 
for the stellar warp by investigating 〈 W 〉 as a function of V . For V 
> 10 km s −1 , the velocity distribution w as sk e wed to wards positi ve 
〈 W 〉 . We perform the same analysis here of our largest WD sample 
all 500 and the results can be seen in Fig. 7 . To do this, we require a 
larger grid of n n n = [200 , 152 , 152] co v ering U ∈ [ −200, 200] km s −1 , 
V ∈ [ −150, 150] km s −1 , and W ∈ [ −150, 150] km s −1 to ensure that 
none of the edge effects discussed in Section 2.2.1 affect the results. 
We find that our results also show increasing 〈 W 〉 with increasing V . 

We compare our results to Sch ̈onrich & Dehnen ( 2018 ), who 
use the Tycho-Gaia Astrometric Solution (TGAS) to determine the 
av erage v ertical v elocity as a function of azimuthal velocity and 
angular momentum for stars in the two cones towards the Galactic 
Centre and anti-Centre with angular radius of 30 ◦ (their fig. 6). Since 
our samples are in the solar neighbourhood, the velocity in V is 
a proxy for angular momentum since L z = −R ( V $ + V ). Just as 
in our sample, the average vertical velocity increases with angular 
momentum and shows a dip just beyond the local standard of rest 
(LSR). At large angular momentum, corresponding to V > 15 km s −1 
in the solar neighbourhood, there is a significant increase in 〈 W 〉 for 
all of their samples as well as ours. Towards V = 50 km s −1 〈 W 〉 
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Figure 4. The velocity distribution of WDs in U and V . The top row shows the distribution for the whole WD sequence and the red and blue sequences 
corresponding to samples all 500 , red 500 , and blue 500 in Table 1 . Contour lines are constructed so as to contain 95, 90, 80, 68, 50, 33, 21, 12, 6, 
and 2 per cent of all sources in the sample and magenta crosses show identified peaks with a peak-finding algorithm described in Section 5 . The second row 
contains samples A, B, and C , as indicated, which are magnitude bins in the full sample. Three horizontal arches are illustrated in sample C and explained 
in Section 5 . The third row takes the distributions for the three samples A, B, and C and subtracts the mean of all three samples. The contour lines are the 
same as the individual distributions. The fourth row shows the first nine groups identified in Antoja et al. ( 2012 ) as black crosses for comparison. 
decreases again, which is consistent with a similar decrease at higher 
angular momentum seen by Sch ̈onrich & Dehnen ( 2018 ). 

More recently, the Gaia Collaboration ( 2021b ) also looked at the 
v ertical v elocity profile of stars outside the solar radius as a function 
of angular momentum. We see this in their fig. 11, which shows this 
profile for se veral dif ferent stellar types, of which the young main- 

sequence stars are the ones to show a decrease in vertical velocity 
at L ∗z ∼ 2400 kpc km s −1 corresponding to around V = 60 km s −1 . 
Ho we ver, our sample and the Gaia TGAS sample are in the solar 
neighbourhood, where stars with such large angular momentum 
must have large radial excursions to be included in the sample, and 
therefore are very likely to be old. This is in contrast to the stars in 
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Figure 5. Same as Fig. 4 but in U and W . The circles in panel C mark the peaks that are suggested to be part of a double-peaked feature discussed in Section 5 . 
the Gaia Collaboration ( 2021b ), which are young and located beyond 
10 kpc from the Galactic Centre. While the decrease in the vertical 
velocity profile we see could therefore be related to these decreases 
seen in other data sets, we note that the decrease is still within 1 σ
uncertainty, and therefore, the most we can say is that the results are 
mutually consistent. 

For V < 20 km s −1 , where the Poisson noise is not as great, 
the average velocity, 〈 W 〉 , has a relatively small tilt. We perform 
a weighted linear fit for V ∈ [ −80, 50] km s −1 and find a slope of 
∼0.03 (shown in Fig. 7 ), which is somewhat larger than the ∼0.02 
found by Sch ̈onrich & Dehnen ( 2018 ). If we instead restrict our fit 
to the relatively well-constrained region V ∈ [ −80, 20] km s −1 , we 
find a slope of ∼0.025, in agreement with the previous results. 
6  DISC U SSION  
6.1 The bifurcated WD CMD 
In Section 1 , we re vie wed the literature on the nature of the 
bifurcation of the CMD in the Gaia data. We know that there exists a 
bimodality in the mass distribution of spectral class DA WDs (Kilic 

et al. 2018 , 2020 ; Jim ́enez-Esteban et al. 2018 ) at around ∼0.6 M $
and ∼0.8 M $. 

Cooling tracks for these masses of DA WDs would produce a 
bifurcation that appears very similar to the one visible in Gaia (El- 
Badry et al. 2018 ). Ho we ver, massi ve WDs will form sooner and 
begin cooling at an earlier time than the less massive ones, which 
means that for these cooling tracks to be simultaneously visible in 
the CMD the massive WDs must be (1) formed through the merger 
of lower mass WD binaries, (2) formed at a later time than the less 
massive WDs, or (3) cooling slower due to crystallization. Scenario 
(1) was suggested by Kilic et al. ( 2018 ) but subsequently dismissed 
by Kilic et al. ( 2020 ) due to merger models being unable to produce 
a mass distribution that fit the observations as well as, and, perhaps 
more importantly, not being able to find a significant amount of young 
and massive DA WDs with high v elocities. This leav es scenarios (2) 
and (3). In the first of these scenarios, a multimodal age distribution 
could produce massive WDs at a later time for a bimodal mass 
distribution that would have a smaller velocity dispersion as they 
have not had as much time to be heated. In the latter scenario, 
crystallization (Tremblay et al. 2019 ) will result in a slo wdo wn of 
the cooling of massive WDs, which means the massive sequence can 

84



10 D. Mikkola et al. 

MNRAS 00, 1 (2022) 

Figure 6. Same as Fig. 5 but in V and W . 
Table 2. Identified features in the velocity distributions at approximate coordinates. We omit the velocity in W when it cannot be 
determined accurately. Filled circles and hollow circles are for clear and weak features, respectively. Group 5 has an asterisk indicating 
unclear membership in the moving group, which is further discussed in Section 6.2 . 
Feature U V W all 500 red 500 blue 500 A B C Moving group 
1 . . . . . . . . . . . 4 − 1 . . . ! ! ! " ! Sirius 
2 . . . . . . . . . . . − 13 − 11 −10 ! " ! ! ! Coma Berenices 
3 . . . . . . . . . . . − 28 − 17 . . . ! " ! ! ! ! Hyades 
4 . . . . . . . . . . . − 28 − 47 . . . ! ! ! ! ! ! Hercules 
5 . . . . . . . . . . . 7 − 19 . . . " ! ! Coma Berenices ∗
6 . . . . . . . . . . . 1 − 48 . . . " " " " " Hercules 
7 . . . . . . . . . . . 1 − 15 . . . ! ! " Coma Berenices 
8 . . . . . . . . . . . 16 − 26 . . . " ! Wolf 630 
9 . . . . . . . . . . . − 19 − 23 −8 " ! ! ! ! ! Pleiades 
10 . . . . . . . . . . 40 − 27 . . . ! " ! ! ! ! Dehnen 98 
11 . . . . . . . . . . 19 − 1 . . . ! ! " Sirius 
12 . . . . . . . . . . − 7 − 5 . . . ! " Coma Berenices 

consist of a mixture of young and older massive WDs. Both of these 
scenarios would cause the massive WDs to have a lower velocity 
dispersion. In Fig. 2 , it is clear that this behaviour is observed. The 
velocity distributions for the red and blue sequences in Figs 4 , 5 , and 

6 exhibit this as well, with the red sequence showing a larger velocity 
dispersion. 

Atmospheric composition can ele gantly e xplain the visible bifur- 
cation in the Gaia data with an upper DA branch and a lower branch 
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Figure 7. Mean of the vertical motion, 〈 W 〉 , in the central regions of f ( V , W ) 
for sample all 500 . The location of the LSR is marked by a triangle and is 
taken from Sch ̈onrich, Binney & Dehnen ( 2010 ). The error bars show the 1 σ
Poisson noise. The dashed black line shows a weighted linear fit. 
of He-dominated WDs with trace amounts of H or other metals. The 
bimodal WD mass distribution fits well with this explanation when 
described by the process of crystallization or by the inclusion of 
young massive WDs. However, atmospheric composition alone does 
not provide the difference in kinematics between the two sequences 
that we identify. This difference arises naturally, ho we ver, with a 
bimodal WD mass distribution from a multimodal age distribution. 

The cooling tracks of ∼0.6 M $ and ∼0.8 M $ DA WDs would 
also lie in the region where the bifurcation exists (e.g. Bergeron 
et al. 2019 ). We cross-match our red 100 and blue 100 with 
the MWDD to determine what fractions of stars are DA or non-DA 
and find that around 85 per cent of the red sample cross-match and 
39 per cent of the blue sample cross-match are DAs. The red cross- 
match shows that the this sequence is likely to be comprised of older, 
less massive D As. The D As in the blue cross-match have higher mass 
with a mean of ∼0.8 M $ as expected in keeping with previous results 
(e. g, Kilic et al. 2020 ). 

The bifurcation seen in Gaia clearly has contributions from both 
atmospheric differences and different WD mass cooling tracks. It 
remains unclear whether the origin of the massive WDs is recent 
bursts of star formation or a pile-up of WDs with a mixture of ages 
due to delayed cooling from crystallization, or a mixture of both. 
Fantin et al. ( 2019 ) investigate the star formation history of the 
Galactic disc using WDs and suggest that star formation increases 
3.3 ± 1.8 Gyr ago and is roughly constant for ∼5 Gyr prior to 
that. A detailed study of the age distribution of the WD population 
using accurately determined ages, masses, and spectral types would 
provide valuable insight into these questions and analytical modelling 
of WD formation and evolution following bursts of star formation 
would be a good avenue to test the formation avenues of these WDs. 
6.2 The velocity structure of WDs 
For the first time, we present the velocity distribution of WDs in 
the solar neighbourhood in addition to their velocity moments for 
such a large sample. We find that the WD velocity distribution in 
( U , V ) shares many features with the velocity distribution of main- 
sequence stars when comparing our results with recent maps of the 
kinematic structure of the solar neighbourhood like those of the 
Gaia Collaboration ( 2018c ), Kushniruk et al. ( 2017 ), or Antoja et al. 
( 2012 ). When we separate our sample along this bifurcation, we can 

see very similar velocity distributions, with the notable differences 
being the red sample having a larger velocity dispersion. 

The CMD is also split into three equally sized samples based on 
their absolute magnitude. The mean velocity distribution of all three 
subsamples is subtracted from each individual subsample, which 
rev eals an une xpected o v erdensity for the faintest sample, C , in 
the region ( U , V ) ≈ (7, −19) km s −1 . The location does not match 
conclusiv ely to an y of the known mo ving groups and is only identified 
in Kushniruk et al. ( 2017 ), who attribute it to be a part of the Coma 
Berenices moving group along with two other identified groups. 
If this feature is limited to fainter, older stars, it could suggest its 
origin is dynamical. In Monari et al. ( 2018 ), it is shown that the 
Coma Berenices moving group is not vertically phase mixed and is 
localized to ne gativ e b only, and this is suggested to be due to a recent 
passing by a dwarf galaxy such as Sagittarius, which fits well with 
passages suggested in the literature (for a summary, see the lower 
panel of fig. 2 of Ruiz-Lara et al. 2020 ). 

The double-peaked feature identified in W is limited to fainter stars, 
which should be part of an older sample. The feature is symmetrical 
around the average vertical velocity, which suggests that this feature 
might be in the brighter sample as a single feature around the mode 
containing younger, less dynamically heated stars. 

Beyond smaller scale structure, we find that the velocity distri- 
bution is very similar to that of main-sequence stars, which can be 
expected since WDs are subject to the same dynamical processes as 
other stars. The distributions also show very clear arches like those 
seen in dynamical studies of main-sequence stars (e.g. Trick et al. 
2019 ). To further narrow down the origin of the observed features 
requires comparison with model predictions or investigating the ages 
and abundances of their associated stars. For example, It would be 
possible to investigate the age evolution of dynamical features in 
the distributions by studying their appearance for several absolute 
magnitude bins and associating the absolute magnitude with ages 
using WD cooling tracks. 
7  C O N C L U S I O N S  
We present the velocity distributions of WDs in the solar neighbour- 
hood, which, to our knowledge, has not been done previously. The 
velocity distributions are estimated through a penalized maximum 
likelihood. The data we use come from Gaia EDR3 and are filtered to 
select a clean and unbiased sample of WDs. We split the WD CMD 
across the established bifurcation and into several absolute magnitude 
bins and find that the velocity distribution is similar to that of main- 
sequence stars from previous studies and displays many well-known 
moving groups. We also identify a novel structure located at ( U , V ) 
≈ (7, −19) km s −1 , which appears only in bins that are fainter or 
possibly older, and discuss possible explanations for the feature. We 
also identify a double-peaked feature in W , previously established in 
the Hipparcos data by Dehnen ( 1998 ), involving mostly fainter stars. 

We also explore the mean velocities and velocity dispersions as a 
function of absolute magnitude and compare them between the two 
established sequences in the Gaia WD CMD. We find that the brighter 
sequence has larger velocity dispersion than the faint one across all 
magnitudes: The sequences are two separate kinematic populations. 
This cannot be explained if the origin of the second sequence is due to 
WD binary mergers or solely atmospheric composition. Our results 
are consistent with the observed WD bimodal mass distribution with 
a multimodal age distribution. 

The results of our study shed light on the bifurcation in the Gaia 
WD CMD and explore the possibility of accessing the majority of 
sources in Gaia that lack radial velocities. We plan to use EDR3 to 
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investigate the velocity distribution of the solar neighbourhood using 
as many stars as we can include to probe the kinematic structure of 
the Milky Way for new insights. 
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APPEN D IX  A :  GAIA A R C H I V E  QU E RY  
The following query has been used on the Gaia archive 3 and is detailed in Section 3 : 
select bp rp, phot g mean mag, phot bp rp excess factor, ra, dec, parallax, pmra, pmdec, 
if then else( 
bp rp > −20, 
to real(case condition( 
phot bp rp excess factor - (1.162004 + 0.011464 ∗ bp rp 

+ 0.049255 ∗power(bp rp,2) 
- 0.005879 ∗power(bp rp,3)), 

bp rp < 0.5, 
phot bp rp excess factor - (1.154360 + 0.033772 ∗ bp rp 

+ 0.032277 ∗power(bp rp,2)), 
bp rp > = 4.0, 
phot bp rp excess factor - (1.057572 + 0.140537 ∗bp rp) 

)), 
phot bp rp excess factor 
) as excess flux 
from gaiaedr3.gaia source 
where parallax > 2 
and parallax over error > 10 
and ruwe < 1.15 

APPEN D IX  B:  R E D  A N D  BLUE  W D  SEQUE NCE  SELECTI ON  
Table B1 lists the vertices for the intersect between red and blue regions of the WD CMD outlined in Section 3 . 

Table B1. Vertices for the re- 
gions in M G and G BP − G RP 
that make up our red and blue 
WD sequences. 
G BP − G RP M G 
(mag) (mag) 
0.668 14.021 
0.561 13.746 
0.407 13.291 
0.323 12.982 
0.231 12.673 
0.150 12.364 
0.071 12.124 
0.001 11.987 

3 ht tps://gea.esac.esa.int /archive/
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Figure C1. Same as Fig. 4 using a statistical resample of the proper motions and parallaxes. 
APPEN DIX  C :  RESAMPLED  VELOCITY  DIS TRI BUTI ONS  
At the end of Section 2.2 , we explained how we used a statistical resample of our proper motions and parallaxes with their measured 
uncertainties to estimate the effect that the uncertainties might hav e. As the y are not significant, we omit them from the main paper and show 
a single example of one of these resamples in Figs C1 –C3 . 

89



Velocity distribution of white dwarfs in Gaia 15 

MNRAS 00, 1 (2022) 

Figure C2. Same as Fig. 5 using a statistical resample of the proper motions and parallaxes. 
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Figure C3. Same as Fig. 6 using a statistical resample of the proper motions and parallaxes. 
This paper has been typeset from a T E X/L A T E X file prepared by the author. 
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Paper III: New stellar halo substructures from Gaia DR3 proper motions

Mikkola, D.; McMillan, P. J.; Hobbs, D. (submitted to MNRAS)

My contribution:

After the second paper, DM and PM had the original idea to expand the method
and apply it to other data sets. DM and PM chose two new data sets which
were a large Solar neighbourhood sample and a stellar halo sample. PM provided
literature sources for velocity distributions of the stellar halo. DM acquired the
data and filtered it for quality. DM implemented conversion into spherical velocity
coordinates in the code and ran the algorithm to produce probability distributions.
The analysis in velocities was carried out by DM, with support from PM and DH
and minor contributions from PM. DM wrote the paper which was reviewed by
PM and DH to bring it to a submittable state.
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ABSTRACT
Local stellar motions are expected, and have been shown, to include signatures of the Galaxy’s
past dynamical evolution. These are typically divided into the disc, which shows the dynamical
effects of spiral arms and the bar, and the stellar halo, with structures thought to be debris from
past mergers. We use Gaia Data Release 3 to select large samples of these populations without
limiting them to sources with radial velocities. We apply a penalised maximum likelihood
method to these samples to determine the full 3D velocity distribution in Cartesian (*,+ ,,)
or spherical (EA , Eq , E \ ) coordinates. We find that the disc population is dominated by four
moving groups and also detect a new moving group at (*,+) = (�10,�15) km s�1. For
the stellar halo, we isolate the accreted component with cuts in transverse velocity and the
colour-magnitude diagram. In this component we find several known structures believed to
be caused by past mergers, particularly one around (EA , Eq , E \ ) = (�150,�300,�100) km
s�1 appears more prominent than previously claimed. Furthermore we also identify two new
structures near (EA , Eq , E \ ) = (±225, 25, 325) km s�1 and (0, 150,�125) km s�1 which we
refer to as MMH-1 and MMH-2 respectively. These results give new insights into local stellar
motions and shows the potential of using samples that are not limited to stars with measured
line-of-sight velocities, which is key to providing large samples of stars, necessary for future
studies.
Key words: methods: statistical - methods: data analysis - Galaxy: structure - Galaxy: Solar
neighbourhood - stars: kinematics and dynamics - Galaxy: kinematics and dynamics.

1 INTRODUCTION

As our Galaxy evolves, the kinematics of the stars that reside in
it are imprinted by the various external and internal processes that
affect it. The volume near the Sun is no different and contains
footprints of possible dynamical resonances and interactions with
nearby dwarf galaxies. For this reason, untangling the causes of the
kinematic structure can give us vital information about the history
of the Milky Way and its interactions with its nearest neighbours.

The approach to studying nearby kinematic space has bifur-
cated into the study of the Galactic disc (e. g. Dehnen 1998; Kush-
niruk et al. 2017; Antoja et al. 2018; Lucchini et al. 2022; McMillan
et al. 2022) and the study of the Galactic stellar halo (e. g. Kop-
pelman et al. 2019a,b; Koppelman & Helmi 2021a; Lövdal et al.
2022; Ruiz-Lara et al. 2022; Dodd et al. 2022). This seems only
natural with the two stellar components recording different dynam-
ical processes. The Galactic disc in the Solar neighbourhood shows
evidence of dynamical resonances from the spiral arms and the bar
(Antoja et al. 2010; Trick et al. 2021). The stellar halo, however,
records evidence of mergers between the Milky Way and its neigh-
bours (e.g., Helmi 2020) which in the ⇤ cold dark matter (⇤CDM)

¢ E-mail: mikkola@astro.lu.se
† E-mail: paul@astro.lu.se

model is how galaxies build up their halos. Finding the causes be-
hind the structures that we can see in the velocity distributions of the
local Galaxy will be an important step towards fully understanding
its complex history.

As noted by Helmi (2020), large samples with accurate kine-
matics are required if we are to detect each individual structure.
This requirement is now starting to met by the advent of Gaia (Gaia
Collaboration et al. 2016) and it’s subsequent data releases: DR2
(Gaia Collaboration et al. 2018a), EDR3 (Gaia Collaboration et al.
2021a), and DR3 (Gaia Collaboration et al. 2022). Thanks to this,
we now have over 1.4 billion sources measured with 5D phase-
space coordinates: positions and proper motions. As of DR3, ⇠33
million sources also have radial velocities, about 2% of all sources,
increased from 0.5% in EDR3. Unfortunately as we start to look at
more local samples, apply quality cuts, and pick out specific pop-
ulations, the number of useful sources can rapidly decline. As an
example consider the local (s > 1/3 mas) stellar halo (defined as
ET > 200 kms�1) with good parallaxes (s/fs > 10). This sample
will contain 503 572 sources with 5 parameters, which is reduced
to only 84 784 with measured radial velocities. By working without
radial velocities we are able access significantly larger datasets and
important discoveries can still be reached as demonstrated by previ-
ous works using only proper motions (e.g., Dehnen & Binney 1998;
Dehnen 1998; Antoja et al. 2017; Koppelman & Helmi 2021b; Gaia
Collaboration et al. 2021b; McMillan et al. 2022).

© 2022 The Authors
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Figure 1. Colour-Magnitude diagram of our Solar neighbourhood sample.
The colour shows the number density of sources. We exclude bins with N <
5 stars in them.

In our previous paper Mikkola et al. (2022) (hereafter referred
to as Paper I), we implemented the penalized maximum-likelihood
method of Dehnen (1998) to infer the 3D velocity distribution of
white dwarfs in Gaia EDR3. We apply the same method here to the
Solar neighbourhood to view the velocity distribution in unprece-
dented velocity resolution. Additionally we also investigate the stel-
lar halo which has been shown to host many structures which are
likely due to the merger history of the Galaxy (see e. g. Dodd et al.
2022 and references therein) with Naidu et al. (2020) even suggest-
ing the halo could be almost entirely comprised of substructure.

The paper is organised as follows: In Section 2 we describe the
data selection and the quality cuts that have been made to provide a
local disc-dominated sample and a stellar halo sample. We outline
some of the differences and new additions we have made to the
method from Paper I in Section 3. Then in Section 4 we present the
velocity distribution for the Solar neighbourhood disc population.
The stellar halo is results are shown in Section 5 where we discuss
each of the features we see and compare to literature, as well as
present new features that we identify and discuss our findings. We
finally summarise with our conclusions in Sections 6.

2 SAMPLE SELECTION

The largest sample of stars with transverse velocities is available
from Gaia DR3 through the Gaia Archive1. For all of the sam-
ples we perform a series of quality cuts, most of which are visi-
ble in our ADQL queries (which we provide in appendix A). We
select stars with s/fs > 10 as a strong cut on parallax uncer-
tainties lets us approximate distance as 3 = 1/s. We also filter

1 https://gea.esac.esa.int/archive/

Figure 2. Left: Colour-Magnitude diagram of our sample of stars with
+T > 200kms�1 corrected for extinction effects. The two sequences from
Gaia Collaboration et al. (2018b) are clearly visible. right: The same plot
but showing the regions used to isolate the left and right sequences in red
and blue respectively. The color shows the number density of sources and
again we exclude bins with N < 5 stars in them.

Table 1. The names of the various samples used and the number of sources
in them

Name # Description

SNBH 1 171 846 Stars in the Solar neighbourhood defined
as s > 5 mas

SNBH_NORTH 578 368 Same as SNBH but with 1 > 0
SNBH_SOUTH 593 478 Same as SNBH but with 1 < 0

SNBH_RVS 510 478 Same as SNBH but with measured radial
velocities

HALO_LEFT 239 115 Left halo sequence, see Section 2.
HALO_RIGHT 194 507 Right halo sequence, see Section 2

HALO_RVS 69 820 Our halo sample but with measured ra-
dial velocities

ruwe < 1.15 to ensure good quality astrometric solutions (Linde-
gren 2018) after inspection of the ruwe distribution. Additionally,
Lindegren et al. (2018) explains that for five-parameter solutions
to be accepted at least six separate observations are used (called
visibility_periods_used in the archive). As in Gaia Collab-
oration et al. (2018b) we use a stronger filter of at least 8 which
removes outliers at the fainter end. In addition, we use their criteria
for astrometric_chi2_al and astrometric_n_good_obs_al
to remove artefacts due to excess astrometric noise. Finally we use
their quality filters for relative flux error on photometry:

phot_g_mean_flux_over_error > 50,
phot_rp_mean_flux_over_error > 20, and
phot_bp_mean_flux_over_error > 20.

Beyond this, we also calculate the flux excess in BP and RP, ⇠⇤,
following the procedure of Riello et al. (2021) directly in our query
as in Gaia Collaboration et al. (2021a). We then select stars such
that ⇠⇤ < 3|f

⇠
⇤ |.

Our Solar neighbourhood sample contains stars which have
s > 5 mas (3 . 200 pc). This sample is further split into north
and south Galactic hemisphere samples with 1 > 0 and 1 < 0

MNRAS 000, 1–11 (2022)
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respectively. The final result of our filters on this sample can be seen
in the colour-magnitude diagram (CMD) in Fig. 1. We also create a
Solar neighbourhood sample from the Gaia RVS for comparison.

To generate a sample of halo stars we select stars with a trans-
verse velocity, ET > 200 kms�1 as in Gaia Collaboration et al.
(2018b) where it was shown this reveals two dual well-defined se-
quences, the standard sequence of the Solar neighbourhood and a
new sequence to the left consistent with a more metal-poor pop-
ulation. This cut on velocity will remove some low velocity halo
stars, but more importantly removes the majority of disc stars. This
means our sample contains slightly fewer stars but is purer, allowing
us to identify the sequences more easily. The smaller sample also
makes computations less demanding. We further require s > 1/3
mas (3 . 3 kpc) to ensure we avoid orbits belonging to the bulge.

Our Solar neighbourhood sample should be mostly unaffected
by extinction and it will not have any bearing its analysis either. For
the halo sample however, we need to isolate the two sequences in the
CMD and therefore it is important we treat it correctly. To correct
our colours and magnitudes, we use the extinction map of Capitanio
et al. (2017)2 to determine the reddening for our stars . We pair this
with extinction coefficients for the Gaia bands ⌧,⌧BP,⌧RP from
Sanders & Das (2018) to reduce the effects of extinction. Using the
corrected values, we show the CMD in Fig. 2 which clearly shows
the two separate sequences. Splitting the sample into a left and right
sequence sample can be done reliably by eye and the selection is
shown with blue and red shaded regions respectively.

We list the names of our sample as well as the number of
sources contained within them in Table 1.

3 VELOCITY DISTRIBUTION WITHOUT RVS

We have used the same maximum penalized-likelihood algorithm
from Dehnen (1998) that was used for Paper I. We summarise the key
elements of this approach here, and a more detailed explanation can
be found in our earlier paper. The method makes use of the projection
of transverse velocities on the sky. The probability distribution of
these transverse velocities in a specific direction, r̂, we write as
d(q | r̂) where q is the 2D transverse velocity. This relates to the 3D
velocity distribution, 5 (v), as:

d(q | r̂) =
π

dEA 5 (v) =
π

dEA 5 ( p + EA r̂). (1)

Here, p is the tangential motion of a star projected into 3D. Tan-
gential motion is not sufficient to determine a true distribution and
instead we must estimate it with a log-likelihood of a model for it.
Numerically, we use the discrete velocity distribution

5 (v) = 4q (v) , (2)

where q(v) is the logarithm of the probability density, which we
discretize on a 3D grid of !* ⇥ !+ ⇥ !, cells with widths ⌘* ⇥
⌘+ ⇥ ⌘, 3. The resulting function which we use in our maximum

2 https://stilism.obspm.fr/
3
*,+ and, are the usual heliocentric velocity components in the direction

towards the Galactic centre, towards Galactic rotation, and towards the north
Galactic pole, respectively

penalized-likelihood estimation is:

Q̃U (5) = #�1
’
:
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The first term is the sum of the probability distribution function with
# being the sample size. For each star, : , the length in velocity space
of the line formed by its tangential velocity and all possible radial
velocities through a cell, l, is  (: | l). The second term is a normal-
ising term and the third is the penalizing term where (Õn qn⌅nl )
is a numerical approximation for the second derivative of q(v) for
a given cell. This term therefore penalizes unsmooth solutions and
is scaled by the smoothing parameter, U.

We use a similar method for determining the optimal value
of U as in Paper I. That is, we compare many estimations of an
equally sized RVS sample using different U. For all stars in the So-
lar neighbourhood the RVS sample is only half as large as the sample
without EA so we have to upscale our sample. We create a copy of
the RVS sample, SNBH_RVS where the Galactic positions are sam-
pled randomly from the original. The velocities are taken from the
RVS, with each proper motion and radial velocity resampled from a
multivariate Gaussian with the measured values as mean, and with
uncertainties and correlation coefficients in the covariance matrix.
With a randomly selected Galactic position this then transforms to
Galactic velocities, *,+ ,, , and this copy is then projected back
into on-sky motions with the radial velocities discarded.

For the Solar neighbourhood sample, the upscaling only needs
to be done once as the RVS is half the size of the full dataset. We
then compare the estimated 5̃ Uv with the real RVS 5v and select the
U that gives the smallest integrated square error (ISE)

⇡ ( 5̃ Uv , 5v) =
π

33 v( 5̃ Uv � 5v)2. (4)

This gives for the full Solar neighbourhood sample an optimal
smoothing of U = 10�11 for a n = [304, 304, 192] grid over the
ranges * 2 [�150, 150] kms�1, + 2 [�200, 100] kms�1, , 2
[�100, 100] kms�1, corresponding to a resolution of ⇠1 kms�1.
The same setup is used for the north and south Galactic hemisphere
samples to ensure the differences are not by construction. This will
however result in a slightly under-smoothed distribution for the
smaller samples.

For the stellar halo, the HALO_RVS sample is about 3 times
smaller than the two samples HALO_LEFT and HALO_RIGHT and
we upscale it to three times its original size. We also no longer
use heliocentric Cartesian velocity coordinates,*,+ ,, but instead
use Galactocentric spherical velocities, EA , Eq , E\ defined such that
for a star in the galactic plane at the position of the Sun, Eq and
E \ are in the same direction as V and W, respectively, to make
comparisons easier. To make to transformation, we have assumed
the Sun’s position to be (', I) = (8122, 20.8) pc and its velocity
(*,+ ,,) = (12.9, 245.6, 7.78) km s�1 with respect to the Galactic
centre. On a grid of n = [240, 240, 240] with EA , Eq , and E \ all
in the range [�600, 600] kms�1 corresponding to a resolution of
5 kms�1, the value of U that minimises the ISE is 4.64⇥ 10�13 and
is used for both halo samples.

One difference between our approach when handling the Solar
neighbourhood sample and when handling the halo sample is how
the velocity dispersion,2, and average velocity, hvi, are determined.
For the former sample we can determine 2 and hvi of the sample

MNRAS 000, 1–11 (2022)
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FULL FULL FULL

SOUTH SOUTH SOUTH

NORTH NORTH NORTH

Figure 3. Galactic velocity distributions. The colormap shows the probability distribution, 5 (E) . The contour lines contain 99, 98, 96, 92, 84, 68, 35, 27, 18,
10, and 1 percent of all the stars, from outside going inward. The white contours start at 27%. First row: The velocity distribution of the SNBH_FULL sample. In
the first column, the location of the first 9 groups of Antoja et al. (2012) are shown as red crosses. Second row: Same as the first row, but for the SNBH_SOUTH
sample. Third row: Velocity distribution of SNBH_NORTH.

directly, following the procedure of Dehnen & Binney (1998) (as
in Mikkola et al. (2022)), but for the latter case we use spherical
coordinates and it becomes unnecessarily complex. Instead, we de-
termine hvi and 2 for the subset of the sample that has measured
radial velocities. However, since 2 and hvi are only used for the
initial guess of q(v) and as scaling factors for determining U, we
are free to findf however we wish without significant consequences
for the analysis.

4 THE SOLAR NIGHBOURHOOD

The velocity distribution estimated for the Solar neighbourhood
sample is seen in Fig. 3. The first row shows distribution for the
complete sample and the second and third rows show the south and
north Galactic hemisphere samples respectively. We find that the
distribution is mostly dominated by the common features: Sirius,
Coma Berenices, Hyades, Pleiades, Hercules. We can also identify
Dehnen98 and Wolf 630 to an extent. The first four of the major
groups occupy a region that contains roughly 35% of all the stars
in the sample, shown by the white contour lines. We can see the
incomplete vertical face-mixing of Coma Berenices (Quillen et al.
2018; Monari et al. 2018; Bernet et al. 2022) as it is a much stronger
feature in the southern Galactic hemisphere. A curious feature that
appears more strongly in the northern hemisphere is the rather strong
overdensity between Pleiades and the expected position of Coma
Berenices at roughly (*,+) = �10,�15 kms�1. This feature is
clearly separate from Pleiades and we find no match for it in the list
of moving groups in Antoja et al. (2017), Kushniruk et al. (2017), or

Lucchini et al. (2022). The close proximity to Pleiades suggests that
this feature is now visible thanks to the improved velocity resolution.
Overall we find limited detailed substructure in the direct velocity
distribution which shows the dominance of the major moving groups
in this space.

4.1 Conditional 5 (v) of the Solar neighbourhood

To unravel low-level structure that the representations of the velocity
distribution of Fig. 3 may have missed, in Fig. 4 we renormalize the
plots so that, rather than showing the full 2D probability density of
* and + , we show the conditional probabilities of + or * for each
* or + , respectively. That is, the colour represents the probability
of the star having a specific + given that it has certain * velocity
(or vice versa).

In addition to the structure we have seen above, we can see in
%(+ |*) around (*,+) = �100,�50 km s�1 a structure that matches
well with estimates of nInd (e.g., Antoja et al. 2012; Bobylev &
Bajkova 2016; Kushniruk et al. 2017). Above it, closer to + =
�10 km s�1 is another feature that matches to a group identified by
Bobylev & Bajkova (2016) and Kushniruk et al. (2017). There are
also features with positive* sitting at+ ⇡ �30 km s�1 with* = 50
km s�1 and * = 100 km s�1, the first of which is the Dehnen98
group from Antoja et al. (2012), which itself is from Dehnen 1998.
The second group is likely Antoja12 (see Kushniruk et al. 2017
and references therein). This demonstrates the strength of plotting
conditional probabilities for the inferred velocity distributions to
gain insight into low-level structures.
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ϵ
Antoja12

Figure 4. The conditional probability on 5 (*,+ ) on either* or + for the
top and bottom plot respectively. The density is scaled such that % (E)0.25

to reveal low probability structure. Some features discussed in the text are
highlighted.

5 THE LOCAL STELLAR HALO

We present the velocity distribution of the stellar halo in the planes
(EA , Eq), (EA , E\ ), and (Eq , E\ ) in Fig. 5 estimated through our pe-
nalized maximum-likelihood method. The figure very clearly shows
the separation into a blue accreted population and a red in-situ
halo or hot thick disc. The blue accreted population occupies phase
space almost symmetrically around Eq = 0 and does not continue
smoothly from the disc population, with multiple substructures.The
red, in-situ halo or hot thick disc on the other hand has very little
substructure and is mostly a continuation of the disc phase space
distribution.

Since our main interest is in the substructure of the accreted
halo, throughout the rest of this paper we only look at theHALO_LEFT
sample.

For this sample we can see that there are a plethora of features.
We overlay the distribution with known features from literature,
revealing which of these we do or do not see from this perspective
of the population. The extent of these shapes has been adapted from
Koppelman et al. (2019a) and Naidu et al. (2020). We will now go
over and discuss the features we can see in our distributions.

5.1 Gaia-Sausage-Enceladus

The strongest feature across all velocity space is the GSE and this
feature is not continuous but rather appears to be a composition of
multiple different features which we have labelled in the top-left of
Fig. 5 as G1-5 in (EA , Eq). Since our cut of ET > 200 km s�1 is
rather generous, we expect there to be some contamination between

the samples. Thus, G2 and G4 are likely contaminants from the two
features seen in the HALO_RIGHT sample in the third row of Fig. 5.
G1 and G5 appear in the space of what is typically associated with
the GSE (e. g. Koppelman et al. 2019a; Feuillet et al. 2021; Dodd
et al. 2022) while the central group, G3, appears likely to be the
L-RL3 group in Dodd et al. (2022) who identifies it with Cluster
3 in Lövdal et al. (2022). The GSE appears slightly asymmetric
on either side of Eq = 0 here because of our cut on tangential
velocity removing some of its lower Eq members and including
some contaminants from the disc.

5.2 Sequoia & Antaeus

Some noticeable features are the ‘horns’ sticking out at the bottom
in (EA , Eq) at Eq = �250 km s�1 and around EA = ±200 km s�1

and to the left in (Eq , E\ ) around E \ = ±150 km s�1. These features
are in the location associated with Sequoia (Myeong et al. 2019).
In Naidu et al. (2020) this region is mixed with groups Arjuna and
I’itoi which are distinguished from one another by their metallicities.
Since we do not have metallicity measurements here we will refer to
the dynamical space occupied by these features simply as Sequoia.
In the same space we can also see the Antaeus group from Oria
et al. (2022) which shares many of the same attributes as Sequoia.
It is not clear to what extent these features are separate but Oria
et al. (2022) claims that the low �I and position in the disc plane of
Antaeus are unique.

5.3 Helmi streams

Two of the most prominent substructures that appears in all the
distributions are the Helmi streams (Helmi et al. 1999). They are
also among the first identified substructures. An updated view of
the streams lets us narrow them down in velocity space (Koppelman
et al. 2019a,b; Koppelman & Helmi 2021a). This feature is partic-
ularly strong and is bimodal in E \ , with the lower E \ group being
far more represented as expected (e.g., Koppelman et al. 2019b). At
slightly larger Eq we would expect to find Aleph, reported first in
Naidu et al. (2020), but in our sample it appears to be absent.

5.4 Thamnos

The structure Thamnos was identified by Koppelman et al. (2019b)
using the Gaia DR2 RVS sample supplemented with line-of-
sight velocities and abundances from RAVE (Kunder et al. 2017),
APOGEE (Abolfathi et al. 2018), and LAMOST (Cui et al. 2012).
Their sample was limited to 3 kpc like halo samples. In our distribu-
tions there is no distinct separate feature corresponding to Thamnos,
but in both (EA , Eq) and (Eq , E\ ) the distribution’s densest parts
extends to slightly lower Eq than for the GSE structure, which may
be due to the presence of Thamnos. It is suggested by Naidu et al.
(2020) that Thamnos may be more discernible at larger distances
where the GSE and disc-like stars contribute less to the distribution.

5.5 Other structures

In addition to the structures mentioned above we find several
others in these projections. One of these can be associated with
a known velocity structure, ED-2 from Dodd et al. (2022) and
is marked with a cerise shaded region. This feature is close
to Sequoia at (EA , Eq) = (�150,�300) km s�1 and presents in
(Eq , E\ ) = (�300,�100) km s�1. To verify if they are the same

MNRAS 000, 1–11 (2022)

100



6 D. Mikkola, P. J. McMillan, D. Hobbs

Sgr

Aleph

GSE

Helmi

Thamnos 1

Thamnos 2

Seq
Seq

Antae
us

Typhon

Helmi

Helmi

Thamnos 2
SeqAntaeus

Ty
ph

on

G
S
E

H
elm

i
H

elm
i

Tham
nos 1

Tham
nos 

2

S
eq

Antaeus

Typhon

Tha
mnos1

MMH-1
MMH-1 MMH-1

MMH-2

ED-2

ED-2

GES

G1

G2

G5G3

G4

HALO_LEFT HALO_LEFT HALO_LEFT

HALO_LEFT HALO_LEFT HALO_LEFT

HALO_RIGHT HALO_RIGHT HALO_RIGHT

Figure 5. Velocity distributions in spherical coordinates. The colormap shows the square root of the probability distribution,
p
5 (E) , to enhance fainter

structure. The contour lines are the same as in Fig. 3. First row: The velocity distribution of the HALO_LEFT sample. Five distinct features thought belonging
to the region occupied by GSE are labelled. Second row: Same as the first row, but overlaid with rough expected positions of reported substructures from
literature in similar style to Naidu et al. (2020) and Mardini et al. (2022) but in velocity space. Third row: Velocity distribution of HALO_RIGHT, with very little
substructure. Because we are interested in the substructure found in HALO_LEFT we focus exclusively on this sample in subsequent figures.

structure, we investigate the full 3D velocity structure to find that
the features overlap and are one and the same.

In Dodd et al. (2022), they assign 33 members to the cluster
in their sample of 72 274 stars (or ⇠0.05%). We can look at the
fraction of the probability density that occupies the region. We
define the region around the group with EA 2 [�175,�100] km
s�1, Eq 2 [�325,�275] km s�1, and E \ 2 [�100,�150] km s�1

and find that ⇠0.074% of the sample lies there, corresponding to
⇠180 stars in the sample. This suggests that the very dense feature
is slightly more prominent than previous believed.

At slightly larger EA than the even the large E \ Helmi
stream, around (EA , E\ ) = (�250, 300) km s�1 and (EA , E\ ) =
(200, 350) km s�1, we find a new feature split across two different
values of E \ . At such a large E \ we also find a new structure in
(Eq , E\ ) at (25, 300) km s�1. We refer to these groups as a single
feature which we call MMH-1. In the full 3D probability distribu-
tion the positions of MMH-1 overlap and we consider them the same
feature.

Lastly, at (Eq , E\ ) = (150,�100) km s�1, another feature can
be seen. At such values of Eq and E \ it is difficult to discern any
stronger feature in the spaces of (EA , Eq) and (EA E \ ) as the region

is crowded particularly in (EA , Eq) where it would lie close to the
cutoff caused by our tangential velocity limit. We refer to this feature
as MMH-2.

5.6 Conditional 5 (v) of the local halo

In much the same way as we did in Fig. 5, we again use conditional
probabilities to illustrate our halo velocity maps with respect to one
of the two velocity dimensions to investigate faint structure that oth-
erwise may not be visible. We show these conditional probability
maps in Fig. 6 which reveal more of the surrounding velocity struc-
ture with certain features become strikingly visible. For example
the two-pronged structure around Sequioa, Antaeus, and ED-2 is
much more readily apparent in %(EA |Eq) and %(E \ |Eq) than be-
fore. The separation of the GSE from the hot thick disc is apparent
in both %(EA |Eq) and %(Eq |EA ), and it is located primarily around
two features around Eq ± [150, 300] km s�1. The region occupied
by Thamnos is now also readily apparent where it was not before.

Our two novel groups, MMH-1 and MMH-2, appear in these
figures as well. The first, MMH-1, which has a large E \ of around
300 km s�1 appears in the conditional probabilities %(EA |E \ )
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MMH-1

MMH-1

MMH-1

MMH-1 MMH-1

MMH-2 MMH-2

MMH-2
MMH-2

Thamnos

Thamnos

GSE GSE

GSE
GSE

Seq

Seq

ED-2
Antaeus

Figure 6. The conditional probability of the three different spaces in each column and velocity space as Fig. 5 for the HALO_LEFT sample. Top row is conditional
probability on the x-axis coordinate and bottom row on the y-axis coordinate. We show specifically % (E)0.25 to reveal low probability structure even further.

and %(Eq |E \ ) corresponding to the bottom row, middle and last
columns. It also stretches up towards much larger extents in E \ ,
but it is unclear if this structure is physical given how far out in
the edges of the distribution it lies. Similarly there is a symmetric
feature at large negative E \ near -400 km s�1 which, if real, could
relate to MMH-1. The group MMH-2 appears strongly in (Eq , E\ )
for both %(Eq |E \ ) and %(E \ |Eq).

A feature we have not discussed previously which is present
in %(E \ |EA ) and %(EA |E \ ) is the sloped feature around (EA , E\ ) =
(0,�150) km s�1. This feature is also visible in Fig. 5 and does not
appear in the other papers we have reviewed and is very difficult to
find in the other spaces, suggesting it lies at rather low Eq as this
would place it close to the densest parts of the distribution, thus
obscuring it from detection. We have confirmed this by limiting the
(EA , E\ )-space to separate bins of Eq , which reveals that the feature
only appears between Eq 2 [0, 100] km s�1. This means the feature
is most likely the representation of MMH-2 in this space.

5.7 Action space distribution

A very common method of searching for accreted substructure in
the Milky Way halo is to work in terms of integrals of motion (e.g.,
Helmi et al. 1999). In particular, the orbital actions have become
commonly used since a convenient approximation within galaxy
potentials became available (Binney 2012). When stars in a sample
are distributed over a large volume in the Milky Way it is essential to
use techniques like these to identified substructure accreted long ago
because, while we can expect stars accreted together to have very
similar integrals of motion, they will have very different velocities
if they are in very different parts of the Galaxy.

We have very deliberately limited our sample to a relatively
local volume within the stellar halo so that stars on similar orbits
have similar velocities. Nonetheless, to make consistent comparison

Figure 7. Action distribution associated with our HALO_LEFT sample. The
probability density is in units of kpc�2 km�2 s2. While there are strong
selection effects that shape these distributions, we are still able to see some
of the substructure in this projection of the data, most strikingly the Helmi
stream in the lower panel near (�q , �\ ) = (1500, 1200) kpc km s�1.

with other studies possible, it is still valuable to determine the
distribution of the stars in terms of their orbital actions. We use the
����� software package (Vasiliev 2019) to determine the actions
in the Milky Way gravitational potential from McMillan (2017)
rescaled such that the Sun’s position and velocity are consistent with
the values given in Section. 3. Fig. 7 shows this action distribution
in terms of �A or �\ against �q ,4 where we have approximated that

4
�q is the conserved component of angular momentum, while �A charac-

terises the radial oscillation and �\ that of oscillation in the \ direction.
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stars are at the position of the Sun. Changing this assumed position
within our survey volume does not make any important qualitative
difference.

The distributions in Fig. 7 are clearly shaped by the selection
effects that apply to them. At high |�q | there is a lower limit for
�A below which there is no orbits that pass the Sun’s position. At
lower |�q |, there is a minimum �A that reaches the Sun’s position
for �\ = 0, and this is where we find the bright maximum in the
(�q , �A ) distribution that runs from approximately (�1500, 0) to
(0, 600) kpc km s�1, which is a selection effect. For �\ > 0 there
are orbits that reach the solar position at these �q with lower �A , so
the density does not fall to zero below this point. There is an upper
envelope for �\ at a given �q , above which the density becomes
very low. This is a consequence of the requirement that the orbit
reaches the Sun’s position and is bound to the Galaxy.

Nonetheless, there are features of the velocity distribution
that stand out in these plots too. The GSE stands out as a
strikingly high density of stars over a large range in �A around
�q = 0. ED-2 is clearly seen in both panels at (�A , �q , �\ ) =
(600,�2450, 90) kpc km s�1; the Helmi Stream is clearly visible in
the (�q , �\ ) plane around (1300, 1200) kpc km s�1 and expected
at a �A of 80 kpc km s�1; the Sequoia group produces an overden-
sity that can be seen around (�q , �A ) = (�2000, 1000) kpc km s�1.
Otherwise, for our sample the substructure is substantially clearer
in the velocity distribution than in these action distributions.

We note, in the interests of finding members of our
newly discovered substructure in future study of samples be-
yond the Solar neighbourhood, that in our assumed potential
these have actions (�A , �q , �\ ) around (1450, 200, 2300) and
(70, 1200, 200) kpc km s�1 for MMH-1 and MMH-2 respectively.

Finally, we can use angle-action modelling to justify an as-
sumption underlying our approach: that it is reasonable to approx-
imate the velocity distribution of the stellar halo as independent
of position in our sample volume. To provide a realistic example,
we use the Torus Code (Binney & McMillan 2016) we sample the
points from the phase-mixed orbit corresponding to the approximate
actions of the Helmi and ED-2 streams. For the Helmi stream we
focus only on component at E \ < 0 (by symmetry the equivalent at
E \ > 0 will have the same spread in velocity), while for ED-2 we
also limit it to EA < 0 to match the major component we observe. For
the points on the orbital torus sampled within our survey volume,
we have a dispersion in Eq of 12 km s�1 and in E \ of 17 km s�1

for the Helmi Stream, and of (50, 40, 30) km s�1 in (EA , Eq , E\ ) for
ED-2. This spread is comparable to that seen in for these groups in
Fig. 5, which is quite small on the scale of the velocity distribution
that we are studying, and clearly does not prevent us from finding
substructure. We note also that this is likely to be an overestimate
of the associated dispersion, because the real sample has a smaller
spread in position, being preferentially near the Sun, and this smaller
spread in position, for a given orbital torus, corresponds to a smaller
spread in velocity.

6 CONCLUSIONS

We use DR3 astrometry data without radial velocities, giving us ac-
cess to a significantly larger catalogue of stars. With the penalized
maximum likelihood algorithm implemented in Paper I we can then
infer full 3D velocity distributions to investigate the Solar neigh-
bourhood for substructure. We analyse the Solar neighbourhood in
two separate stellar components: the Galactic disk and the stellar

halo. The disk is also split into a north and southern hemisphere
based on Galactic latitude as in Monari et al. (2018) and we find
that the overall velocity distribution is dominated by the four ma-
jor moving groups; Sirius, Coma Berenices, Hyades, and Pleiades,
with 35% of stars lying in and around them. However, we find some
degree of asymmetry with Galactic latitude with Coma Berenices
being most prominent in the southern hemisphere in agreement with
previous results (Quillen et al. 2018; Monari et al. 2018; Bernet et al.
2022). We also identify a new structure at (*,+) = �10,�15 kms�1

which does not align with any known moving groups.
For the local stellar halo, we use the same approach as Gaia

Collaboration et al. (2018b) to reveal a double main sequence for
stars with ET > �200 km s�1 which we split into in an ‘in-situ’ and
‘accreted’ population to the right and left in the CMD respectively.
These samples are then used to infer the velocity distributions in
spherical Galactocentric coodrinates, EA , Eq , and E \ . We see that
we can reliably make out several of the more well-known features
of the stellar halo in the ‘accreted’ sample: GSE, Sequoia, Helmi
streams, and Thamnos are all visible in our sample. We also find
three addition structures, the first of which is identified already
as ED-2 in Dodd et al. (2022). We then have a new structure,
MMH-1, appear at large E \ , split into two locations at (EA , E\ ) =
(�250, 300) km s�1 and (EA , E\ ) = (200, 350) km s�1. It also
appears at (Eq , E\ ) = (25, 300) km s�1. By inspection of the full
3D velocity space we confirm this as one feature with velocities
(EA , Eq , E\ ) = (±225, 25, 325) km s�1. Lastly we also have the
new feature MMH-2 at (Eq , E\ ) = (150,�100) km s�1 which we
trace into EA , which gives it velocities (EA , Eq , E\ ) = (0, 150,�125)
km s�1. These velocity distributions gives us the appearance of the
stellar halo at ‘face value’, which provides a clear idea of what
structure can be expected there and to what extent.

In addition to this we investigated the conditional velocity
distributions upon which provides further support for the existence
of these structures and their extent. This is where we also find a
match for MMH-2 in EA , which was not as readily apparent in the
standard distributions.

Furthermore we transform our velocity distributions into ac-
tion space distributions and identify the location of several of the
previous substructures there as well. This further demonstrates the
possibilities of our approach and lets us connect between velocity
space and orbital space.

This work demonstrates what can be achieved without needing
to rely on the full 6D phase-space information. During the era of
Gaia, there will be more sources with astrometry alone than with
added radial velocities due to the inherent differences in the methods
by which the measurements are obtained. Currently around 2% of
the data has radial velocities and with spectroscopic follow-up this
is likely to increase, but not match the amount of pure astrometric
sources. In the next era with a successor mission in the infrared
(Hobbs 2022, submitted)5 the amount of radial velocities could
increase significantly. This will mean that enough sources will be
available that more discoveries can be made directly with 6D data,
but the proper motions will remain more numerous and so methods
such as these will be pivotal.

5 Proceedings of the XXXI IAU General Assembly, to be published in
Cambridge University Press
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APPENDIX A: GAIA ARCHIVE QUERY

The following query has been used on the Gaia archive7 to obtain our SNBH samples and is detailed in Section 2:

select source_id , bp_rp , phot_g_mean_mag , phot_bp_rp_excess_factor , ruwe , ra, dec ,

parallax , pmra , pmdec , parallax_error , pmra_error , pmdec_error , parallax_pmra_corr ,

parallax_pmdec_corr , pmra_pmdec_corr , visibility_periods_used , astrometric_chi2_al ,

astrometric_n_good_obs_al , radial_velocity ,

radial_velocity_error ,

if_then_else(

bp_rp > -20,

to_real(case_condition(

phot_bp_rp_excess_factor - (1.162004 + 0.011464* bp_rp + 0.049255* power(bp_rp ,2)

- 0.005879* power(bp_rp ,3)),

bp_rp < 0.5,

phot_bp_rp_excess_factor - (1.154360 + 0.033772* bp_rp + 0.032277* power(bp_rp ,2)),

bp_rp >= 4.0,

phot_bp_rp_excess_factor - (1.057572 + 0.140537* bp_rp)

)),

phot_bp_rp_excess_factor

) as excess_flux

from gaiadr3.gaia_source

where parallax_over_error > 10

and parallax > 5

and ruwe < 1.15

and phot_g_mean_flux_over_error > 50

and phot_rp_mean_flux_over_error > 20

and phot_bp_mean_flux_over_error > 20

and visibility_periods_used > 8

and astrometric_chi2_al /( astrometric_n_good_obs_al -5)

< 1.44* greatest(1,exp ( -0.4*( phot_g_mean_mag -19.5)))

To create our HALO samples, we have used a similar query with a different parallax cut:

select source_id , bp_rp , phot_g_mean_mag , phot_bp_rp_excess_factor , ruwe , ra , dec ,

parallax , pmra , pmdec , parallax_error , pmra_error , pmdec_error , parallax_pmra_corr ,

parallax_pmdec_corr , pmra_pmdec_corr , visibility_periods_used , astrometric_chi2_al ,

astrometric_n_good_obs_al , radial_velocity ,

radial_velocity_error ,

if_then_else(

bp_rp > -20,

to_real(case_condition(

phot_bp_rp_excess_factor - (1.162004 + 0.011464* bp_rp + 0.049255* power(bp_rp ,2)

- 0.005879* power(bp_rp ,3)),

bp_rp < 0.5,

phot_bp_rp_excess_factor - (1.154360 + 0.033772* bp_rp + 0.032277* power(bp_rp ,2)),

bp_rp >= 4.0,

phot_bp_rp_excess_factor - (1.057572 + 0.140537* bp_rp)

)),

phot_bp_rp_excess_factor

) as excess_flux

from gaiadr3.gaia_source

where parallax_over_error > 10

and parallax > power(3, -1)

and ruwe < 1.15

and phot_g_mean_flux_over_error > 50

and phot_rp_mean_flux_over_error > 20

and phot_bp_mean_flux_over_error > 20

and visibility_periods_used > 8

and astrometric_chi2_al /( astrometric_n_good_obs_al -5)

< 1.44* greatest(1,exp ( -0.4*( phot_g_mean_mag -19.5)))

and 4.74* sqrt(power(pmra , 2) + power(pmdec , 2))/ parallax > 200

7 https://gea.esac.esa.int/archive/
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Table B1. Vertices for the regions in "⌧ and ⌧BP �⌧RP that make up our
red and blue halo sequences.

⌧BP � ⌧RP "⌧

mag mag
2.4 11
2.110 10.087
2.012 9.522
1.789 8.630
1.637 8.178
1.452 7.565
1.262 7.021
1.142 6.652
1.034 6.239
0.936 5.826
0.843 5.326
0.756 4.782
0.729 4.478
0.708 4.000
0.713 3.695
0.756 3.413
0.849 3.326
0.925 3.260
0.963 3.239
0.990 2.412
1.066 1.173

APPENDIX B: RED AND BLUE CMD SEQUENCE
SELECTION

Table B lists the vertices for the intersect between red and blue
regions of the CMD outlined in Section 2. In addition to this, the blue
section starts from the point (⌧BP�⌧RP,"⌧

) = (�0.125, 11) mag
and passes through the points (0.8, 1) mag and (-0.125, 1.95) mag
after the intersecting vertices. The red section starts from (3.125,
11) mag and after the intersecting vertices ends at (3.125, 5.25)
mag.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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