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1. Introduction

Recently, the use of drones or unmanned aerial vehicles (UAVs) for various purposes
has been increasing [1]. Drones can be remotely controlled or programmed to capture
scenes from a distance. This capture method is cost-effective and does not require highly
trained personnel. Drones are widely used in various applications such as industrial
and infrastructure inspections [2,3], agricultural and environmental monitoring [4,5], geo-
graphical surveying [6], search and rescue missions [7], security and surveillance [8], and
so on.

Multiple sensors can be mounted on a drone. In addition to visible cameras, infrared
thermal imaging and multispectral imaging equipment can be mounted on a drone [9,10].
LiDAR and SAR are active sensors that can be used in drones [11–13]. These mobile aerial
imaging sensors provide a new perspective on research and development for a variety of
applications. However, more challenges are often posed than fixed and ground sensors
because of the unique sensing environments and limited resources of drones. Certainly,
information acquired by a drone is of tremendous value; thus, intelligent analysis of the
data is necessary to make the best use of them.

This Special Issue focuses on a wide range of intelligent processing of images and
sensor data acquired by drones. The objectives of intelligent processing range from the
refinement of raw data to the extraction and processing of featured attributes and the
symbolic representation or visualization of the real world. This can be achieved through
image/signal processing or deep/machine learning algorithms. The latest technological
developments will be shared through this Special Issue. Researchers and investigators are
invited to contribute original research or review articles to this Special Issue.

Eight research papers and two review papers were verified through a thorough review
process. Many valuable and recent technologies have been provided in the selected papers
to solve real problems. The first volume of this Special Issue on the topic is closed; more
in-depth research on the same topic is expected in the second volume of this Special Issue.
It is anticipated that the scope of intelligent processing will be even broader in the future.

2. Overview of Published Articles

This Special Issue was introduced to collect the latest research on relevant topics,
and more importantly, to address the current practical and theoretical challenges. In the
following, papers are categorized into several subtopics: industrial applications, positioning
and tracking, visualization of the real world, and advances in computer vision.

2.1. Industrial Applications

In the first contribution entitled ‘Method for Complex Road Cracks Collected by UAV
Based on HC-Unet++’, Cao, H.; Gao, Y.; Cai, W.; Xu, Z.; and Li, L. proposed a new deep
learning network model called HC-Unet++ for the detection and segmentation of road
cracks. Their method is based on convolutional neural networks, and they show that UAV
aerial photography plays an important role in road maintenance and traffic safety. The new
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network model can eliminate complex backgrounds, effectively detect cracks of various
irregular shapes, and reduce crack discontinuity.

Detection of power lines and transmission towers is critical for the safety of power grid
operations. The second contribution entitled ‘Transmission Line Segmentation Solutions
for UAV Aerial Photography Based on Improved UNet’ by He, M.; Qin, L.; Deng, X.; Zhou,
S.; Liu, H.; and Liu, K. enhances the UNet algorithm, which is a deep learning segmentation
model. The authors improved the UNet algorithm by extracting features using a lightweight
backbone structure and then reconstructing them into contextual information features.

Ali, M.A.H.; Baggash, M.; Rustamov, J.; Abdulghafor, R.; Abdo, N.A.-D.N.; Abdo,
M.H.G.; Mohammed, T.S.; Hasan, A.A.; Abdo, A.N.; Turaev, S.; et al., in the third contri-
bution entitled by ‘An Automatic Visual Inspection of Oil Tanks Exterior Surface Using
Unmanned Aerial Vehicle with Image Processing and Cascading Fuzzy Logic Algorithms’,
proposed a method for visual inspection of external surface defects on oil tanks. Two
cascade fuzzy logic algorithms were developed to detect defects and remove noise.

The fourth contribution is a review paper entitled ‘An Overview of Drone Applications
in the Construction Industry’. Choi, H.-W.; Kim, H.-J.; Kim, S.-K.; and Na, W.S. presented a
comprehensive overview of the applications of drones in the construction industry. The
introduction of drones into the construction industry has brought about revolutionary
advancements in all phases of construction projects. For example, drones equipped with
high-resolution cameras in the design phases have revolutionized field surveys and aerial
mapping. During the construction phase, drones play an important role in monitoring
and inspecting the construction progress and ensuring safety. Drones can also efficiently
detect and identify damage, enabling proactive maintenance, cost reductions, and extended
asset lives.

2.2. Positioning, Detection, and Tracking

UAV landing technology is a critical tool that allows drones to land without human
intervention, improving safety, efficiency, and operability in remote or challenging envi-
ronments. However, high-precision autonomous landing is still a major challenge. Xu,
Y.; Zhong, D.; Zhou, J.; Jiang, Z.; Zhai, Y.; and Ying, Z described, in the fifth contribution
entitled ‘A Novel UAV Visual Positioning Algorithm Based on A-YOLOX’, a UAV position-
ing algorithm called attention-based YOLOX, which improves the accuracy of automatic
landings for UAVs.

While the use of drones offers significant benefits for a variety of applications, it also
presents a number of hazards. These hazards range from concerns about privacy and
security to risks of physical injury and environmental impacts. In the sixth contribution
entitled ‘Non-Linear Signal Processing Methods for UAV Detections from a Multi-Function
X-Band Radar’, Kumar, M. and Kelly, P.K. developed a nonlinear processing technique for
UAV detection using a portable radar system.

Drones have become an invaluable tool in search and rescue (SAR) missions. In the
seventh contribution entitled ‘Thermal Image Tracking for Search and Rescue Missions
with a Drone’, Yeom, S. developed an effective thermal image tracking method. His
method shows promising results for handling challenging environments such as complex
backgrounds, heavy occlusions, and complex maneuvering of drones.

2.3. Visualization of the Real World

Amala Arokia Nathan, R.J.; Kurmi, I.; and Bimber, O., in the eighth contribution enti-
tled ‘Inverse Airborne Optical Sectioning’, presented inverse airborne optical sectioning, an
optical analogy to inverse synthetic aperture radar. Moving targets, such as walking people,
that are heavily occluded by vegetation can be made visible and tracked using cameras on
drones hovering over forests. They introduced the principles of inverse synthetic aperture
imaging and suppressed the signal of occluders by filtering the Radon transform of the
image integral.
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The development of UAVs has significantly increased the type and number of datasets
available for image synthesis. An improved image synthesis model, SYGAN, was proposed
in the ninth contribution entitled ‘Improved Image Synthesis with Attention Mechanism for
Virtual Scenes via UAV Imagery’ by Mo, L.; Zhu, Y.; Wang, G.; Yi, X.; Wu, X.; and Wu, P. A
spatial adaptive normalization module and a sparse attention mechanism were introduced
on the basis of a generative adversarial network (GAN) for image synthesis.

2.4. Potentials of Drones in Computer Vision

Vision transformers can be used for various computer vision applications, including
image classification, object detection, image segmentation, image compression, image
super-resolution, image denoising, anomaly detection, and drone imagery. In the tenth
contribution entitled ‘A Comprehensive Survey of Transformers for Computer Vision’,
Jamil, S.; Jalil Piran, M.; and Kwon, O.-J. reviewed the state of the art and compiled a list of
available models and discussed the pros and cons of each vision transformer model.

3. Conclusions

This Special Issue covers various applications of images and signals acquired by
drones. It also shows a wide range of potential as well as the versatility of drones in the
near future, encompassing a richness of research fields. This is reflected in the wide range
of methodologies adopted in the studies, including deep learning, traditional machine
learning, signal and image processing, and estimation theory. From a methodological
perspective, deep learning appears in five of the eight research papers (Contributions 1, 2,
5, 7, 9). Among them, a deep learning method was combined with estimation theory in
Contribution 7. Two papers (Contributions 6 and 8) take advantage of methods using the
signal processing regime, and one paper (Contribution 3) combines image processing with
machine learning algorithms. It is anticipated that research in the field of deep learning will
increase further, while different approaches can potentially be combined with one another
in this era of rapid change and development.

As a final note, I would like to thank all the authors contributing to this Special Issue.
I also appreciate the dedicated reviewers and editors for their efforts and expertise. I
sincerely hope that readers will find great inspiration from current and future technologies
related to drones in this Special Issue.
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Abstract: Road cracks are one of the external manifestations of safety hazards in transportation.
At present, the detection and segmentation of road cracks is still an intensively researched issue.
With the development of image segmentation technology of the convolutional neural network, the
identification of road cracks has also ushered in new opportunities. However, the traditional road
crack segmentation method has these three problems: 1. It is susceptible to the influence of complex
background noise information. 2. Road cracks usually appear in irregular shapes, which increases
the difficulty of model segmentation. 3. The cracks appear discontinuous in the segmentation
results. Aiming at these problems, a network segmentation model of HC-Unet++ road crack detection
is proposed in this paper. In this network model, a deep parallel feature fusion module is first
proposed, one which can effectively detect various irregular shape cracks. Secondly, the SEnet
attention mechanism is used to eliminate complex backgrounds to correctly extract crack information.
Finally, the Blurpool pooling operation is used to replace the original maximum pooling in order
to solve the crack discontinuity of the segmentation results. Through the comparison with some
advanced network models, it is found that the HC-Unet++ network model is more precise for the
segmentation of road cracks. The experimental results show that the method proposed in this paper
has achieved 76.32% mIOU, 82.39% mPA, 85.51% mPrecision, 70.26% dice and Hd95 of 5.05 on the
self-made 1040 road crack dataset. Compared with the advanced network model, the HC-Unet++
network model has stronger generalization ability and higher segmentation accuracy, which is more
suitable for the segmentation detection of road cracks. Therefore, the HC-Unet++ network model
proposed in this paper plays an important role in road maintenance and traffic safety.

Keywords: road cracks; drone; feature fusion; SEnet; Blurpool; HC-Unet++

1. Introduction

As an important part of the transportation hub, roads provide the most basic facilities
for the entire transportation network. Road cracks are a common phenomenon of road
surface damage. After the road is completed, due to natural damage factors such as long-
term exposure to the sun [1], rain erosion, and human factors such as frequent rolling of
vehicles, construction materials, and construction quality, the road appears to incur varying
degrees of crack damage. With the development of cracks, the overall structure of the road
will gradually change [2], which will affect the service life and safety of the road to a certain
extent, and even cause traffic accidents in severe cases. In order to reduce the cost [3] and
prolong the service life of the road, it is necessary to survey and repair the road as soon as
possible. Therefore, finding an accurate and effective method for identifying road cracks
and repairing cracks in time is of great significance to the structural safety of roads and
traffic safety.

Drones 2023, 7, 189. https://doi.org/10.3390/drones7030189 https://www.mdpi.com/journal/drones5
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In the early days, many scholars proposed the use of traditional image processing
methods to solve the task of crack identification, such as the use of typical digital image pro-
cessing algorithms to extract crack features to identify cracks [4] and using multi-threshold
image segmentation methods to reduce computational cost and improve segmentation
accuracy [5]. For example, Jin et al. [6] proposed a detection and segmentation algorithm
for mixed cracks, using the threshold method of histogram to obtain the approximate
location of cracks. Li et al. [7] used the improved Otsu threshold segmentation algorithm
and adaptive iterative threshold segmentation method to identify airport runway cracks
containing runway markings. Li et al. [8] proposed a new unsupervised multi-scale fu-
sion crack detection algorithm that extracts candidate cracks in the image through the
minimum intensity path. Additionally, a multivariate statistical hypothesis-testing crack
assessment model was developed to detect pavement cracks. Xu [9] and others used the
second-order differential operator edge detection algorithm to identify cracks in infrared
images at different times. Zhao et al. [10] combined the improved Canny edge detection
algorithm with the edge filter of road surface edge detection to effectively detect edge
cracks in road surface images while eliminating noise interference. Liang et al. [11] used
wavelet technology to detect crack edges and eliminated background noise interference by
searching and analyzing the maximum value of wavelet coefficients. At the same time, a
threshold method was used to judge whether there were cracks on the pavement. Peggy
et al. [12] performed a separable 2D continuous wavelet transform for several scales based
on the continuous wavelet transform. The propagation between scales was analyzed by
searching for the maximum value of the wavelet coefficients in order to determine whether
there were cracks. Cheng et al. [13] built an end-to-end diagnostic mechanism based on
continuous wavelet transform, one which adaptively captured features through automatic
feature extraction. Although traditional image processing methods can identify and extract
cracks to a certain extent, this method has poor generalization performance and can only
be applied to specific contexts. Due to the complexity of road cracks, in the course of the
crack identification process, whether or not the feature extraction is feasible, there is no
guarantee that a crack will be detected.

With the development of deep learning, many scholars have proposed using convo-
lutional neural network image processing methods to identify cracks. In addition, road
crack images collected by UAV [14] can be more challenging due to lighting conditions,
viewpoints, and scales. Researchers used a Gaussian noise residual network to extract crack
features [15] and tried to use MVMNet’s multiple detection method to identify cracks [16].
Zhu et al. [17] proposed a feature fusion enhancement module coupled with a convolutional
network attention mechanism. It was used to improve the interaction between feature
maps and strengthened the dependence between feature channels, so as to achieve the
identification of cracks. Cha et al. [18] utilized sliding windows to divide the image into
blocks and used a CNN convolutional network to predict whether cracks existed in the
block. Fan et al. [19] proposed a new threshold method based on a CNN convolutional
network to extract cracks in classified color images. Sadrawi et al. [20] proposed to use the
lenet network model to identify cracks, and the model finally classified the cracks in the
image into horizontal, vertical and massive cracks. Huang et al. [21] used FCN to extract
feature hierarchy to detect cracks in subway shield tunnels. Zou et al. [22] utilized an end-
to-end trainable deep neural network to fuse the multi-scale deep convolutional features
learned in the layered convolution stage to capture the line structure to better detect cracks.
However, these convolutional neural networks cannot solve the following three problems
well in the segmentation of cracks: 1. As shown in Table 1a, there are many complex
background interferences such as zebra crossings of different colors, stains, manhole covers,
etc. During the segmentation process, this interference information will affect the extraction
and segmentation of fracture features by the network. 2. As shown in Table 1b, road cracks
usually appear in irregular shapes, and the conventional convolutional neural network
cannot fully capture the crack feature information in the feature extraction stage. 3. As
shown in Table 1c, in the process of fracture segmentation, the down-sampling of each
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layer will cause information loss, resulting in the phenomenon of fracture discontinuity in
the segmentation result.

Table 1. Traditional network segmentation results.

Detection Result

Original

   

Ground truth

   

Unet++

   
(a) (b) (c)

In order to be able to completely identify irregularly shaped cracks, Yuan et al. [23]
designed a RDA detail-attention module for crack detection, one which enhanced the
segmentation of irregular cracks by accurately locating the spatial location of cracks. Billah
et al. [24] proposed an encoder-based deep network architecture to strengthen the extraction
of clear features of cracks to effectively find the exact location of cracks and identify cracks
with irregular shapes. Li et al. [25] designed a multi-scale feature fusion method. A multi-
scale parallel structure was obtained through various sampling rates and pooling methods.
This structure can obtain more receptive fields to improve the ability of the network to
identify disordered cracks. Considering the particularity of road crack segmentation, a
deep parallel feature fusion module is proposed in this paper. This module is located in
the deep layer of the network. The purpose is to obtain more receptive fields so that the
network can effectively locate cracks and judge their shapes, so as to enhance the ability of
network segmentation to identify irregular cracks.

In order to enhance the extraction of important information and suppress the interfer-
ence of useless information, many scholars have tried different methods. Yang et al. [26]
proposed the AFB attention fusion block, which was used to replace the original skip
connection to enhance feature extraction. Zhang et al. [27] combined MobileNets with the
convolutional attention module of CBAM. Firstly, the residual structure of MobileNetV2
was introduced to eliminate the accuracy drop caused by separable convolution in the
depth direction, and then CBAM was embedded into the convolutional layer to enhance
the effect of important information. Yang et al. [28] proposed a UAV-supported edge
computing method that was able to integrate different levels of feature map information
into low-level features. This allowed the network to remove the complexity of the back-
ground and the inhomogeneity of the crack intensity. Qiao et al. [29] proposed the scSE
attention mechanism. This module was divided into upper and lower branches. Each
branch obtained a different matrix and multiplied the input image and finally stitched it to
achieve the recalibration of the feature map. Hu et al. [30] proposed the SEnet attention
mechanism. Through the compressed weight matrix, different weights are assigned to
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different positions in the channel to help the network obtain important information. Based
on the complexity of the background when detecting road cracks, this study uses the SEnet
attention mechanism and uses it in the decoding and encoding stages deep in the network
structure. The feature map is corrected by the obtained one-dimensional weight vector
to achieve the purpose of eliminating the interference of non-fracture information and
enhancing the feature extraction of fracture information during feature extraction.

In order to solve the fracture discontinuity phenomenon that occurs during the fracture
segmentation process, Xiang et al. [31] adopted a pyramid module to divide the feature
map into different sub-regions. Crack information was extracted from the global view
by aggregating contextual information in different regions to enhance the continuity of
pavement crack detection. Han et al. [32] proposed a jump-level round-trip sampling
structure to solve the problem of interruption of continuous cracks in the segmentation
process by improving the ability of different receptive fields to perceive information at
different scales. Jiang et al. [33] proposed a segmentation framework with an enhanced
graph network branch to improve crack segmentation continuity by adding a new feature
extraction branch to enrich feature map information. In this paper, due to the loss of part
of the information caused by the maximum pooling operation in the Unet++ network
downsampling, the segmentation cracks are not continuous in the segmentation results.
Therefore, the Blurpool pooling operation is introduced, which can alleviate the shift-
equivariance to the greatest extent, greatly reduce the loss of some crack features when the
feature map is down-sampled, and solve the crack discontinuity in the segmentation.

Based on the problems of complex background, irregular crack shape and discontinu-
ous crack segmentation in the process of road crack segmentation. We propose a road crack
network segmentation model based on HC-Unet++. The contributions of this paper are
as follows:

1. A UAV-based road crack dataset is constructed, one which contains 1040 images
of road cracks with complex backgrounds and irregular crack shapes. These images are
precisely annotated and used to train a network model to solve the problem of road
crack segmentation.

2. We propose a deep parallel feature fusion module. This module operates on the
network’s deepest layer and can obtain a larger receptive field, making global feature
extraction possible. This module is partitioned into two parallel branches; each branch
extracts crack features using Conv, BN, and Relu operations and stitches the extracted
feature maps. The spliced feature map has more comprehensive irregular crack features,
thereby enhancing the network’s capacity to segment irregular cracks.

3. The SEnet attention mechanism is introduced and used in the deep encoding
and decoding stages of the network. First, the input feature map is compressed into a
one-dimensional vector through the spatial dimension. Then after the 1*1 convolution,
channel feature learning is performed to weight the one-dimensional vector. Finally, the
one-dimensional weight of channel attention information is learned, which is corrected
in combination with the input character map. The redundant irrelevant information
contained in the output feature map is reduced, and the important crack feature information
is increased.

4. Refers to the Blurpool pooling procedure. This pooling operation can eliminate
aliasing to the greatest extent, return the original incorrect output to its correct location,
and achieve translation invariance to a significant degree. The Blurpool pooling operation
replaces the maximum pooling in the original network, making the output robust to small
input translations and minimizing the loss of crack features during downsampling. The
problem of crack discontinuity in the segmentation result has been resolved.

5. Experimental results show that compared to other advanced methods, the net-
work model proposed in this article on the home-made road cracks dataset has stronger
generalization capabilities and higher accuracy. In generalization experiments, its mul-
tiple indicators have also achieved excellent results. Therefore, the HC-Unet++ network
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has been more versatile in the segmentation of road cracks, making it more efficient and
cost-effective.

2. Materials and Methods

2.1. Data Acquisition

The experimental dataset of this experiment was taken by the team researchers on
Shaoshan South Road and Furong South Road in Changsha City with a DJI Mini3Pro drone
(as shown in Figure 1), with a resolution of 5472 × 3468. When dataset is collected, time
synchronization and control of the drone is very important [34,35]. During the shooting
process, we hovered the UAV 3 to 5 m above the ground and set the viewing angle to
87 degrees in order to capture close-up images of cracks. This type of crack image includes
more individual crack targets. When photographing distant cracks, we set the flight altitude
of the drone between 8 and 10 m. Currently, the UAV has a two-lane field of vision, and
the obtained image depicts a crack scene that is relatively complete. From the acquired
photos, a total of 1040 images with complex backgrounds and irregular crack shapes were
selected as the route crack dataset for research. Among them, 734 pictures contained
complex backgrounds such as zebra crossings, manhole covers, stains, scratches, etc., and
813 pictures had different crack shapes. Then the resolution of these images was adjusted
to 512 × 512 as input images, and these images were manually labeled using the Labelme
tool. Afterwards, the background of the marked picture was black, the crack was white,
and it was stored in the form of json. In training, we divided the dataset into training set,
validation set and test set in a ratio of 8:1:1.

Figure 1. Collection of crack images.

2.2. Methods
2.2.1. HC-Unet++

In order to narrow the semantic gap between the feature maps from the encoder
and decoder networks in the Unet network model, Zhou et al. [36] proposed a network
segmentation model for Unet++. In this network model structure, the hollow Unet network
was filled. It has connections at every point in the horizontal direction, so that features
at different levels can be captured. Due to the different sensitivities of the receptive field
at different depths, the shallow receptive field is more sensitive to small targets, while
the deep receptive field is more sensitive to large targets. Additionally, splicing together
through the feature concat can integrate the advantages of the two. The Unet++ network
adds dense skip connections to reduce the semantic gap between feature maps, making it
achieve good results in the general segmentation field.

However, in the field of road crack segmentation, because of the complex and change-
able situation, a higher performance detection method is needed. In addition, in the actual
segmentation, it is found that the cracks always appear in various irregular shapes. Ad-
ditionally, it is accompanied by different complex backgrounds that interfere with the
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segmentation process, such as: zebra crossing backgrounds of different colors, water stains,
stains, scratches, etc. In addition, due to the loss of information caused by the traditional
down-sampling method of the network, the segmentation results show discontinuity of
cracks, that is, the interruption of continuous crack segmentation. Based on these three
questions, this paper uses Unet ++ as the backbone network to propose a HC-Unet++
network model (as shown in Figure 2a) to perform semantic segmentation on road cracks.
In this model, we propose a deep parallel feature fusion module, as shown in Figure 2b,
which can solve the problem of difficult segmentation of disordered fractures. The SEnet
attention mechanism is introduced, as shown in Figure 2c, which can eliminate the inter-
ference of complex background in the road crack image, thereby improving the accuracy
of segmentation. Replace the maximum pooling operation in the original network with
the Blurpool pooling operation, as shown in Figure 2d. This operation reduces the loss of
some fracture features during down-sampling, thereby reducing fracture discontinuity in
the segmentation results. The following sections will provide more details.

 

Figure 2. Network structure diagram: (a) is the network structure of HC-Unet++. (b) is a flow chart
of the DPFFB module. (c) is a flowchart of the SEnet attention mechanism. (d) is a workflow diagram
of Blurpool pooling. (e) is the meaning of the corresponding modules in (a–c).
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2.2.2. Deep Parallel Feature Fusion Module

In road crack segmentation, there will be various cracks with irregular shapes, which
makes it difficult for the network to extract complete crack features, which brings certain
difficulties to the actual segmentation. In order to improve the ability of the network to
segment irregular cracks, it is necessary to add a special feature map processing module
deep in the network. This module is used to obtain a larger receptive field and more deep
semantic information to enhance the sensitivity of the network to the characteristics of
road cracks. Therefore, the shape of the crack can be effectively judged, and the irregularly-
shaped road crack can be identified.

However, in the Unet++ network, there is a lack of special processing of feature maps
deep in the network, resulting in unsatisfactory segmentation capabilities for irregular
cracks. In order to solve this problem, we propose a deep parallel feature fusion module
(as shown in Figure 2b) to be placed into the bottom layer of the network (as shown in
Figure 2a). It can be seen that the module placed at the bottom layer of the network can have
a larger receptive field and be more sensitive to crack features. Therefore, the position of the
road crack can be more accurately located and the shape of the crack can be judged. When
the input feature map enters the module, the module will divide the feature map into upper
and lower branches and perform independent and identical operations to obtain more
complete crack features. It makes the network judge the shape of the crack more clearly.

The detailed operation steps of the deep parallel feature fusion module are as follows:
(1) First, the input feature map is divided into upper and lower branches, and 1 × 1

convolution is performed on the upper and lower branches, respectively.
(2) Subsequently, the two branches perform BN normalization processing on the

feature map, respectively. This will normalize the distribution of the data to the standard
normal distribution, so that the input value of the subsequent activation function is in the
sensitive area. The formula for BN processing is as follows:

μ =
1
m

m

∑
i=1

xi (1)

σ2 =
1
m

m

∑
i=1

(xi − μ)2 (2)

y(i) = γ
xi − μ√
σ2 + ε

+ β (3)

Among them, μ is the mean value in σ2 a batch, is the variance in a batch, xi is the
input, y(i) is the output after the BN layer, γ and β is the learnable parameters, which will
change with the gradient during the training process.

(3) After that, the upper branch and the lower branch, respectively, pass through the
relu activation function to increase the nonlinear factor. The expression describing it is
as follows:

y(i)′ =
{

y(i) y(i) > 0
0 y(i) ≤ 0

(4)

Among them, y(i)′ represents the output and y(i) represents the input.
The last two branches concatenate the extracted fracture features to strengthen the

segmentation of irregular fracture shapes.

2.2.3. SEnet

In order to enhance the extraction of important features and reduce the interference
of useless information, HU et al. [30] proposed the SEnet attention mechanism, which
obtained a one-dimensional vector by global pooling the input feature map, and then sent
the one-dimensional vector to the fully connected layer to make the one-dimensional vector
have weight. Finally, the obtained one-dimensional weight was multiplied by the original
input feature map to achieve the purpose of correcting the feature map.
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One of the difficulties in road crack detection is the elimination of complex back-
grounds such as: zebra crossings of different colors, water stains, stains, shadows, etc. In
order to effectively solve this problem, we introduced the SEnet attention mechanism, and
replaced the original fully connected layer with a 1 × 1 convolutional layer to reduce the
amount of calculation. At the same time, in the upsampling, in order to protect the integrity
of the features, we set the scaling factor r to 2. Subsequently, the attention mechanism
was placed in the deep layer of the network: x3.0 between to x4.0 and x4.1 to x3.1. In the
deep layers of the network, the obtained 1D weight vector has a large receptive field. The
one-dimensional weight is used to correct the input feature map to enhance the extraction
of important features and suppress the interference of useless information, so as to achieve
the purpose of eliminating complex backgrounds.

The specific implementation steps of the attention mechanism in this article are
as follows:

(1) First, the input feature map X is globally pooled, and the one-dimensional feature
vector H′ (1 × 1 × C) is generated by compressing X in the spatial dimension. This allows
it to have per-channel global information. The H′ calculation formula for is as follows:

H′ = fsq(X) =
1

H × W

H

∑
i=1

W

∑
j=1

X(i, j) (5)

Among them, fsq represents average pooling.
(2) The one-dimensional vector H′ passes through the 1 × 1 convolution kernel so

that the number of channels becomes 1/r. Then the activation function relu is entered to
get the compressed one-dimensional vector H′′ (1 × 1 × C/r). H′′ (1 × 1 × C/r). The H′′
calculation formula for is as follows:

H′′ = δ(w1a) (6)

Among them, δ represents the activation function relu, and w1 represents the dimen-
sionality reduction parameter.

(3) The compressed one-dimensional vector is restored to the original number of
channels H” through a 1 × 1 convolution kernel, and it then enters the activation function
sigmoid to obtain a weighted one-dimensional vector s (1 × 1 × C). Through (2), (3) two
steps realize the interaction between channels, thus improving the computational efficiency
of the network. The s calculation formula is as follows:

s = σ(w2a) (7)

Among them, σ represents the activation function sigmoid, and w2 represents the
dimension-raising parameter.

(4) Finally, multiply the obtained one-dimensional weight s with the input feature map
X to achieve the purpose of correcting the input feature map. This results in the output
feature map X′. The X′ calculation formula is as follows:

X′ = fsacle(s, X) = scXc (8)

2.2.4. Blurpool

Zhang et al. [37] found that modern convolutional networks were not displacement
invariant. Commonly used downsampling methods such as maximum pooling and av-
erage pooling ignore the sampling theorem and do not insert low-pass filtering before
downsampling. This will cause, when using these downsampling methods, small changes
in the input that will cause the output value to fluctuate violently. This is not the desired
result. In order to reduce the phenomenon wherein the output changes violently with the
small displacement of the input, that is, to achieve displacement invariance to the greatest
extent, the Blurpool pooling method is used to replace the maximum pooling in the original
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network. Its structure diagram is shown in Figure 2d, and its position in the network is
shown in Figure 2a.

In the actual road crack identification process, the traditional maximum pooling
operation will cause the use of each layer of down-sampling to cause the loss of some
crack features, resulting in continuous crack interruptions in the segmentation results.
In order to solve this problem, we introduce the Blurpool pooling method and use this
operation to replace the original maximum pooling operation. The introduction of this
operation can maximize translation invariance during downsampling to reduce the loss of
some fracture features, thereby solving the phenomenon of fracture discontinuity in the
segmentation results.

The specific implementation steps are as follows:
(1) Max operation with stride = 1. In this process, the operation has translation

invariance and will not cause aliasing to information.
(2) Subsequently, a low-pass filter Blur is added before downsampling. Its function

is to eliminate aliasing to the greatest extent and return the wrong output to the original
position as much as possible. That is, the translation invariance is obtained to the greatest
extent. The formula for translation invariance is as follows:

∼
F(x) =

∼
F(shi f tΔh,Δw(x)) ∀(Δh, Δw) (9)

Note, though that this formula is valid only when the translation amount is an integer
multiple of N.

(3) Finally, downsample the module after low-pass filtering and output the result.
It can be seen that the aliasing of the downsampling has been greatly improved after

adding the low-pass filter Blur. This strengthens the extraction of fracture features by the
network during downsampling, and greatly reduces the discontinuity of fractures in the
segmentation results.

2.3. Experimental Environment and Settings
2.3.1. Data Preparation

All tests in this study were performed on the same hardware and software platform.
Table 2 is the hardware environment and software environment of this experiment.

Table 2. Experimental environment.

Hardware environment

CPU AMD EPYC 7543 32-Core Processor
ARM 80GB

Video memory 48GB
GPU A40

Software Environment

OS windows 11
PyTorch 1.11.0
Python 3.8
Cuda 11.3

2.3.2. Training Methods

In order to avoid the mismatch between height and width, we adjust the height
and width of the image to equal size, and the image input size is unified to 512 × 512
during training. The batch size is set to 2, the momentum parameter is 0.9, and the
Adam optimizer is selected. The optimizer combines the advantages of two optimization
algorithms, momentum and RMSProp, and can overcome the problem of sharp decrease
of Adgrad gradient while automatically adapting to different learning rates for different
parameters. This enables the network to avoid frequently updated parameters from being
affected by a single outlier sample. Additionally, using cross-entropy loss as the loss
function, a total of 300 epochs are trained. In the experiment, we divide the dataset of road
crack detection into training set, verification set and test set with a ratio of 8:1:1. Table 3
contains the experimental parameters and settings.
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Table 3. Parameter Settings.

Size of Image Batch_Size Momentum Initial lr Optimizer Iterations

512 × 512 2 0.9 e−4 Adam 300

Figure 3 is the change of train loss and val loss with epoch. It can be seen from the
figure that the network model tends to be stable at about 10 Epoch, and the network model
converges quickly.

Figure 3. Train loss and val loss.

3. Experimental Results and Analysis

3.1. Experimental Evaluation Criteria

The evaluation index used in this experiment is composed of these five coefficients:
mIOU, mPA, mPrecision, dice, and Hd95. In addition, in the following formula, TP is true
(predicted result is a crack, and the actual result is a crack), FP false positive (predicted
result is a crack, and the actual result is not cracked), and FN is false negative (the predicted
result is non-cracked, and the actual result is a crack), TN is true negative (predicted result
is non-crack, and actually is non-crack).

mIOU is the average intersection ratio, which represents the average intersection ratio
of each class in this dataset, and its expression is as follows:

mIOU =
1

k + 1

k

∑
i=0

TP
FN + FP + TP

(10)

mPA is the category average pixel accuracy rate, which represents the proportion of
correctly classified pixels for each category, and then accumulates the average value. The
expression about it is as follows:

mPA =
1

k + 1

k

∑
i=0

TP + TN
FN + TP + TN + FP

(11)

mPrecision indicates the proportion of correct predictions in the samples that are
predicted to be positive, and then accumulate and average, the expression is as follows:

mPrecision =
1

k + 1

k

∑
i=0

TP
FP + TP

(12)
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The value dice indicates the ratio of the intersection area between the predicted value and
the real value to the total area, and is sensitive to internal filling. Its expression is as follows:

dice =
2 ∗ TP

TP + FN + TP + FP
(13)

Hausdorff_distance is the maximum distance from one set to the nearest point of another
set, and is sensitive to the segmented boundary. Its expression is as follows:

h(A, B) = max
a∈A

{min
b∈B

{d(a, b)}} (14)

In order to eliminate the unreasonable distance caused by some outliers, we refer to
the Hd95 index. It can arrange the distances of these closest points in descending order,
and select the distance ranked as 5% as the final value of Hd95.

3.2. Module Performance Analysis

This section tests the performance of each module we built in detail, divided into
Section 3.2.1, Section 3.2.2 and Section 3.2.3. They respectively test the effectiveness of
the deep parallel feature fusion module, the effectiveness of the SEnet module, and the
effectiveness of the Blurpool module.

3.2.1. Effectiveness of Deep Parallel Feature Fusion Module

In this section, we use the self-made road crack dataset to verify the effectiveness of
the deep parallel feature fusion module. We will use the SPP [38], ASPP [39] modules in
comparison with the deep parallel feature fusion module, duly embedding them into the
Unet++ network according to the position of DPFFB in the HC-Unet++ network. Table 4
is the comparison result of these feature extraction modules. It can be seen from the table
that when the feature extraction block is embedded in the network, mIOU is improved and
Hd95 is reduced by a certain value. Compared with SPP and ASPP, the mIOU obtained
by embedding the DPFFB module is higher, and the Hd95 value is smaller. This shows
that in the segmentation of road cracks, the performance of DPFFB is better than that
of SPP and ASPP modules, which shows that this module is more suitable for the road
crack segmentation task of this research. However, the embedding of the DPFFB module
also brings a certain number of parameters, which inevitably increases the training time
of the network.

Table 4. Comparison of feature extraction blocks.

Networks Unet++ SPP+Unet++ ASPP+Unet++ DPFFB+Unet++

mIOU 70.39% 71.26% 71.39% 72.44%
Params 47.19 M 47.49 M 47.71 M 48.24 M
Hd95 12.62 10.16 10.03 8.16

3.2.2. Effectiveness of SEnet

To evaluate the effectiveness of the SEnet, we validate the SEnet module with the
self-made road crack dataset. We will choose CA [40], CBAM [41] attention mechanism
and SE attention mechanism for comparison. Additionally, we will imitate the location
of SEnet in the HC-Unet++ network and embed them in the Unet++ network. Table 5
is the comparison result of these attention mechanisms. 3It can be seen from the table
that after embedding the attention mechanism, the mIOU of the network model has been
improved and Hd95 has been reduced. Compared with CBAM, although SEnet lacks the
feature map correction of spatial attention, its data is slightly better than CBAM, and the
overall parameter amount is also less than CBAM. Compared with CA, SEnet not only has
better data than CA, but also has 0.78 M less parameters than it. This proves that the SEnet
mechanism is more suitable for the road crack segmentation in this experiment.
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Table 5. Comparison of Attention Mechanisms.

Networks Unet++ CBAM+Unet++ CA+Unet++ SE+Unet++

mIOU 70.39% 72.98% 72.84% 73.14%
Params 47.19 M 47.85 M 48.13 M 47.35 M
Hd95 12.62 8.31 9.03 7.96

3.2.3. Effectiveness of Blurpool

To evaluate the effectiveness of Blurpool, we used the self-made road crack dataset
to validate the Blurpool module. We conducted a comparative experiment between the
Blurpool and the traditional Maxpool, and Figure 4 shows the loss training curve and
accuracy curve of the two. It can be seen from the figure that when Blurpool is used
instead of Maxpool, the convergence speed of network model training is accelerated and
the accuracy is also improved, which shows that compared with Maxpool, Blurpool is more
suitable for the network model in this paper.

Figure 4. Comparison of Maxpool and Blurpool.

3.3. Ablation Experiments

To evaluate the performance of the method proposed in this paper, we conduct
ablation experiments. In the ablation experiment, we use a self-made road crack dataset for
experiments and use Unet++ as the backbone structure of the network. On this basis, one or
more methods proposed in this paper is added to compare and form ablation experiments
to further prove the effectiveness of the deep parallel feature fusion module, SEnet module,
and Blurpool module. The experimental results are shown in Table 6.

Table 6. Ablation Experiment Results.

Number Method
mIOU

(%)
mPA
(%)

mPrecision
(%)

Hd95 Param

1 HC-Unet++ 76.32 82.39 85.51 5.05 48.40 M
2 DPFFB+SE+Maxpool 75.12 81.12 84.69 5.83 48.40 M
3 SE+Blur 74.86 80.33 83.82 6.71 47.35 M
4 DPFFB+Blur 73.69 78.69 82.47 7.23 48.24 M
5 DPFFB+Maxpool 71.82 77.41 81.57 8.16 48.24 M
6 SE+Maxpool 72.54 76.20 82.05 7.96 47.35 M
7 Blur 71.16 75.21 81.94 11.26 47.19 M
8 Unet++ 70.39 73.50 80.73 12.62 47.19 M
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From Table 6 it can be seen that: DPFFB, Blurpool, and SEnet can all improve the
accuracy in the process of road crack identification, and the HC-Unet++ model that com-
bines these three methods performs the best. From the comparison between the fourth
group and the seventh group, it can be seen that, after adding the DPFFB module, the Hd95
index changes significantly. This shows that after adding the DPPFB module, the model’s
ability to locate fractures is enhanced, and relatively complete fracture characteristics can be
obtained, which improves the network’s ability to identify irregular fractures. At the same
time, the embedding of this module also brings some parameters. From the comparison
between the third group and the seventh group, it can be seen that after adding the SEnet
attention mechanism, mIOU, mPrecision, and mPA are significantly improved, and Hd95 is
also significantly reduced. It shows that this module effectively eliminates the interference
of complex background in the depth of the network, but it inevitably increases the number
of parameters while improving the segmentation ability of the model. From the comparison
between the fourth group and the fifth group, it can be seen that, after replacing Maxpool
with Blurpool pooling, mIOU, mPrecision, and mPA have a slight increase and Hd95
has a slight decrease. Ultimately, the replacement of this module does not increase the
computational load of the network.

These eight sets of experiments fully demonstrate the contribution of deep parallel
feature fusion, SEnet, and Blurpool to the model’s accuracy. It also shows that the HC-
Unet++ proposed by us is more suitable for the detection of road cracks than Unet++.

In addition, we also compared the effects of DPFFB+SE+Maxpool, SE+Blur, and
DPFFB+ Blur to further analyze the performance of this method, as shown in Table 7. In
Figure a of Table 7, the Unet++ network is affected by the zebra crossing background,
and some zebra crossings are misjudged as road cracks, while the other four networks
perform relatively well. In Figure c of Table 7, Unet++ not only misses the judgment of road
cracks, but also misjudges the manhole cover in the picture as a crack. After adding the
DPFFB module and the SE module, this phenomenon of missed judgment and misjudgment
disappears. This is because the network is more sensitive to fracture characteristics, can
identify irregular fractures, and has improved anti-interference ability against complex
backgrounds. However, the information is partially lost during downsampling, which
makes the segmentation cracks appear discontinuous. After replacing Maxpool with
Blurpool, the fracture interruption phenomenon of model segmentation is reduced, and
the identified fractures are more fine and complete in comparison. This proves that the
Blurpool module can alleviate the displacement variability of output information, reduce
the loss of information during downsampling, and solve the problem of discontinuous
crack segmentation. In the SE+Blur network in Figure d of Table 7, since the DPFFB module
is erased, the network loses the special operation module for feature extraction. This
leads to the reduction of the ability to divide irregular cracks in the network, so there
is a serious phenomenon of missed judgments. When the DPFFB module is added, this
missed judgment phenomenon disappears, which further proves the ability of the DPFFB
module to identify irregular cracks. In Figure b of Table 7, when the SE module is erased
from the HC-Unet++ network, the model misjudges it as a crack due to the black scratch
background. After adding SEnet attention, the one-dimensional weight recalibrates the
feature map to reduce the extraction of interference information. That is, the influence of
the black scratch background is eliminated, which proves the ability of the SENet module
to eliminate complex backgrounds.
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Table 7. Visual comparison of the test results.

Detection Result

original

    

Ground truth

    

Unet++

    

DPFFB+SE+Maxpool

    

DPFFB+Blur

    

SE+Blur

    

HC-Unet++

    
(a) (b) (c) (d)

3.4. Comparsion of HC-Unet++ with Other Methods

To further analyze the performance of HC-Unet++, we compared it with state-of-the-
art network models. These network models are: BC-Dunet [42], U2-Net [43], CS2-Net [44].

Extremec3net [45], DCNet [46]; the experimental results about them are shown in
Table 8. In the table, we calculated the mIOU, mPA, mPrecision, dice, and Hd95 of different
models for detecting road cracks. These five methods performed well on our self-made
dataset, and their average mPA exceeded 80% and reached 80.39%. Among them, the
mPrecision value of U2-Net surpassed 85.51% of HC-Unet++ network and reached 85.64%.
However, compared with these five advanced network models, HC-Unet++ performed
better, especially since the Hd95 value was only 5.05, which shows that the edge detection
ability of the HC-Unet++ model in this paper is very good. In addition, the mIOU, mPA, and
dice values of HC-Unet++ are all better than the other five networks, and the mPrecision
value is only 0.13% lower than the mPrecision value in U2-Net. Overall, experimental
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data show that our proposed HC-Unet++ network model is more suitable for road crack
segmentation than some advanced network models.

Table 8. Comparison with advanced networks.

Number Method
mIOU

(%)
mPA
(%)

mPrecision
(%)

Dice
(%)

Hd95

1 HC-Unet++ 76.32 82.39 85.51 70.26 5.05
2 BC-Dunet [42] 72.41 78.59 79.38 61.19 9.82
3 U2-Net [43] 73.28 80.63 85.64 63.74 11.68
4 CS2-Net [44] 73.19 79.50 82.73 64.51 7.34
5 Extremec3net [45] 74.76 81.99 81.98 67.84 9.57
6 DCNet [46] 72.53 81.24 83.75 63.49 12.58

3.5. Generalization Experiments

In order to verify that our network model has good generalization ability, we used [47]
concrete crack conglomerate dataset and Crack500 crack dataset, respectively, and used
them in FCN [48], Unet [49], Unet++, HC-Unet++ models for training. Among them, the
Concrete Crack Conglomerate Dataset has a total of 10,993 images and 1000 crack images
are selected for training, and Crack500 has a total of 476 images and is used for training.
They are divided into a training set, a verification set and a test set, in a ratio of 8:1:1; the
experimental environment for training is the same as the experimental configuration. The
experimental results are shown in Table 9. From the perspective of data, the performance
of our HC-Unet++ model on these two different datasets is better than the other three
comparative network models. Additionally, some of the indicators of the experimental
results are even slightly better than the experimental data on the self-made dataset.

Table 9. Generalization experiments.

Dataset Method
mIOU

(%)
mPA
(%)

mPrecision
(%)

Dice
(%)

Hd95

Concrete Crack
Conglomerate

HC-Unet++ 77.23 86.45 85.91 71.38 3.17
FCN [48] 69.38 80.13 79.19 60.64 14.89
Unet [49] 71.06 82.54 83.64 62.52 11.68
Unet++ 73.71 81.67 82.91 67.98 9.98

Crack 500

HC-Unet++ 76.91 84.04 87.49 69.54 4.68
FCN [48] 70.41 79.65 78.91 59.94 13.29
Unet [49] 73.95 83.24 81.03 65.23 10.68
Unet++ 73.83 82.94 84.57 64.26 9.35

In order to better demonstrate the good generalization performance of the HC-Unet++
model, we selected some renderings of the experiments in this section for comparison, as
shown in Table 10. It can be seen from the figure that the performance of the FCN network
is the worst. As shown in Figure b–f of Table 10, there are varying degrees of misjudgment
and missed judgment which are caused by the lack of global context information in the
network. The overall performance of the Unet and Unet++ networks is roughly the same,
and both of them have slightly missed or misjudged. The HC-Unet++ network performs
the best. It can be seen that most of the prediction maps are basically consistent with the
label maps. This further demonstrates the excellent capabilities of our model on these two
datasets. It shows that our network has good generalization ability on other datasets.
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Table 10. Generalization experiment effect diagram.

Crack 500
Concrete Crack

Conglomerate Dataset

original

      

Ground truth

      

HC-Unet++

      

Unet++

      

Unet [49]

      

FCN [48]

      
a b c d e f

4. Discussion

To segment road cracks, in this paper we proposed the HC-Unet++ network model.
In this study, we construct a new road crack dataset and use HC-Unet++ to train the
network. Experiments show that our proposed HC-Unet++ network model is effective for
segmenting road cracks. To a certain extent, it can solve the complex background of road
cracks, irregular cracks and other problems. Nonetheless, we still need more research:

(1) HC-Unet++ networks are relatively large, so the training takes a relatively long
time. How to reduce the parameters of the network without affecting the accuracy is a
problem we need to solve in the future.

(2) As shown in Figure 5, in the process of HC-Unet++ network segmentation: When
the UAV is flying at a high altitude, cracks will appear in relatively small forms in the
image, and the result of model segmentation at this time is poor. In the future, we will need
to add an efficient module to effectively segment out small cracks.

(3) There is a lack of quantification of cracks, and physical parameters such as the
length, width, and area of road cracks cannot be obtained. In order to quantify cracks, we
need to develop an effective method to quantify cracks in the future.
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Figure 5. Segmentation of fine cracks.

5. Conclusions

This paper proposes HC-Unet++ road crack segmentation recognition technology.
First of all, the road-crack dataset of this experiment was constructed by using camera
shooting and UAV aerial photography, and the label processing was performed using the
labelme tool. Then it was input into the HC-Unet++ network model for training. HC-
Unet++ used Unet++ as the basic network structure, and embedded a deep parallel feature
fusion module to improve the sensitivity of the network to crack features. This enabled the
network to obtain relatively complete fracture information, thereby identifying irregular
fractures. After adding the SEnet attention mechanism to eliminate the complex background
interference in the road cracks, and replacing the Maxpool with the Blurpool module, the
variability of displacement was greatly alleviated. This increased the network’s extraction
of some fracture features in the down-sampling of each layer, making the fractures obtained
by network segmentation more continuous. The experimental results show that the HC-
Unet++ network model achieves an average intersection ratio of 76.32%, an average pixel
accuracy rate of 82.39%, an average precision rate of 85.51%, and Hausdorff 95 is 5.05. As
well, in the generalization experiment, the performance of our network model is still stable,
which shows that the HC-Unet++ network has good adaptability and provides data value
for road maintenance and traffic safety.

Road crack segmentation is still an important research direction in the engineering
field of image recognition technology, a task which is of great significance for prolonging
the service life of roads and reducing traffic safety hazards. Although the segmentation and
detection of road cracks based on convolutional neural network has achieved outstanding
results, further improvement is still needed. The next step of this research will be to think
about how to compress the network scale without affecting the segmentation accuracy and
the physical quantification of the road cracks.
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Abstract: The accurate and efficient detection of power lines and towers in aerial drone images
with complex backgrounds is crucial for the safety of power grid operations and low-altitude drone
flights. In this paper, we propose a new method that enhances the deep learning segmentation model
UNet algorithm called TLSUNet. We enhance the UNet algorithm by using a lightweight backbone
structure to extract the features and then reconstructing them with contextual information features.
In this network model, to reduce its parameters and computational complexity, we adopt DFC-
GhostNet (Dubbed Full Connected) as the backbone feature extraction network, which is composed
of the DFC-GhostBottleneck structure and uses asymmetric convolution to capture long-distance
targets in transmission lines, thus enhancing the model’s extraction capability. Additionally, we
design a hybrid feature extraction module based on convolution and a transformer to refine deep
semantic features and improve the model’s ability to locate towers and transmission lines in complex
environments. Finally, we adopt the up-sampling operator CARAFE (Content-Aware Re-Assembly
of FEature) to improve segmentation accuracy by enhancing target restoration using contextual
neighborhood pixel information correlation under feature decoding. Our experiments on public
aerial photography datasets demonstrate that the improved model requires only 8.3% of the original
model’s computational effort and has only 21.4% of the original model’s parameters, while achieving
a reduction in inference speed delay by 0.012 s. The segmentation metrics also showed significant
improvements, with the mIOU improving from 79.75% to 86.46% and the mDice improving from
87.83% to 92.40%. These results confirm the effectiveness of our proposed method.

Keywords: transmission line segmentation; UAV; UNet; light-weighting model; ACmix; CARAFE

1. Introduction

Transmission lines are a critical part of the power system with broad coverage, long
transmission distances, and high reliability requirements. However, these lines are often
exposed to a complex external environment, where the presence of vegetation and buildings
of varying heights on the ground poses a potential threat. The proximity of these objects to
high-voltage transmission lines can lead to accidents such as line tripping. Furthermore,
during the inspection process, the wings of the drone may collide or tangle with the
power lines, which poses a significant risk to the safety of the drone’s flight and the stable
operation of power facilities. Therefore, it is crucial to effectively monitor and segment
transmission lines to ensure the safety of the power grid and low-altitude drones.

The detection methods for transmission lines can be divided into traditional image-
processing methods and deep learning-based methods. Among the two methods for
detecting transmission lines, traditional image-processing methods have been used for
transmission line extraction based on edge detection algorithms. For example, Zhou
et al. [1] proposed a color space variable-based classification and feature extraction method
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for transmission line images. It classifies images based on the relationship between the
values of variables in each color space of the transmission line image and its corresponding
image features, specifically focusing on different light intensities. Then, the edge extraction
of power line images is performed by the OTSU (NobuyukiOtsumethod) algorithm [2]. This
method mainly considers the power line segmentation under different lighting conditions;
although the power lines are effectively extracted, the application scenario is mainly the
power lines under low- to high-altitude photography. That is, the background is mainly
the sky. When the perspective shifts from high altitude to low altitude shooting, the
background is mostly houses, mountains, and rivers. As such, this type of algorithm cannot
effectively solve the power line segmentation in complex backgrounds. Zhou et al. [3] took
an improved Ratio operator [4] with horizontal orientation to extract power lines and then
group and fit the power line segments. Since the experimental object of this literature is
mainly for power line segmentation in horizontal distribution scenarios, it has a certain
specificity. At the same time, the Ratio operator is susceptible to complex backgrounds with
large variations in pixel gray values, especially for areas with relatively flat gray values,
which are not as effective as the normal operator. Zhou et al. [5] perform transmission line
segmentation in complex backgrounds by proposing a detection operator based on local
contextual information. Compared with the literature 4 comprehensive optimization of
power lines under a variety of angle changes, mainly considering the horizontal, vertical,
and diagonal distribution of transmission lines, with a certain degree of algorithmic stability.
Some studies are also based on Hough transform [6] for transmission line detection [7,8].
Shan et al. [9] design auxiliary devices for the segmentation of transmission lines and the
method does not have a universal. In summary, since this type of algorithm does not
introduce any prior knowledge and the algorithm model does not need to prepare a large
number of samples for training in advance, it has the advantage of a low sample size
requirement due to its less restrictive way of data collection. In addition, the power lines
extracted using the Hough transform tend to lose the width information [10]. Both edge
detection-based power line extraction algorithms and power line extraction algorithms with
a priori knowledge share a common challenge: it is difficult to adaptively adjust the model
parameters to maintain the good performance of the algorithm in the scenario-changing
test data. All these methods use artificially defined shallow features in constructing power
line extraction models.

In this problem, deep learning models with their strong feature extraction capability
are effectively used in the field of power systems. A variety of deep learning-based image
classification, target recognition, image segmentation, and other power vision algorithms
are rapidly developing [11–16]. Two power-line recognition algorithms based on VGG-
19 [17] and ResNet-50 [18] in aerial images are proposed by Yetgin Ö E et al. [19]. However,
this method can only determine whether the image contains power lines and does not
achieve the segmentation and detection of power lines. The optimal model for detailed
detection of power lines is the segmentation model and the classification model can only
determine the presence or absence of power lines in the transmission line in the image.
The target detection model can only be presented in the form of a rectangular box and
when the transmission line spans the whole picture, the detection effect will occupy the
whole picture with a rectangular box, which is not conducive to the accurate positioning
of the transmission line and is likely to generate too much redundant information. In the
segmentation of power lines for transmission lines. Yang et al. [20] designed to use VGG-16
as the feature extraction backbone of UNet and combine the attention mechanism based
on global average pooling and global maximum pooling for UNet skipping connection
layer information supplementation. Finally, the four decoding layers of UNet are fused as a
whole to output the final segmentation features. Since the process involves the fusion of four
different scale features, it can effectively reduce the loss of multi-scale feature information,
but at the same time, it also brings an increase in computational effort. Han et al. [21]
proposed a UNet segmentation model based on GhostNet as the backbone by optimizing
and improving the model. For light-weighting, the model and the attention mechanism

26



Drones 2023, 7, 274

Shuffle Attention further optimize the detection accuracy of the model, achieving effective
segmentation of power lines. However, the actual test speed in the article is still low,
mainly because the decoder part of the segmentation network still has a large amount
of computation. In segmentation studies targeting complex backgrounds, Xu et al. [22]
also use VGG-16 as the feature extraction backbone to construct an improved UNet-based
powerline segmentation network. In this study, a multi-level feature aggregation module is
adapted to detect power lines at different pixel widths and orientations. That is, the two
features after neighboring convolution are fused again for output, and the output features
are then combined with the attention mechanism for semantic information enrichment
and background noise suppression. The SPP (Spatial Pyramid Pooling) module is also
combined with the perceptual field enhancement, Finally, the four features of the multiscale
output are then fused for the overall output. Gao et al. [23] take proposed an efficient
parallel branching network for real-time segmentation of overhead power lines. However,
the data in these two literature studies are mainly processed by cropping the images at large
resolutions and turning them into small-resolution images. From a complex background at a
large resolution to a single background at a small resolution, the whole picture consists only
of power lines and some of the power lines’ attached power equipment. Choi et al. [24]
propose a fusion of visible and infrared images of power lines for UNet model-based
segmentation detection. The fusion method based on the channel attention mechanism is
adopted to achieve the fusion of infrared images and visible images. This achieves effective
segmentation of transmission lines in complex contexts by aiding the segmentation of
power lines with the help of data from homomodal heterogeneous sources. However, by
the above directions of model optimization for complex backgrounds, more pre-processing
must take place, and the models cannot be directly used for actual detection scenarios.

Based on the above problem analysis, this paper proposes a lightweight real-time
semantic segmentation network. The network adopts a structure that combines local feature
refinement and global receptive field enhancement to effectively solve the problem of power
line segmentation in complex backgrounds. Considering the characteristics of power lines,
an up-sampling algorithm that combines adjacent pixel information is designed to achieve
detailed segmentation of power lines and power poles. In detail, the innovations of this
paper are as follows:

(1) To effectively extract features from power lines and towers, a lightweight DFC-
GhostNet feature extraction module has been designed and incorporated into the back-
bone feature extraction network. Since both power lines and towers have long-range
target features, the design divides the symmetric convolutional kernel into two modules:
horizontal-based perceptual field enhancement and vertical-based perceptual field enhance-
ment, based on the lightweight GhostNet architecture. This is intended to enable effective
target identification and feature extraction.

(2) The refinement module of features is designed from the perspective of power line
and pole tower feature refinement, combining a convolutional module with local sensory
fields and a transformer module with global sensory in deep semantic features to refine
target feature areas in complex backgrounds.

(3) In the process of feature image restoration from low resolution to high resolution,
i.e., the decoder part of the semantic segmentation model. Traditional upsampling only
considers the information distribution of sub-pixel points and without consider the seman-
tic information of the entire feature map, which leads to the loss of feature map information,
and the deconvolution leads to the increase of computation or even Checkerboard Artifacts,
which affects the performance of the model. Therefore, a content-aware feature recombi-
nation module is designed. This module is mainly to construct a learnable upsampling
operator for each pixel in low resolution to learn the distribution of image features. This
paper aims to realize upsampling based on input content to improve the feature decoding
effect of the final output layer.
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2. Materials and Methods

2.1. Dataset Introduction

The dataset used in this paper is derived from publicly available data, where this
dataset recorded videos collected by a UAV, Parrot-ANAFI, in two different states in the
USA to guarantee the varieties of the scenes. The locations are randomly selected without
any intentions or treatments to avoid noisy backgrounds. The UAV contains a 4K HDR
camera and up to 2.8× lossless zoom. Zooming is exploited when collecting the video data
to guarantee the high resolution of the objects without manual cropping. The dataset is
extracted from a set of 80 videos. All aerial videos have a resolution of 3840 × 2160 with
30 fps. Different views were taken during data acquisition, including the front view, top
view, and side view. This was mainly used to ensure that the deep learning model can
detect the target from any angle [25]. The specific data are shown in Figure 1.

   

   

Figure 1. A sample dataset from different perspectives.

The dataset has a total of 1240 sample images; each image contains two categories of
power transmission lines and power towers, corresponding to the Cable and Tower in the
label, respectively. Since the distribution of targets in the image is different, the number
of targets cannot be calculated by the number of image sheets, so the distribution of the
number of pixel points is taken for comparison. The distribution of various types of target
pixel points in this dataset is shown in Table 1. The Labelme software was used to annotate
the sample images to produce the dataset in COCO format [26].

Table 1. Distribution of segmentation targets.

Target Background Cable Tower

Total target pixels/million 109,860 22,510 37,140

2.2. Methods
2.2.1. Introduction of the UNet Model

UNet is a convolutional neural network for image segmentation, proposed in a paper
by Olaf Ronneberger et al. in 2015, whose main idea is to combine the contextual and local
information of an image to improve the segmentation accuracy [27]. The overall structure
is shown in Figure 2.
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Figure 2. UNet structure diagram.

The structure of UNet is divided into two parts: the encoding path and the decoding
path. The encoding path is used to extract the features and the decoding path is used to map
the features back to the dimensions of the input image. There are cross-layer connections
between the encoding and decoding paths, and these cross-layer connections help retain
high-resolution feature information. Specifically:

(1) The encoding path consists of a series of convolution, maximum pooling, and ReLU
activation functions. It starts from the input image, downsamples the feature map each
time, and doubles the number of channels of the feature map. The result of this process is
the generation of a series of high-level feature representations that preserve the global and
semantic information of the image. The expression of the Relu function is as in Equation (1).
This function is mainly used for the feature nonlinearization process in the model.

f (x) = max(0, x) (1)

(2) The decoding path also consists of a series of convolutional and ReLU activation
functions. It starts at the last layer of the encoding path, doubles the resolution of the
feature map, and halves the number of channels each time. In the decoding path, each
layer is stitched with the feature map of the corresponding layer in the encoding path to
preserve the high-resolution feature information. The final output feature map size is equal
to the input image size.

(3) Cross-layer connections are a key part of UNet. They connect the feature maps
between the encoding path and the decoding path so that each layer in the decoding path
can utilize the high-level feature representation of the corresponding layer in the encoding
path. This helps to retain more contextual and semantic information, thus improving
segmentation accuracy.

2.2.2. Comparison of Base Models

In this paper, after studying and researching the UNet model, we also compare the
existing semantic segmentation algorithms with the UNet model, such as ResUnet [28],
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ENet [29], PSPNet [30], Deeplabv3+ [31], HRNetv2 [32] and SegFormer [33] models, and
designed multiple groups of baseline semantic segmentation detection models for compari-
son of segmentation experimental results; in the comparison of the segmentation results
we took the following experimental index as the accuracy index of the model.

(1) mPrecision

mPrecision =
TP

N × (TP + FP)
(2)

TP (True Positive) denotes positive samples correctly classified and FP (False Positive)
denotes negative samples incorrectly classified. N denotes the number of categories of
segmentation. Precision indicates the fraction of classes that are considered positive by the
classifier and are indeed positive as a percentage of the classes considered positive by the
classifier. Since it is a multi-category segmentation, the value of the mean Precision is taken
as mPrecision.

(2) mRecall

mRecall =
TP

N × (TP + FN)
(3)

FN (False Negative) denotes the misclassified positive sample. Recall indicates the
fraction of classes that the classifier considers to be positive and are indeed positive as a
percentage of all classes that are indeed positive. Since it is a multi-category segmentation,
the value of the mean Recall is taken as mRecall.

(3) mPA

mPA =
1
N

N

∑
i=0

pii

∑N
j=0 pij

(4)

mPA is the category mean pixel accuracy. where i denotes the true value and j denotes
the predicted value. pii denotes the prediction of i to i. pij denotes the prediction of i to
j. The overall view is to calculate the proportion of correctly classified pixel points to all
true categories, which is the same as the calculation principle of mRecall. In addition, the
subsequent experimental results show that the values are the same for both.

(4) mIOU

mIOU =
TP

N × (FP + FN + TP)
(5)

mIOU (mean Intersection over Union) is the classification of the mean intersection
ratio. That is the mean value under the intersection of the total true label and the predicted
value and the ratio.

(5) mDice

mDice = 2×Precision×Recall
N×(Precision+Recall)

= 2×TP
N×(FP+2×TP+FN)

(6)

mDice (mean Dice similarity coefficient) is another form of expression for the Intersec-
tion over Union. It represents the overlapping similarity between the segmentation result
and the true result.

Each experimental metric is taken from the mean segmentation effect of the two
segmentation objects of power lines and power poles. The experimental results are shown
in Table 2:
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Table 2. Comparison of common semantic segmentation algorithms.

Model mIOU mDice mPA mRecall mPrecision Parameters (M) GFLOPs (G) Runtime (s)

UNet 79.75 87.83 86.81 86.81 88.89 24.89 457.706 0.0516
ResUNet 70.43 80.85 80.18 80.18 81.59 13 647.93 0.0761

E-Net 61.31 72.88 69.82 69.82 81.46 0.349 4.432 0.0139
PSPNet 63.94 70.97 70.12 70.12 75.88 2.376 6.031 0.0238

Deeplabv3+ 77.44 85.68 84.88 84.88 86.58 5.81 52.875 0.0337
HRNet 70.19 79.59 75.69 75.69 84.60 9.642 32.948 0.0282

SegFormer 74.64 83.55 82.80 82.80 84.38 13.720 26.696 0.0352

(1) From the perspective of detection accuracy, the UNet network has the highest
detection accuracy among similar models, but still has poor segmentation of transmission
lines in some complex scenes. As shown in Figure 3. Figure 3a shows the transmission line
in the background of trees and houses. Figure 3c shows the segmentation experiment with
the sky in the background. The experimental results show that there are obvious problems
of incorrect segmentation and omitted segmentation in test Figure 3b (marked by the blue
area in the figure). For simple background transmission, line segmentation presents better
results, as shown in Figure 3d.

  
(a) Image1 of test (b) Image1 of result 

  
(c) Image2 of test (d) Image2 of result 

Figure 3. Test result graph of UNet model.

(2) From the perspective of detection speed: E-Net model has the smallest number of
model parameters and computational effort. It can also be found that despite the small
number of parameters of ResUNet, its GFLOPs value is very large. The main reason is
that its structure has a large number of residual branches. The UNet model also has large
parameters and GFLOPs. To better apply the model-to-edge applications, it is necessary to
improve the light weighting of the UNet model and further improve the detection accuracy.

2.2.3. Feature Extraction Module Based on DFC-GhostNet

In computer vision, the architecture of deep neural networks plays a crucial role in
various tasks. To better apply the model to mobile applications, it is necessary to consider
not only the performance of the model, but also its computational efficiency, especially the
actual inference speed. VGG-16 is mainly adopted as the backbone feature extraction network
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in more UNet model studies. While VGG-16 mainly takes 3 × 3 convolution for stacking,
3 × 3 convolution has a larger model computation. Based on this problem, another solution
is to replace the original 3 × 3 convolution with a depth-separable convolution, such as
MobileNetv3 [34], GhostNet [35], EfficientNet [36], ShuffleNet [37], etc. In the depth-separable
convolution, the input feature maps (H × W × C) are first grouped by channel dimension,
which is conducive to the dispersion of channels and the reduction of model computation.
Here is a comparison of the computational effort with the original convolution.

Suppose the input feature map size is H × W × c1. The size of the convolution kernel
is h1 × w1 × c2. The output feature size is H × W × c2. If the depth-separable convolution
is taken for feature extraction, then the number of parameters of the model will be reduced
by a factor of g, where g is the number of groups split by the group convolution for the
feature channel. The comparison of their computational effort is as follows:

pConv = (h1 × w1 × c1)× c2 (7)

pG_Conv = (h1 × w1 × c1
g )× c2

g × g
= (h1 × w1 × c1

g )× c2
(8)

N =
pConv

pG_Conv
=

(h1 × w1 × c1)× c2

(h1 × w1 × c1
g )× c2

= g (9)

The above equation mainly describes the change in the covariate size of the model
after taking the depth-separable convolution. Based on the above ideas, this paper first
conducted different backbone comparison experiments under depth-separable convolution
based on the experimental results in Table 3.

Table 3. Comparison of Semantic Segmentation Models under Light-weighting Backbone.

Backbone mIOU mDice mPA mRecall mPrecision GFLOPs (G) Parameters (M) Runtime (s)

Original 79.75 87.83 86.81 86.81 88.89 457.706 24.89 0.0516
MobileNetv3 81.13 88.68 86.86 86.86 90.71 71.329 8.910 0.0205
GhostNet 83.46 90.40 89.70 89.70 91.83 70.841 9.584 0.0284

EfficientNet 82.49 89.65 89.08 89.08 90.24 102.392 26.692 0.0304
ShuffleNet 68.32 79.57 73.72 73.72 87.93 76.331 9.008 0.0194

From the above experiments:
(1) In terms of model size and inference speed, the backbone under depth-separable

convolution has a significant increase in computation and inference speed compared to
the original model. The GFLOPs based on GhostNet are only less than 16% of the original
model. MobileNetv3 is only 35.8% of the original model in the calculation of the number
of parameters. The optimized models are lower than the original model in terms of
inference delay.

(2) In terms of detection accuracy indicators, the light-weighting network with the
highest detection accuracy is based on the GhostNet backbone. An mIOU improvement
of 3.71% is found compared to the original network segmentation, along with an mDice
improvement of 2.57%, mPA improvement of 2.89%, mPrecision improvement of 2.94%, and
an mRecall improvement of 2.89%.

(3) In general, The UNet model based on GhostNet backbone has a significant ad-
vantage in detection accuracy compared to similar Light-weighting models with depth-
separable convolution. Therefore, the subsequent adoption of the design of a light-
weighting backbone model based on GhostNet should be prepared. Since the above
experiments only changed the backbone encoding structure to GhostNet structure, subse-
quent experiments will adopt the same structure of GhostConv for feature extraction for
the whole decoder, which is used to further reduce the computation of the model.
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One of the main GhostNet models taken by the Ghost module is shown in Figure 4.
First, the input features are compressed by the 1 × 1 convolution of the channels. Then
take the residuals to construct the feature extraction method, where the upper branch
takes a constant mapping of the residual branch to retain the original information. The
lower branch takes a 3 × 3 depth-separable convolution and convolves the features in
groups based on the number of channels. Finally, the two are connected based on Concat
to complete the feature extraction. The above structure forms a Ghost unit and the whole
network relies on the Ghost unit to form.

 

Figure 4. GhostNet convolutional structure.

Since the segmented objects in this paper are power lines and power towers, where
the power lines are mainly thin and long targets, and the distribution area is not central
in the image, but the data across the whole image, it is necessary to further optimize the
backbone feature extraction by combining the characteristics of the segmented targets.
Thus, Ghost convolution was considered for modeling based on long-range perceptual
field enhancement.

In the study of attention mechanism, the channel-based attention mechanism can
effectively explore the correlation between channels and at the same time adopt the fully
connected way to combine the global feature map with the weight matrix, which can
effectively enhance the weight of the target channels and suppress the proportion of invalid
channels. The direct use of FC layers will bring about an increase in computation, so the
design decomposes the original FC layers into feature extraction based on the horizontal
and vertical directions so that the two FC layers model long-distance spatial information
along their respective directions and finally combine the two FC layers to obtain the global
perception field [38]. The structure is shown in Figure 5.

The overall calculation process is shown in Equation (10).

Y′ = X ∗ F1×1
Y = Concat([Y′, Y′ ∗ Fdp])
A = UP(Conv1×5(Conv5×1(Down(X))))
O = Sigmiod(A)	 Y

(10)

The formula is mainly described as the building block for the GhostNet convolution,
where X represents the features of the input, F1×1 represents 1 × 1 convolution, Y’ Repre-
sents the feature output after 1 × 1 convolution, Fdp is the depth-wise convolutional filter,
and Y is the out feature of GhostNet. A is the attention mechanism branch, and the last O is
the output weighted by the attention mechanism, where Sigmoid is the activation function.

The features modeled by the global perceptual field are fused with the original Ghost
module features to effectively compensate for the loss of the global perceptual field of the
original lightweight network, which results in less accurate transmission line segmentation.
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Figure 5. DFC-GhostNet convolutional structures.

2.2.4. Complex Background Feature Refinement Module Based on ACmix

Since power line targets in transmission lines are more subtle than tower targets, the
model requires higher detail feature extraction in the recognition of power lines. A larger
proportion of complex backgrounds are more likely to be blended into small target pixels
at long distances. The reasonable use of attention mechanisms facilitates feature extraction
networks to focus on target regions, learning the distribution pattern from the features,
recalibrating them, and focusing on the position so that the segmentation model can capture
the key information more efficiently and improve the segmentation ability of the model.
The hybrid self-attentive and convolutional module ACMix(Mixed self-Attention Convo-
lution) proposed in the literature [39] effectively combines the advantages of traditional
convolutional and self-attentive modules. The Former leverages an aggregation function
over a localized receptive field according to the convolution filter weights, which are shared
in the whole feature map. The intrinsic characteristics impose crucial inductive biases
for image processing. Comparably, the self-attention module applies a weighted average
operation based on the context of input features, where the attention weights are computed
dynamically via a similarity function between related pixel pairs. The flexibility enables the
attention module to focus on different regions adaptively and capture more informative
features and further distinguish the background from the detection target [39].

The ACmix structure is shown in Figure 6, which consists of two main phases:
(1) The feature learning stage. The input features are projected by three 1 × 1 convolu-

tions, and N feature fragments are reconstructed separately to obtain a rich intermediate
feature set containing 3 × N feature maps to project features into a deeper space.

(2) The feature aggregation stage. The aggregation of information is performed ac-
cording to both convolution and self-attentiveness and the features are aggregated mainly
in terms of local and global information enhancement.

Specifically, for the convolutional path with a convolutional kernel size of k, a lightweight
fully connected layer is first used to generate k2 feature maps, and new features are gener-
ated by shifting and aggregating to process the input features in a convolutional manner to
collect information from the local sensory field.
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Figure 6. Structure of ACMix.

For the self-attention path, ACmix collects intermediate features into N groups, each
group contains three features, corresponding to three feature mappings as Q (Query),
K (Key), and V (Value), following the self-attentive module approach to collect informa-
tion. Suppose fij and gij denote the tensor corresponding to the input and output of the
pixel. Nk(i, j) denotes the local pixel region with (i, j) as the center and spatial width k.
Then, A(W(l)

q fij, W(l)
k fij) is the corresponding weight with respect to Nk(i, j), as shown

in Equation (11):

A(W(l)
q fij, W(l)

k fab) = so f tmax
Nk(i,j)

(
(W(l)

q fij)
T
(W(l)

k fab)√
d

) (11)

Equation (11) mainly describes the expression of the Transformer attention mechanism,
where W(l)

q and W(l)
k are the projection matrices of Q and K. d is the characteristic dimension

of W(l)
q fij. Meanwhile, in ACmix the multi-head self-attention is divided into two phases,

as shown in Equations (12) and (13):

q(l)ij = W(l)
q fij, k(l)ij = W(l)

k fij, v(l)
ij = W(l)

v fij (12)

gij =
N
||

l=1
( ∑

a,b∈Nk(i,j)
A(q(l)ij , k(l)ij , v(l)ij )) (13)

where W(l)
v is the projection matrices of V, q(l)ij , k(l)ij , and v(l)ij are query, key, and value

matrices respectively. || is a cascade of N attention head outputs. The weight matrix
is calculated by Equation (12) and the weighted characteristic information is obtained
by Equation (13).

Finally, the final output Fout of ACmix is obtained by summing the outputs of the two-
second stage pathways with additional learnable scalars α and β, as shown in Equation (14).

Fout = αFatt + βFconv (14)
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Equation (14) describes the final features after taking the weighted fusion of self-
attentive mechanism feature extraction and convolutional feature extraction. Fatt is the
output of the self-attentive path and Fconv is the output of the convolutional path.

2.2.5. Feature Reconstruction Based on Contextual Neighborhood Pixel Information

Since the transmission line segmentation network also requires image restoration of
the encoded features, the restored image is classified based on pixel points and the final
set of classified pixel points is the final segmentation target. Therefore, the performance of
the feature upsampling operator largely affects the continuity of pixel point segmentation.
Currently, the nearest-neighbor sampling or bilinear interpolation sampling in the Up-
Sample method is more commonly used. However, this method considers only sub-pixel
domains. That is, image restoration by only some discrete feature pixels cannot capture
the rich semantic information required for dense prediction tasks. Transmission lines in
the power line object mainly across the characteristics of the map interval are large and the
power tower is mainly a concentrated area. There is also a deconvolution operation, whose
computational process mainly applies the same convolution kernel on the whole image for
decoding the features without considering the correlation of the underlying feature content,
which limits its responsiveness to local changes. Meanwhile, deconvolution is computation-
ally intensive and prone to checkerboard artifacts. Based on the above two problems, this
paper designs the CARAFE feature recombination operator for the restoration of features
after depth encoding on transmission lines, and its structure is shown in Figure 7:
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=
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Encoder
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Normalizer

Kernel Prediction Module

Content-aware 
Reassembly Module

Reassemble 
Operation

Example Location

Figure 7. Structure of CARAFE.

In Figure 7, CARAFE consists of two main modules, namely the kernel prediction
module and the content-aware reassembly module [40]. One of the kernel prediction
modules is constructed as follows:

(1) In the kernel prediction module, the features are first compressed using 1 × 1 con-
volution for channel-based compression. The main purpose is to reduce the computational
effort of the subsequent steps.

(2) Build a content-aware upsampling-based kernel. This kernel is mainly used to
perform feature reduction for each pixel point in the original feature map. Since the size of
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the original image is H × W × C, it takes δ × δ × k × k for each pixel point of any H × W
(where δ is the upsampling multiplicity and k is the kernel size corresponding to each pixel
point). Therefore, the total required prediction kernel size is δ × H × δ × W × k × k. So,
for the encoding of the content, the feature channel obtained in the first step is taken to be
transformed by 3 × 3 convolution into δ × δ × k × k. Finally, the upper sampling kernel of
δ × H × δ × W × k × k is obtained.

(3) To improve the convergence of the model, the third step performs softmax-based
normalization of the upsampling obtained in the second step so that the convolution kernel
weights sum to 1.

Finally, a new feature recombination module is constructed by fusing the created
upsampling kernel prediction module with the original features.

2.2.6. Improved UNet Algorithm Structure

In summary, the overall structure of the improved segmentation algorithm is shown
in Figure 8. In this paper, we first propose to take the DFC-Ghost convolution block instead
of the original convolution to extract the features of transmission line images, mainly by
dividing the original FC layer into feature extraction based on the horizontal direction and
vertical direction, it solves the problem of an excessive amount of model parameters on
the one hand and improves the modeling ability of spatial information for long-distance
semantic features on the other hand. Secondly, feature reuse is performed in the high
semantic feature layer, and the hybrid attention structure built by the convolution module
with local perceptual field enhancement and the Transformer module with global perceptual
field enhancement is adopted for feature refinement to enhance model recognition in
complex environments. Then, the decoder part also adopts DFC-Ghost convolutional block
to extract features to ensure the light weighting of the model, while constructing a feature
up-sampling structure based on convolutional kernel reorganization to effectively capture
the neighboring pixel information for feature reduction. Finally, the output is segmented
by 1 × 1 convolution for multi-category features. Meanwhile, the improved UNet model
we have designed is used for transmission line segmentation. Therefore, we abbreviate the
final fused improved model as TLSUNet.
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Figure 8. Transmission line segmentation model diagram.
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Meanwhile, the overall computational flow of the method designed in this paper is
shown in Figure 9. In the process, we mainly train the collected data for model input,
and in the process of training, we perform model loss, optimization, updating of weight
parameters, and testing of the model’s performance. Finally, the training is completed and
the optimal result is saved. In the model generalization capability validation, data from the
test set are selected for validation. On the one hand, the performance metrics of the model
under the test set are obtained, and on the other hand, the analysis of the image detection
speed and the visualization of the detection results are performed.
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Figure 9. Transmission line segmentation flow chart.

3. Experimental Results and Analysis

3.1. Experimental Environment and Setting

The data are randomly divided into the training set, validation set, and test set in the
ratio of 8:1:1. The training set is used to train the model parameters of the segmentation
algorithm to obtain the training weights for this dataset. Validation sets are used to monitor
the training process and prevent training overfitting. The test set is used to test the training
effect and algorithm performance. No data augmentation was performed before training.

This experiment was conducted on an Ubuntu 18.08 system with Python version 3.8.0,
CUDA version 11.2, and a deep learning framework based on PyTorch 1.8 environment for

38



Drones 2023, 7, 274

training and testing. The training was conducted with two NVIDIA GeForce RTX 3090-24G
graphics cards and the graphics card used for the data tested in this article was the NVIDIA
GeForce GTX 1050 Ti-4G. Table 4 contains the experimental parameters and settings.

Table 4. Parameter Settings.

Size of Image Batch_Size Momentum Initial Lr Min_Lr Lr_Decay_Type Optimizer Iterations

512 × 512 4 0.9 e−4 e−6 cos Adam 200

A comparison of the loss curves of the training and validation sets during the training
process is shown in Figure 10. A total of 200 rounds were trained; the initial learning
of the model was 0.0001, the momentum was 0.9, and the learning rate was optimized
using cosine decay. The batch size was 4, and Iterative optimization of model parameters
took place using Adam optimizer. Figure 10a shows the training loss convergence of the
improved model and the original model. Figure 10b shows the validation loss convergence
of the improved model and the original model. Among them, we will finally fuse all the
improved models named TLSUNet (UNet + DFC-Ghost + ACmix + CARAFE), which is the
red curve in Figures 10 and 11. From the figure, it can be seen that the improved model has
faster loss convergence and lower loss value than the original model, The model is smooth
in the region around 150 rounds. Figure 11a,b show the validation set change curves of the
mIOU and mDice metrics of the model before and after the improvement. As can be seen
from the curves, the mIOU and mDice indexes of the improved model are higher than those
of the original model, verifying the effectiveness of the model improvement.

  
(a) Loss curve of the Training set (b) Loss curve of the Validation set 

Figure 10. Loss curve of the model.

  
(a) IOU value curve (b) Dice value curve 

Figure 11. Evaluation metrics curve of the model.

3.2. Comparison of Splitting Accuracy Metrics

To verify the effectiveness of the improved algorithm, ablation experiments were
conducted in the same environment, as shown in Table 5:
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Table 5. Comparison of ablation experiments.

Model mIOU mDice mPA mRecall mPrecision GFLOPs (G) Parameters (M) Runtime (s)

UNet 79.75 87.83 86.81 86.81 88.89 457.706 24.89 0.0516
DFCGhost + UNet 81.37 88.99 87.47 87.47 90.61 29.866 4.773 0.0254

ACmix + UNet 83.21 90.11 88.60 88.60 91.77 453.431 25.721 0.0584
UNet + CARAFE 82.60 89.74 88.59 88.59 90.98 482.493 25.765 0.0929

UNet + DFCGhost + ACmix 85.14 91.50 90.07 90.07 93.00 30.992 4.722 0.0276
UNet + DFCGhost + CARAFE 85.22 91.56 90.49 90.49 92.67 41.235 5.952 0.0641

UNet + ACmix + CARAFE 86.33 92.25 90.92 90.92 93.70 480.344 26.478 0.1039
UNet + DFC-Ghost + ACmix +

CARAFE 86.46 92.40 91.17 91.17 93.69 38.359 5.327 0.0396

(1) From the perspective of detection accuracy, the UNet model without any improve-
ments as a baseline “+” indicates a mix of modules. mIOU has been improved by 6.71
compared to the original model, mDice by 4.57 compared to the original model, mPA by
4.36 compared to the original model, mRecall by 4.36 compared to the original model, and
mPrecision is improved by 4.9 compared to the original model. At the same time, the results
of different ablation experiments are better compared to the original model. The above
enhancement verifies the feasibility of the improved scheme in terms of detection accuracy.

(2) From the perspective of detection speed, in this paper, by performing DFCGhost-
based model lightweighting on both the encode and decode of the original model. The
improved model on GFLOPs is only 8.3% of the computational effort of the original model,
and the number of parameters is only 21.4% of the original model. The inference speed
delay is reduced by 0.012 s. The above enhancement verifies the feasibility of the improved
scheme in terms of detection speed.

3.3. Test Image Comparison

To verify the actual detection effect of the model, Table 6 exemplifies the detection
results of the algorithm before and after the improvement of the test set. In Table 6, the first
line is the real image under the aerial image, and the second line Ground Truth is the real
label image after labeling the target through Labelme. It is mainly used for evaluating and
comparing the predicted images during the training process. With the help of the second
section, the mentioned evaluation index is used to judge the results between the real map and
the predicted map. The following is the prediction result graph of the comparison model.

Table 6. Comparison of test set data.

Model

    

UNet
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Table 6. Cont.

Ground
Truth

    

ResUNet

    

ENet

    

PSPNet

    

Deep
Labv3+

    

HRNet
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Table 6. Cont.

SegFormer

    

TLSUNet

    

(1) The first of these images is a typical power line segmentation in a complex back-
ground. The fusion improvement model (TLSUNet) can better segment power lines in
complex backgrounds, the rest of the models have intermittent segmentation or mis-
segmentation problems.

(2) The second picture and the third picture show the division of power lines and
towers with the sky in the background. The second picture is a wood-type tower and the
other is a fence-type tower. The fusion improvement model (TLSUNet) model can better
achieve the effective segmentation of power lines and different types of towers, while the
rest of the network has the problem of missed segmentation.

(3) The fourth image shows the simultaneous segmentation of the pole tower and
power line in a complex background, where the background is a more complex mountain-
ous area and there is interference from the road color being similar to the pole tower. The
fusion improvement model (TLSUNet) can better achieve the effective segmentation of
power lines and towers. The above segmentation results also verify the feasibility of the
improved scheme for image generalization ability detection.

3.4. Test Image with Score-CAM Comparison

Finally, this paper visualizes and compares the areas of interest of the images through
the Score-cam heatmap. The principle of the Score-cam is mainly to weigh the feature map
with the score of the target region to remove the dependence on the feature gradient (due
to the complexity of the gradient information and the problem of gradient disappearance
for activation functions such as Sigmoid and ReLU) [41]. The final result is obtained by
taking a linear combination of weights and activation maps. The calculation principle is
shown in Equation (15).

Hk
l = σ(UP(Ak

l ))
Ck

l = f (X ∗ Hk
l )− f (X)

(15)

In Equation (15), Ak
l denotes the size of the output feature map, l indicates the feature

hierarchy of the output, and k denotes the number of channels corresponding to each feature
layer. σ(∗) is the sigmoid activation function. The value interval is used to normalize the
feature map. Hk

l denotes the size of the original output image size. f (X) is the input feature
map, and f (X*Hk

l ) is the weighted result of the input feature map. Ck
l is the region of interest

of the obtained model for the input image.
Through the visualization of the heat map, we know that the heat map is concerned

with the location of the target segmentation area, and the darker color represents the focus
of attention on the region; as such, the proportion of attention to the outward diffusion is
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reduced. The first image in Table 7 shows the complex background power line segmentation
detected earlier, and the heat map shows that the improved model (TLSUNet) has a clear
focus on transmission lines, and the rest of the models all show breakpoints or a low level
of color-based focus. The second image shows the segmentation of multiple transmission
line towers. The improved model (TLSUNet) pays better attention to all the towers present
in the image, especially the long-distance ones. The third and fourth sheets show two types
of targets for the same diagram and the improved model (TLSUNet) has a clear focus on
the pairs of transmission lines and towers. The heat map-based analysis results also verify
the improved scheme’s feasibility in enhancing the image segmentation capability.

Table 7. Comparison of heat map visualization.

Model

    

UNet

    

ResUNet

    

ENet

    

PSPNet
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Table 7. Cont.

Deep
Labv3+

    

HRNet

    

SegFormer

    

TLSUNet

    

4. Discussion

To achieve efficient and accurate segmentation of power lines and power towers in
transmission lines, in this paper we propose an improved UNet segmentation algorithm. In
this study, we verified the effectiveness of the improved network in terms of segmentation
accuracy and segmentation speed by comparing the basic segmentation network with
the improved network, and have better solved the power lines and power towers in the
transmission line under the complex background. In addition, on this basis, we will further
conduct research on the following points:

(1) Use the researched lightweight segmentation network on the edge hardware to
conduct test experiments to verify whether its inference speed can meet the requirements
of normal inspection, and provide a reference for further performance optimization.

(2) It can be seen from Table 6 that at present, only the division of power lines and
power towers can be realized, and more power transmission line equipment will be in-
troduced in the future for detection, to further improve the demand for transmission
line inspection.

(3) Further combine mobile edge terminals with UAVs to achieve fully autonomous
line inspection requirements. At the same time, it is necessary to further consider the
detection effect of the model in dense urban places.

44



Drones 2023, 7, 274

5. Conclusions

For efficient segmentation of power lines and power towers in transmission lines in a
complex context, this paper proposes a segmentation algorithm based on an improved UNet
structure, and the following conclusions can be drawn by analyzing and comparing the
effects of relevant factors on the segmentation effect through existing power transmission
data sets.

(1) To address the lightweight problem of the model, this paper designs the DFCGhost
convolutional feature extraction network, which is used for the compression of the number
of parameters on the one hand, and enhances the feature extraction process in the horizontal
and vertical directions at the same time, so that the model can be modeled with long-
distance spatial information. The results indicate an improvement of 1.62 in mIOU and
1.16 in mDice of the model. Secondly, the complex background is the main factor affecting
the model segmentation, so the deep semantic features are refined and weight extracted
by combining the convolution module with local perceptual field enhancement and the
transformer module with global perceptual field enhancement. The results showed that
the model improved mIOU by 3.46 and mDice by 2.28. Finally, high-precision decoding of
features is achieved by using CARAFE’s feature parameter reconstruction to improve the
usability of features. The results showed that the model had been improved by 2.85 for
mIOU and 1.91 for mDice.

(2) The results of the ablation experiments show that the model incorporating all
improvements improves by 6.71 on mIOU, 4.57 on mDice, 4.8 on mPrecision, 4.36 on mRecall,
and 4.36 on mPA for power lines and power towers.

(3) The fusion experimental model is tested on the computer side and the results
show that the parameters of the lightweight model are only 8.3% of the computation of
the original model, and the number of parameters is only 21.4% of the original model. The
inference speed delay is reduced by 0.012 s. The test results can play a certain role in the
intelligent inspection of power system automation.

At the same time, the power line segmentation task realized in this paper can provide a
feasible technical solution and reference for UAV automatic line following
inspection technology.
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Abstract: This paper presents an automatic visual inspection of exterior surface defects of oil tanks
using unmanned aerial vehicles (UAVs) and image processing with two cascading fuzzy logic
algorithms. Corrosion is one of the defects that has a serious effect on the safety of the surface of
oil and gas tanks. At present, human inspection, and climbing robots inspection are the dominant
approach for rust detection in oil and gas tanks. However, there are many shortcomings to this
approach, such as taking longer, high cost, and covering less surface area inspection of the tank. The
purpose of this research is to detect the rust in oil tanks by localizing visual inspection technology
using UAVs, as well as to develop algorithms to distinguish between defects and noise. The study
focuses on two basic aspects of oil tank inspection through the images captured by the UAV, namely,
the detection of defects and the distinction between defects and noise. For the former, an image
processing algorithm was developed to improve or remove noise, adjust the brightness of the
captured image, and extract features to identify defects in oil tanks. Meanwhile, for the latter aspect,
a cascading fuzzy logic algorithm and threshold algorithm were developed to distinguish between
defects and noise levels and reduce their impact through three stages of processing: The first stage
of fuzzy logic aims to distinguish between defects and low noise generated by the appearance of
objects on the surface of the tank, such as trees or stairs, and reduce their impact. The second stage
aims to distinguish between defects and medium noise generated by shadows or the presence of
small objects on the surface of the tank and reduce their impact. The third stage of the thresholding
algorithm aims to distinguish between defects and high noise generated by sedimentation on the
surface of the tank and reduce its impact. The samples were classified based on the output of the
third stage of the threshold process into defective or non-defective samples. The proposed algorithms
were tested on 180 samples and the results show its superiority in the inspection and detection of
defects with an accuracy of 83%.

Keywords: oil tank; automatic visual inspection; unmanned aerial vehicle; camera; fuzzy logic

1. Introduction

Oil products are one of the most important sources of energy and have a vital impact
on countries’ economic sectors as demand for it increases gradually with continuous
developing of other industrial and commercial sectors. This results in a need for storage
tanks to store as much oil as possible.
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The exterior surface of oil tanks is commonly affected by corrosion and dust due
to chemical reactions between the surface and both oil and air substances, necessitating
continuous inspection, and monitoring.

Corrosion is one of the biggest problems for companies in the oil sector due to the
cost of repairing or replacing the damaged parts with non-corroded ones. Corrosion can
be defined as the destructive attack of a substance by interaction with its environment [1]
which promotes the tendency of these unstable metals to return to their more stable natural
form. Regular inspection and monitoring of these tanks are the most important ways to
reduce risk and corrosion because they help to early detect the damage, prolong the life
of these tanks, and prevent the closure of the oil facility or the suspension of production
processes.

In addition, such inspections provide protection against legal and financial account-
ability for leakage caused by the corrosion process and its destructive impact on the
environment. Analysis of major refinery accidents over the past 35 years has shown that
loss of containment due to corrosion has contributed up to 25% of these accidents [2]. It
has been noticed that corrosion causes 42% of the failure mechanisms in all engineering
structures [2]. The damage corrosion causes maintenance costs to be increase in the range
of 3–5% of the total products’ costs in developed countries [3]. In the oil and gas industry
alone, the cost of repairing damage caused by corrosion is $1.372 billion which includes
surface pipelines ($589 million), expenses of pipelining ($463 million), and another $320 mil-
lion in corrosion-related capital expenditure [4]. In addition, corrosion can significantly
reduce the annual income by up to $10 billion during maintenance time [5], e.g., in US, the
annual cost of corrosion damage is $170 billion [6].

Despite improvements in the design process and the selection of metals for better
construction of these tanks, this is not enough to ensure their safety. The introduction
of modern inspection techniques, such as climbing robots and manned UAVs, has been
rapidly evolving in an effort to solve the problem with more sophisticated techniques.

UAVs are used in several fields, including inspection, and monitoring, searching
for missing persons, and monitoring illegal immigrants, monitoring vital infrastructure,
and detecting hidden corrosion in aluminum structures and checking railway surface
defects, etc. Several researchers are developing UAV inspection systems for oil and gas
tank inspection, as they can play a significant role in reducing inspection time, cost, and
risks to overall required maintenance.

The traditional inspection and maintenance process is very expensive and, due to its
complex nature and dangerous environment, time consuming, but it is necessary to avoid
the catastrophic risks that may be inflicted on the environment and humans (as a result
of the effects of corrosion and the consequences of neglecting the inspection process and
monitoring). The industry’s oil and gas plants need to be maintained regularly to keep
their components running with high safety and efficiency. Regular testing and equipment
inspection has a great effect on the costs of maintenance and daily operational processes [7].

The structure of the oil and gas and oil industry is so complex with high hazards,
thus maintenance, inspection, and repairs in such places include high risks to employers.
The maintenance operators must regularly climb up high-rise oil facilities, such as storage
tanks, flare stacks, boilers, chimneys, and cooling towers, to inspect their surfaces. Based
on the performance of the inspection, two common methods are used to inspect the oil and
gas industry, namely, manual, and climbing robot inspections.

The climbing robot inspection system is nowadays used widely to inspect oil and
gas facilities [8]. This system has resulted in high cost savings in daily operational costs.
There are many kinds of climbing robot systems that can access high-rise buildings; they
imitate mammals, reptiles, and insects when climbing, using several movement methods to
climb such as jumping sliding, extension, and swinging. Many problems can occur during
climbing robots’ operations in high-rise buildings, such as flexibility, motors overheating,
power-consumption stability, slippage on the surface being climbed, and climbing between
neighboring surfaces.
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The current climbing robots used to inspect outdoor storage tanks have limited move-
ment and commonly work based on remote control which has resulted in a decrease in
flexibility. As an example, the MATS climbing robot with 5-DOF has excellent maneuver-
ability, but needs a place to dock. A prototype model called Walloid, that is able to choose
an adhesion method which increases the robustness and flexibility needed for industrial
applications, has been designed for offshore oil and gas facility inspection [9].

A robot based on bio-inspired principle, called Sticky Bot, has adhesive material on
the bottom of its feet to enable it to hold onto all surface types [10]. The non-destructive test
is usually performed to inspect the metallic plates for corrosion and determine the presence
of defects without damaging the surface. A climbing robot for corrosion observation on
cooling towers used by the oil and gas industry has been developed by a fusion of wheel
electrodes and adhesion operation [11]. Such robots have increased performance efficiency
in comparison with humans, but need a special mechanical design for materials used in
climbing and good analysis of system dynamics. Climbing robot applications are confined
to some types of structures such as those with cylinder shapes.

The alternative solution is to use UAVs to inspect surfaces with a simple and straight-
forward mechanism. UAV technology has been widely utilized in the gas and oil industry
to inspect high-rise facilities with a better efficiency and sustainability, in comparison with
climbing robots or manual methods. UAV inspection depends on data analysis of a range
of sensors data that need to be acquired, processed, stored, and well analyzed. Unlike
climbing robots that need a suspension system and scaffolds, UAVs can move freely and
perform inspections with high efficiency and reliability.

UAV inspection is accomplished using high-definition (HD) cameras and infra-red
(IR) sensors that can carry out the risk-based inspection (RBI) for gas and oil equipment
with the standards of API RP-580, API 579-1, and ASME FFS-1. UAVs can also test piping
with API 570 (pipe inspection code) and tanks of standard API 653 (tank inspection repair
reconstruction) [12].

One of the first drone inspection systems was introduced in 2010 to inspect an onshore
oil refinery in the UK. This helped operators to gain an understanding of the condition
of the equipment without any need for shutdown or exposing the operators to a risky
situation [13]. Such systems allow engineers to inspect high-rise critical equipment in the
oil and gas industry (such as vents, ducting, pipes, and chimneystacks), reduce the time
for maintenance, and prioritize components’ maintenance without a need to shut down
the facilities. The UAV flies manually under the control of a certified pilot who enables the
drone to fly along the facilities which require inspection using normal/thermal cameras
and sensor of hydrocarbon leakage determination, etc. The acquired data is then analyzed
to find defects on the surfaces such as corrosion, hairline cracks, and leakages. Since the
drones can carry cameras with 4K video recording and optical zoom, along with various
other sensors, there is no need to fly the drone too close to the inspected structures or other
risk areas.

Drone-based inspection in the oil and gas industry is getting more attention due to
four reasons, namely, (i) its ability to inspect areas that are potentially hazardous; (ii) it is a
cost effective as well as efficient inspection method; (iii) its ability to inspect a large area in
short time; and (iv) the operation of the drone does not require a highly skilled inspector.
Many third-party companies are now offering UAV inspection solutions for the oil and gas
industry.

This paper is aimed at developing a UAV-based visual inspection system for high-rise
oil tanks. Such facilities must be continuously inspected to avoid hazardous surface leakage
once it has appeared. The contribution of this paper is related to a combination of theoretical
and experimental techniques. The theoretical aspect relies on developing a classification
algorithm based on the fusing of image processing and two cascading fuzzy logic (FL) and
threshold processes. The experimental works present defect detection on high-rise oil tanks
as a challenging subject which needs further improvement through research.
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2. Automatic Visual Inspection System

The inspection of the oil tanks is performed through four main stages as shown in
Figure 1, namely, UAV scanning, image processing, AI, and thresholding process.

Figure 1. Visual inspections stages for oil tanks.

2.1. UAV Scanning

The Pro Mavic UAV, shown in Figure 2, was used for inspection of oil tanks in this
work. It can fly for a period of up to 27 min at a speed of 40 mph. It also uses data that is
recorded with GPS information to ensure that the UAV lands in an accurate location.

Figure 2. Pro Mavic UAV.

The camera built into the Mavic Pro UAV is the smallest 3-axis camera, which has the
feature of recording both images and video. With a 90-degree tilt of the camera, it produces
video with blurry side scenes, or with black bars.

The camera supports 4K shooting at 30 frames per second, as well as 1080p full HD
video shooting at 96 frames per second, so it is expected to support slow motion video
shooting. The controller is connected to the UAV within a range of 4.3 miles, with live
scenes from the plane at a 1080p display quality.

2.2. Image Processing-based Defects Detection

Images taken by UAVs are often inconsistent or lack specific behaviors and trends.
The image is likely to contain many errors and distortions making it very complicated to
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handle. Therefore, image processing is required to remove the noise to accurately assess
the defects on the oil tanks.

Image processing consists of several steps to prepare clear images that are contrast-
adjusted and free from the blurring which results from the heterogeneity of lighting, the
appearance of objects on the sides of the images, etc.

This project is focused on inspection all sides of the tank except for the stairs, and the
top and bottom.

2.2.1. Pre-Processing of Captured Image

Four main operations are applied on the captured image in pre-processing stages,
namely, cropping, resizing, RGB (red green blue) conversion and brightness adjusting as
shown in Figure 3. Cropping involves the removal of unwanted parts in an image. The
areas located under the tank have no significance and thus are most likely to be removed.

Figure 3. Image Pre-processing operations.

Resizing controls image dimensions, length and width, and allocates a fixed size value
to all input images, reducing execution time and data processing speed. This process allows
for easy image handling and the option of obtaining a square image that can be divided
into four equal parts. The images after implementation of cropping and resizing operations
are shown in Figure 4b.
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(a) (b) (c) (d) 

Figure 4. Image cropping and resizing: (a) Original image of the whole tank captured by the UAV
(b) the image after implementation of cropping and resizing operation (c) the image after conversion
process from RGB to gray (d) the image after adjustment.

The RGB color image is converted to gray to reduce the image size in order to increase
the processing speed and facilitate its handling with some image processing instructions.
The image after conversion process from RGB to gray as shown in Figure 4c,d.

Brightness allows adjustment of the high and low pixel values that affect the homo-
geneity of the image. Figure 4d shows an image after adjustment operation.

2.2.2. Image Processing of the Prepared Image

The image in the pre-processing stage needs a further process using image processing
tools to prepare it for defects detection. The image has been divided into four parts of equal
dimension, as shown in Figure 5, to increase classification accuracy, reduce the effect of
noise, and choose an appropriate threshold if the image is inhomogeneous.

   
(a)  (b)  (c)  (d)  

Figure 5. The image after division into four equal parts. (a) pre-processed image part 1. (b) pre-
processed image part 2. (c) pre-processed image part 3. (d) pre-processed image part 4.

The importance of the division is outlined in the following points:

- When the threshold value is specified it will be determined according to the grayscale
values of the whole image, while if it is divided into four parts it will be determined
for a specific area. Thus, picture noise effects will occur on one part rather than the
whole image.

- When filters are used, one can obtain an enhanced and higher quality image with four
parts rather than if they are used on the entire image.

The performance of the edge filter is improved with the four image parts as it depends
on the threshold value in the classification process. The smaller the image size, the higher
the filtration efficiency. Accuracy of the fuzzy logic algorithm in the classification process
will be higher with four image parts.

- Filtration of Image: filtering is a technique used to eliminate noise and unwanted
things from images. Two main filters are used in this work to eliminate the effects of
noise from i402mages, namely Gaussian and Prewitt filters as follows:

Gaussian Filter

The Gaussian filter uses a 2D convolution operator which is suitable for blurring
images and eliminating noise as show in Figure 6:
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Figure 6. Image after applying Gaussian filtration.

Prewitt Filter

The Prewitt filter is utilized to detect two kinds of object edges, namely, vertical and
horizontal as shown in Figure 7. The detection of edge is performed by calculation of the
pixels gradient in the images.

   

Figure 7. Image after applying prewitt edge detection.

- Morphological image processing: Morphology operations help to extract useful
features of the detected object such as shape, convex-hull skeletons, and boundaries.
It depends on the division of images into small pieces, called a structuring element.
The structuring element is a kind of array that defines the current processed pixels
and their neighbors. It is a typically preferred method for choosing the element that
has the same shape as the required, e.g., for finding lines, a function called “strel” can
be used to extract it as shown in Figure 8.

Figure 8. Image after applied dilation.

Dilation: The dilation operation enlarges the boundaries of the foreground pixels in
grayscale images, by increasing their pixels size and reducing the holes size within such
boundaries as shown in Figure 8.

- Bwareaopen: The instruction bwareaopen is a morphological operation that works
based on removing all connected components with fewer pixels than a specified value
of pixels from a binary or grayscale image, which results in another binary or grayscale
image as shown in Figure 9.
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Figure 9. Image after applied bwareaopen.

- Filling: The imfill function performs the filling of an object to make it similar to
the foreground in the binary images. As shown in Figure 10, imfill modifies those
pixels in the connected background that have a value of zeros making them similar
to the foreground pixels which have values of ones. The process will stop when the
boundary of the object is reached.

Part 1 after fill 

    

Figure 10. Image after applied filling process.

- Inverting Image: Inverting the image is to make the black pixel similar to the defect
instead of the white pixel in order be more visible to the viewer as shown in Figure 11.

Part 1 after reverse 

    

Figure 11. Image after applied reverse process.

2.3. Fuzzy Logic Based Classification

The fuzzy logic algorithm is one of the best AI algorithms that resembles human
behavior in thinking and decision-making [14,15]. During the inspection of oil tanks there
are three main sources of noise that appear on the surface of the tank: heterogeneity of
illumination; the presence of objects, and the presence of sediments or dirt. These factors
are resulted in three different levels of noise as follows:

The first level is low noise which is noise caused by the presence of objects on the
surface of the tank, such as ladders, trees, or valves at the bottom of the tank, or other
objects on the tank’s surface. The second level is medium noise, which is that caused by
small objects or shade from asymmetric lighting or small sediments. The third level is high
noise, caused by dirt or large sediments.

In the presence of low noise, one can distinguish easily between the noise and defects,
however, distinguishing between defects and high-level noise is more complicated. To
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overcome this problem, the fuzzy logic algorithm is implemented in two cascading stages
to distinguish defects from low and medium noise to minimize its impact on the inspection
process and help detect defects as shown in Figures 12–18.

Figure 12. Flow chart diagrams for the cascading fuzzy logic process.

 
(a) (b) 

Figure 13. The input sets of the first stage fuzzy logic: (a) input sets(x); (b) input sets(y).
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Figure 14. Output set conditions.

Figure 15. Regions of input sets in first stage fuzzy logic.

Figure 16. Image after applied FL1.

   

(a) (b) (c) 

Figure 17. Input and output sets of second FL stage: (a) first input set (b) second input set (c) output
set (condition).
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Figure 18. Image after applied FL2.

2.3.1. First Stage Fuzzy Logic Algorithm

The first stage fuzzy logic aims to distinguish between defects and low noise and
remove such noise from the image. Low noise is located mostly at the bottom or the corners
of images. This stage of fuzzy logic is applied to distinguish between defects and low noise
according to the image’s pixel location. After identifying the position of low noise that is
affecting the inspection, the process of noise elimination will be applied.

The x and y coordinate systems are used as two input sets of the first stage in fuzzy
logic inference system which are measured in pixels as shown in Figure 13. The image
has been divided into four parts and each part divided into nine regions based on x and y
locations as shown in Figure 15. Each region has a length and width that are described in x
and y directions, respectively, as shown in Figure 13. The degree to which these regions are
affected by noise varies from place to place. The side regions of the image are considered to
be those most affected by noise, while regions in the middle of the image are less affected.

The first input set x utilizes three linguistic variables: x = {x1, x2, x3}, where x1, x2, and
x3 have a total range of 500 pixels in the x coordinate system, as illustrated in Figure 13a.
In a similar way, the y input set utilizes three linguistic variables: y = {y1, y2, y3}, where y1,
y2, and y3 x3 have a total range of 500 pixels in the y coordinate system, as illustrated in
Figure 13b. The membership functions of the input sets are shown in Figure 13. The shape
of membership is chosen to be in triangular form after conducting some trials.

The classification of the detected defects into noise or defects is utilized as the output
set of the first stage in the fuzzy logic inference system as shown in Figure 14. It is called
“condition” and has four linguistic variables: Condition = {big defect, low defect, medium
noise, low noise} with a range equal to 100%, starting from the big defect as the maximum
range and ending with low noise as the minimum as shown in Figure 14. The four parts of
the images have the same output membership function as shown in Figure 14.

In the output set of the first stage of fuzzy logic, the low noise can be considered if the
condition set has a value above 70%, which will be eliminated. However, if the condition
has a value less than 30%, the decision is to consider it as a defect.

We were unable to decide the condition values located in the range (30–70)% at this
first stage, thus these values will be classified at the second fuzzy logic stage. The first stage
fuzzy logic rules are formed for each part of the image separately based on x and y input
sets’ locations which are mapped to output set as shown as follows: Numbers in tables
(1,2,3,4) indicate the output sets linguistic variables: (4) for low noise, (3) for medium noise,
(2) for low defect and (1) for big defect.

1- Part first rule
The rules are illustrated in Table 1.
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Table 1. Fuzzy rules in image_part 1 in first FL stage.

Y3 Y2 Y1

X3 3 2 1

X2 3 2 2

X1 4 4 4

2- Part second rule
The rules are illustrated in Table 2.

Table 2. Fuzzy rules in image_part 2 in first FL stage.

Y3 Y2 Y1

X3 4 3 3

X2 3 2 2

X1 4 2 1

3- Part third rule
The rules are illustrated in Table 3.

Table 3. Fuzzy rules in image_part 3 in first FL stage.

Y3 Y2 Y1

X3 3 3 4

X2 2 2 3

X1 1 2 3

4- Part fourth rule
The rules are illustrated in Table 4.

Table 4. Fuzzy rules in image_part 4 in first FL stage.

Y3 Y2 Y1

X3 1 2 3

X2 2 2 3

X1 4 4 4

The image after the implementation of the first stage fuzzy logic is shown in Figure 16.

2.3.2. Second Stage Fuzzy Logic Algorithm

In the second step of fuzzy logic inference system, the output crisp values of the first
stage fuzzy logic which is located in the range (70–30)% are used as the input set of the
second fuzzy logic. The regions surrounding the central region of the tank are the most
difficult to distinguish between low defects and medium noise. The fuzzy logic second
stage is intended to detect the intermediate noise produced by the shade, which can be
found at the bottom, top, left, or right of the tank. This stage is applied to the four parts
separately.

The input set of second stage fuzzy logic is the outputs of first stage fuzzy logic
which have values between 30% and 70%. The four parts of the images have the same
input membership function as shown in Figure 17. The second stage fuzzy logic in the
classification process also depends on the pixel density in regions that the first stage fuzzy
logic could not classify.
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Table 5 shows a range of linguistic variables to the input sets X and Y.

Table 5. Range variables.

Range x1, y1 [1 166]

Range x2, y2 [166 334]

Range x3, y3 [334 500]

According to the concentration of black pixels in these regions, the decision was made
to classify as follows:

The number of black pixels between 0 and 2000 is very small and can be considered
as a defect. If the number of black pixels is between 1600 and 8000, we can consider it as
medium noise caused by a shadow, because the area on which the shadow is located looks
more homogeneous. Thus, when the edge detection filter is used with such shadow area, it
will only show the edges of the shadow, which is larger and has higher number of black
pixels in comparison with defect. If the number of black pixels is higher than 6000, this
can be considered as a defect but impure. Through experience, the largest number of black
pixels that can be considered as a defect is half of the inspected image area, e.g., if the image
pixels area is 2MP, then the number of black pixels (the defect) will not exceed 1MP, half of
the image size.

To calculate the percentage of pixel density, Equation (1) is used: The percentage of
pixel density is

Pd% =
Ntbp

Himage
(1)

where Ntbp is the number of true black pixels in the inspected image and Himage is half the
area of the inspected image.

The fuzzy logic second stage has two input sets; the first is the output of the first stage
of fuzzy logic and is expressed by the variable X2, while the second input is the black pixel
density, expressed by the variable Y2.

X2 is the first input set with three linguistic variables: X2 = {x12, x22, x32}, where x12,
x22, and x32 are ranges of the output first stage fuzzy logic which are located between 30%
and 70% as shown in Figure 17a with equal range in all parts image.

Y2 is the second input set with three linguistic variables: Y2 = {y12, y22, y32}, where
y12, y22, and y32 are ranges of the black pixel density ranged between 0 -1 as shown in
Figure 17b.

The output set of the fuzzy logic second stage classifies the defects on the object into
medium noise-2 (non-defects), big defects-2, and low defects-2. It is called condition2 with
three linguistic variables: Condition2 = {big defect_2, low defect_2, medium noise_2} with
a range of 100%, which starts from the big defect as a small value in the range and ends
with medium noise as a maximum of the range as shown in Figure 17c.

As the four parts of the images have the same input and output membership function
in the second FL stage, only one part has been represented in Figure 17. Table 6 shows the
relationship between the first input set and output that are used to build the rules of the
classification process.

Table 6. Rules of second stage FL.

Input Sets of Second Stage (X)
Output

Less Than 2000 Pixels (1600–8000) Pixel More Than 6000

x1 (30_50)% Big defect 2 Low defect_2 Big defect_2

x2 (40_60)% Big defect 2 Medium noise_2 Big defect_2

x3 (50_70)% Low defect_2 Medium noise_2 Big defect_2
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The rules of the fuzzy logic second stage for first, second, third, and fourth parts are
formed as shown in Table 7:

Table 7. Fuzzy rules in image_parts 1,2,3, and 4 in second FL stage.

Y12 Y22 Y32

X12 1 2 1

X22 1 3 1

X32 2 3 3
Where 1 is “big defect” in output sets; 2 is “low defects” in output sets; and 3 is “medium noise” in output sets.

The second stage of the fuzzy logic in the classification process depends on two
important factors: the first is the location of the pixels that have met the 30–70% condition
of the output set in the first stage; the second factor is the density of the pixels in the output
of the first fuzzy logic stage. The second stage of fuzzy logic is implemented to distinguish
the medium noise from defects, and then will be eliminated from the output set images
once they have a value greater than 70%.

Output values which are less than 70% will be classified as big defect and low defect
as shown in Figure 17. Thus, there is a need for thresholding or anther fuzzy logic stage.
Figure 18 shows the output of fuzzy logic second stage.

2.4. Thresholding Process

After the second stage of the fuzzy logic is implemented, the four parts of the image
are collated back into one image to prepare them for a new stage of processing. The collated
image is input to the third stage of processing (threshold process) as shown in Figure 19.

Figure 19. Input image to the third stage of processing (threshold process).

The image is then divided into 100 equidimensional cells as shown in Table 8. The
cells where the high noise is concentrated are located above and below the image as shown
in Figure 19. The group of cells located above and below the image is shown in Table 8.

Through the experimental values, the threshold value in the cells located was estimated
at 70% of total black pixels that resulted from the four parts of the image from the second
stage FL (3000–3500 pixels in this case). The flow chart of threshold processing is illustrated
in Figure 20.
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Table 8. The group of cells being processed in the threshold process.

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 28 29 30

61 62 63 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Figure 20. Flow chart diagrams for the third stage of processing (threshold process).

This stage in the classification process depends on the pixel density within the cells.
All cells where the number of black pixels is greater than the threshold value will be deleted.
Figure 21 shows the final image after the thresholding process. Figure 22 shows the original
image and the stages it went through during processing.

62



Drones 2023, 7, 133

Figure 21. Final image after thresholding process.

     

Figure 22. Results of all processing stages.

3. Experimental Results and Discussion

To show evidence of the proposed inspection system, many experiments (as depicted
in Figure 23) were conducted on real oil tanks with various parameters and conditions to
evaluate the proposed algorithm.

   
(a) Tank 1 (b) Tank 2 (c) Tank 3 

   
(d) Tank 4 (e) Tank 5 (f) Tank 6 

Figure 23. Samples of oil tanks used for experiments.

3.1. Experimental Results

To check the performance of the inspection system, it must be tested on a wide range
of samples with different parameters with several tests run under different conditions.
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Hence, several tests for the inspection system were conducted during different hours of the
day as well as testing the system on tanks of different colors, shapes, and sizes. The worst
inspection cases dealt with those parameters that show the limitations of the proposed
algorithms.

Although several experiments were performed before making a decision, only the
significant and important cases will be discussed. The samples presented in this sub-section
have the following features: One contains pure defects and low noise, which is one of the
easiest inspection cases that the system can detect. Another contains all low, medium, and
high noise levels in different regions with different levels of defects, which is one of the
worst cases of inspection due to it being difficult for the system to detect, which made us
focus on it more during the inspection.

As shown in Figure 24, the results indicate that there is no noise in the middle region
of the tank in all images, while some defects may exist without any noise. As shown in
Figure 24b,d,e,f, the lower regions are the lowest noise regions, and in Figure 24a,c the
lower areas and the tank corners are the lowest noise areas. The three noise levels may not
combine into one sample in real systems.

Tank 6 

Tank 5 

Tank 4 

Tank 3 

Tank 2 

Tank 1 

Figure 24. Samples after image processing process.
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The algorithm of image processing as described in Section 2.2 was implemented to
detect the surface defects of the six types of oil tanks in Figure 23. The image processing
results for all samples are shown in Figure 24.

As mentioned above, the image processing algorithm cannot eliminate all noise from
an image and thus is unable to make a definitive decision if the tank has defects or noise.
Noises affecting the classification process have been divided into three different levels,
namely, low, medium, and high noise. These noises cannot be eliminated completely by
the image processing algorithm due to several factors affecting the processing, such as
heterogeneity of illumination on the surface of the tank, the presence of objects appearing
on the surface of the tank, and the presence of sediments or dirt on the surface of the tank.

It is clear that the peripheral, lower regions, and corners of the tanks are strongly
affected by noise as shown in Figure 23. In Figure 24, the results indicate that there is no
noise in the middle region of the tank in all images, while some defects may exist without
any noise affecting it. As shown in Figure 24, the lower regions are the noisiest regions
(low noise), while the tank corners are the lowest noise regions. One cannot distinguish
between defects and the three levels of noise until the algorithms of cascading fuzzy logic
and the thresholding have been implemented on the image.

The fuzzy logic inference system as designed in Section 2.3 is applied to remove the
noise effects caused by the appearance of the above-mentioned factors on the surface of the
tank. The fuzzy logic first stage aims to remove the low noise as shown in Figure 25. All the
outputs of the first stage of fuzzy logic have values between 30 and 70% which means that
values below 30% can be classified as pure defects, while those above 70% can be classified
as low noise. All the samples shown in Figure 23 will have the same output values that
are between 30 and 70% during the implementation of the first stage of the fuzzy logic as
shown in Figure 25. In the first sample as shown in Figure 25a, the first part has output
values confined between 40 and 80%, which indicates the presence of low noise and the
absence of pure defects, whereas the second, third, and fourth parts have the same output
values confined between 20 and 80%, indicating the presence of pure defects and low noise.

Similarly, in the second sample as shown in Figure 25b, the first part has output values
confined between 40 and 65% which indicates that there is no low noise and pure defects,
while the second, third, and fourth parts have the same output values confined between 20
and 80%, and this indicates the presence of pure defects and low noise.

In the third sample as shown in Figure 25c, the first part has output values confined
between 40 and 78%, (indicates the presence of low noise with no pure defects); the second
part has output values confined between 20 and 60% (indicates the presence of pure defects
with no low noise), while the third and fourth parts have the same output values, ranging
from 20 to 80% (indicates the presence of pure defects and low noise).

In the fourth sample as shown in Figure 25d, the first part has output values confined
between 40 and 67% (indicates the absence of any low noise and pure defects), the second
part has output values confined between 22 and 60% (indicates the presence of pure defects
with no low noise), the third and fourth parts have the same output values, which range
between 20 and 80% (indicates the presence of pure defects and low noise).

In the fifth sample as shown in Figure 25e, the first part has output values confined
between 40 and 80% (indicates the presence of low noise with no pure defects), however, the
second, third, and fourth parts have confined output values between 20 and 80% (indicates
the presence of pure defects and low noise).

In the sixth sample shown in Figure 25f, the first part has output values confined
between 40 and 78% (indicates the presence of low noise with no pure defects), and the
second, third, and fourth parts have confined output values between 20 and 80% (indicates
the presence of pure defects and low noise).

As shown in Figure 26, the results indicate that there is some medium noise which
exists between the output values of the first stage of the fuzzy logic located between 30 and
70%. The regions around the central region of the tank are the most difficult to differentiate
between defects and medium noise.
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The second stage of the fuzzy logic inference system as designed in Section 2.3.2, was
applied to remove the medium noise effects caused by small dirt, heterogeneity in lighting,
and the appearance of small objects on the surface of the tank. The fuzzy logic second stage
aims to eliminate medium-scale noise as illustrated in Figure 27. All the outputs of the fuzzy
logic second stage have values between 0 and 70% and this means that values less than 70%
can be classified as defects, while values above 70% can be classified as medium noise.

Tank 1 

Tank 2 

Tank 3 

Tank 5 

Tank 6 

(d) Tank 4 

Figure 25. Evaluation of the first stage of fuzzy logic before eliminating low noise.
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(a) Tank 1 

(b) Tank 2 

(c) Tank 3 

(d) Tank 4 

(e) Tank 5 

(f) Tank 6 

Figure 26. Evaluation of the first stage of fuzzy logic after eliminating low noise.
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(a) Tank 1 

(b) Tank 2 

(c) Tank 3 

(d) Tank 4 

(e) Tank 5 

(f) Tank 6 

Figure 27. Evaluation of the second stage of fuzzy logic before eliminating low noise.

All samples, as shown in Figure 23, have the same output values between 0 and
70% after the second stage of fuzzy logic was executed. In the first sample as shown in
Figure 27a, only the fourth part contains output values greater than 70%, which indicates
the presence of medium noise. In the second and third samples, as shown in Figure 27b,c,
the second, third, and fourth parts have output values greater than 70%, which indicates
the presence of medium noise. In the fourth sample, as shown in Figure 27d, only the
fourth part contains output values greater than 70%, indicating the presence of medium

68



Drones 2023, 7, 133

noise. In the fifth and sixth sample, as shown in Figure 27e,f, the second, third, and fourth
parts have output values greater than 70% (indicates the presence of medium noise).

Figure 23 shows the presence of high noise in some images. The results indicate the
presence of some high noise caused by large sediment or dirt on the surface of the tank as
shown in Figure 28. The third stage of the threshold algorithm aims to remove the high
noise that can be located above and below the tank as shown in Section 2.4. As shown in
Figure 28, there are numbers of cells that show black pixel density.

 

 

         (a) Tank 1                                                (b) Tank 2 

         (c) Tank 3                                                (d) Tank 4 

Figure 28. Cont.
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         (e) Tank 4                                               (f) Tank 6 

Figure 28. Pixel density in cells processed using the thresholding process.

The threshold value in the cells located above the tank is estimated at 3500 black
pixels, while those located below the tank are estimated at 3000 black pixels. Cells in which
the black pixel exceeds the threshold value are classified as high noise, while others are
classified as defects.

In the first, second, third, and fourth samples, as shown in Figure 28a–d, there are no
cells where the number of black pixels exceeds the threshold value, indicating the absence
of high noise. In the fifth sample, as shown in Figure 28e, cell 68 is the only one where
the number of black pixels exceeds the threshold value, and this indicates the presence of
high noise in this cell. In the sixth sample, as shown in Figure 28f, there are several cells
(2,3,12,13,14) where the number of black pixels exceeds the threshold value, which indicates
the presence of high noise.

3.2. Results Discussion and Evaluation

To measure the reliability and accuracy of the proposed UAV-based inspection process,
the experiments for all the above cases were repeated 30 times for each tank with a total
of 180 trials. This test shows the limits of the visual inspection system capability to detect
defects and distinguish them from noise. The final classification process was performed by
visually viewing the samples and classifying them into defective pure or defective impure
samples.

Pure defects are those that are free of any noise while impure defects still contain some
noise. The current study of the samples shown in Figure 23 proves that the first, second,
third, fourth, and sixth samples contain pure defects and only the fifth sample contains
impure defects. Figure 29 shows the classification results after executing the three stages of
processing for each tank with 30 trials, in which the proposed algorithms gave an average
of the right decisions equal to 83.33%, 86.66%, 80%, 86.66%, 76.66%, and 86.66% for trials in
tanks 1, 2, 3, 4, 5, and 6, respectively, as shown in Figure 29. Thus, a successful classification
accuracy among all trials in the six tanks is around 83.33%.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Tank 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1
Tank 2 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1
Tank 3 1 1 1 1 1 0 1 1 0 0 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
Tank 4 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1
Tank 5 1 1 1 0 1 1 0 1 1 1 0 1 1 0 1 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1
Tank 6 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 0

0
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Tank 1 Tank 2 Tank 3 Tank 4 Tank 5 Tank 6

Figure 29. The results of classifying samples of tanks 1–6 (1 indicates right decision on defect detection
and 0 indicates false decision on defect detection).

An average of 26.77% of the trials were associated with big noise that was wrongly
classified, even though most of the noise was removed. The reasons behind the incorrect
classification results are as follows: Some of the noise from the first stage of processing still
remained in the second stage and was wrongly classified as less than 30% or higher than
70%, so such noise was not entered into second stage.

There are some failures that appear as a result of the uncontrolled and random crop-
ping process. In order to overcome this dilemma, the input image must be cropped with a
strong focus, making it more proportional and compatible with the specified restrictions,
so it is necessary to crop an exact image during the execution of this process.

The fuzzy logic inference system as designed in Section 2.2 was applied to remove
the noise effects. The fuzzy logic first stage was aimed at eliminating the effects of the
low-scale noise as depicted in Figure 25.

4. Conclusions

This study has contributed to research on automatic inspection and defects detection
of oil and gas tanks. This method includes the use of a drone capable of moving in all
directions to ensure safe movement between tanks. It also includes a high-resolution
imaging camera equipped with Wi-Fi technology, which is fixed in the front of the UAV
and can be rotated by means of a control device to make it perpendicular to the tank so
that the captured image is accurate. An image processing algorithm was developed with
appropriate filters to extract the features of the inspected objects such as cracks, defects,
and edges of objects on the samples, but it was still affected by several levels of noise.
Three levels of noise were eliminated by using three stages of processing, two stages using
the cascading fuzzy logic algorithm, and the third stage using the thresholding algorithm.
The cascade fuzzy logic algorithm was implemented in two stages to distinguish between
the low and medium noise from the defects. The first and second stages were able to
eliminate the low and medium noise levels, respectively, while the third stage eliminates
the high noise level. Low noise was calculated from output of the fuzzy logic first stage
that had high condition values (first stage output set) of 70%, while output values with
low condition values less than 30% were classified as pure defects. Medium noise was
calculated from the output of the second stage fuzzy logic that had a condition (second
stage output set) value greater than 70%. High noise was determined from the threshold
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stage output, where cells in the upper part of the image were classified as high noise if
their density value was greater than 70% of the total black pixels, while cells in the lower
part of the image were classified as high noise if their density value are more than 75%
black pixels. Then the samples were categorized based on the third stage output of the
thresholding process into defective or non-defective samples.

The results illustrate that the proposed inspection system is able to detect the defects
with several types of oil tanks. The system was tested on 20 samples and the results showed
its superiority in the inspection and detection of defects with an accuracy of 80%.
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Abstract: The integration of drones in the construction industry has ushered in a new era of efficiency,
accuracy, and safety throughout the various phases of construction projects. This paper presents
a comprehensive overview of the applications of drones in the construction industry, focusing on
their utilization in the design, construction, and maintenance phases. The differences between the
three different types of drones are discussed at the beginning of the paper where the overview of the
drone applications in construction industry is then described. Overall, the integration of drones in
the construction industry has yielded transformative advancements across all phases of construction
projects. As technology continues to advance, drones are expected to play an increasingly critical role
in shaping the future of the construction industry.

Keywords: drone application; unmanned aerial vehicle; smart construction; aerial inspections;
structure maintenance

1. Introduction

In recent years, the construction industry has witnessed a remarkable transformation
fueled by technological advancements. Among these innovations, drones have emerged
as game-changers, redefining the way construction projects are planned, executed, and
maintained. Equipped with sophisticated sensors, cameras, and GPS (global positioning
system) technology, drones offer unparalleled capabilities to capture real-time data, gen-
erate accurate 3D models, and conduct remote inspections. This review paper aims to
provide a comprehensive overview of the applications of drones in construction, shedding
light on their impact across different project phases and highlighting the potential benefits
they bring to the table.

Drones have rapidly evolved from being mere novelties to indispensable tools in the
construction sector. By utilizing different types of drones, construction professionals can
optimize their workflow, improve project coordination, and mitigate risks [1,2]. Surveying
drones, equipped with high-resolution cameras and LiDAR (light detection and ranging)
sensors facilitate precise mapping, topographical analysis, and site planning [3–5]. These
drones capture detailed aerial imagery and generate comprehensive 3D models, enabling
architects and engineers to make informed decisions about building placement, design
optimization, and resource utilization [6,7].

Inspection drones, on the other hand, provide an unprecedented advantage in assess-
ing hard-to-reach or hazardous areas of construction sites. Equipped with thermal cameras,
high-resolution imaging systems, and even artificial intelligence, these drones enable effi-
cient and accurate inspections of infrastructure, buildings, and equipment [8–10]. By swiftly
identifying structural defects, monitoring construction quality, and ensuring compliance
with safety regulations, inspection drones contribute to enhanced project transparency,
reduced manual labor requirements, and improved overall project outcomes.

Drones 2023, 7, 515. https://doi.org/10.3390/drones7080515 https://www.mdpi.com/journal/drones73



Drones 2023, 7, 515

Beyond the core phases of design and construction, drones continue to revolutionize
the maintenance stage. Regular inspections using drones enable proactive maintenance
planning, identifying potential issues early on, and preventing costly repairs. By conducting
detailed assessments of buildings, bridges, and infrastructure, drones contribute to the
longevity and resilience of constructed assets. Additionally, the integration of drones in the
maintenance phase allows for the swift identification and resolution of defects, leading to
improved safety, and reduced downtime [8,11].

The utilization of drones in the construction industry represents a transformative leap
towards achieving higher levels of efficiency, safety, and sustainability. By harnessing their
data acquisition, monitoring, and inspection capabilities, construction professionals can
make informed decisions, improve project outcomes, and optimize resource utilization. As
drone technology continues to evolve, it is expected to play an increasingly pivotal role
in reshaping the construction industry, fostering innovation, and driving the adoption of
smart, resilient construction practices.

In this study, drone technology is reviewed by dividing the actual construction process
into three different phases. The architecture of the paper is organized as follows. Section 2
describes the three different types of drones used in the construction industry with the
advantages and disadvantages of using each of the drone types. Section 3 discusses
the drones used at the designing phase, Section 4 reviews how drones are used at the
construction phase and Section 5 overviews the maintenance phase, summarizing how
drones are applied to ensure effective maintenance. Then, the study concludes with sections
including challenges and opportunities and future directions.

2. Drone Types for Application in Construction Industry

There are various type of drones used in the construction industry for various purposes.
In reference [6], the study conducted surveys from many construction companies to find
out how drones were used for their construction projects and it showed that the most
popular use of drones was in capturing progress photos, followed by taking promotional
videos, conducting inspections, and enhancing site management (Figure 1).

Figure 1. Drone applications result from survey companies [6].

As shown in Figure 2, fixed-wing drones, rotary-wing drones, and hybrid drones are
three types of drones or unmanned aerial vehicles (UAVs) that are commonly used for
various applications, including in the construction and maintenance industries. Each type
of drone has its unique advantages and disadvantages, and choosing the right drone for a
specific application depends on several factors, such as the size of the area to be covered,
the required payload capacity, and the environmental conditions in which the drone will be
operated (Table 1). Fixed-wing drones are ideal for covering large areas quickly [12], while
rotary-wing drones are more suitable for close-range inspections and operations in confined
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spaces [13–15]. Hybrid drones offer a more versatile and adaptable solution, but may be
more complex and expensive than fixed-wing or rotary-wing drones [16]. Ultimately, the
right drone for a specific application should be chosen based on a careful analysis of the
requirements of the task at hand.

Figure 2. Three different types of drones used in construction industry.
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Table 1. Three types of drones.

Types of Drones References Brief Summary

Rotary-wing Drones

Calantropio, A et al. [17]
Villanueva, J.R.E et al. [18]
Templin, T et al. [19]
Anders, N et al. [20]

Large-scale topographic surveys

Yi, W et al. [21]
El Tin, F et al. [22] Aerial inspections and monitoring of construction sites

Sonkar, S et al. [23] Capturing images in difficult weather

Khan, S et al. [24] UAV platform research

Chae, M. H et al. [25]
Sujit, P.B et al. [26] Pilot’s expertise needs

Jin, J. W et al. [27] High initial cost of fixed-wing drones

Fixed-wing Drones

Yang, H et al. [28] Detailed inspections available

Altınuç, K. O et al. [29] Safe take-off and landing scenarios in case of failure

Freimuth, H et al. [30]
Kim, S.S. [31]

Accessible for small-scale civil engineering projects or
businesses with limited resources

Deng, C et al. [32] Limited flight time

Boon, M.A et al. [33]
Thibbotuwawa, A et al. [34]
Eck, C. [35]
Li, X et al. [36]

Structural issues impact quality and stability

Al-Rawabdeh et al. [37]
Jacob-Loyola, N et al. [38]
Motawa, I. et al. [39]
Khaloo, A et al. [40]
Lindner, G et al. [41]

High-resolution mapping, limiting advanced data collection

Table 1. Cont.

Types of Drones References Brief Summary

Hybrid Drones

Panigrahi, S et al. [42]
Gunarathna, J.K et al. [43] Benefits of long flights

Saeed, A.S et al. [44]
Yuksek, B et al. [45] Increase detailed data collection

Nguyen, K.D et al. [46] Designed with numerical simulations

2.1. Fixed-Wing Drones

Fixed-wing drones offer several advantages for civil engineering applications but also
come with a few disadvantages. They have longer flight times compared to rotary-wing
drones. Their efficient forward flight allows them to cover larger areas and remain airborne
for an extended period, which is beneficial for large-scale surveying and mapping projects.
These drones can cover larger distances in a single flight due to their higher speed and
endurance. This increased coverage area makes them ideal for large-scale topographic
surveys [17–20], aerial inspections, and monitoring of construction sites [21,22]. Fixed-
wing drones are generally more stable in windy conditions than multi-rotor drones. Their
aerodynamic design and ability to withstand gusts allows them to maintain stability and
capture high-quality imagery even in challenging weather [23]. They have a higher payload
capacity, enabling them to carry heavier equipment such as high-resolution cameras and
LiDAR sensors. This capability allows them to capture detailed aerial data for the precise
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mapping, 3D modeling, and volumetric analysis of construction sites. However, fixed-wing
drones have some disadvantages to consider. They have limited maneuverability and can-
not hover or fly in tight spaces like rotary-wing drones. This restricts their ability to inspect
vertical structures or perform close-range inspections in congested areas. Furthermore,
it requires a relatively longer runway or open area for take-off and landing compared to
vertical take-off and landing (VTOL) drones. This can be a constraint in sites with limited
space or challenging terrain [24].

Operating fixed-wing drones often requires skilled pilots due to their advanced flight
characteristics and longer flight distances. Pilots need expertise in planning flight paths, con-
ducting pre-flight checks, and coordinating with air traffic authorities, if necessary [25,26].
In general, fixed-wing drones are more expensive than rotary-wing drones due to their
sophisticated design and advanced flight capabilities. The initial investment required for
a fixed-wing drone system can be a barrier for small-scale civil engineering projects or
businesses with limited budgets [27]. While fixed-wing drones offer significant advan-
tages in terms of flight time, coverage area, and stability, their limited maneuverability,
longer take-off/landing requirements, complex operation, and higher initial cost should be
considered when selecting the appropriate drone for civil engineering applications.

2.2. Rotary-Wing Drones

Rotary-wing drones, also known as quadcopters and multi-rotor drones, have their
own set of advantages and disadvantages when used in the civil engineering field. Rotary-
wing drones provide excellent maneuverability and the ability to hover, making them
well-suited for close-range inspections of vertical structures and operating in tight spaces.
Their agility allows for detailed inspections of construction sites and infrastructure [28],
providing valuable data for engineers and project managers. These drones have shorter
take-off and landing requirements compared to fixed-wing drones [29]. They can perform
vertical take-offs and landings, eliminating the need for a runway or open area. This
makes them more suitable for operating in confined construction sites or areas with limited
space. Rotary-wing drones are relatively easier to operate compared to fixed-wing drones.
They can be flown by pilots with less training and experience, making them accessible for
small-scale civil engineering projects or businesses with limited resources [30,31].

The main disadvantage of rotary-wing drones is their limited flight time. They have
shorter endurance due to the energy-intensive nature of hovering and maneuvering. This
restricts their coverage area and makes them less suitable for large-scale surveys or moni-
toring projects that require long flight times [32]. Furthermore, it can be affected by wind
and gusts more than fixed-wing drones. Their small size and lightweight construction
make them more susceptible to wind disturbances, which can impact flight stability and
the quality of captured data [33–36]. Compared to fixed-wing drones, rotary-wing drones
have lower payload capacities. They can carry lighter equipment such as small cameras
or sensors, which may limit their capabilities for high-resolution mapping or advanced
data collection tasks [37–41]. In summary, rotary-wing drones offer advantages in terms
of maneuverability, close-range inspections, and ease of operation. They are suitable for
small-scale projects and operations in confined spaces. However, their limitations include
shorter flight times, susceptibility to wind, and lower payload capacities.

2.3. Hybrid Drones

Hybrid drones combine the features and capabilities of both fixed-wing and rotary-
wing drones. They can take off and land vertically like rotary-wing drones, allowing
them to operate in tight spaces and perform close-range inspections. At the same time,
they can transition to fixed-wing flight for efficient forward flight, enabling them to cover
larger areas and achieve longer flight times. This flexibility makes them suitable for a
wide range of civil engineering applications. Hybrid drones offer extended flight times
compared to traditional rotary-wing drones. By transitioning to fixed-wing flight, they
can conserve energy and cover larger distances in a single flight. This is advantageous

77



Drones 2023, 7, 515

for conducting large-scale surveys, mapping, and monitoring projects that require longer
flight durations [42,43]. The combination of vertical take-off and landing capability and
fixed-wing flight allows them to carry larger cameras, LiDAR sensors, or other equipment.
This enhances their capacity for detailed data collection, such as in high-resolution mapping
or 3D modeling of construction sites [44,45].

However, hybrid drones have some disadvantages to consider. They are generally
more complex to operate compared to single-mode drones. Pilots require specific training
and expertise to handle the transition between vertical and fixed-wing flight modes, as well
as understanding the nuances of operating a hybrid system. Furthermore, hybrid drones
may have higher initial costs compared to single-mode drones as the integration of both
fixed-wing and rotary-wing capabilities requires additional engineering and design, leading
to a potentially higher purchase price [46]. This cost factor may limit their accessibility for
smaller civil engineering projects or businesses with limited budgets.

3. Drone Application during the Designing Phase of Construction

3.1. Suitable Site Selection

Choosing the right site for any construction project is one of the first steps before
constructing a structure. It involves assessing various potential sites to determine the
most suitable location for the project. Drones play a significant role in this process by
providing valuable data and insights through aerial imagery and data collection. One of
the primary advantages of using drones for site selection and evaluation is the ability to
capture high-resolution aerial imagery [47,48]. Drones equipped with cameras can capture
detailed photographs and videos of the prospective sites from different angles and altitudes.
This imagery provides a comprehensive overview of the site, allowing project managers,
architects, and engineers to assess its characteristics and potential. The aerial imagery
obtained from drones enables the evaluation of factors such as accessibility, proximity to
transportation networks, and neighboring infrastructure. By analyzing this information,
stakeholders can determine if the site meets the project’s logistical requirements. They can
identify any limitations or challenges related to site access, which can impact construction
activities and the transportation of materials and equipment [49].

3.2. Land Surveying and Mapping

Surveying and mapping construction sites using drones offers significant advantages
over traditional methods, revolutionizing the field of land surveying and providing valu-
able data for design and construction processes. Surveying with drones involves capturing
high-resolution aerial imagery that provides a comprehensive aerial perspective of the
construction site. The data collected by drones, including images and measurements from
sensors such as LiDAR [50–53] or thermal sensors [51], enables accurate assessments of the
site’s topography, existing structures, and boundaries. Precise measurements of distances,
elevations, and contours can be obtained, contributing to the creation of detailed 3D models
and accurate calculations. Additionally, drones assist in establishing survey control points
for precise georeferencing, ensuring the accuracy and reliability of subsequent mapping
activities.

Mapping with drones encompasses the generation of accurate maps and models of
the construction site using aerial imagery and photogrammetry techniques [49,54]. High-
resolution aerial imagery captured by drones covers large areas efficiently, providing a
visual representation of the site’s features. Photogrammetry algorithms process the overlap-
ping images to create 2D and 3D maps, including topographic maps that depict elevations,
contours, slopes, and other topographic features [50,55–57]. Orthomosaic maps, created by
stitching together multiple images, offer geometrically accurate and orthorectified repre-
sentations of the site, facilitating precise measurements, distance calculations, and visual
analysis. Moreover, drones assist in asset inventory by mapping existing structures, utilities,
and vegetation, allowing designers and planners to incorporate them into their design
processes [58,59].
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The general process for using drones in surveying and mapping a construction site
involves several key steps. It begins with pre-flight planning, where the survey area
is defined, flight paths are determined, and necessary permits and safety measures are
ensured [25,60,61]. During the flight, the drone captures aerial imagery and data using
onboard sensors. Once the data are collected, it is processed using specialized software to
generate accurate maps, models, and orthomosaics [48,59,62,63], where Figure 3 shows a
general process of creating a digital terrain model regarding UAV photogrammetric process
and field survey parameters [64].

Figure 3. A general process for generating a digital terrain model with a drone (cf. [64]).

Overall, the utilization of drones in surveying and mapping offers significant benefits,
including efficient data collection, high accuracy, comprehensive visual information, and
enhanced decision-making capabilities. The combination of surveying and mapping with
drones provides valuable insights for design, engineering, and asset management processes,
ultimately improving the efficiency and quality of construction projects.

4. Drone Application during the Construction Phase

The use of drones in the construction industry has been growing rapidly in recent
years. Drones offer numerous benefits during the construction phase, such as improving
safety, enhancing efficiency, and reducing costs. Figure 4 shows the percentage of content
for the references used in this section at construction phase where we can see that “support
for rescue operations”, at 31.6%, is most commonly used drone application.
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Figure 4. Percentage of content for drone applications at construction phase.

4.1. Earthwork and Grading Monitoring

Earthwork and grading monitoring using drones in the construction phase has rev-
olutionized the way construction projects are executed and managed. Drones equipped
with high-resolution cameras and advanced sensors offer a range of benefits, including
increased efficiency [65–67], improved accuracy [68–71], and enhanced safety [72–74].
Figure 5 shows a case study of a construction project of an apartment building complex
in Seoul, Republic of Korea for a 771 household capacity where a drone was used to 3D
model the area [70]. Using the UAV platform in this study, four primary analysis and visu-
alization types were performed. These were automatic volume calculation with cut-and-fill
volume data, height difference review by comparing two terrain models from different time
stamps, site monitoring through 2D/3D visualization, and documentation of the project
from start to completion. Traditional methods of earthwork and grading monitoring often
rely on manual measurements, which are prone to human error. Drones, on the other
hand, offer exceptional accuracy and precision. They capture precise measurements and
detailed images of the site, allowing for accurate volume calculations [75–78], cut and fill
analysis [77,79,80], and slope monitoring [81–83]. This level of accuracy helps minimize
rework, optimizes resource allocation, and ensures compliance with design specifications.

 

Figure 5. Drone data processing results of 3D point cloud (left) and orthomosaic (right) [70].
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4.2. Quality Control and Progress Monitoring

Drones play a crucial role in quality control by capturing high-resolution imagery
and data that allow for thorough inspections and defect detection. The detailed imagery
enables inspectors to identify even minor defects, such as cracks, corrosion, or surface
imperfections, that might be missed during ground inspections [84,85]. By comparing the
captured data with the construction plans or 3D models, inspectors can quickly identify
any deviations or errors in the construction process. This early detection of defects enables
timely rectification, ensuring that the project meets the required quality standards. Drones
also facilitate the systematic documentation and tracking of identified defects, providing a
clear record of issues that need to be addressed.

Drones provide an efficient and accurate method for monitoring construction progress
throughout the project’s lifecycle. By regularly capturing aerial imagery or conducting
photogrammetry surveys, drones enable project managers to assess the status of different
construction activities [86–89]. The captured data can be compared against the project
timeline, enabling progress tracking and the identification of any delays or bottlenecks.
Real-time progress monitoring allows for proactive decision-making and resource alloca-
tion adjustments to keep the project on schedule. Additionally, drones facilitate effective
communication among the construction team, enabling stakeholders to visualize and un-
derstand the progress of the project [90,91]. This visual documentation of the construction
site’s evolution aids in coordination, reducing the likelihood of misunderstandings, and
fosters a shared understanding of the project’s status among all stakeholders.

By leveraging drones for quality control and progress monitoring, construction projects
can significantly improve efficiency, minimize rework, and ensure that the project is de-
livered on time and within the specified quality standards. The use of drones enhances
the accuracy and thoroughness of inspections, enabling the identification of defects and
deviations from design plans. Real-time progress monitoring enables project managers to
proactively address any issues or delays, optimizing resource allocation and ensuring the
project stays on track. Ultimately, drones contribute to better construction outcomes, im-
proved project coordination, and enhanced communication among all project stakeholders.

4.3. Safety Monitoring

Safety monitoring using drones during the construction phase has emerged as a
valuable tool for enhancing safety practices and mitigating potential hazards. Drones
equipped with advanced cameras, sensors, and data processing capabilities offer several
benefits for safety monitoring in construction. By capturing high-resolution imagery
and videos, drones can identify unsafe conditions such as unstable structures, debris,
equipment malfunctions, or improper use of personal protective equipment [92–96]. The
aerial perspective allows inspectors to assess the overall safety of the site, identify potential
risks, and take necessary preventive measures [97–99]. Figure 6 shows a case study for
using a drone for safety monitoring in a high-rise building construction project in Santiago,
Chile. From the study, it was possible to identify safety issues using drone images as shown
in the figure, such as a lack of guardrails and worker without safety rope, to ensure a safer
environment for the workers.
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Figure 6. UAV images for safety monitoring at a construction site in Chile: (a) lack of guardrails;
(b) worker without safety rope; and (c) lack of guardrails (Images by Jhonattan G. Martinez) [92].

In the event of an emergency or incident on a construction site, drones can quickly
provide real-time situational awareness. By capturing live video feeds and aerial imagery,
drones assist emergency response teams in assessing the situation, identifying access points,
and planning rescue operations [100–108]. Drones equipped with thermal cameras can
aid in locating missing persons or hotspots in fire incidents [109–117]. This real-time
information helps expedite emergency response efforts, ensuring the safety of personnel on-
site. Beyond safety monitoring, drones can enhance site security by providing surveillance
capabilities. Drones equipped with cameras and sensors can monitor the construction
site perimeter and detect unauthorized access [47,49,118,119]. The live video feeds and
recorded footage can be used for investigations, enhancing site security and protecting
valuable construction assets.

4.4. Material Tracking and Delivery

Drones are also being used in various industries for delivering materials including
the construction industry. [120–128]. They can deliver materials quickly and efficiently,
reducing the time and cost associated with traditional delivery methods. This is particularly
useful in areas with limited access or where heavy machinery cannot be used.

5. Drone Application during the Maintenance Phase

The use of drones in the maintenance of structures has been increasing in recent
years. Drones offer numerous benefits in structure maintenance, such as improving safety,
enhancing efficiency, and reducing costs. It can provide real-time data on the condition
of structures, allowing maintenance teams to make informed decisions and adjust main-
tenance schedules accordingly. Drones equipped with high-resolution cameras, LiDAR
technology, and thermal cameras can detect defects and damage in structures that might
not be visible to the naked eye (Figure 7). This can help maintenance teams detect problems
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early, before they become major issues. Furthermore, it is possible for drones to be used for
repair and restoration of structures. They can be used to apply coatings, sealants, and other
materials to structures in a fraction of the time it would take using traditional methods.
The following subsections discuss the research of the aforementioned areas.

Figure 7. Difference of drone equipped with camera, LiDAR, and thermal sensor [129,130].

5.1. High Resolution Camera-Based Inspection with Drone

Drones have revolutionized the field of bridge maintenance. The ability to inspect bridges
from the air provides engineers and maintenance crews with valuable data that can be used
to ensure the safety and structural integrity of bridges. Drones equipped with cameras are
particularly useful for bridge inspections as they can capture high-resolution images of the
structure, allowing for a more detailed analysis of damage. One of the main advantages of
using drones for bridge inspections is the increased safety they provide [130–137]. Drones
can access areas that are difficult or dangerous for humans to reach, such as the underside
of bridges or high above the ground. This reduces the need for maintenance workers to
use scaffolding or other equipment, which can be expensive and time-consuming to set up.
Additionally, drones can be operated remotely, reducing the risk of injury to maintenance
workers who would otherwise have to climb the bridge structure to perform inspections.
Another benefit of using drones for bridge inspections is the speed at which they can
complete inspections. Drones can quickly fly over the bridge, capturing images and videos
that can be analyzed in real-time. This allows for a faster turnaround time for inspection
reports, reducing downtime for the bridge and minimizing disruption to traffic.

The high-resolution images and videos captured by drones can reveal details that may
be missed during a visual inspection by human inspectors. This can include cracks or other
signs of wear that are not immediately visible to the naked eye [138–140]. By providing a
more detailed analysis of the bridge, maintenance crews can identify potential problems
before they become serious issues, reducing the need for costly repairs and extending the
lifespan of the bridge. In addition to inspections, drones can also be used for ongoing
monitoring of bridge conditions. They can be programmed to fly over the bridge at regular
intervals and capture data on changes in the structure over time. This can help maintenance
workers identify potential problems before they become a serious issue. For example,
drones can be used to monitor changes in the condition of the bridge after extreme weather
events such as floods, typhoons, and earthquakes [141–143].
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One of the challenges of using drones for bridge maintenance is the need for skilled
operators. Drones require a trained operator who can maneuver the drone safely and
capture high-quality images and videos. Additionally, the analysis of the data captured by
the drone requires specialized knowledge and expertise. Therefore, it is essential to have a
team of skilled professionals to operate the drones and analyze the data.

The concept of using a drone equipped with a camera for damage detection of struc-
tures can be seen in Figure 8. Once the images are captured from the camera, it is transferred
to a computer for image processing to enhance the quality of the images, improve contrast,
and reduce noise or distortion. Then, various image analysis algorithms can be employed
to automatically detect and locate cracks in the processed images. These algorithms typi-
cally involve edge detection, texture analysis, or pattern recognition techniques to identify
regions that indicate crack presence. Here, detected cracks can be classified based on their
characteristics, such as length, width, orientation, or severity. It is worth noting that the
effectiveness of high-resolution cameras for crack detection depends on various factors,
such as the image quality, lighting conditions, surface texture, and the expertise of the
image analysts. It is important to establish appropriate standards and guidelines for image
capture, processing, and analysis to ensure accurate and reliable crack detection results.
Additionally, the integration of advanced technologies such as artificial intelligence (AI)
and machine learning can enhance crack detection capabilities by training algorithms
to recognize and classify cracks more accurately, thereby improving the efficiency and
effectiveness of the process.

Figure 8. General concept of crack damage detection using a drone [144].

5.2. Drone Equipped with LiDAR for Structure Maintenance

LiDAR is a remote sensing technology that uses laser light to measure distances and
create detailed 3D maps of the surroundings. It is often referred to as the optical equivalent
of radar, as it uses light instead of radio waves. In a typical LiDAR system, a laser emitter
emits short pulses of laser light, usually in the infrared range. These pulses of light are
directed towards the target object. When the laser light hits an object, a fraction of the
light is reflected back towards the LiDAR system where the time taken for the laser light
to return is calculated to measure the distance between the system and the object. By
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combining these distance measurements with the known position and orientation of the
LiDAR device, a point cloud of the surrounding environment can be generated, which
represents the location and shape of objects.

Drones equipped with LiDAR technology can be a powerful tool for structure main-
tenance to ensure safety as they offer a wide range of advantages and opportunities for
efficient and effective inspection and monitoring of various structures, including buildings,
bridges, and industrial facilities. The ability to generate accurate 3D point cloud data
of structures can be utilized for the precise mapping, modeling, and visualization of the
structure, providing valuable insights for maintenance and assessment purposes [145–148].
These data can be processed and analyzed to detect and identify various structural is-
sues, including cracks, deformations, and corrosion [131,149]. By comparing the captured
data with reference models or previous scans, changes in the structure’s condition can be
identified, allowing for timely maintenance interventions and the prevention of further
deterioration or failure.

While the utilization of LiDAR-equipped drones for structure maintenance holds im-
mense potential, it is important to consider the challenges associated with this technology.
Data processing complexity is one such challenge, as the captured LiDAR data require special-
ized software and expertise to convert it into useful information for analysis [150,151]. Skilled
operators are required to operate the drones and process the collected data effectively. Another
challenge lies in adverse weather conditions. Rain, fog, or other inclement weather can af-
fect the performance of LiDAR systems, potentially reducing data quality or hindering data
collection altogether. This limitation necessitates careful planning and scheduling of drone
operations to ensure optimal weather conditions for data collection. Sensor accuracy is
another aspect that requires attention. While LiDAR sensors offer high precision, variations
in sensor quality or calibration can impact the accuracy of the captured data. The regular
calibration and maintenance of the LiDAR system are crucial to ensure reliable and accurate
measurements. Signal interference is also a consideration when using LiDAR-equipped
drones. Obstacles such as trees, power lines, or other structures in the vicinity can obstruct
the LiDAR signals, leading to incomplete or distorted data. Proper flight planning and
obstacle avoidance algorithms are essential to mitigate these interference issues and ensure
data integrity.

To address these challenges, researchers are exploring advanced data processing tech-
niques to streamline the analysis of LiDAR data and extract meaningful information more
efficiently. Improved sensor technologies and calibration methods are being developed
to enhance the accuracy and reliability of LiDAR measurements [152–155]. Moreover,
advancements in drone navigation and obstacle avoidance systems are being pursued
to ensure safer and more precise operations, even in complex environments [156–160].
Integration with other sensing technologies, such as thermal imaging or multispectral
cameras, is also being explored to enhance the inspection capabilities of LiDAR-equipped
drones and enable a more comprehensive assessment of structural conditions.

5.3. Drones Equipped with Thermal Camera for Structure Maintenance

Thermal cameras mounted on drones enable the capture of thermal images, providing
valuable insights into temperature variations and potential issues within the structures
being inspected [118,161–163]. Thermal cameras capture infrared radiation emitted by
objects, allowing the visualization of temperature variations. By detecting these tempera-
ture differences, thermal camera drones can identify various structural issues, including
insulation problems, moisture infiltration, electrical faults, and thermal bridges. The ability
to identify these anomalies at an early stage enables proactive maintenance and prevents
further damage or deterioration.

Once thermal images are acquired, image processing and analysis techniques are
employed to extract valuable information and identify potential anomalies. Image en-
hancement, noise reduction, and temperature calibration are crucial steps in preparing the
thermal data for analysis. Advanced algorithms and machine learning approaches can be
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applied to automate the anomaly detection process, improving efficiency and reducing the
burden on inspectors.

Several case studies and real-world applications have demonstrated the effectiveness
of thermal camera drones in structure maintenance. These applications include monitoring
the energy efficiency of buildings, assessing the integrity of infrastructure, inspecting solar
panels, and identifying insulation or HVAC (heating, ventilation and air conditioning)
system failures. The use of thermal camera drones for structure maintenance offers signifi-
cant advantages in terms of accessibility, early anomaly detection, and cost-effectiveness.
With continued advancements in drone technology, thermal imaging capabilities, and data
analysis techniques, the integration of thermal camera drones into standard maintenance
practices holds immense potential for enhancing the safety and longevity of structures.

6. Challenges and Opportunities

With the opportunities provided by the wide application of drones using in civil
engineering projects, there are still challenges that need to be addressed to fully leverage
the potential of drone technology in this field. For all three phases of design, construction,
and maintenance, one of the crucial challenges is its limited flight time and range as battery
life remains a significant constraint for drones. Most commercial drones have relatively
short flight durations, limiting their ability to cover large construction sites or inspect exten-
sive infrastructure. This limitation hampers their overall operational efficiency, requiring
frequent battery replacements and recharging. Currently, research and development efforts
are continuously improving battery energy density and recharge rates, allowing drones to
operate for longer periods and cover greater distances. The adoption of alternative power
sources, such as fuel cells, solar panels, or wireless charging, could potentially eliminate the
need for frequent battery replacements, enhancing operational efficiency. Environmental
conditions such as strong winds, rain or fog can impede drone operations affecting project
time which is another challenge for drones. Drones are susceptible to turbulence caused
by high winds, and precipitation can damage sensitive electronic components, leading
to potential downtime and increased maintenance costs. Designing drones with robust
structures, waterproofing, and advanced navigation systems can enable them to withstand
harsh weather elements and continue operations in challenging environments safely. With
the opportunities that lie ahead with drone technologies to improve safety at construction
sites, monitoring processes, surveys, 3D modeling and more, civil engineers can harness
the capabilities of drones to drive innovation, optimize project management, and promote
safer and more sustainable infrastructure development.

7. Future Directions

Over the years, drone technology has evolved and become more sophisticated, offering
a wide range of applications in areas such as those shown in this study. From this, we can
predict that future drones will be equipped with advanced automation and AI capabilities
to conduct missions with minimal human intervention such as autonomous flight planning
and obstacle avoidance. AI-powered drones can autonomously navigate complex terrains,
identify and assess potential hazards, and conduct advanced data analysis. This automation
streamlines data collection, data processing, and reporting, enabling civil engineers to make
informed decisions faster and more accurately. Furthermore, improvements in battery
technology and drone design will lead to extended flight times to allow drones to cover
large areas in a single flight, making them more effective for tasks where an extensive
reviewer works on energy storage systems, as can be found in reference [164].

An extremely encouraging prospect for the future of drone applications in the civil
industry involves incorporating 5G connectivity. The advanced capabilities of 5G net-
works, including substantially higher data transfer rates, remarkably low latency, and
expanded capacity, enable seamless real-time communication between drones and ground
stations. Through the implementation of 5G-enabled drones, civil engineers gain the ability
to remotely oversee construction sites and infrastructure with enhanced accuracy and
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efficiency. This seamless exchange of high-resolution data and live video feeds empowers
them to make agile decisions, enabling swift responses to dynamic project conditions.
Collaborative swarm technology is another area which needs to be further researched in
the future for drones as their ability to operate in swarms will revolutionize various civil
industries. Drones working together will enhance efficiency and data collection capabilities
which can be applied at construction sites. Such technology could possibly increase the
demand for drones and with the increase in numbers, one cannot ignore that there will be a
strong emphasis on making drones more environmentally friendly and sustainable. This
could involve using bio-inspired designs, energy-efficient propulsion systems, Micro Air
Vehicles [165], and materials with reduced environmental impact.

8. Conclusions

In conclusion, the review of drone applications in the construction industry under-
scores their significant contributions across various phases of the construction process,
including design, construction, and maintenance. The utilization of different types of
drones has proven to be immensely beneficial in enhancing efficiency, accuracy, and safety
within the industry.

During the design phase, drones equipped with high-resolution cameras and ad-
vanced mapping capabilities have revolutionized site surveys and aerial mapping. These
drones enable construction professionals to gather precise data, generate accurate 3D
models, and assess topography. This, in turn, facilitates informed decision-making and
enhances the overall design process. In the construction phase, drones have played a
vital role in monitoring construction progress, conducting inspections, and ensuring safety.
Equipped with real-time video transmission and thermal imaging cameras, drones provide
a comprehensive and timely overview of the construction site, identifying potential issues
for increasing productivity. Furthermore, drones have also demonstrated their utility in the
maintenance phase of construction projects. By conducting routine inspections of structures,
buildings, and infrastructure, drones efficiently detect and identify any damages, enabling
proactive maintenance, cost reduction, and the prolongation of asset lifespan.

Overall, the integration of drones in the construction industry has brought about
transformative advancements in efficiency, accuracy, and safety across all phases of the
construction process. As technology continues to advance, it is expected that drones
will increasingly play a critical role in shaping the future of the construction industry,
empowering professionals to achieve higher productivity, minimize risks, and deliver
projects of exceptional quality.
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Abstract: The application of UAVs is becoming increasingly extensive. However, high-precision
autonomous landing is still a major industry difficulty. The current algorithm is not well-adapted to
light changes, scale transformations, complex backgrounds, etc. To address the above difficulties,
a deep learning method was here introduced into target detection and an attention mechanism
was incorporated into YOLOX; thus, a UAV positioning algorithm called attention-based YOLOX
(A-YOLOX) is proposed. Firstly, a novel visual positioning pattern was designed to facilitate the
algorithm’s use for detection and localization; then, a UAV visual positioning database (UAV-VPD)
was built through actual data collection and data augmentation and the A-YOLOX model detec-
tor developed; finally, corresponding high- and low-altitude visual positioning algorithms were
designed for high- and low-altitude positioning logics. The experimental results in the actual environ-
ment showed that the AP50 of the proposed algorithm could reach 95.5%, the detection speed was
53.7 frames per second, and the actual landing error was within 5 cm, which meets the practical
application requirements for automatic UAV landing.
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1. Introduction

Public security, a critical field of national security, correlates strongly with personal
interests and property safety. With its national economic development and modernization,
China has been assigning more and more importance to public security. With the ad-
vantages of high flexibility, maneuverability, stealth, independence from the geographical
environment, being low cost, and having the ability to carry different processing equipment,
UAVs have been used for identification and detection in such areas as urban inspection [1],
fire monitoring [2–5], criminal investigation and counter-terrorism [6], normal security
patrolling [7], epidemic prevention and control [8], post-disaster rescue [9,10], agricultural
inspection [11,12], and power inspection [13,14]. For example, UAVs can be used in agri-
culture for mapping farmland, spraying pesticides, seed sowing, monitoring crop growth,
irrigation, pest diagnosis, artificial pollination, and much more. The use of UAVs greatly
reduces working time and increases production efficiency, thus promoting the development
of intelligent agriculture [15,16]. As UAVs are widely used in military and civil fields,
their intelligent application has become a development trend, and autonomous positioning
landing is the basis for realizing intelligent UAVs. With the efforts of researchers in recent
years, UAV landing technology has made significant progress, but there are still some limi-
tations. For example, GPS-based methods fail in places where there is no GPS signal [17],
and traditional image recognition-based methods have poor recognition effects and poor
stability in environments with changing light and complex backgrounds [18]. Therefore,
research on a visual positioning algorithm for UAVs has important application value and
diverse application scenarios.

In this study, we started from the above problems and strove to find relevant solutions
to achieve accurate landing with UAVs. Compared to traditional methods, our method
offers several advantages. First, the detection model uses an anchor-free target detection
algorithm, which is much faster. The FPS can reach 53.7, which meets the requirements of
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real-time detection. Second, in comparison with previous methods [19–21], our method
possesses much higher actual landing accuracy. Third, we introduce deep-learning methods
into the UAV landing process, which are characterized by powerful feature extraction and
characterization capabilities. This significantly improves the detection performance of
the model, which is able to undertake detection accurately despite light changes, scale
changes, and wind impacts and shows better robustness. In summary, this paper makes
the following contributions:

• During the process of UAV landing, when moving from high to low altitudes, the
visual imaging constantly changes, and the pixel area of the target pattern gradually
increases, which poses a great challenge for target detection. Therefore, we developed
high- and low-altitude visual positioning algorithms to achieve stable detection with
UAVs throughout the process of moving from high to low altitudes;

• To solve the problem of poor detection of small- and medium-sized targets with the
model, we supplemented the YOLOX algorithm [22] with an attention mechanism
and proposed the attention-based YOLOX (A-YOLOX) detection algorithm, which
improves the detection performance of the model for small- and medium-sized targets;

• We collected 6541 actual images under different conditions and expanded the data with
data synthesis techniques in order to compile the UAV Visual Positioning Database
(UAV-VPD), a database applicable for UAV landing scenarios;

• Extensive experiments were carried out with the newly created database and in the
real environment, and our model proved to be robust. Our model achieved an actual
landing accuracy within 5 cm, and the FPS reached 53.7, which meets the requirements
of real-time detection.

The organization of the remaining sections is as follows: Section 2 concerns related
work, describing current approaches to autonomous positioning and the existing problems;
Section 3 describes the visual positioning algorithm proposed in this paper in detail;
Section 4 presents the experiments and discussion; and Section 5 is devoted to conclusions
and future work.

2. Related Work

Autonomous positioning landing is generally divided into visual positioning land-
ing [23] and satellite navigation landing [24]. Satellite navigation landing is a traditional
UAV positioning technique that uses the Global Positioning System (GPS) for positioning,
and it is suitable for long-duration tasks [25,26]. However, there are some limitations in
satellite navigation landing, such as easy signal loss in scenes with more occlusions, the
lack of a guarantee of stability, and low accuracy [27,28], meaning that it cannot meet the
requirement for centimeter-level error.

UAV visual positioning landing mainly relies on image sensors and uses image pro-
cessing technology to achieve an accurate landing, and this is a research hotspot for
scholars in China and abroad. Sharp et al. [19] proposed a precision landing system for
the autonomous landing of multi-rotor UAVs. This system uses a large square and five
small squares as landmark patterns. The landing process starts with initial recognition
through the large square and then combines image processing techniques, such as feature
point extraction, area segmentation, and motion estimation, to guide the UAV to land.
Lange et al. [29] put forward a method for UAV landing based on a moving target plate
with a landmark pattern consisting of a black, square hexagon and four white concentric
circles, using optical flow sensors to acquire the velocity of the moving target and, thus,
track the moving target, while the flight altitude of the UAV is acquired from the size of
the landmark pattern imaging. Marut et al. [20] introduced a simple and low-cost visual
landing system. The system uses Aruco markers and obtains candidate marker points by
extracting contours, filtering, and other image processing techniques and then compares
them with a marker dictionary to determine the location of the markers. Yuan et al. [21]
proposed a hierarchical vision-based open landing and positioning method for rotary wing
UAVs. This method defines the landing of UAVs as “Approaching”, “Adjustment”, and
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“Touchdown” and develops the corresponding detection and positioning systems for these
three phases. In addition, a federated Extended Kalman Filter (EKF) is designed to evaluate
the attitude of UAVs. Zhou et al. [23] designed a monocular camera-based AprilTages
visual positioning algorithm for UAV positioning and state estimation. They design a
number of different sizes of labels to enable UAVs to position themselves at different
altitudes. Xiu et al. [30] proposed a tilt-rotor quadrotor model for autonomous landing,
which controlled the motor direction by using four servos so as to control UAVs’ positions
and attitudes, achieving tilt-rotor parking and tilting flight. This model controls UAVs’
positions and attitudes more precisely, which enables a more effective landing for UAVs.
Sefidgar et al. [31] designed a landing system with sensors that consisted of four ToF sensors
and a monocular camera. First, the features of the AprilTag pattern are extracted by the
designed algorithm to find the center point and calibrate it. Then, the sensor contacts are
used to set up coordinate equations, and focal lengths in X and Y directions are solved to
derive the coordinates of the ground pattern. With the continuous research and exploration
of researchers, traditional image processing algorithms have undoubtedly made great ef-
forts to improve the accuracy of UAV landing. However, their good performance depends
on a good imaging environment, and the algorithm’s performance will be significantly
degraded under the situations of insufficient light, complex background, occlusion, scale
transformation, etc. It is difficult to meet the actual demand for centimeter-level landing
errors for UAVs in different scenes. Table 1 shows the comparison of different visual
landing methods.

Table 1. The comparison of different visual landing methods.

Methods Landmark Pattern Type Landing Accuracy Test Type

[26] Feature point extraction, area
segmentation, and motion estimation. Square Position 5 cm

Pose 5◦ Landing test

[27] Optical flow sensor, fixed threshold,
segmentation, and contour detection. Orthohexagon and circular Position 3.8 cm Landing test

[28] Contour extraction and filtering. ArUco 10% error rate Landing test

[29] Optical flow sensors and extended
Kalman filter Square Position 6.4 cm

pose 0.08◦ Landing test

[30] Histogram of oriented gradients (HOG)
and normalized cross-correlation (NCC). AprilTag Landing error within

(−20 cm, +50 cm) Landing test

[31] Canny, Adaptive thresholding and
Levenberg–Marquardt (LM). Combination patterns Position < 10 cm Simulation

[32] Contour extraction and 3D rigid
body transformation. AprilTag X: 0.47 cm

Y: 0.42 cm Simulation

Deep learning methods have been developed rapidly in recent years [32,33]. In 2014,
Girshick et al. [34] proposed RCNN (Region-based Convolutional Neural Networks, RCNN)
and introduced deep learning into target detection for the first time, opening a new chapter
for target detection. Deep-learning-based target detection algorithms have also become
a hot topic for scholars in recent years. Many scholars have successively proposed two-
stage detection networks such as SPPNet (Spatial Pyramid Pooling in Deep Convolutional
Networks, SPPNet) [35], FastR-CNN, and FasterR-CNN [36], which use RPN (Region
Proposal Network, RPN) [37] to generate a large number of candidate frames to improve the
recall rate, and the confidence of these candidate frames is not utilized in the inference stage,
which reduces the inference speed. In 2016, Redmon et al. [38] proposed the first version
of the YOLO (You Only Look Once, YOLO) series of single-stage networks, YOLOv1,
which surpassed the detection speed of two-stage detectors. Moreover, its accuracy is
continuously improveed by subsequent researchers, which is comparable to that of two-
stage detection networks, meeting the requirements of most industrial scenarios. As a
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result, the YOLO series has also become the mainstream target detection algorithm in the
industry. Deep learning models have powerful learning and characterization capabilities,
and their utility and generalization capabilities are stronger [39,40]. Therefore, they are
considered to be introduced into the autonomous landing process of UAVs in order to solve
the various environmental interference problems mentioned and to further improve the
detection speed.

3. Methods

According to the different visual imaging of UAVs at different altitudes, this paper
designs a high-altitude visual positioning algorithm and a low-altitude visual positioning
algorithm to guide UAVs to land accurately. When UAVs return to the vicinity of the target
point, they automatically adjust the direction of the camera, return the video captured
by the camera, detect it by a trained detector, and output the number and coordinates of
special patterns of the image. The visual positioning algorithm automatically selects a
high-altitude positioning algorithm or a low-altitude positioning algorithm by calculating
the area and number of patterns. The algorithm flow is shown in Figure 1.
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Figure 1. Flow chart of the proposed UAV visual positioning algorithm based on A-YOLOX. Firstly,
the actual acquisition data and the synthesized data are used to train the A-YOLOX model to obtain a
detector with good accuracy and robustness; then, the detector is used for target detection during
UAV landing, and the high-altitude visual positioning algorithm is called when the number of
detected target frames is N < 4 or N > 7, and the low-altitude visual localization algorithm is called
when the number of target frames is 4 ≤ N ≤ 7.

3.1. The Construction of UAV-VPD

A pattern that facilitates fast recognition for a detection algorithm is an important
condition for UAVs to land accurately at the designated location. When the UAV flies over
the landing point, it obtains ground information through the camera and then adjusts its
orientation and lands toward the target point after valid information is detected. The design
of the visual positioning pattern mainly follows two principles: feature discriminability
and visual imaging adaptability. Feature discriminability: in order to make the model easy
to recognize, the basic circular and square patterns are used in designing visual positioning
patterns. However, the single basic pattern is not conducive to feature discrimination, so
the circles and squares are combined inline to improve feature discriminability; visual
imaging adaptability: there are two stages in the landing process of the UVA: high-altitude
phase and low-altitude phase. Since the visual imaging of the UAV changes continuously
during the landing process and the pixel area of the target pattern gradually increases, in

98



Drones 2022, 6, 362

order to avoid the loss of the visual pattern due to the narrow field of view of the UAV
at low altitude, the designed positioning pattern adopts the mutual fusion of large and
small patterns. In other words, six small patterns are added inside a large pattern, whose
structure is similar to the large pattern. It is worth noting that with such a design, end-to-
end high- and low-altitude visual positioning can be achieved with only one model so as to
complete an efficient UAV parking and landing process. In actual application scenarios, for
the weak GPS signal, UAVs will pre-bind QR codes on the apron to assist themselves in
finding the location of visual positioning patterns. The visual positioning pattern is shown
in Figure 2.

Figure 2. The visual positioning pattern designed in this paper.

To construct the UAV-VPD, we printed the designed patterns onto KT plate and then
manually operated the UAV to fly and shoot the patterns. During the shooting process,
since the adjacent frames of the video have extremely high similarity, we tried to put the
KT plate in different positions of the frame during the acquisition process instead of simply
having the KT plate presented in the center of the video frame. Furthermore, for the sake
of improving the fit of the data in actual application scenarios, videos of different scenes,
different periods, different heights and angles were collected during data collection; then, a
total of 6541 images were obtained after video split-frame processing and data cleaning;
finally, the visual positioning patterns were labeled by the open source labeling software.
Remarkably, when the UAV returns to a relatively high position over the target location,
only the outer frame of the visual positioning pattern needs to be marked. When the UAV
is at low altitude, the six small marker patterns on the visual positioning pattern can be
clearly seen, so all the markers within the field of view need to be marked. Some of the
collected data are shown in Figure 3.

Since the scenes of UAV inspection are varied, simply relying on manual acquisition
and labeling requires a lot of labor and material costs, and the scenes are also relatively
single, which cannot well fit the real situation of different scenes during UAV inspection.
Therefore, we use data synthesis technology to expand the data of scenes that are difficult to
collect and use the synthesized data together with the real data for model training so as to
improve the accuracy and strengthen the robustness and generalization ability of the model.
The data synthesis uses the copy-paste method [41]. Firstly, 970 background images with
high semantic similarity from different scenes are collected from the Internet using crawler
technology, and then the visual localization patterns are randomly copied and pasted
onto these background images, and the corresponding pattern coordinate information
is extracted, which no longer needs to be re-labeled manually. When UAVs are at a low
altitude and an ultra-low altitude, their imaging pictures only have recognition patterns
and no other objects, and only at a high altitude will other objects be recognized, so we
only need to synthesize the high-altitude data. Some of the synthesized data are shown
in Figure 4.
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Figure 3. Example of UAV-VPD database samples.

 

Figure 4. Synthetic data.

The data of 6541 images collected from real scenes are combined with the synthetic
data of 970 images to form the UAV-VPD. A large number of images are needed for testing
to achieve an efficient model performance evaluation, so the training set, validation set,
and test set are divided in the ratio of 2:2:6. The details are shown in Table 2.

Table 2. Database composition and division.

Data Division Training Set Validation Set Test Set

Training set:Validation set:Test set = 2:2:6
High:Low:Ultra Low = 4:2:4 1557 1769 4185

3.2. Object Detection Algorithm A-YOLOX

The proposed target detection algorithm A-YOLOX is based on YOLOX with the
addition of CBAM (Convolutional Block Attention Module) [42], allowing CBAM to be
used throughout the backbone network part of the depth model. The CBAM contains two
separate submodules, a channel attention module, and a spatial attention module, which
perform “attention” on the channel and space, respectively. The module structure is shown
in Figure 5.
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module
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Figure 5. CBAM. It consists of a channel attention module and a spatial attention module and
operates sequentially on the channel and in space.

Assuming an intermediate feature graph F is input, F∈RC×H×W, CBAM first performs
global maximum pooling and average pooling of F by channel, sends the pooled two one-
dimensional vectors into the fully connected layer operation and sums them to generate
one-dimensional channel attention MC ∈ RC×1×1; then, multiply MC with the input ele-
ment F to obtain the channel attention-adjusted feature graph F′. Secondly, F′ is conducted
global maximum pooling and average pooling by space, and the two two-dimensional
vectors generated by pooling are stitched together and subjected to convolution opera-
tion to eventually generate two-dimensional spatial attention MS ∈ R1×H×W . Finally,
the output feature F′′ is obtained by multiplying MS with F′ by elements. The CBAM
generation attention process can be described by Equations (1) and (2), where ⊗ denotes
the corresponding element multiplication.

F′ = Mc(F)⊗ F (1)

F′′ = MS(F′)⊗ F′ (2)

The A-YOLOX network is mainly composed of three parts, which are CSPADarkNet
(Cross Stage Partial Attention DarkNet, CSPADarkNet) backbone network, FPN (Feature
Pyramid Networks, FPN) [43] feature fusion network, and detection heads, as shown in
Figure 6. DarkNet is a classical deep framework, which is often used as the backbone
network for feature extraction in the YOLO series. Its design process borrows the idea
from residual network ResNet [44] to prevent the gradient from disappearing during
the deepening of the network by adding the residual module to the network, which is
beneficial to the fast convergence of model training. In this paper, CSPDarkNet [45] is
used and combined with CBAM attention mechanism to form CSPADarkNet backbone
feature extraction network, the output of which is three effective feature layers. The three
effective feature layers are then fused by the FPN network, and finally, three different
scales of features: 20 × 20 × 512, 40 × 40 × 256, and 80 × 80 × 128 are output for target
classification and localization. The detection head of A-YOLOX determines whether there
is an object corresponding to it at the feature point by the three feature graphs output by
FPN. The structure of CSPADarknet and the refinement network structure of the detection
head are shown in Figures 7 and 8.

Feature Pyramid 
Networks

Detection 
head 1

Detection 
head 2

Detection 
head 3

Output Results

Figure 6. The network structure of A-YOLOX. Features of the input image are extracted by our
modified CSPADarknet backbone network, and the three extracted effective feature layers are fused
by the FPN network. Then the target is detected and determined by the detection head, and finally,
the prediction result is output.
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Figure 7. The network structure of CSPADarknet and detection head, which is a refined network
structure diagram of the modules in Figure 6.
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Figure 8. The refinement network structure of the CSPADarknet and the detection head, including
the basic composition and order of the sub-modules. CBAM is inserted in the BaseConv between the
Conv layer and the BN layer.

Since the detection head of the network respectively predicts the category, location,
and object boundary frame, the loss function of the network consists of three parts: the
category loss Lcls, the location loss Lreg, and the object boundary frame loss Lobj. Lcls and
Lobj adopt the cross-entropy loss, and Lreg adopts the IoU loss. The formula for calculating
the total loss is shown in Equation (3).

L =
Lcls + λLreg + Lobj

Npos
(3)

In the above equation, λ refers to the balance coefficient of the location loss and Npos
refers to the positive sample number. The A-YOLOX algorithm employs several training
strategies during the training process, such as Exponential Moving Average (EMA), cosine
annealing learning rate, and IOU loss, and uses the means of data enhancement such as
mosaic, horizontal random rotation, and color change.

3.3. The Design of High- and Low-Altitude Visual Positioning Algorithm
3.3.1. High-Altitude Visual Positioning Algorithm

As GPS navigation technology is relatively stable in wide-open areas, when UAVs
receive return instructions at a high altitude, we first use GPS positioning technology to
return the UAVs to a high-altitude position a few dozen meters from the marker pattern.
Then, the landing position can be determined only by recognizing the outer frame of the
visual positioning pattern designed in this paper. The detection algorithm is called in
real-time for recognition, and when the algorithm recognizes the target object, it outputs
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information such as the number and coordinates of the target frame in real-time. The
high-altitude positioning algorithm calculates the target frame area A, confidence degree
P, and comprehensive score S from the information output by the detector, and the target
frame with the highest comprehensive score is the landing position for the target. After the
target frame is determined, the relative distances dx and dy between the central point of the
UAVs and the central point of the target frame can be calculated so as to call UAV flight
control module to allow UAVs to descend slowly toward the center of the pattern. The UAV
flight control adopts PID control mode, and its control quantity is calculated according to
Equation (4).

u(k) = KP · e(k) + KI · ∑
i=0

e(i) + KD · [e(k)− e(k − 1)] (4)

In the above equation, KP refers to the proportional coefficient, KI refers to the integral
time constant, and KD refers to the differential time constant. The target detection algorithm
continuously detects and updates dx and dy, and the flight control algorithm updates e(k),
the deviation distance between the current position and the target position, according to dx
and dy to obtain the control quantity u(k) output by the PID controller, so that UAVs can
quickly and steadily approach the target position until they reach the ideal position. The
flow of the high-altitude visual positioning algorithm is shown in Algorithm 1.

Algorithm 1. High-Altitude Visual Positioning Algorithm.

Step 1
Call the target detection algorithm for the first detection when UVAs return over the
landing site to obtain the position of center point of the camera carried by UAVs
as (xc, yc).

Step 2

a. Take the detected target as the target landing point when only one outer frame of
the visual positioning pattern is detected.
b. Calculate the confidence degree of each detected target when two or more outer
frames of the visual positioning pattern are detected, and score the target frame with
the higher confidence level by the equation S = 0.5 × A + P, thus the target frame
with the highest score being the landing point.

Step 3
Calculate the relative distance between the center point of the camera and the center
point of the visual positioning pattern by equations dx = xc − width/2, and
dy = yc − heigth/2.

Step 4

Calculate the control quantity according to
u(k) = KP · e(k) + KI · ∑

i=0
e(i) + KD · [e(k)− e(k − 1)] to lead UAVs closer to the

target position.

Step 5 Repeat steps 2 to 4.

3.3.2. Low-Altitude Visual Positioning Algorithm

During the slow descent of UAVs, the visual field of the camera will slowly become
narrower, and the outer frame of the pattern will slowly disappear on the imaging. There-
fore, this paper designs a low-altitude positioning logic algorithm according to the actual
situation. The algorithm mainly post-processes the identification results of the six small
logo patterns given by the detector.

When UAVs land at a low-altitude position, firstly, the angle should be calibrated.
Assuming the visual imaging of UAVs is shown in Figure 9, set the coordinates of point A as

(x1, y1), point B as (x2, y2), point C as (x3, y3), and point O as (x, y). Calculate vector
∣∣∣∣ →
AB

∣∣∣∣,∣∣∣∣ →
AC

∣∣∣∣, and
∣∣∣∣ →
BC

∣∣∣∣ to determine whether the triangle is isosceles triangle, and find the vertex

(assumed to be A) and the bottom side of the isosceles triangle, and the midpoint D (x4, y4)

of the bottom side; then, the vector
∣∣∣∣ →
AD

∣∣∣∣ is the most optimal direction for UAV’s landing.

The midpoints of the upper and lower edges of the screen are P1 and P2, respectively, and
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the vector
∣∣∣∣ →
P1P2

∣∣∣∣ is the current orientation for UAVs. Therefore, our main task is to control

UAVs to make attitude adjustments so that the pinch angle θtends to 0. θ is calculated as
shown in Equation (5).

θ = arg cos
(

→
AD,

→
P1P2)∣∣∣∣ →

AD
∣∣∣∣ ·

∣∣∣∣ →
P1P2

∣∣∣∣
(5)

 

Figure 9. The visual imaging of the UAV.

After UAVs have completed angle correction, they need to perform position regression,
which is to find the coordinates of the best landing point. As can be seen from Figure 9, in
the case that the angle correction has been completed, the detection frame at the top of the
isosceles triangle is the point we need.

4. Results and Discussion

This experiment is conducted on the ubuntu 18.04 system with Intel Xeon(R) E3-
1241 v3@3.50 GHz processor. Its running memory is 24 Gb, the graphics card is NVIDIA
GTX1080, the video memory is 8 Gb, and the parallel computing framework version
is cuda10.2.

To evaluate the model performance, we use the target detection evaluation metrics
of the COCO database as our evaluation metrics in this paper. AP50 and AP75 are the
average accuracy at IoU = 0.5 and IoU = 0.75, respectively. mAP is the average of the
average accuracy of the IoU from 0.5 to 0.95, in a step length of 0.05. The detection speed is
evaluated by Frames Per Second (FPS).

4.1. Experiment to Verify the Validity of Synthetic Data

To improve the accuracy and generalization of the model, we start with the data and
fit as many real-world application scenarios as possible. We also increase the number and
complexity of the training set. However, it is not easy to obtain the data in the actual scenes,
which are usually collected and labeled manually, requiring extremely huge manpower,
physical resources, and time costs, so we start from synthetic images and synthesize the
data of different scenes similar to the actual scenes offline.

In this paper, there are 1557 images in the training sets, of which 970 are synthetic
images and 587 are real images. Both the validation set and the test set are actual
acquisition data.

As can be seen from Table 3, the AP50 is 51.8% when obtained by training with only
970 synthetic images. Since the synthetic images only include the high-altitude part of the
scene, but the test set contains both high-altitude and low-altitude images, so the accuracy
of the test is not very high, yet it is sufficient to show that the synthetic data is effective
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for the detection algorithm. Adding synthetic data and real data together to the training
can reach an accuracy of 95.5%, which is nearly 3% higher than when training with only
real data.

Table 3. Experimental comparison of synthetic data.

Train Set Validation Set Test Set AP50 (%) mAP (%)

970 (synthetic images) 1769 4145 51.8 33.6%
587 (real images) 1769 4145 92.8 76.3

1557 (real images + synthetic images) 1769 4145 95.5 77.3

4.2. Experiments on Attention Mechanism

The attention mechanism was introduced mainly to enhance the poor effectiveness
of the model on small and medium targets. It is desirable to validate the detection perfor-
mance of the model on small, medium, and large targets so as to exhaustively verify the
effectiveness of our model.

As shown in Table 4, the attention mechanism is beneficial to improve the detection
accuracy of small and medium targets by 0.5% and 2%, respectively, which is helpful for
UAVs to accurately identify the visual localization pattern at a high altitude and accurately
locate the small graphs in the visual localization pattern at a low altitude. Since there are
more computational parameters after the introduction of the attention mechanism, the FPS
is much lower, but the speed of 53.7 frames per second can still meet the requirements of
real-time detection.

Table 4. Experimental comparison of attention mechanisms.

Attentional
Mechanisms

mAP (%)
(Small Targets)

mAP (%)
(Medium Targets)

mAP (%)
(Large Targets)

FPS

No 35.7 66.3 87.2 149.9
Yes 36.2 68.3 87.1 53.7

4.3. Performance Comparison Experiments of Target Detection Algorithm

This paper researches the target-detection-based UAV vision localization algorithm.
The detector in the vision localization algorithm can be replaced with arbitrary target
detection models. To demonstrate the superiority of A-YOLOX, experiments are conducted
to compare it with the target detection algorithms commonly used today. The backbone
network of each model in the experiments is DarkNet53; the Epoch is 300. The learning
rate is set to 0.01, and the BatchSize is 8. To be fair, all parameters are used with the
same hyperparameter.

As can be seen from Table 5, A-YOLOX has a distinct advantage in the AP50 and mAP
metrics, and its accuracy rate exceeds that of other models, especially in the mAP metric,
which reaches 77.3% more than 10 points higher than other models. RetinaNet’s AP50
reached 93.4%, which is very similar to A-YOLOX’s 95.5%, but its FPS is only 6.89 frames
per second, which cannot satisfy the demands of real-time detection. Taken together, the
A-YOLOX offers the performance of both detection efficiency and accuracy.

Table 5. Performance comparison experiments of target detection algorithms.

Model FPS mAP (%) AP50 (%) AP75 (%)

DETR [46] 4.93 43.1 76.4 46.9
YOLOR [47] 26.5 61.2 91.5 75.2

CenterNet2 [48] 10 62.3 85.8 75.8
Faster-rcnn [31] 11.45 64.1 88.9 77.1
RetinaNet [49] 6.89 62.6 93.4 76.6

A-YOLOX[OURS] 53.7 77.3 95.5 84.6
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4.4. Drone Actual Landing Experiment

We deployed the trained model to the local server for the actual landing test. In order
to measure the deviation size of the actual landing point of UAVs more intuitively, the
coordinate system was established with the vertex of the isosceles triangle in the visual
positioning pattern as the reference point, the direction of the UAV nose as the positive
Y-axis direction and the 90◦ clockwise rotation as the positive X-axis direction. The data and
pictures recorded during the return flight of the UAV are shown in Table 6 and Figure 10.

Table 6. Experimental data of actual landing.

Test Serial
Number

X-Direction
(Unit: cm)

Y-Direction
(Unit: cm)

Image
Number

1 5.5 2.1 01
2 1.0 2.4 02
3 2.7 4.1 03
4 1.0 3.1 04
5 4.0 2.5 05
6 2.5 4.5 06
7 6.3 0.8 07
8 2.0 0 08
9 0.5 0.5 09
10 0 0 10

 

Figure 10. Actual landing pictures of drone. The pictures numbered 01, 07, 08, 09, and 10 are the
landing results in strong light environment, while the rest are the landing results in non-strong
light environment.

According to the above data, the average deviation value μx of the UAV in the X-axis
direction can be calculated as 2.56 cm, the average deviation μy in the Y-axis direction
as 2.0 cm, and the variance σx and σy in the X-axis direction and Y-axis direction are 4.07
and 2.40, respectively. Overall, our UAV’s positioning algorithm achieves a centimeter-
level landing error, which meets the industry precision positioning landing requirements.
However, during the descent process, as it will inevitably be affected by the external airflow
and its own wind field generated by the high-speed rotation of the UAV wings, the UAV
tends to sway from side to side, so the landing position in the X-axis direction changes a
bit more.
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Actually, we conduct landing tests on sunny and cloudy days, as well as in the
morning, noon and afternoon. As shown in Figure 10, the pictures numbered 01, 07, 08,
09, and 10 are the landing results in a strong light environment, while the rest are the
landing results in a non-strong light environment. The tests are carried out in different
areas, such as car parks, intersections, and rooftops. After calculation, it can be seen that
in the non-bright light environment, the average deviation μx in the X-axis direction is
equal to 2.24 cm; the average deviation μy in the Y-axis direction is equal to 3.32 cm, the
variance σx is equal to 1.29, and σy is equal to 1.88. In comparison, in the bright light
environment, the mean deviation μx is equal to 2.86 cm in the x-axis direction, μy is equal
to 0.68 cm in the y-axis direction, and the variance σx is equal to 6.66 and σy is equal to 0.6.
The difference in average landing accuracy between the two conditions is small, but the
stability of the UAV landing in non-bright light conditions is much better than in bright
light conditions. However, in terms of overall landings, our UAV positioning algorithm
achieves centimeter-level landing errors in both bright light and non-bright light conditions.

During the actual test process, we find that the ambient wind has an effect on the
UAV landing. The landing time of UAVs becomes longer as the wind increases. The main
reason is that the wind makes UAVs sway, so the flight control algorithm has to constantly
adjust UAVs’ position according to the target detection results in order to land UAVs
in an accurate position. Therefore, the constant adjustment process will cause a longer
landing time. Fortunately, the target detection algorithm is still able to accurately detect the
target frame of the visual positioning pattern under these circumstances. Thus, the visual
positioning algorithm still shows good robustness under the influence of light changes,
scene changes, and ambient wind.

5. Conclusions and Future Work

The combined application of UAV technology and computer vision technology is of
great value and research significance in both civilian and military fields. In this paper,
in order to improve the accuracy of automatic landing for UAVs, based on the actual
situation that the performance of traditional image processing algorithms is sensitive to
environmental changes, we introduce deep learning methods into target detection, propose
the A-YOLOX target detection algorithm, and improve the training model with data syn-
thesis technology and an attention mechanism to enhance the accuracy and generalization
of the detection network. The corresponding high- and low-altitude visual localization
algorithms are designed for the height change and visual transformation of UAV landing,
and the landing test is conducted in the actual scene. The experimental results show that
the proposed algorithm can achieve a processing speed of 53.7 frames/second and an
accuracy rate of 95.5%, and the actual landing error is within 5cm, which effectively solves
the problem of low landing accuracy under changing light, scale change, and complex
background, thus realizing the high-precision autonomous landing for UAVs.

Although our model performs relatively better, we have to admit that it still has some
limitations. For example, there is hovering in complex scenes. Although UAVs can still
land in the expected position, the process consumes a certain amount of time. There may be
some safety risks in low-power situations. In addition, the stability of UAVs when landing
is slightly poor in strong ambient wind conditions, and they tend to swing. Therefore, there
is room for further improvement of the control algorithm. In the future, we will continue to
work on the basis of the current research to continuously improve these deficient aspects
and achieve a more efficient and accurate autonomous landing for UAVs.
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Abstract: This article develops the applicability of non-linear processing techniques such as Com-
pressed Sensing (CS), Principal Component Analysis (PCA), Iterative Adaptive Approach (IAA), and
Multiple-input-multiple-output (MIMO) for the purpose of enhanced UAV detections using portable
radar systems. The combined scheme has many advantages and the potential for better detection and
classification accuracy. Some of the benefits are discussed here with a phased array platform in mind,
the novel portable phased array Radar (PWR) by Agile RF Systems (ARS), which offers quadrant
outputs. CS and IAA both show promising results when applied to micro-Doppler processing of
radar returns owing to the sparse nature of the target Doppler frequencies. This shows promise in
reducing the dwell time and increases the rate at which a volume can be interrogated. Real-time
processing of target information with iterative and non-linear solutions is possible now with the
advent of GPU-based graphics processing hardware. Simulations show promising results.

Keywords: compressed sensing radar processing; iterative adaptive algorithm; principal component
analysis; X-band phased array radars; UAV

1. Introduction

The main goal of CS is to use optimization methods to recover a sparse signal from
a small number of non-adaptive measurements. The radar measurements can be viewed
as sparse in both time and Doppler space and are possibly sampled at sub-Nyquist rates,
which breaks the relationship between the number of samples acquired and the perfect
recovery of radar parameters like delay, velocity, and target angle. The recovery of essential
micro-Doppler signatures from the UAV target through the sparse representation of the
signal in the frequency domain and following optimization of the sparse signal’s l1 norm
using CS can improve the classification accuracy of various UAV targets. Additionally,
MIMO-based virtual aperture formation can impart a better spatial resolution for the small
spatial footprint UAV targets. IAA is another Doppler resolution enhancement technique
that is considered in this article and it shows a promising application for UAV detections
with few pulses. Prior to CS, filtering is accomplished using PCA-based decomposition into
eigen sub-spaces to get rid of clutter contamination principally due to sidelobes pointing
towards the ground. A unified theory is developed for the applicability of these non-
linear processing methods and shows their enhancements for better UAV detection using
simulations. A common theoretical framework is developed for ease of understanding and
applicability of these techniques.

For the US Air Force, Agile RF Systems (ARS) has finished developing a portable
weather radar (PWR) system built on phased arrays and a four-quadrant architecture. It
can be mounted on a roof or tower. It has a sealed radome that provides wind, rain, snow,
hail, and sand protection. The CS, IAA, and PCA methods elaborated in this article are
with reference to this phased array design. Figure 1 depicts the conceptual representation
of the various sub-sections of this phased array radar. The data from the quadrant-based
four-phased array centers can be processed by the signal processor and backend processing
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algorithms implemented in servers. This radar is based on quadrant-level processing
to implement a 4-channel MIMO architecture. This article makes use of this hardware
platform to demonstrate non-linear processing which also has a quadrant-wise aperture for
MIMO-related enhancements.

Figure 1. A conceptual representation of a MIMO quadrant phased array for PWR Weather radar system.

Recent advances in computational methods and increased computing capacity for
real-time radar operations have greatly increased the use of non-linear processing in radars
and communication. For radar applications, the design complexity is typically higher, and
a variety of computational techniques can be used to achieve the desired properties [1].
Today’s modern phased array radars are able to switch beams faster and are based on
inertia-less electronic phase programmability for observing different directions. With such
a rapid observation capacity needed, a software framework that can extract information
from the least number of acquired samples and pulses, aids in reducing the dwell time
of radar in a specific direction. This ultimately results in an overall increase in the rate at
which targets can be revisited or surveilled. This article combines the power of non-linear
CS, IAA, and PCA to make this advancement into the next generation of radar processing
and develops a theoretical understanding with the modeling of signal, clutter, and noise
spaces for non-linear processing. The key idea behind CS is sparsity. A signal is considered
sparse if most of its information is contained within a few non-zero samples. Consequently,
a CS-based signal reconstruction algorithm has to find a sparse vector that best represents
the measured signal. Sparsity may be in the time domain or in the transformed frequency
domain signal. As will be shown later, only a few micro-Doppler non-zero components are
present in the frequency domain response of a drone echo, therefore the frequency domain
can be considered sparse.

Taking a peek into CS, if x is a sparse vector, it can be recovered from the knowledge
of the observation vector y by solving the following optimization problem:

arg min
x

||x||0 subject to y = Θx (1)

This search is, however, NP-hard and can be replaced by its closest convex norm, the
l1 norm [2]. The equation above can thus be reformulated as:

arg min
x

||x||1 subject to y = Θx (2)

where Θ is the reconstruction matrix. This condition is influenced by the incoherence of the
matrix (the sensing matrix), as well as the sparsity of the initial vector x [2]. The literature
offers a number of solutions to this optimization issue. To locate the sparse approximation
of the incoming signal x in a dictionary or matrix ψ, basis pursuit is used in CS. The
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Dantzig selector, basis pursuit denoising (BPDN), total variation (TV) minimization-based
denoising, etc. are additional commonly used formulations for reliable data recovery from
noisy measurements [3]. The squared l2-norm of the error between the reconstructed signal
y and the sparse signal x̂ in the case of BPDN should be less than or equal to ε for the
obtained solution.

arg min
x

||x||1 subject to ||y − Θx||22 ≤ ε (3)

We can also solve BPDN in its Lagrangian form, which is an unconstrained optimiza-
tion problem and can be rewritten as:

x̂ = arg min
x

λ||x||1 + ||y − Θx||22. (4)

The primal-dual interior-point technique and fixed-point continuation are two well-
known algorithms that have been applied to the aforementioned equation. Algorithms
for linear programming, such as the simplex algorithm known as BP-simplex and the
interior-point algorithm known as BP-interior, can also be used to solve the optimization
problem in Equation (3). These are solvers for convex problems.

In this article, formulations are developed of the MIMO, CS, and PCA operations
with PWR as the platform for UAV detections which is a novel combination of non-linear
processing techniques not explored before in literature. The data from the four sub-aperture
channels are processed by the signal processor and backend processing algorithms imple-
mented in servers kept in an enclosed thermally controlled chamber as part of PWR radar
hardware. To enable MIMO and CS-related enhancements, the signal processor imple-
mented in the radar server can incorporate MIMO, CS, and PCA-related data processing.
These non-linear processing methods will eventually lead to the development of low-cost,
power-efficient, and small-size radar systems that can scan faster and acquire larger vol-
umes than traditional systems. The evolution of these methods is presented briefly next.
Many previous works on CS methods allow recovery of sparse, under-sampled signals
from random linear measurements [4]. In [5], authors present Xampling as a sub-Nyquist
framework for signal acquisition and processing of signals in a union of subspaces. How-
ever, Xampling is not utilized for analog-to-digital conversion in this article. All processing
techniques are after the Nyquist rate ADC conversions in a fast time. Ref. [6] used CS
to enhance micro-Doppler signatures of drones; however, what is lacking is a common
framework for understanding and evaluating other non-linear methods like IAA that is
presented here and how IAA compares against CS in terms of performance. In [7], an
optimal dwell time is evaluated for effectiveness to capture at least one full rotation of
the blades. Comments are made on the total dwell time required but no discussion is
included on the sampling rate requirement over dwell time. The article [4] serves as a good
introduction to and a survey about compressed sensing. In [8] authors analyze the number
of samples required for perfect recovery under noiseless conditions. A good theoretical
framework is devised which has been extended here to PCA and IAA under clutter and
noise conditions. In [3], authors have summarized a whole set of optimization routines
that can be used to reconstruct a signal using CS. Authors in [2] developed the beginning
of a mathematical theory of super-resolution. They illustrated that point sources can be
super-resolved with infinite precision i.e. recover the exact locations and amplitudes by
solving a simple convex optimization problem, which can essentially be reformulated as a
semi-definite program. This holds provided the distance between the sources meets certain
criteria. The article [9] talks about a method that exploits the difference in the statistics of
the returns from sea clutter and the target to improve detection performance. Contrary to
this, PCA is used here as the dominant approach to remove clutter echoes by suppressing
clutter eigenvectors and also removing a few noise eigenvectors to enhance SNR. In [10],
authors discuss Subspace space–time adaptive processing (STAP) algorithms to eliminate
clutter. A few interesting research articles blending deep learning methods with CS in the
last three years have been [11–13].
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Prior Work in Drone Detection

In [14] authors discussed drone detection based on FMCW radars, however, our ap-
proach is based on the pulsed system because the leaked transmitter signal can overwhelm
the receiver in case of large average powers and co-located transmit and receive systems.
Authors in [15] discuss the detection of small RCS drone targets using X-band radar.
Unfortunately, they do not address concerns for resolutions needed for micro-Doppler
observations and subsequent classification problems. Also, authors in [16] have used a
small phased array X-band radar using an AD9361 transceiver chip and showed detections
and tracking drones up to 5 km. They have not dealt with micro-Doppler detection and
classification in their article. Another interesting article is [17], in which authors have tried
to fuse features of micro-Doppler echoes from a dual-band radar and since there are twice
the number of features available, they claim to have obtained a better classification than
a single-band sensor. It is not sure, however, how much the improvement gained and no
quantitative comparisons have been made.

This article explores using CS and IAA-based reconstruction of micro-Doppler for
small UAV targets from fewer pulses, such that we do not lose micro-Doppler charac-
teristics for the detection and classification of these targets. Traditionally using Fourier
transform on these fewer pulses will degrade the resolution to such an extent that the
nearby micro-Doppler features cannot be identified. This aspect is simulated using CS and
IAA performance versus FFT-based reconstruction and the benefits can be readily observed.
The MIMO formulation is also presented which aids in better spatial resolution indeed
needed to support the accurate localization of these small targets.

Figure 2 gives the basic conceptual processing steps needed for building up this system.
As would be evident later that for CS-based recovery from a minimum number of pulses,
the pulses must be randomly transmitted in different elevation states (in the case of PWR
radar) thus a random ray (direction) selector is needed to send out a pulse. At the receiver,
all the pulses can be segregated together for a ray and processed along the slow time (pulse)
axis for Doppler super-resolution. IAA however, doesn’t have this requirement which can
be one of its advantages as compared to CS. Uniform sampling, in the case of IAA, also aids
in PCA-based clutter suppression which would not work for the non-uniformly sampled
received echo. In that case, all the pulses would need to go out in all directions (rays) for
PCA and CS to start. In the case of IAA, however, as soon as one ray (direction) echoes
have been received, processing can start.

Pulse re-arrangement
for rays

Doppler processing
via CS/IAA

CS/ML based
classification (based
on micro-Doppler)

ray selector to
transmit a pulse

PWR

Figure 2. Simple illustration of the processing system.

There is an urgent need for faster scanning for a drone detection radar system because
these small objects are highly agile and maneuvering. A really fast update is required to
search and track the full space for drones and swarms of drones to keep an eye on their
ever-changing activities and strategies. Counter UAS systems must be equipped with very
fast scan strategies using very few pulses per direction and still being able to recover high-
resolution Doppler features from detected drones. These non-linear processing techniques
would aid PWR in achieving this goal.

The rest of the article is organized as follows: Section 2 discusses the important
features of the PWR radar developed by ARS and how it is an ideal platform for these non-
linear methods, Section 3 provides theoretical understanding and a common framework
that encompasses CS, IAA, and PCA based application for a drone detection system,
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Sections 4 and 5 summarizes the simulation setup and discusses results obtained. Finally,
we conclude with Section 6.

2. Portable Weather Radar (PWR)

All the techniques discussed in this article are being developed with reference to the
the ARS PWR weather radar sensor. PWR is a flexible and agile radar due to the phase
spin architecture and central Radar System Controller (RSC) [18]. This radar is based on a
phased array design and is inherently very different from parabolic dish antenna radars like
D3R [19,20]. The radar located at the Greeley radar test facility is shown in Figure 3a. The
phase gradient that the phased array controller uses are coordinated by the RSC, along with
the motor control for azimuth positioning and rotation. The FPGA logic in the Software
defined radio (SDR) has a programmable register interface that enables the RSC to change
a broad range of operational radar parameters. The RSC uses alternate horizontal and
vertical polarization to allow transmit pulses with a Linear Frequency Modulated Chirp
(LFMC) waveform in the SDR. The Host Processor in the local cabinet receives the filtered
radar returns from the multichannel receive hardware and processes them there.

(a) (b)

(c)

Figure 3. Radar and RTS Setup. (a) The Radar on its tower at the CSU-CHILL radar test facility
in Greeley. (b) The RTS setup with horns on a tower pointing towards radar in a far field. (c) The
obtained beam shape.
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The beamforming network and phased array antenna for PWR underwent extensive
testing. Array calibration and aperture beam pattern data were collected to confirm
expected aperture performance. Radar Target Simulator (RTS) was created to test the
complete functionality of the radar system with the calibrated aperture. The RTS was
positioned for this test in the far field of the aperture (Figure 3b). The PWR waveform was
received by RTS, a digital time delay was applied, and the result was transmitted back to the
PWR while it was still in receive mode. An accurate estimate of the combined beam pattern
and all four quadrants was confirmed by determining the peak value from the returned
waveform in PWR at each elevation. The two-way combined H-pol antenna pattern is
shown in Figure 3c measured with the help of RTS. The two-way pattern sidelobes are
approximately 25 dB below the main lobe peak power and the 3 dB beamwidth measured
is 1.4 deg confirming good phase/time alignment of all quadrant channels in the combined
pattern. With a similar setup of RTS, by applying MIMO Coherent implementation, we
expect to measure 0.9 to 1 deg of 3 dB beamwidth. This improvement is enabled by
four-quadrant based MIMO signal processing.

To remove any spatial ambiguity, PWR was co-located with the CSU-CHILL radar and
concurrently gathered weather observations. This was done to determine the PWR data
products’ level of quality for Single-Input-Single-Output (SISO) based radar operations.
It has been described here so that it can serve as a standard by which to compare the
efficacy of MIMO. Data comparisons between these two radars were carried out while
PWR rotated at a constant quarter RPM and CHILL transmitted in the eastern region for
the same 14 elevation states. Let’s examine one of the light rain cases that both radars
recorded on 31 May 2022. Figure 4a,d show the reflectivity field for CHILL and PWR radars
respectively while Figure 4b,e shows the comparison of differential reflectivity between
the two. Figure 4c,f shows the differential phase encountered going through the storm
from these radars. The top plots are from the CHILL radar and the bottom ones are from
PWR. The CHILL radar was scanning only the eastern sector while the PWR did the whole
360-degree coverage. Both radars observed 14 elevation states. The 2 deg elevation state is
shown in the figures. Several of the bright thunderstorm features that both radars picked
up in the southeast can be seen distinctly in these figures. All of the level 2 products were
subjected to this comparison. With nine times larger antenna dimensions than PWR, we
can easily see the CHILL radar’s high spatial resolution. With MIMO Coherent processing,
the spatial resolution of PWR is anticipated to improve without a physical size increase in
an effort to resolve the weather storm features better.

PWR is easily configured for sensing both weather and drone targets. This is the
hardware platform developed at ARS currently for weather sensing. Using a separate
processing chain shown in Figure 2, its capabilities for drone target detection using non-
linear processing can be easily expanded. It is fully capable of MIMO aperture extension
because of its four quadrant transmit and receive channels and because of its software-
defined capabilities in terms of beam agility and waveforms, PWR is an ideal platform for
testing out non-linear techniques.

Spectrogram and smoothed pseudo-Wigner-Ville distribution are two time-frequency
representation techniques that have been widely used to analyze drone micro-Doppler
signatures. Furthermore, a number of classification methods based on micro-Doppler
signatures have been reported for classifying drones of various sizes, types, and loads, as
well as drones and people, dogs, and birds. The radar antennas in real-world ground-based
surveillance radar systems must scan rapidly to cover a large spatial area of up to 360°.
This implies that the radar beam’s dwell period on any given target is quite short (which
is, usually, a few tens of milliseconds). Thus, when adopting the conventional fast Fourier
transform (FFT) for Doppler processing, the radar Doppler resolution is very poor and the
accurate micro-Doppler signatures of drones are difficult to discriminate.
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Figure 4. (a–f)The different polar products being generated by CHILL and PWR radars.

3. Methods

3.1. PCA and CS Formulation for Micro-Doppler Enhancement

Radar echoes from drones can be identified, categorized, and tracked using Micro-
Doppler. A spinning blade is a feature of the majority of drones, including single-rotor,
quadrotor, six-rotor, and even hybrid vertical takeoff and landing (VTOL) drones. They
are typically active in low-altitude airspace, are small, and fly slowly [21,22]. The rotating
movement of rotating blades can modulate the incident radar wave and produce an
additional micro-Doppler on the base of the body Doppler contributed by the flying motion
of the drone body. Micro-Doppler signals are thought to be quite useful signatures for
radar-based drone detection and classification [7].

The importance of micro-Doppler for drone detections cannot be overstated. Using
lengthy FFT sizes in traditional signal processing, drone detections can be more accurately
resolved at higher Doppler resolutions. In general, greater Doppler resolution is associated
with longer radar dwell times (sending out more pulses for longer FFTs). However, the
maximum radar dwell period for a functional radar sensor applies. A practical radar system
should be able to track targets more quickly and look quickly in all directions to search
the entire volume. The secret to observing such a micro-Doppler is the radar dwell time.
The dwell period should be sampled quickly enough to improve the Doppler resolution of
our spectral analysis. CS and IAA-based non-linear processing can break this relation of
linear dependence of resolution to the number of pulses required to observe micro-Doppler
features of drones [8].

Prior to performing CS/IAA, PCA was used to get rid of clutter contamination of the
drone echo. The cleaned-up signal can then go through spectral analysis.

3.2. PCA Decomposition of Clutter

Consider a radar transceiver, similar to [8] that transmits a pulse train:

xT(t) =
P−1

∑
p=0

h(t − pτ), 0 ≤ t ≤ Pτ. (5)

consisting of P equally spaced pulses h(t). The pulse-to-pulse delay τ is referred to as
the PRI, and its reciprocal 1/τ is the PRF. The entire span of the signal in Equation (5) is
called the coherent processing interval (CPI). Let L Doppler-producing drone targets make
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a scene. The pulses travel back to the transceiver after reflecting off the L targets. Three
parameters are used to describe each target: a complex amplitude αl that is proportional to
the target’s radar cross-section (RCS), a Doppler radial frequency υl that is proportional
to the target-radar closing velocity, and a time delay τl that is proportional to the target’s
distance from the radar. We can write the received signal as:

x(t) =
P−1

∑
p=0

L−1

∑
l=0

αlh(t − τl − pτ)e−jυl pτ . (6)

It might be convenient to express the signal as a sum of single frames:

x(t) =
P−1

∑
p=0

xp(t) (7)

where

xp(t) =
L−1

∑
l=0

αlh(t − τl − pτ)e−jυl pτ . (8)

This is the case when the target can be characterized using a single velocity, υl , however, in
the case of micro-Doppler frequencies there exists a band of frequencies around the main
body Doppler component comprising the micro-Doppler (Δυl) as:

xp(t) =
L−1

∑
l=0

I−1

∑
i=0

αlh(t − τl − pτ)e−j(υl+Δυi)pτ . (9)

I are the number of micro-Doppler components.
In practice, this signal is contaminated with noise and clutter:

x(t) =
P−1

∑
p=0

[xp(t) + ωp(t) + Cp(t)]. (10)

where ω(t) is a zero mean wide-sense stationary random signal with auto-correlation
rω(s) = σ2δ(s) and C(t) is the clutter component. A synonymous equation quantized in
time would be:

x(n) =
P−1

∑
p=0

[xp(n) + ωp(n) + Cp(n)]. (11)

In order to decrease its effect on micro-Doppler features, removing the clutter component
is necessary. The Equation (11) can be thought to be composed of signal, noise, and clutter
sub-spaces. Let the mean values of xp(n) be μp. Then the mean subtracted received signal
can be written as:

x(n) =
P−1

∑
p=0

(xp(n)− μp). (12)

Forming the auto-correlation matrix Rxx of x(n) and performing SVD decomposition on
it yields,

Rxx = USVT . (13)

Sorting out the eigenbasis vectors in U in descending order, we get the largest principal
components in the received signal. If clutter is supposed to be the dominant return signal
component, the corresponding eigenvector of the largest eigenvalue in S is set to zero. The
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rest of the received signal xp(t) is projected to remaining eigenvectors and sum them up as
follows to reconstruct signal and noise:

xrecons(n) =
P−1

∑
p=0

D−1

∑
d=0

ud(n)xp(n). (14)

u′
ds span the eigenvector space comprising of signal and noise sub-spaces minus the clutter

sub-space as that eigenvector is not part of this space. The signal and noise sub-spaces are
orthogonal to each other. Noise power can be reduced by considering only a few noise
eigenvectors and adding them up to the signal sub-space. This would improve SNR. A
demonstration of this is part of the simulations section. A point worth noting is that clutter
power can be estimated by averaging out the received signal whose mean will give an
estimate of clutter power centered at DC. Based on this power estimation, the eigenvector
nearest in power level to this DC power should be removed to nullify the clutter sub-space,
if clutter is not the most dominant echo in the received signal.

Comparing PCA with MTI clutter filter, it can be observed that MTI removes the
clutter component while low-frequency micro-Doppler components can also get completely
suppressed, which would decrease the distinction of micro-Doppler features and finally
influence the classification accuracy of drone targets. After the clutter signal has been
suppressed, the CS step can be performed for enhancing micro-Doppler features. Micro-
Doppler spectral lines can have better distinction when they are CS processed.

Apart from the primary signal Doppler, a few micro-Doppler lines, and clutter, which
have high values, the majority of the entries in the spectral domain of drone targets are
zeros or low values. Only the primary Doppler and a few high spectral lines caused by
micro-Doppler may remain after removing clutter. In order to improve drone classification
and identification using fewer pulse samples, CS may be able to provide high-resolution
Doppler components for such a sparse signal. If we use fewer pulses to give the same
resolution as with, say, 10 times the number of pulses, then we are effectively reducing
the dwell time on the target and can potentially spin faster as in the case of PWR. This
faster scanning radar can track and do multiple functions at the same time which may
mean portable systems like PWR, is able to accomplish weather surveillance, seach and
track UAVs.

3.3. CS-Based Enhancement of Doppler Space

The clutter-suppressed received signal can now be processed by CS to better resolve
the micro-Doppler frequencies with relatively fewer random measurements. The premise
is CS would be able to provide a higher resolution Doppler space with few samples
as against conventional FFT processing which would need a sufficiently larger number
of measurements or pulses to give the same resolution as CS. The first stage of CS is
multiplying the random measurement matrix, ψ(n) with x(n):

y(n) =
P−1

∑
p=0

ψp(n)[xp(n) + ωp(n) + Cp(n)]. (15)

where ψp(n) ∈ RMxN or CMxN and y(n) ∈ RM or CM. The number of measurements
taken is much lesser than the length of the input signal, i.e., M << N. To further re-
duce the number of measurements which are necessary for perfect reconstruction, the
measurement matrix must be incoherent with the basis in which the signal is sparse. The
inputs to the reconstruction algorithm are the measurement vector y(n) and reconstruction
matrix Θ where,

Θ = ψξ ∈ R
MxN or CMxN . (16)
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ξ is the basis vector of the space where x(n) is sparse. Thus x(n) can be written as:

x(n) =
P−1

∑
p=0

sp(n)ξp(n). (17)

s ∈ RN is the sparse coefficient vector of length N. The optimization problem expressed as
l1 norm (for reconstruction) can thus be expressed as:

ŝ = arg min
s

||s||1 subject to Θs = y (18)

The estimate of x(n), i.e., x̂ can be obtained from ŝ by taking its inverse transform. Some of the
other types of this same optimization problem with noise included and a lagrangian form of
the above equation was discussed in the paragraphs preceding Equations (3) and (4).

It is shown in the literature [8] that for a noise-free case, the estimation of parameters
(αl , τl , υl)

L−1
l=0 without micro-Doppler frequencies can be recovered using 3L samples using

a Xampling framework and assuming Finite Rate of Innovation (FRI) samples. However,
with micro-Doppler and the presence of noise, there are likely more samples required
for perfect recovery. Simulations do confirm the fact that the number of slow time, pulse
measurements required for a higher resolution Doppler reconstruction is sufficiently less
so that either the radar can be made to scan faster or it can be made to accomplish multi-
functions like weather detections and forecasting too. The software-defined phased array
architecture of PWR is ideally suited for drone detection and weather surveillance.

SNR

The SNR is linked to the attenuation that the signal receives going through the link.
However, noise power can be reduced in the prior step of PCA with fewer noise eigenvec-
tors considered for the reconstruction of the received signal. Certainly, this can improve
SNR and it is demonstrated in simulations too.

3.4. MIMO and CS Framework

The multi-function PWR radar is capable of MIMO because of its four-quadrant array
structure. So quadrant-wise MIMO formulation can be used along with CS. This gives the
benefit of virtual array formation without the addition of physical array elements, and also
it is cost-effective since each element is not required to have an RF and IF hardware chain
associated, and only four channels are sufficient to make use of quadrant MIMO benefits
instead of hundreds if not thousands of channels for a full MIMO implementation.

The quadrant MIMO system is equivalent to the spatial convolution of the transmit
and receive quadrant phase centers and the formation of virtual array elements beyond the
physical aperture size. The virtual array dimensions are 1.5 times the physical array (in
both axes) as evident from Figure 5. Equivalently, this would give the beamwidth reduction
by the same factor and the spatial resolution will improve. The PWR system provides a
very cost-effective MIMO radar system using a quadrant phased array structure. One of
the main challenges of an element-wise MIMO radar is coping with complicated systems
in terms of cost, high computational load, and complex implementation, which have been
traded very well using quadrant MIMO in PWR radar hardware.

To demonstrate quadrant MIMO processing, transmissions were assumed using the
same LFM waveforms from all the quadrants, however, there is a sequential transmission
from quadrants in a time-multiplexed manner. The data cube received by the quadrants
would have to be processed to form the virtual array data cube. Let the data collected when
quadrant 1 transmits (from all four receive quadrants) given by:

Phr =

[
M11 M12
M13 M14

]
(19)
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where the first subscript tells the transmit quadrant and the second signifies the receive.
The coherent data matrix after all transmissions are given by:

Vir =

⎡
⎣ M21 M11 + M22 M12

M23 + M31 M13 + M24 + M31 + M41 M14 + M42
M333 M43 + M43 M44

⎤
⎦ (20)

This matrix includes 5 additional virtual phase centers corresponding to five additional
quadrants to make it a total of 9 quadrants. For PWR, each entry in the column is 12λ wide
and high, the third row and column would give it an extra 12λ height and width to the
receive aperture due to virtual quadrants [23].

Extending our discussion further about MIMO and CS, let’s revisit Equation (8) for a
sparse scene with L drone targets. The received signal at the qth quadrant after demodula-
tion to baseband for a single frame is in turn given by:

xq(t) =
L−1

∑
l=0

M−1

∑
m=0

αlh(t − τl − pτ)e−jυl pτe−jβm,qς. (21)

where ς = sine(θl) is the azimuth angle of the lth drone target relative to the quadrant
θl . Also note that, βm,q = (ζqξm)( fcλ/c + 1), fc is the carrier frequency radiated from the
quadrant and ζq, ξm ∈ Vir. Again y(n) can be written as:

y(n) =
P−1

∑
p=0

ψp(n)[xp,q(n) + ωp(n) + Cp(n)]. (22)

and then forming s, an sparse coefficient matrix using basis ι as:

x(n) =
P−1

∑
p=0

M−1

∑
q=0

sp,q(n)ιp,q(n). (23)

The optimization problem expressed as l1 norm (for reconstruction) can now be expressed as:

ŝ = arg min
s

||s||1 subject to Θs = y (24)

Receive Aperture

Quad 1 TX

Quad 2 TX

Quad 3 TX

Quad 4 TX

2 Spacing

Tx Phase Centers

2 Displacement in 
Rx phase centers

Rx Phase Centers

Figure 5. A 8 × 8 element phased array with multiple transmit phase centers based on the quadrant.
The whole array is divided into 4 quadrants.

Theorem 1. The minimal number of transmit times the number of receive channels required for
perfect recovery of L targets in noiseless settings is ≥ 2 L with a minimal number of ≥ 2 L samples
per receiver and ≥ 2 L pulses per transmitter [4].

120



Drones 2023, 7, 251

This is true for Xampling and an FRI framework used in conjunction with CS. In PWR,
quadrant MIMO offers four transmit and nine receive channels (four physical and five
virtual quadrants), thus L = 18 drone targets can be resolved in a CPI or dwell time τ. For
this recovery, 36 samples are needed per pulse and 36 pulses are needed per transmitter
quadrant for perfect recovery of Doppler for these L targets. This arithmetic is different
for a noisy link but then most likely that many drone targets may not be present. Only
in the case of drone swarms, that many targets would need to be detected, however, it
would be quite a coincidence to get so many of them in a CPI or dwell (one direction)
otherwise. This result also implies that many more targets can be perfectly resolved in the
DoA sense by using MIMO virtual elements and this framework allows CS theory to be
applied for calculating the number of pulses required for a perfect Doppler recovery for all
these targets as well.

3.5. An Iterative Approach to Solve the Dwell Time Limitation for a Fast Scanning Drone Radar

The Doppler resolution of the temporal signal can be increased by using the super-
resolution algorithms that are frequently used in array processing, such as minimal variance
distortionless response (MVDR) and multiple signal classification (MUSIC). To estimate the
covariance matrix or carry out eigenanalysis, these algorithms typically need a number of
signal snapshots. Some algorithms, like MUSIC, require knowing the number of sources
up front as well. However, in surveillance radar, the Doppler processing is carried out
over the slow-time samples (over pulses) at each range increment. As a result, there is
only one available temporal snapshot. It is also unclear how many target Doppler and
micro-Doppler sources there will be. Consequently, it is impossible to use the traditional
super-resolution methods. Unlike the conventional MVDR and MUSIC algorithms in which
many snapshots are required to estimate the covariance matrix, IAA can work well with
only a few or even one snapshot to achieve super-resolution [24].

The formulation of this method is elaborated next. It is similar to the one highlighted
in [25]. The basis steering vectors are defined on the grid points that either have the
frequency present or do not span the output space of the Doppler processor. Henceforth,
the outcome of the Doppler process is written as:

y = A( f )s + ω + C. (25)

where ω(n) is a zero mean wide-sense stationary random signal with auto-correlation
rω(s) = σ2δ(s) and C(n) is the clutter component. A( f ) = [a( f1)a( f2)...a( fk)] is P × K
dimension where P is the number of pulses and K is the number of finite points in the
Doppler grid. s is a vector of the amplitudes of frequencies at the grid locations k = 1, 2, ..., K.
The clutter and noise matrix can be defined as:

Q( fk) = R − Pka( fk)a
H( fk). (26)

R = A( f )PAH( f ) is the auto-correlation matrix of the input and P is a K × K diagonal
matrix, whose diagonals Pk = |sk|2, k = 1, 2, ..., K contains the powers at each Doppler
frequency on the Doppler grid. The cost function is given by:

Ξ = (y − ska( fk))
HQ−1(y − ska( fk)). (27)

Minimizing the cost function with respect to sk gives [25]:

ŝk =
aH( fk)R

−1y

aH( fk)R
−1a( fk)

. (28)

Since the iteration requires R, which depends on the unknown powers, it must be imple-
mented as an iterative approach. The initialization can be done by letting R equal to the
identity matrix IP. The steps are shown in Algorithm 1. Both IAA and CS are capable to
enhance the Doppler resolution with fewer pulses, however, CS needs a random pulse
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transmission within the dwell time. It relies on non-uniform sampling within the dwell
time. The pulse time left vacant because a pulse cannot be transmitted in CS can be used
for transmitting pulses in other directions though, however, it can make radar operations
complex. On the other hand, IAA works with a uniform sampling of the dwell time.

Algorithm 1 An iterative algorithm [25]

P̂k =
1

aHa ∑P−1
p=0 |aH( fk)y(n)|2

while !converge do

R = A( f )PAH( f )
for k = 1,2,...,K do

ŝk =
aH( fk)R

−1y

aH( fk)R
−1a( fk)

n = 1, 2, ..., N.

P̂k = 1/N ∑N−1
n=0 |ŝk(n)|2.

end for
end while

4. Simulations and Results

In this section, the feasibility and practicality of non-linear methods are discussed and
substantiated by simulations using PWR radar parameters and features. A few parameters
of PWR that are relevant for simulations and system demonstration are shown in Table 1.

Table 1. PWR Parameters.

Parameter Value

Frequency X-band

Pulse Repetition Interval (PRI) 500 us

Scanning Electronic in elevation

A few micro-Doppler frequencies are simulated making an echo of length 512 samples.
This comprises a main Doppler echo from the base motion of the UAV and there are micro-
Doppler from the rotary motion of the blade movement modulating the primary echo signal.
The signal is corrupted by clutter from the elevation sidelobes of PWR simulated as zero
Doppler component being added up to the received echo. The PCA formulation described
in an earlier section is used next for the removal of clutter sub-space and reconstruction of
the time domain signal for further processing. Current methods including MTI, CLEAN, etc
can not realize the real-time removal of ground clutter without suppressing nearby micro-
Doppler components. That is why PCA is adopted to remove the clutter components in the
echo signal. Figure 6a depicts clutter centered at DC and the micro-Doppler components
and the main Doppler signal. If clutter is always a dominant signal in the received echo,
then it is pretty easy to remove the highest valued eigenvector from the SVD decomposition,
however, if it is not, then we need to figure out the DC power by averaging out the samples
and looking at average power. This should be able to give us an estimate of the eigenvector
which has similar power levels as the mean power. After that is made certain, we can
remove it from our reconstruction process to get rid of clutter. Next, this signal is processed
using CS. The time domain and the frequency domain of the echo for CS processing are
shown in Figure 7a,b. Random 32 samples (out of 512) are picked from x(t) (Figure 8) and
the recovery of the sparse frequency domain is accomplished from these random samples
using l1 minimization.
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Figure 6. Clutter removal using PCA. (a) is with clutter centered at DC and (b) clutter removed with
no harm to nearby micro-Doppler components.

Figure 7. The original signal characteristics for a CS-based micro-Doppler reconstruction.

Figure 8. The samples that are picked randomly and CS-based reconstruction is applied.

The recovered high-resolution frequency and time domain samples from the lower
dimensional signal are shown in Figure 9a,b.
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Figure 9. The reconstructed frequency domain and time domain.

Exact recovery of the higher dimensional signal is possible due to sparsity in the
frequency domain. Since the frequency domain of a drone echo only consists of a few
non-zero components of the base Doppler and micro-Doppler components that are to
be recovered, this signal can be considered sparse. However, the performance of CS
reconstruction when there are a bunch of other features present in the echo signal, has to
be yet demonstrated and can be an analysis for future work. The frequency analysis of
the lower dimensional signal is shown in Figure 10 which is the Fourier transform of the
first 32 samples from the sequence of the original 512 samples. The loss of resolution is
evident and the modulations due to micro-Doppler cannot be observed. This would lead
to faulty classification results for the UAV type and detection of UAV based on certain
micro-Doppler features.

Figure 10. The Fourier transform of the lower-dimensional signal.

It is to be noted that CS needs random K = 32 samples from a set of N = 512 echo
samples. The N can be considered here to be the number of pulses where we reduced it to
K << N. Thus only K pulses are sufficient to reconstruct the micro-Doppler features of
the UAV echo which can easily reduce the dwell time and overall scan time of the radar.
These pulses would need to be randomly transmitted in the larger dwell time of N pulses,
scanning other elevation states to cover up the total volume in the case of PWR for example.
With this, the N pulses would be transmitted at random in different elevation states and
then grouped together by the signal processor. This is a little complex and would require
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beam switching at every pulse instead of every dwell. The IAA however, doesn’t rely on
non-uniform random sampling and is simulated next.

Figure 11 shows the same setup of micro-Doppler frequencies used before. In-
stead of CS-based reconstruction, IAA is used for recovery. It is shown that super-
resolution can be achieved using a single snapshot of data samples. The IAA iteration
was setup simulating three peaks of the micro-Doppler base echo and the modulations
from the rotation of the blades of the quadcopter similar to the one for CS and then using
K(32pulses) << N(512pulses) that is much fewer than the higher dimensions (512) in the
frequency domain required to reconstruct a higher resolution frequency response. It can
be observed that the sidelobes are very low for IAA-based reconstruction. To achieve a
similar level of sidelobe performance, a very aggressive taper would be needed for FFT-
based recovery that would lead to quite a bit of SNR loss. Using IAA can avoid the taper
loss in FFT-based Doppler processing and the overall radar detection performance for all
targets is also improved. If we compare it with the CS technique, CS works with random
non-uniform sampling that is unconventional and as stated earlier about its applicability to
PWR, a scheme is required in which different elevation states would be selected at random
for transmission of a pulse, and this makes it complex as compared to uniformly sampled
IAA. Having said this, it is worth noting that CS can be extended to fast time sampling
using Xampling and FRI principles so that lower sampling ADCs are sufficient for below
the Nyquist rate sampling of fast time signals. Hence both schemes have their own pros
and cons and should be judiciously used. Their relative benefits are shown in Table 2 below:

Table 2. Relative benefits of IAA, CS and traditional FFT approach.

IAA CS FFT

Uniform Sampling Non-uniform Sampling Uniform Sampling

Peak Sidelobes of the order of −80 dBc Peak Sidelobes = −40 dBc Peak Sidelobes = −13 dBc

No Taper required No taper Taper required

Figure 11. Estimation of frequency response using IAA.

5. Discussion

Both CS and IAA are useful for frequency super-resolution. However, IAA offers
distinct advantages in terms of uniform sampling in pulse domain (slow time), hence CS is
suggested to be used with fast time (range-time) sampling using a Xampling framework.
So as to make it non-confusing, the steps for a fast scanning drone detection radar system
could be summarized as:

• Start with PCA-based clutter removal.
• Use CS-based Xampling system for fast time sub-Nyquist sampling. For more details

on the Xampling system, please refer to [26].
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• IAA to be applied for frequency super-resolution with fewer pulses in slow time.
• Quadrant MIMO to be used for virtual array formation and enhancement of

spatial resolution.
• Classification of drones using CNN-based classifier.

6. Conclusions

PCA was simulated for clutter mitigation. CS and IAA were explored for micro-
Doppler and spectral retrievals, and MIMO for spatial estimation of drone UAV targets.
A unified theoretical framework was developed that stitches together these non-linear
methods towards drone micro-Doppler and spatial resolution enhancement for detections
from phased array PWR multi-function radar sensors. Both IAA and CS were found to be
very useful to recover micro-Doppler drone features so that those targets can be efficiently
detected and classified using fewer pulses than the conventional FFT processing. The
drawbacks and applicability of each one of these techniques were discussed. Simulations
demonstrated that IAA and CS methods can achieve greater Doppler resolutions as com-
pared to FFT-based processing using fewer samples. Additionally, peak sidelobe levels
achieved using IAA is substantially lower than the traditional FFT approach. If such levels
of sidelobe levels are to be achieved using FFT, significant taper loss has to be encountered
in FFT leading to severe SNR degradation. Using PCA, clutter mitigation was demonstrated
with benefit in SNR if a few noise eigenvectors were removed in signal reconstruction.

The future investigations in this research might be figuring out the computationally
efficient algorithm for realizing the minimization of l1 norm and comparing it with IAA
computations. That will pave the way to a real-time implementation for PWR radar and
collection of data samples and performing non-linear processing by the PWR computational
server. Also, the computational complexity associated with each of the CS-based and IAA
reconstruction algorithms will be evaluated and their feasibility in real-time processors will
be demonstrated.
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Abstract: Infrared thermal imaging is useful for human body recognition for search and rescue (SAR)
missions. This paper discusses thermal object tracking for SAR missions with a drone. The entire
process consists of object detection and multiple-target tracking. The You-Only-Look-Once (YOLO)
detection model is utilized to detect people in thermal videos. Multiple-target tracking is performed
via track initialization, maintenance, and termination. Position measurements in two consecutive
frames initialize the track. Tracks are maintained using a Kalman filter. A bounding box gating
rule is proposed for the measurement-to-track association. This proposed rule is combined with the
statistically nearest neighbor association rule to assign measurements to tracks. The track-to-track
association selects the fittest track for a track and fuses them. In the experiments, three videos of
three hikers simulating being lost in the mountains were captured using a thermal imaging camera
on a drone. Capturing was assumed under difficult conditions; the objects are close or occluded, and
the drone flies arbitrarily in horizontal and vertical directions. Robust tracking results were obtained
in terms of average total track life and average track purity, whereas the average mean track life was
shortened in harsh searching environments.

Keywords: search and rescue missions; thermal image; object detection; target tracking; bounding
box gating

1. Introduction

Multirotor drones are widely applied in a variety of fields [1]. The ability to hover
and maneuver by the operator or as programmed makes them valuable tools in numerous
industries. By capturing images from various angles and heights, drones can obtain cost-
effective aerial views covering arbitrary areas.

Thermal imaging cameras detect infrared radiation emitted by objects [2,3]. This
radiation is invisible to the human eye, but thermal imaging cameras convert it into a
visible image. Thermal imaging requires no illumination or ambient light, penetrating
obstacles including smoke, dust, haze, and light foliage. However, the resolution of the
thermal image is low, and no texture or color information is provided.

Drones equipped with thermal imaging cameras are highly effective in locating miss-
ing people for search and rescue (SAR) missions and surveillance [4–6]. The technology has
been also applied to wildlife monitoring and agricultural and industrial inspection [7,8].
People detection with thermal images captured by drones has been studied in [9–15]. Per-
sons and animals were detected using the YOLO detection model [9]. Persons and cars
were detected from different observation angles of the drone using the YOLO detection
model [10]. The YOLO detection model was adopted to build a human detection system
using drones [11]. The spatial gray level co-occurrence matrix estimates temperature differ-
ences [12]. In [13], a person is recognized with a two-stage hot-spot detection approach.
People and fire detection were studied with high-altitude thermal images obtained by
optical and thermal sensors [14]. However, the tracking of people in thermal scenes using
drones has been seldom researched [15]. In [15], people tracking with a thermal imaging
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camera mounted on a small drone was performed for the first time. However, object detec-
tion was performed using the k-means algorithm, which resulted in degraded performance
in complex backgrounds.

Tracking of non-living objects using thermal imaging by fixed-wing drones was stud-
ied in [16,17]. The Kalman filter was adopted to track a boat [16], and a colored-noise
measurement model was utilized to track a small vessel [17]. Tracking of people and ani-
mals using fixed thermal imaging cameras has been studied in [18–24]. Foreground objects
were extracted by contour-based background subtraction [18]. The pedestrian detection
was performed by local adaptive thresholding [19]. People in the aerial thermal view were
detected and tracked with a particle filter [20]. The weighted correlation filter tracked the
various targets in the thermal image database [21]. An effective feature representation was
introduced based on correlation energy in [22]. An adaptively multi-feature fusion model
was proposed to integrate hand-crafted features and a convolutional neural network for
thermal object tracking [23]. The Kalman filter was used to detect sports players in thermal
videos for real-time tracking [24]. However, the tracking conditions were limited to fixed
cameras, and a plain background. In [25], a tracking-by-detection approach was studied in
the thermal spectrum. A convolutional neural network, pre-trained with visible images,
was transferred to the thermal tracking [26].

A multiple-target tracking system consists of a sensing system that observes the
movement of multiple objects in a dynamic environment and a target tracking algorithm
that simultaneously estimates the attributes (position, velocity, acceleration, etc.) of multiple
objects based on the observation. As a result, a multi-target tracking system forms a
trajectory (track) for each target; so, it is essential to establish the identity of the same
target while it is present, and this can be achieved by accurately matching the established
track with the observation. However, due to high and various maneuvering, close or
occluded objects, low object detection, or high false alarms, tracks may be missed, broken,
or overlapped on the same target.

In this paper, tracking of people in the mountains is studied using thermal imaging by
a drone. The overall process comprises two stages: object detection and multiple-target
tracking. For object detection, YOLOv5 is adopted to generate a bounding box of objects.
YOLO’s deep learning framework has garnered immense popularity for its versatility, ease
of use, and high performance [27]. The centroid of the bounding box is considered the
measured position (observation) for target tracking.

Multiple-target tracking is performed via three stages: track initialization, mainte-
nance, and termination [28–30]. The track maintenance consists of measurement-to-track
association (measurement association), track update, and track-to-track association (track
association). Figure 1 shows an entire block diagram of target tracking with infrared ther-
mal videos acquired by drones. Bold fonts inside red bold line boxes include the newly
proposed contents in this paper. A scheme of the nearest neighbor measurement association,
followed by track association, track termination, and validity testing, has been developed
in previous works showing robust performance in ground target tracking from visible
images acquired by a drone [29,30].

 

Figure 1. Block diagram of thermal image target tracking.

To the best of my knowledge, ref. [15] was the first study to track people with a thermal
imaging camera mounted on a small drone. This paper has been substantially improved
from [15]. The contributions of this paper are (1) the YOLO detection mode is applied
to extract the position information of the thermal target. The YOLO detection model is
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pre-trained with visible image datasets, but it was transferred to thermal object detection
for multiple-target tracking. (2) A bounding box gating scheme is proposed for the mea-
surement association. This scheme allows track updates if the intersection over union (IoU)
between the bounding box of the current frame and the bounding box of the previous frame
is sufficiently high. The centroid of the current frame bounding box is the measurement
that is statistically nearest to the position prediction at the current frame and the centroid
of the previous frame bounding box is the measurement associated with updating the tract
at the previous frame. (3) The framework combining the measurement association and the
track association with the Kalman filter shows robust tracking performance of the mobility
of the platform in complex backgrounds. In the presented scenarios, thermal objects are
closely located and heavily occluded, and the sensing platform is allowed to move fast.

In the experiments, the drone flies at a height of 40~60 m. The video shows three
hikers simulating being lost in the mountains on a winter night with no ambient light.
The drone moves rapidly in horizontal and vertical directions, and the perspective of the
camera is arbitrary. People are often occluded by other people or trees and leaves. Figure 2
shows three sample scenes extracted from the three videos, respectively. The experimental
results show the average total track lives (TTLs) for the three videos are obtained as 0.987,
0.993, and 0.894, respectively. The corresponding average mean track lives are 0.987, 0.442,
and 0.151, respectively. The average track purities (TPs) are obtained as 1, 0.999, and 0.995,
respectively, for the three videos. The average MTL is reduced for two videos due to the
track breakage in the harsh environments.

Figure 2. Sample frames of three thermal videos capturing people in distress.

The rest of the paper is organized as follows: the YOLOv5 training process is explained
in Section 2. Section 3 describes each step of multiple-target tracking. The experimental
results are presented in Section 4, and conclusions follow in Section 5.

2. YOLOv5 for Thermal Videos

YOLOv5 is the 5th iteration of the YOLO object detection model [27]. It is designed to
provide high-speed, high-accuracy results in real-time. YOLOv5 has several pre-trained
models with a visible image dataset; YOLOv5x shows the best performance among them.
The output of YOLO is multiple bounding boxes surrounding the object of interest, along
with the object’s class name and confidence level.

The YOLO pre-trained models are trained with thermal images; the number of training
images is 197 and a total of 548 rectangular boxes are manually drawn in them. The training
images were obtained from a different video than the ones used for the tracking experiments.
Each rectangular box indicates the instance of a person in the scene. The rectangular boxes
were manually drawn using the graphical image annotation tool LabelImg [31]. During
training, all instances are named with only one class, ‘walking’. Three pre-trained models,
YOLOv5s, YOLOv5l, and YOLOv5x, were transferred to detect thermal objects. They were
trained with 100 epochs. No data augmentation was applied, and no background was
used for training. Figure 3 shows five sample images, each image containing three blue
rectangular boxes. Supplementary Video S1 shows a movie of all 197 images containing 548
rectangular boxes. The experimental results of detection testing will be shown in Section 4.
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Figure 3. Sample training images with thermal object instances.

3. Multiple-Target Tracking

A block diagram of multiple-target tracking is shown in Figure 4. Tracks are initialized
with two-point differencing between the measurements in consecutive frames after the
initial speed gating. Tracks are maintained by track update, measurement association,
and track association. Measurement association is necessary in multiple-target and clutter
environments. The track association aims to handle multi-sensor environments [32], but it
has been improved to fuse tracks generated with a single sensor [30]. The state of the target
is estimated using the Kalman filter. The track is terminated if no measurement is available
or track-fusion occurs. The validity of the track is tested with the track-life length after
track termination. Each step of the block diagram is described in the following subsections.

 
Figure 4. Block diagram of multiple-target tracking.

3.1. System Modeling

For the nearly constant velocity motion, the process noise following a Gaussian distri-
bution imposes uncertainty on the kinematic state of the target. The discrete state equation
of a target is

x(k + 1) = F(Δ)x(k) + q(Δ)v(k), (1)

F(Δ) =

⎡
⎢⎢⎣

1Δ00
0100
001Δ
0001

⎤
⎥⎥⎦, q(Δ) =

⎡
⎢⎢⎣

Δ2/2 0
Δ 0
0 Δ2/2
0 Δ

⎤
⎥⎥⎦, (2)

where x(k) =
[
x(k) vx(k) y(k) vy(k)]T is the state vector of a target at frame k, x(k) and

y(k) are positions in the x and y directions, respectively, vx(k) and vy(k) are velocities in the
x and y directions, respectively, T denotes the matrix transpose, Δ is the sampling time, and
v(k) is a process noise vector, which is Gaussian white noise with the covariance matrix
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Qv = diag
([

σ2
x σ2

y

])
. The measurement equation representing the positions in the x and y

directions of the target is

z(k) =
[

zx(k)
zy(k)

]
= Hx(k) + w(k), (3)

H =

[
1000
0010

]
, (4)

where w(k) is a measurement noise vector, which is Gaussian white noise with the covari-
ance matrix R = diag

([
r2

x r2
y

])
.

3.2. Two-Point Initialization

A track is initialized by two positions in consecutive frames if those two positions are
close enough to pass the initial speed gating. The initial state and covariance of track t at
frame k are estimated as, respectively,

x̂t(k|k) =

⎡
⎢⎢⎣

x̂t(k|k)
v̂tx(k|k)
ŷt(k|k)
v̂ty(k|k)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

ztx(k)
ztx(k)−ztx(k−1)

Δ
zty(k)

zty(k)−zty(k−1)
Δ

⎤
⎥⎥⎥⎦, Pt(k|k) =

⎡
⎢⎢⎢⎢⎢⎣

r2
x

r2
x

Δ 0 0
r2

x
Δ

2r2
x

Δ2 0 0

0 0 r2
y

r2
y

Δ

0 0
r2

y
Δ

2r2
y

Δ2

⎤
⎥⎥⎥⎥⎥⎦, t = 1, . . . , N(k),

(5)
where N(k) is the number of established tracks at frame k, which increases by 1 when a
track is initialized and decreases by 1 when it terminates. The initial speed is bounded as√
[v̂tx(k|k)]2 +

[
v̂ty(k|k)

]2 ≤ Vmax, where Vmax is the maximum initial speed of the target.

3.3. Prediction and Filter Gain

The state and covariance predictions are iteratively computed as

x̂t(k|k − 1) = Fx̂t(k − 1|k − 1), (6)

Pt(k|k − 1) = FPt(k − 1|k − 1)FT + Q, (7)

Q = q(Δ)Qvq(Δ)T , (8)

where x̂t(k|k − 1) and Pt(k|k − 1), respectively, are the state and the covariance prediction
of track t at frame k. The residual covariance St(k) and the filter gain Wt(k), respectively,
are obtained as

St(k) = HPt(k|k − 1)HT + R, (9)

Wt(k) = Pt(k|k − 1)HTSt(k)−1. (10)

3.4. Measurement-to-Track Association with Bounding Box Gating

The measurement association assigns a suitable measurement to the established track
in the multi-target and clutter environments. The nearest-neighbor association rule se-
lects the mtk-th measurement, which has the shortest statistical distance to the position
prediction as

mtk = argmin
m =1,...,M(k)

∥∥∥νtm (k)T
[
St(k)]−1νtm(k)

∥∥∥, (11)

νtm(k) = zm(k)− Hx̂t(k|k − 1), (12)
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where zm(k) is the m-th measurement vector at frame k, and M(k) is the number of measure-
ments at frame k. The speed and measurement gating are defined as

‖zmtk (k)− [x̂t(k|k) ŷt(k|k)]T‖
Δ

≤ Smax & νtmtk (k)
T [St(k)]−1νtmtk (k) ≤ γ f , (13)

where Smax is the maximum target speed, γ f is a gating size of the measurement validation
region, and ‘&’ is the AND operation. The measurement gating is the chi-square hypothesis
testing on Gaussian measurement residuals [32].

The bounding box gating is proposed as

IoU(mtk, m̂tk−1) =
|Bbox(mtk) ∩ Bbox(m̂tk−1)|
|Bbox(mtk) ∪ Bbox(m̂tk−1)| ≥ θ f , (14)

where the m̂tk−1-th measurement is already associated with track t at frame k − 1, Bbox(·)
is the set of pixels in the bounding box obtained by YOLO detection, |·| is the operator
that counts the pixels in a set, and θ f is a threshold for the bounding box gating; if the
mtk-th measurement satisfies Equation (14), that is, the IoU of two bounding boxes is equal
to or more than the threshold value, the mtk-th measurement is associated with track t
at frame k. Figure 4 illustrates the measurement gating and the bounding box gating.
In Figure 5a, mtk is located inside the validation region and is associated with track t,
whereas in Figure 5b, it is outside the validation region, but its IoU is high enough for
the measurement to be associated with track t. As a consequence, the statistically nearest
measurement is associated with a track if it passes the speed-measurement gating or the
bounding box gating. If the measurements are not associated with any target, they are used
for the track initialization at the current or previous frame.

 
(a) (b) 

Figure 5. Measurement-target association, (a) measurement gating, (b) bounding box gating.

3.5. State Estimate and Covariance Update

The state estimate and the covariance are updated after the measurement association as

x̂t(k|k) = x̂t(k|k − 1) + Wt(k)νtm̂tk (k), (15)

Pt(k|k) = Pt(k|k − 1)− Wt(k)St(k)Wt(k)T . (16)

If there is no measurement associated, they are the same, with predictions of the state
and covariance as

x̂t(k|k) = x̂t(k|k − 1), (17)
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Pt(k|k) = Pt(k|k − 1). (18)

3.6. Track-to-Track Association

A track fusion method for a multi-sensor environment has been developed to associate
redundant tracks [28]. The directional track association was proposed in [29]. The track
association procedure was improved to search the fittest track in [30]. The fittest track for
track s is

t̂ = argmin
t=1,...,N(k),s �=t

[x̂s(k|k)− x̂t(k|k)]T [Tst(k)]−1[x̂s(k|k)− x̂t(k|k)], (19)

Tst(k) = Ps(k|k) + Pt(k|k)− Pst(k|k)− Pts(k|k), (20)

Pst(k|k) = [I − bs(k)Ws(k)H]
[

FPst(k − 1|k − 1)FT + Q
]
[I − bt(k)Wt(k)H], (21)

where I is the identity matrix, and bs(k) and bt(k) become one when track s or t is associated
with a measurement, otherwise, they are zero [32]. The fused covariance in Equation (21) is
a linear recursion with the initial condition Pst(0|0), which is the square zero matrix. The
fittest track is also satisfied with the following track and directional gating as

[x̂s(k|k)− x̂t̂(k|k)]T
[
Tst̂(k)]

−1[x̂s(k|k)− x̂t̂(k|k)] ≤ γg &

max
(

cos−1 |<d̂st̂(k|k), v̂s(k|k)>|
‖d̂st̂(k|k)‖‖v̂s(k|k)‖ , cos−1 |<d̂st̂(k|k), v̂t̂(k|k)>|

‖d̂st̂(k|k)‖‖v̂t̂(k|k)‖
)
≤ θg

(22)

d̂st̂(k|k) =
[

x̂t̂(k|k)− x̂s(k|k)
ŷt̂(k|k)− ŷs(k|k)

]
,v̂s(k|k) =

[
v̂sx(k|k)
v̂sy(k|k)

]
, (23)

where γg is a gating size of the track validation region, < · > denotes the inner product
operation, and θg is a threshold for the directional gating. The track gating is the chi-
square hypothesis testing. Tracks s and t̂ have the error dependencies on each other if they
originated from the same target [32]. The directional gating tests the maximum deviation
between the displacement vector and the velocity vector.

After the fittest track is selected, the current state of track s is replaced with a fused
estimate and covariance if |Ps(k|k)| ≤ |Pt̂(k|k)| as

x̂s(k|k) = x̂s(k|k) + [Ps(k|k)− Pst̂(k|k)][Ps(k|k) + Pt̂(k|k)− Pst̂(k|k)− Pt̂s(k|k)]−1[x̂t̂(k|k)− x̂s(k|k)], (24)

Ps(k|k) = Ps(k|k)− [Ps(k|k)− Pst̂(k|k)][Ps(k|k) + Pt̂(k|k)− Pst̂(k|k)− Pt̂s(k|k)]−1[Ps(k|k)− Pt̂s(k|k)]. (25)

A more accurate track has less error covariance; thus, fusion only occurs if the deter-
minant of the covariance matrix of track s is less than the determinant of the selected track
t̂. After track s becomes a fused track, track t̂ becomes a potentially terminated track. The
potentially terminated track is still eligible to be associated with other tracks that have not
yet been fused. The potentially terminated track is terminated when no track remains for
the track association.

3.7. Track Termination and Validation Testing

Tracks are terminated by two criteria. One is if a track is selected as a potentially
terminated track but not fused during the track association, then the track is terminated.
The other is when the number of frames not updated by the measurement exceeds a
threshold, the track is terminated.

After track termination, its validity is tested through the track life length. Track life
length is defined as the number of frames between the last frame and the initial frame
associated with the measurement. If the track life length is less than the minimum track life
length, the track is considered invalid and is removed.
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3.8. Performance Evaluation

The tracking performance is evaluated in terms of the number of tracks, total track life
(TTL), mean track life (MTL), and track purity (TP) [33]. The TTL, MTL, and TP are defined,
respectively, as

TTL =
Sum of lengths of tracks which have the same target ID

Target life length − 1
, (26)

MTL = TTL
Number of tracks associated in TTL , (27)

TP =
Number of measurments with the same target ID in a track

Number of measurements in the track
, (28)

where target life length is defined as the number of frames between the last frame and the
first frame when a measurement of the target appears, and the target ID of a track is defined
as the target with the most measurements associated with the track. It is noted that the
track length included in the TTL is only the number of frames for which the measurement
associated is the same as the target ID of the track and it also includes predictions between
updates. If the track is broken or overlaps with one target, the MTL will be less than the
TTL. The TP becomes one if there is only one target associated with a track.

Figure 6 illustrates the TTL, MTL, and TP, where three tracks are generated for two
targets. The blue and red circles represent the measurements of Targets t and s, respectively.
Mission detections are found at Frames 6 and 8 for Targets t and s, respectively. The
squares, triangles, and crosses represent the initialized or updated states of Tracks 1, 2, and
3, respectively. The same color of the target and the track indicates that they are related by
the measurement-track association. The empty triangles in Track 2 indicate the predictions
between the updated states. The Target ID of Tracks 1 and 2 is t, and Target ID of Track 3
is s. There is a breakage between Tracks 1 and 2 for Target t, and an intersection between
Tracks 2 and 3 for Targets t and s. The TTL of Targets t and s are 7/9 and 4/7, respectively.
The MTL of Targets t and s are 3.5/9 and 4/7, respectively, since the number of tracks for
Targets t and s is 2 and 1, respectively. The TP of Tracks 1, 2, and 3 are 1, 3/5, and 2/3,
respectively.

Figure 6. An illustration of three tracks generated for two targets.

4. Results

The experimental results are presented with video description, parameter settings,
YOLO object detection, and multiple-target tracking.

4.1. Video Description

An infrared thermal imaging camera captured three videos (Videos 1–3). The camera,
FILR Vue Pro R640 (f = 19 mm, FOV = 32◦ × 26◦, spectrum band: 7.5–13.5 μm, pixel pitch:
17 μm), is mounted on a DJI Inspire 2 drone. The resolution of the image is 640 × 512 pixels,
and the frame rate is set to 30 fps. The videos were shot in the mountains on a winter
night with no ambient light. In these environments, the visible image is completely dark.
The thermal video capturing was assumed to be under harsh circumstances; the drone
flies in any direction and altitude slowly or swiftly, and the perspective of the drone is
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arbitrary. Image characteristics vary from image to image depending on weather conditions
and surrounding objects. In Video 1, three hikers walk around the mountain for 60 s. In
Videos 2 and 3, three hikers are simulated as missing in the mountains for 120 s. Figure 7a
shows the 1st, 501th, 901th, 1301th, and 1701th frame of Video 1, and Figure 7b,c show the
1st, 901th, 1801th, 2701th, 3601th frame of Videos 2 and 3, respectively. In each frame, a
target ID, numbered 1 to 3 or 4, was displayed close to the object. It is assumed that there
are four people in Video 1 and one of them appears with his legs at the top of the frame.

Figure 7. Sample frames with Target ID’s of (a) Video 1, (b) Video 2, (c) Video 3.

4.2. People Detection by YOLOv5

YOLOv5 detects people in every frame of Videos 1–3. The detection results are
summarized in Table 1. For YOLOv5l, the number of detections in Video 1 is more than
the number of true instances, mostly due to false alarms generated on the car at the top of
the frame. For YOLOV5x, the number of detections in Video 2 is more than the number of
instances. This is because more than one bounding box was generated for one object. The
recall of YOLOv5x is calculated lower than YOLOvl for Video 1 because YOLOv5x does
not always detect the small part of the legs that appear at the top of the frame.
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Table 1. YOLOv5 detection results.

Video 1 Video 2 Video 3

Descriptions
Num. of frames (duration) 1801 (1 min) 3601 (2 min)
Num. of objects (people) 4 3

Num. of instances 6000 10,652 10,800

YOLOv5s
Num. of detections 5760 10,492 9143

Num. of detections over 0.5 conf. level 5176 10,283 8425
Recall over 0.5 conf. level 0.863 0.965 0.780

YOLOv5l
Num. of detections 6634 10,610 9693

Num. of detections over 0.5 conf. level 5811 10,474 9248
Recall over 0.5 conf. level 0.969 0.983 0.856

YOLOv5x
Num. of detections 5734 10,699 9947

Num. of detections over 0.5 conf. level 5406 10,567 9676
Recall over 0.5 conf. level 0.901 0.992 0.862

The detection of YOLOv5x with a minimum confidence level of 0.5 was used for the
target tracking as it provides the most accurate detections without generating false alarms.
For YOLOv5x, the recall of Videos 1 to 3 at a minimum confidence level of 0.5 is 0.901, 0.992,
and 0.862, respectively, and the precision is 1 for all videos. In Video 3, harsh conditions,
such as close and occluding objects and rapid movement of the drone, degrade the detection
performance. Figure 8 shows YOLOv5x detection with a minimum confidence level of 0.5 for
the sample frames. The centroids of the object in all frames are shown in Figures 9 and 10 in
the first frame and on a white background, respectively. Supplementary Videos S2–S4 show
the YOLOv5x object detection results of Videos 1, 2, and 3, respectively.

Figure 8. Detections of the sample frames, (a) Video 1, (b) Video 2, (c) Video 3.
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(a) (b) (c) 

Figure 9. Detections in the 1st frame of (a) Video 1: 5406 detections, (b) Video 2: 10,567 detections,
(c) Video 3: 9676 detections.

(a) (b) (c) 

Figure 10. Detections only, (a) Video 1: 5406 detections, (b) Video 2: 10,567 detections, (c) Video 3:
9676 detections.

4.3. Multiple-Target Tracking
4.3.1. Parameter Set-Up

The target-tracking parameters are shown in Table 2. Video 1 was processed ev-
ery two frames, thus the sampling time is 1/15 s for Video 1, whereas it is 1/30 s for
Videos 2 and 3. The one-pixel coordinate is scaled to 0.03 m, 0.04 m, and 0.05 m for
Videos 1, 2, and 3, respectively. The maximum initial speed of the target is set to 3 m/s.
The process noise standard deviation of the Kalman filter is set to 0.5 m/s2 for Videos 1 and
2.5 m/s2 for Videos 2 and 3. The process noise standard deviation is determined consider-
ing the acceleration of the target and the rapid movement of the drone. The measurement
noise standard deviation is set to 0.5 m for all videos. The maximum target speed for the
track maintenance is set to 10 m/s for Videos 1 and 3 and 20 m/s for Video 2. The threshold
for measurement gating is set to four and the minimum IoU for the bounding box gating is
set to 0.6 for Videos 1 and 2 and 0.4 for Video 3. The gate threshold and angular threshold
for the track association are set at 10 and 45◦ for Videos 1 and 3, respectively, and 20 and
60◦ for Video 2, respectively. They are set up when better results are produced. For the
track termination, the maximum number of searches is set at 20 frames, and tracks shorter
than 2 s are removed as invalid.
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Table 2. Target tracking parameters.

Parameters (Unit) Video 1 Video 2 Video 3

Sampling Time (second) 1/15 1/30
Max. initial target speed, Vmax (m/s) 3

Process noise std. σx = σy (m/s2) 0.5 2.5
Measurement noise std. rx = ry (m) 0.5

Measurent association
Max. target speed, Smax (m/s) 10 20 10

Gate threshold, γm 4
Bbox threshold, bm 0.6 0.4

Track association
Gate threshold, γt 10 20 10

Angular threshold, θt (degree) 45◦ 60◦ 45◦

Track termination Maximum searching
number (frame) 20

Min. track life length for track validity (second) 2

4.3.2. Target Tracking Results

The target tracking results for Videos 1 to 3, including the number of valid tracks,
average TTL, average MTL, and average TP, are shown in Tables 3–5, respectively. Case 1,
the first column of the table, is the result of applying both the bounding box gating and the
track association. Case 2, the second column, is the result of applying the track association
without the bounding box gating, and Case 3, the third column, is the result of applying
neither the track association nor the bounding box gating. It is noted that Target 4 at the
top of Video 1 was excluded from evaluating the tracking performance because it is a small
part of a person’s foot that does not move. For Video 1, the tracking results of Case 3 are
perfect. For Videos 2 and 3, the results of Case 1 are better than others. For Case 1, the
average TTL of Videos 1 to 3 are obtained as 0.987, 0.993, and 0.894, respectively. The
corresponding average MTLs are 0.987, 0.442, and 0.151, respectively. The average TPs
are obtained as 1, 0.999, and 0.995, respectively, for the three videos. The average MTL is
reduced for Videos 2 and 3 due to the track breakage caused by the high maneuvering of
the drone or object occlusion.

Table 3. Tracking results of Video 1.

Case 1 Case 2 Case 3

Num. of Tracks 3 3 3
Avg. TTL 0.987 0.982 1
Avg. MTL 0.987 0.982 1
Avg. TP 1 0.991 1

Table 4. Tracking results of Video 2.

Case 1 Case 2 Case 3

Num. of Tracks 7 7 18
Avg. TTL 0.993 0.945 0.943
Avg. MTL 0.442 0.417 0.193
Avg. TP 0.999 0.954 0.963

Table 5. Tracking results of Video 3.

Case 1 Case 2 Case 3

Num. of Tracks 20 22 29
Avg. TTL 0.894 0.878 0.890
Avg. MTL 0.151 0.130 0.097
Avg. TP 0.995 0.995 0.986
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Figures 11 and 12 show the tracks for all frames in random colors. The tracks are shown
in the first frame in Figure 11 and on a white background in Figure 12. Supplementary
Videos S5–S7 show the tracking results for Case 1 for Videos 1, 2, and 3, respectively.

(a) (b) (c) 

Figure 11. Tracks in the 1st frame, (a) Video 1: 4 valid tracks, (b) Video 2: 7 valid tracks, (c) Video 3:
20 valid tracks.

(a) (b) (c) 

Figure 12. Tracks only, (a) Video 1: 4 valid tracks, (b) Video 2: 7 valid tracks, (c) Video 3: 20 valid tracks.

Seven Supplementary Multimedia Files (MP4 format) are available online. Supple-
mentary Materials Video S1 is a video of YOLO training images. Training instances are
indicated by blue rectangles. Supplementary Materials Videos S2–S4 are the YOLOv5x
detection results with a minimum confidence level of 0.5 for Videos 1 to 3, respectively. The
videos display bounding boxes, including the class name and confidence level. Supple-
mentary Materials Videos S5–S7 are the tracking results from Videos 1 to 3 applying both
the bounding box gating and the track association, respectively. The bounding box and
its centroid of YOLOv5x are shown as red squares. Position estimates are shown as blue
circles. Valid tracks were numbered in the order they were created.

5. Discussion

The thermal videos were captured under extremely challenging conditions, simulating
people needing search and rescue missions in non-visible environments. The experimental
scenarios included overgrown terrain, in which the warm objects were either partially
visible or invisible. The objects are often occluded by other people and natural objects, such
as trees, bushes, and foliage. The drone is manually operated, allowing rapid movements.

Since the more accurate the location information, the better the tracking quality, the
detections of YOLOv5x with a minimum confidence level of 0.5 were utilized. The detection
accuracy is expected to increase with larger training data since less than 200 images were
trained in this paper.
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TTL and MTL are defined on the target and TP is defined on the track. High average
TTLs and average TPs are achieved for all videos. However, the average MTLs were
lowered for Videos 2 and 3 as more than one valid track was generated from the target. The
number of valid tracks is increased due to the track breakage caused by missing detection.
The missing detection is mainly caused by the high maneuvering of the drone or the object
occlusion. One track intersection occurs in both Videos 2 and 3, resulting in the slightly
lower average TP. The track breakage and intersection both lower the average TTL. The
bounding box gating has improved tracking performance for all metrics.

Low-resolution and gray-scaled infrared thermal frames can be transmitted to a
ground station with less bandwidth. Adopting a lighter and later version of the YOLO
model, such as YOLOv8 [34], is also considered to increase implementation feasibility, as
well as detection performance.

6. Conclusions

In the paper, multiple-target tracking using thermal imaging was studied for the
purpose of search and rescue missions with a drone. The object-detection multiple-target
tracking scheme has been shown to be very powerful for tracking people in thermal
videos acquired by drones. The harsh conditions of simulated search and rescue missions,
including (1) no ambient lighting environment, (2) complex backgrounds, (3) closely located
and heavily occluded targets, and (4) arbitrary moving platforms, can be overcome with
the proposed solution.

To evaluate tracking performance, three metrics TTL, MTL, and TP were obtained.
TTL and TP provide solid performance, but MTL decreases when tracks are broken. The
proposed solution is direct and simple, yet quite effective. It is also suitable for security
and surveillance in civil and military fields and wildlife monitoring. It can also be applied
to pedestrian tracking in crowds and object tracking in sports analysis. Track segment
association to increase the track continuity remains for future studies. Adopting higher
iterations of the YOLO model for detection performance and feasible implementation also
remains for future work.

Supplementary Materials: The following are available online at https://zenodo.org/records/1046
7489 accessed on 26 January 2024, Video S1: YOLOv5x training data, Video S2: Video 1 YOLOv5x
detection, Video S3: Video 2 YOLOv5x detection, Video S4: Video 3 YOLOv5x detection. Videos S2–S4
are the detection results with 0.5 minimum confidence level. Video S5: Video 1 target tracking,
Video S6: Video 2 target tracking, Video S7: Video 3 target tracking. Videos S5–S7 are the tracking
results with the bounding box gating and the track association.
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Abstract: We present Inverse Airborne Optical Sectioning (IAOS), an optical analogy to Inverse
Synthetic Aperture Radar (ISAR). Moving targets, such as walking people, that are heavily occluded
by vegetation can be made visible and tracked with a stationary optical sensor (e.g., a hovering camera
drone above forest). We introduce the principles of IAOS (i.e., inverse synthetic aperture imaging),
explain how the signal of occluders can be further suppressed by filtering the Radon transform of
the image integral, and present how targets’ motion parameters can be estimated manually and
automatically. Finally, we show that while tracking occluded targets in conventional aerial images is
infeasible, it becomes efficiently possible in integral images that result from IAOS.

Keywords: synthetic aperture imaging; through-foliage tracking; occlusion removal

1. Introduction

Higher resolution, wide depth of field, fast framerates, high contrast, or signal-to-
noise ratio can often not be achieved with compact imaging systems that apply narrower
aperture sensors. Synthetic aperture (SA) sensing is a widely recognized technique to
achieve these objectives by acquiring individual signals of multiple or a single moving
small-aperture sensor and by computationally combining them to approximate the signal of
a physically infeasible, hypothetical wide aperture sensor [1]. This principle has been used
in a wide range of applications, such as radar [2–28], telescopes [29,30], microscopes [31],
sonar [32–35], ultrasound [36,37], lasers [38,39], and optical imaging [40–47].

In radar, electromagnetic waves are emitted and their backscattered echoes are recorded
by an antenna. Electromagnetic waves at typical radar wavelengths (as compared with
the visible spectrum) can penetrate scattering media (i.e., clouds, vegetation, and partly
soil) and are quite useful for obtaining information in all weather conditions. However,
acquiring high spatial resolution images would require an impractically large antenna [2].
Therefore, since its invention in the 1950s [3,4], Synthetic Aperture Radar (SAR) sensors
have been placed on space-borne systems, such as satellites [5–8], planes [9–11], and
drones [12,13] in different modes of operation, such as strip-map [11,14], spotlight [11,14],
and circular [10,14] to observe various sorts of phenomena on Earth’s surface. These in-
clude crop growth [8], mine detection [12], natural disasters [6], and climate change effects,
such as the deforestation [14] or melting of glaciers [7]. Phase differences of multiple SAR
recordings (interferometry) have even been used to reconstruct depth information and
enables finer resolutions [15].

Analogous to SAR (which utilizes moving radars for synthetic aperture sensing of widely
static targets), a technique known as Inverse Synthetic Aperture Radar (ISAR) [16–18] con-
siders the relative motion of moving targets and static radars for SAR sensing. In contrast to
SAR (where the radar motion is usually known), ISAR is challenged by the estimation of
an unknown target motion. It often requires sophisticated signal processing and is often
limited to sensing one target at a time, while SAR can image large areas and monitor multi-
ple (static) targets simultaneously [17,18]. ISAR has been used for non-cooperative target
recognition (non-stationary targets) in maritime [19,20], airspace [21,22], near-space [23,24],
and overland surveillance applications [25–28]. Recently, spatially distributed systems and
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advanced signal processing, such as compressed sensing and machine learning, have been
utilized to obtain 3D images of targets, target’s reflectivity, and more degrees of freedom
for target motion estimation [27,28].

With Airborne Optical Sectioning (AOS) [48–60], we introduced an optical synthetic
aperture imaging technique that captures an unstructured light field with an aircraft, such
as a drone. We utilized manually, automatically [48–56,58,59], or fully autonomously [57]
operated camera drones that sample multispectral (RGB and thermal) images within a
certain (synthetic aperture) area above occluding vegetation (such as forest) and combined
their signals computationally to remove occlusion. The outcome is a widely occlusion-free
integral image of the ground, revealing details of registered targets while unregistered
occluders above the ground, such as trunks, branches or leaves disappear in strong defocus.
In contrast to SAR, AOS benefits from high spatial resolution, real-time processing rates,
and wavelength-independences, making it useful in many domains. So far, AOS has been
applied to the visible [48,59] and the far-infrared (thermal) spectrum [51] for various appli-
cations, such as archeology [48,49], wildlife observation [52], and search and rescue [55,56].
By employing a randomly distributed statistical model [50,57,60] the limits of AOS and its
efficacy with respect to its optimal sampling parameters can be explained. Common image
processing tasks, such as classification with deep neural networks [55,56] or color anomaly
detection [59] are proven to perform significantly better when applied to AOS integral
images compared with conventional aerial images. We also demonstrated the real-time
capability of AOS by deploying it on a fully autonomous and classification-driven adaptive
search and rescue drone [56]. Yet, the sequential sampling nature of AOS when being used
with conventional single-camera drones has limited its applications to recover static targets
only. Moving targets lead to motion blur in the AOS integral images, which are nearly
impossible to classify or to track.

In [59], we presented a first solution to tracking moving people through densely
occluding foliage with parallel synthetic aperture sampling supported by a drone-operated,
10 m wide, 1D camera array (assembling 10 synchronized cameras). Although feasible,
such a specialized imaging system is in most cases is impractical as it is bulky and difficult
to control.

Being inspired by the principles of ISAR for radar, in this article we present Inverse
Airborne Optical Sectioning (IAOS) for detecting and tracking moving targets through
occluding foliage (cf. Figure 1b) with a conventional, single-camera drone (cf. Figure 1c).
As with ISAR, IAOS relies on the motion of targets being sensed by a static airborne optical
sensor (e.g., a drone hovering above forest) over time (cf. Figure 1a) to computationally
reconstruct an occlusion-free integral image (cf. Figure 1d). Essential for an efficient
reconstruction is the correct estimation of the target’s motion.

In this article, we make four main contributions: (1) We introduce the principles of
IAOS (i.e., inverse synthetic aperture imaging) in Sections 1 and 2. (2) We explain how the
signal of occluders can be further suppressed by filtering the Radon transform of the image
integral in Section 2.1 (cf. Figure 1e). (3) We present how a target’s motion parameters can
be estimated manually and automatically in Sections 2.1 and 2.2. (4) Finally, we show that
while tracking occluded targets in conventional aerial images is infeasible, it is efficiently
possible in integral images that result from IAOS in Section 3.
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Figure 1. Inverse Airborne Optical Sectioning (IAOS) principle: IAOS relies on the motion of targets
being sensed by a static airborne optical sensor (e.g., a drone (c) hovering above forest (b)) over time
(a) to computationally reconstruct an occlusion-free integral image I (d). Essential for an efficient
reconstruction is the correct estimation of the target’s motion (direction θ, and speed s). By filtering
the Radon transform of I, the signal of occluders can be suppressed further (e). Thermal images are
shown in (a,d,e).

2. Materials and Methods

All field experiments were carried out in compliance with the legal European union
Aviation Safety Agency (EASA) flight regulations, using a DJI Mavic 2 Enterprise Ad-
vanced, over dense broadleaf, conifer, and mixed forest, and under direct sunlight as well
as under cloudy weather conditions. Free flight drone operations were performed using
the DJI’s standalone smart remote controller with DJI’s Pilot application. RGB videos of
resolution 1920 × 1080 (30 fps) and thermal videos of resolution 640 × 512 (30 fps) were
recorded on the drone’s internal memory, and were processed offline after landing. For
vertical (top-down, as in Figure 3) scans the drone was hovering at an altitude of about
35 m AGL. For horizontal scans (sideways, as in Figure 4) the drone was hovering at a
distance of about 10 m away from the vegetation. For quicker processing, we extracted
a selection of 1–5 fps from the acquired 30 fps thermal videos using FFmpeg python
bindings. Offline processing included intrinsic camera calibration (pre-calibrated trans-
formation matrix computed using MATLAB’s camera calibrator application) and image
un-distortion/rectification using OpenCV’s pinhole camera model (as explained in [48,55]).
The undistorted and rectified images were cropped to a field of view of 36◦ and a resolu-
tion of 1024 × 1024 px. Image integration was achieved by averaging the pre-processed
images being registered based on manually or automatically estimated motion parameters,
as explained in Sections 2.1 and 2.2. Radon transform filtering [61–63] (also explained in
Sections 2.1 and 2.2) was implemented in Mathworks’ MATLAB R2022a.

2.1. Manual Motion Estimation

If the target’s motion parameters (i.e., direction, θ [◦] and speed, s [m/s]) are known
and assumed to be constant for all time intervals, the captured images can be registered
by shifting them accordingly to θ and s. Thereby, θ can directly be mapped to the image
plane, while s must be mapped [m/s] to [px/s] (which is easily possibly after camera
calibration and knowing the drone’s altitude). By averaging the registered images results
in an integral image that shows the target in focus (local motion of the target itself, such as
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arm movements of a walking person, lead to defocus) while the misregistered occluders
vanish in defocus.

Large occluders that are shifted in direction θ while being integrated appear as linear
directional blur artifacts in the integral image (cf. Figure 1d). Their signal can be suppressed
by filtering (zeroing out) the Radon transform of the integral image I(θ,s) in direction θ

(+/− an uncertainty range that considers local motion non-linearities of the occluders, such
as movements of branches caused by wind, etc.). The inverse Radon transform (filtered back
projection [63]) of the filtered sinogram results in a new integral image with suppressed
signal of the directionally blurred occluders (cf. Figure 1e). This process is illustrated in
Figure 2, and can be summarized mathematically with:

I′(θ, s) = Rf−1(F(Rf(I(θ, s)), θ)), (1)

where F is the filter function which zeros out coefficients at angle θ (+/− uncertainty range)
in the sinogram.

 

Figure 2. Radon transform filtering: to suppress directional blur artifacts of large occluders integrated
in direction θ (a), the Radon transform (Rf) of the integral image (b) is filtered with function F that
zeros out θ, +/− an uncertainty range which takes local motion of the occluders themselves into
account (c). The inverse Radon transform (Rf−1) of this filtered sinogram suppresses the direction
blur artefacts of the occluders (d). Note: remaining directional artifacts in orthogonal directions are
caused by under-sampling (i.e., the number of images being integrated). They are fluctuating too
much to be suppressed in the same manner. In the example above, θ = 118◦ with +/− 15◦ (image
coordinate system: clockwise, +y-axis = 0◦).

One way of estimating the correct motion parameters is by visual search (i.e., θ and
s are interactively modified until the target appears best focused in the integral image).
Exploring the two-dimensional parameter space within proper bounds is relatively efficient
if the motion can be assumed to be constant. Sample results are presented in Section 3.
See also Supplementary Video S1 for an example of manual visual search for the motion
parameters of results shown in Figure 3k. In case of non-linear motion, the motion parame-
ters must be continuously and automatically estimated. A manual exploration becomes
infeasible in this case.

2.2. Automatic Motion Estimation

Automatic estimation of motion parameters requires an error metric which is capa-
ble of detecting improvement and degradation in visibility (i.e., focus and occlusion) for
different parameters. Here, we utilize simple gray level variance (GLV) [64] as an objec-
tive function. We already proved in [53] that, in contrast to traditionally used gradient-,
Laplacian-, or wavelet-based focus metrics [65], GLV does not rely on any image features
and is thus invariant to occlusion. In [54] (see also Appendix A), we demonstrated that the
variance of an integral image is:

Var[I] =
D(1 − D)((μo − μs)

2) + Dσ2
o + (1 − D)σ2

s
N

+ (1 − D)2(1 − 1
N
)σ2

s , (2)
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where D is the probability of occlusion, while μo, σ2
o and μs, σ2

s are the statistical properties
of occlusion and the target signal, respectively.

Integrating N individual images with optimal motion parameters results in an occlusion-
free view of the target’s signal whereas the signal strength of the occluders reduces and
disappears in strong defocus. To further suppress occluders, we used Radon filtering [61–63]
as described in Section 2.1. However, we now utilize the linearity property of the Radon
transform which states that:

R f
(
∑i αi Ii

)
= ∑i αiR f (Ii). (3)

Thus, instead of filtering the integral image I(θ,s), as explained in Equation (1), we
apply Radon transform filtering to each single image Ii before integrating it.

For automatic motion parameter estimation, we registered the current integral image I
(integrating I′1 . . . I′i−1) to the latest (most recently recorded) inverse Radon transformed fil-
tered image I′i = Rf−1(F(Rf(Ii), θ)) by maximizing Var[I] while optimizing for best motion
parameters (θ, s). Deterministic-global search, DIRECT [66] (as implemented Nlopt [67]),
was applied for optimization. Consequently, we considered each discrete motion compo-
nent between two recorded images and within the corresponding imaging time (e.g., 1/30 s
for 30 fps) to be piecewise linear. The integration of multiple images, however, can reveal
and track a non-linear motion pattern where (θ, s) vary in each recording step. Sample
results are presented in Section 3 and in Supplementary Videos S2 and S3.

3. Results

Figure 3 presents results from field studies of IAOS with manual motion estimation,
as explained in Section 2.1. Images are recorded top-down, with the drone hovering
at a constant position above conifer (Figure 3a–l), broadleaf (Figure 3m–o), and mixed
(Figure 3p–r) forest. Estimated motion parameters of hidden walking people were: 118◦,
0.5 m/s (Figure 3a–l), 108◦, 0.6 m/s (Figure 3m–o), and 90◦, 0.6 m/s (Figure 3p–q).

 
Figure 3. Manual motion estimation (vertical): sequence of single thermal images (a–j) with walking
persons indicated (yellow box), distance covered by person during capturing time (j), computed
integral image (k), and Radon transform filtered integral image (l). Target indicated by yellow
arrow. Different forest types: single thermal image example (m,p), integral images (n,q), and Radon
transform filtered integral images (o,r).

Figure 4 illustrates an example with the drone hovering at a distance of 10 m in front of
dense bushes (at an altitude of 2 m, recording horizontally). The hidden person is walking
from right to left at 260◦ with 0.27 m/s (both manually estimated).
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Figure 4. Manual motion estimation (horizontal): Walking person behind dense bushes. RGB image
of drone (a). Single thermal images with person position indicated with yellow box (b–k). Distance
covered by person during capturing time (k). Integral image (l) and close-up (m) where the shape of
the person can be recognized.

Figure 5 illustrates two examples for automatic motion estimation, as explained in
Section 2.2, with the drone hovering at an altitude of 35 m and a hidden person walking
through dense forest.

 
Figure 5. Automatic motion estimation (vertical): Two examples of tracking a moving hidden person
within dense forest ((a,d) RGB images of drone) in either single thermal images (b,e) and IAOS
integral images. Note: the tracking results of the integral images were projected back to a single
thermal image for better spatial reference (c,f). Motion paths are indicated by yellow lines. While
tracking in single images leads to many false positive detections, tracking in integral images results
in clear track-paths of a single target. See Supplementary Videos S2 and S3 for dynamic examples of
these results.

For tracking, moving targets are first detected by utilizing background subtraction
based on Gaussian mixture models [68,69]. The resulting foreground mask is further
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processed using morphological operations to eliminate noise [70,71]. Subsequently blob
analysis [72,73] detects connected pixels corresponding to each moving target. Association
of detections in subsequent frames is entirely based on motion where the motion of each
detected target is estimated by a Kalman filter. The filter predicts the target location in
subsequent frame (based on previous motion and associated motion model) and then
determines the likelihood of assigning the detection to the target.

For comparison, we applied the above tracking approach to both: the sequence of
captured single thermal images and to the sequence of integral images computed from
the single images, as described in Section 2.2. For each case, tracking parameters (such as
minimum blob size, max. prediction length, number of training images for background
subtraction) were individually optimized to achieve best possible results.

While tracking in single images leads to many false positive detections becoming
practically infeasible, tracking in integral images results in clear track-paths of a single target.
Estimated mean motion parameters were: 291◦, 0.82 m/s (Figure 5a–c), 309◦, 0.16 m/s
for the first leg, and 241◦, 0.41 m/s for the second leg (Figure 5d–f). See Supplementary
Videos S2 and S3 for dynamic examples of these results.

4. Discussion and Conclusions

In this article we presented Inverse Airborne Optical Sectioning (IAOS), an optical
analogy to Inverse Synthetic Aperture Radar (ISAR). Moving targets, such as walking
people, that are heavily occluded by vegetation can be made visible and tracked with a
stationary optical sensor (e.g., a hovering camera drone above forest). We introduced the
principles of IAOS (i.e., inverse synthetic aperture imaging), explained how the signal of
occluders can be further suppressed by filtering the Radon transform of the image integral,
and presented how targets’ motion parameters can be estimated manually and automati-
cally. Furthermore, we showed that while tracking occluded targets in conventional aerial
images is infeasible, it is efficiently possible in integral images that result from IAOS.

IAOS has several limitations: We assume that local motion of occluders and of the
drone (e.g., caused by wind) is smaller than the motion of the target. Small local motion of
the target itself, such as individual moving body parts, appear blurred in integral images.
Moreover, the field of view of a hovering drone is limited and moving targets might
be out of view quickly. In the future, we will investigate how drone movement being
adapted to target movement can increase field of view and reduce blur of local target
motion. This corresponds to a combination of IAOS (i.e., occlusion removal by registering
target motion) and classical AOS (i.e., occlusion removal by registering drone movement).
Furthermore, results of Radon transform filtering have artifacts that are due to under-
sampling; higher imaging rates can overcome this. The blob-based tracking approach
applied for proof-of-concept is very simple; more sophisticated methods achieve superior
tracking results. See supplementary Videos S2 and S3 for dynamic examples of these results.
However, we believe that tracking in integral images will always outperform tracking in
conventional images.

Supplementary Materials: The following supporting information can be downloaded at: https:
//github.com/JKU-ICG/AOS/, Video S1: Manual visual search for the motion parameters. Video S2:
Automatic motion estimation (example 1). Video S3: Automatic motion estimation (example 2).
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Appendix A

In the following, we present the derivation of an integral image’s variance (Var[I]).
We applied the statistical model described in [50], where the integral image I is composed
of N single image recordings Ii and each single image pixel in Ii is either occlusion-free (S)
or occluded (O), determined by Z:

Ii = ZiOi + (1 − Zi)S.

Similar to [50], all variables are independent and identically distributed with Zi, follow-
ing a Bernoulli distribution with success parameter D (i.e., E[Zi] = E

[
Z2

i
]
= D; furthermore

note that E[Zi(1 − Zi)] = 0 is true). The random variable S follows a distribution whose
properties can be described with mean E[S] = μs and E

[
S2] =

(
μ2

s + σ2
s
)
. Analogously,

the occluded variable Oi follows a distribution whose properties can be described with
E[Oi] = μo and E

[
O2

i
]
=

(
μ2

o + σ2
o
)
. We compute the first and second moments of Ii to

determine its mean and variance with:

E[Ii] = Dμo + (1 − D)μs

and
E
[

I2
i

]
= D

(
μ2

o + σ2
o

)
+ (1 − D)

(
μ2

s + σ2
s

)
.

Variances of single images Ii can be obtained as:

Var[Ii] = E
[
I2
i
]− (E[Ii])

2

= D
(
μ2

o + σ2
o
)
+ (1 − D)

(
μ2

s + σ2
s
)

−(D2μ2
o + (1 − D)2μ2

s + 2D(1 − D)μoμs

= D(1 − D)
(
(μo − μs)

2
)
+ Dσ2

o + (1 − D) σ2
s .

Similarly, for I we determine the first and second moments where the first moment of
I is given by:

E[I] = E

[
1
N

N

∑
i=1

ZiOi + (1 − Zi)S

]
= Dμo + (1 − D)μs

and the second moment of I is as derived in [50]:

E
[

I2
]
=

1
N2

⎛
⎝ N

(
D
(
σ2

o + μ2
o
)
+ (1 − D)

(
σ2

s + μ2
s
))

+N(N − 1)
(

D2μ2
o + 2D(1 − D)μoμs

+(1 − D)2(σ2
s + μ2

s
) )⎞

⎠.
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Consecutively, we calculate the variance of the integral image as:

Var[I] = E
[
I2]− (E[I])2

= 1
N
(

D
(
σ2

o + μ2
o
)
+ (1 − D)

(
σ2

s + μ2
s
))

+
(

D2μ2
o + 2D(1 − D)μoμs + (1 − D)2(σ2

s + μ2
s
))

− 1
N

(
D2μ2

o + 2D(1 − D)μoμs + (1 − D)2(σ2
s + μ2

s
))

−
(

D2μ2
o + (1 − D)2μ2

s + 2D(1 − D)μoμs

)
= 1

N
(

D
(
σ2

o + μ2
o
)
+ (1 − D)

(
σ2

s + μ2
s
))

+ (1 − D)2σ2
s

− 1
N

(
D2μ2

o + 2D(1 − D)μoμs + (1 − D)2(σ2
s + μ2

s
))

= 1
N

(
D(1 − D)

(
(μo − μs)
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)
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o + (1 − D)σ2
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)
+(1 − D)2

(
1 − 1

N
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Abstract: Benefiting from the development of unmanned aerial vehicles (UAVs), the types and
number of datasets available for image synthesis have greatly increased. Based on such abundant
datasets, many types of virtual scenes can be created and visualized using image synthesis technology
before they are implemented in the real world, which can then be used in different applications. To
achieve a convenient and fast image synthesis model, there are some common issues such as the
blurred semantic information in the normalized layer and the local spatial information of the feature
map used only in the generation of images. To solve such problems, an improved image synthesis
model, SYGAN, is proposed in this paper, which imports a spatial adaptive normalization module
(SPADE) and a sparse attention mechanism YLG on the basis of generative adversarial network
(GAN). In the proposed model SYGAN, the utilization of the normalization module SPADE can
improve the imaging quality by adjusting the normalization layer with spatially adaptively learned
transformations, while the sparsified attention mechanism YLG improves the receptive field of the
model and has less computational complexity which saves training time. The experimental results
show that the Fréchet Inception Distance (FID) of SYGAN for natural scenes and street scenes are 22.1,
31.2; the Mean Intersection over Union (MIoU) for them are 56.6, 51.4; and the Pixel Accuracy (PA)
for them are 86.1, 81.3, respectively. Compared with other models such as CRN, SIMS, pix2pixHD
and GauGAN, the proposed image synthesis model SYGAN has better performance and improves
computational efficiency.

Keywords: deep learning; unmanned aerial vehicle; image synthesis; generative adversarial network;
attention mechanism

1. Introduction

The simulation of image scenes has developed rapidly and is one of the current
research hotspots [1]. More and more places need to use image synthesis technology, such
as interior design, street design, park landscape preview maps, and so on. A real and
reasonable image can improve people’s impression of the project, and can also make people
feel more intuitively about how the project will look on completion. However, there are few
angles available for manual image acquisition and it is more time consuming and laborious.
The popularity of unmanned aerial vehicles (UAV) makes the collection of remote sensing
image data simpler and more convenient. UAV can obtain images from a wider range with
more angles, which greatly expands the source of image synthesis datasets. Compared with
artificial image acquisition, that derived from UAV has lower costs and a broad application
prospect. Similarly, image synthesis based on deep learning is better than artificial image
synthesis [2].

At present, image synthesis methods based on deep learning are mainly based on
Generative Adversarial Networks (GAN) [3]. Pix2pixHD is one of the most widely used
models at present, and it is a supervised learning model. By inputting the semantic
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labels and the ground truth, realistic composite images can be generated in the model [4].
Chen et al. [5] proposed a Cascaded Refinement Network (CRN), which can repeatedly
refine the output from low resolution to high resolution, resulting in high-quality images.
Qi et al. [6] proposed SIMS, which first divides semantic labels into each plate, identifies
patterns similar to the plate in the material library to supplement, and then refines the
connections of each plate.

Although deep learning has made some progress in the field of image synthesis in
recent years, some aspects need improvement [7]. For example, part of the structure
can be optimized, and the receptive field of the model is inadequate [8]. Park et al. [9]
showed that the traditional network architecture, which is a superposition of convolution,
normalization, and nonlinear layers, is not optimal because their normalization layers tend
to reduce the information contained in the input semantic mask. Transposed convolutional
layers are a type of basic constituent layer that can capture the spatial properties of natural
images, which are important for generating high-quality images. However, it has a major
limitation in that it cannot model complex geometries and long-distance dependencies [10].
To compensate for this limitation and expand the receptive field of the model, some have
introduced an attention mechanism into the model. This method was first proposed
by SAGAN [11]. However, this mechanism also has the following limitations: first, the
calculation cost of the standard dense attention mechanism is relatively high; second, when
the attention mechanism is calculated, the spatial characteristics of the image are lost in the
step of expanding the two-dimensional spatial structure into a one-dimensional vector [12].

To solve the above problems, an image synthesis model SYGAN is proposed in
this paper. It is based on adjusted GAN and a spatially adaptive normalization module
SPADE [9] and a sparsified attention mechanism YLG [13] which are imported. Using the
SPADE module, both the normalization function and the initial semantic information are
well retained. The attention mechanism YLG not only effectively improves the reading of
feature point information and expands the receptive field of the model, but also reduces
the computational complexity, which decreases the requirements of hardware equipment
and improves the computational speed of the model.

The main contributions of this paper are as follows: (1) A new image synthesis model
SYGAN is proposed. Compared with other models, the model SYGAN adopts a spatially
adaptive normalization module and a sparsified attention mechanism to achieve good
performance and low complexity. (2) Image synthesis of two kinds of scenes – natural and
street scenes – are examined, and the reasons for the difference between the performance
for the two scenes are analyzed. (3) Experiments for the comparison of performance of
SYGAN and other models such as CRN, SIMS, pix2pixHD, and GauGAN and ablation
experiments are conducted to verify the performance of SYGAN.

2. Materials and Methods

2.1. Main Idea

SYGAN, an image synthesis model based on deep learning whose overall structure is
shown in Figure 1, is proposed in this paper.

In SYGAN, the image encoder first encodes the real images and then generates the
mean and variance vectors, which are used for the noise input of the generator. In addition
to these data, the generator also accepts the label images as input to the SPADE block, and
then generates the output images. The output images and the real images are used as the
input of the discriminator. Finally, the discriminator makes the judgment classification
and outputs the attention map to the generator to help it focus on the regions with higher
discrimination in the image.
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Figure 1. Overall structure of the SYGAN model.

As shown in Figure 1, the main idea of SYGAN includes the following aspects:

(1) Adjusting GAN as a main framework

The main framework of SYGAN is based on GAN which uses generators and discrim-
inators against each other to obtain a reasonable output. As a generative model, it deals
well with the problem of data generation. The neural network structure used in this model
can fit the high-dimensional representation of various types of data. GAN uses two neural
networks against each other and end-to-end optimization, which can effectively improve
the training efficiency [14]. The image encoder is mainly composed of a convolutional layer
and a linear layer. Real images are encoded as input to generate vector data as input to
the generator. The discriminator adopted by SYGAN refers to the classical design of some
other models and is mainly composed of convolutional layers. It takes the label image, the
output of the generator, and the real image as inputs and judges them.

(2) Importing spatially adaptive normalization module SPADE into the generator

In the past, deep learning-based methods often sent semantic images directly to the
neural network in the generator for learning. Although these methods have some impact,
they are not conducive to generating high-quality images, because the normalization layer
in ordinary neural networks will unconsciously reduce the semantic information. In order
to solve this problem, in this study a spatially adaptive normalization module SPADE is
imported to replace the ordinary normalization layer, use the layout of input semantic
information to activate regulation through spatially adaptively learned transformations,
and effectively propagate semantic information throughout the network.

(3) Adding attention mechanism YLG

By modeling the relationships between pixels, the attention mechanism can effectively
handle complex geometric shapes and capture long-distance dependencies to further
improve network performance [15]. However, common attention also has some of the
limitations described above. In view of these, the sparsified attention mechanism YLG is
added into SYGAN, which introduces the local sparse attention layer, reducing both the
computational complexity and the loss of spatial characteristics when the two-dimensional
spatial structure tensor is expanded into one-dimensional spatial structure, and can support
good information flow. Compared with other attention mechanisms, the performance and
training time have been optimized to a certain extent.

2.2. SYGAN Model
2.2.1. Adjusting GAN as Main Framework

The basic framework for GAN is shown in Figure 2. A set of random noise vectors z
satisfying a specified distribution is given as input. The generator G will generate a sample
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x, and then the discriminator D will make a binary classification decision, resulting in a
value σ0∼1 (if σ0∼1 is 1, it means that the discriminator considers the sample to be a real
sample; otherwise, it is a false sample, which means that the sample is generated). There
are two types of inputs to discriminator D: generated sample xf and real sample xt. In
the process of optimizing model parameters through adversarial training, the generator
G fits the latent distribution of the real data, so that it is able to synthesize samples that
approximate the latent distribution of the real data using the random noise vector z. Then
the generated sample xf and the real data xt are sent to the discriminator D, which then
tries to distinguish the real and fake input samples as much as possible. Meanwhile, the
generator G tries to generate samples that are indistinguishable from the real data in order
to make the discriminator D judge that the generated samples are true. In the process of
confrontation between the generator and the discriminator, both are optimized, and their
respective performances are also improved. When the discriminator cannot distinguish the
source of the sample data, the optimization ends, and the mathematical expression of the
optimization process is shown in Equation (1):

min
G

max
D

V(D, G) = Ex∼Pdata [logD(x)] + Ez∼Pz [log(1 − D(G(z)))] (1)

where z and x represent the random noise vector and the true sample, respectively. x can
be generated by randomly sampling from the true data distribution Pdata, and z can be
generated by sampling from the specified prior distribution Pz. In the process of optimizing
this adversarial generative model, the generator attempts to minimize V(D, G), while
the discriminator maximizes V(D, G). In the optimization process, an alternate iterative
updating method is adopted. First, the generator G is fixed to maximize V(D, G) to solve
D, and then the discriminator D is fixed to minimize V(D, G) to solve G.

 
Figure 2. Structure of GAN.

In image synthesis applications, the function of generator G is to process vector data
generated by image encoder as input to generate image xf. The role of the discriminator D
is to determine whether the received input samples are generated images xf or real images
xt. The training goal of generator G is to make its output fool discriminator D, and the goal
of discriminator D is to identify which image samples come from discriminator G.

As shown in Figure 3, the encoder consists of six convolutional layers with a step size
of 2 and two linear layers to output a mean μ and a variance σ, which are used as the input
of the generator. It uses the LReLU activation function [16] and Instance Norm (IN) [17].
LReLU is easy to compute, fast in convergence, and solves the problem of vanishing
positive interval gradients. Compared with ReLU [18], it solves the problem that some
neurons cannot be activated.
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Figure 3. Image encoder.

The discriminator in SYGAN refers to the design of pix2pixHD and Patch-GAN
to some extent [19] whose input is segmented images and the connection between the
generator output and the real image, uses the LReLU activation function and IN, and takes
the convolution layer as the last layer. The output of the discriminator will be received
by the attention mechanism YLG (Section 2.2.3) to generate an attention map, which is
then input to the generator to assist in its focusing on areas of higher discrimination in the
image. Its structure is shown in Figure 4.

 

Figure 4. Structure of discriminator.

2.2.2. Importing Spatially Adaptive Normalization Module SPADE into Generator

The structure of the spatially adaptive normalization module SPADE is shown in
Figure 5. The label image is first projected onto the embedding space and then convolved to
produce the modulation parameters γ and β. Unlike the previous conditional normalization
method, γ and β here are not vectors, but tensors with spatial dimensions. The generated
γ and β are processed in the next step, similar to batch normalization (BN) [20] It is also
regularized in the channel and modulated with the learned scale and bias. The input of
SPADE is a segmented image with different colors representing different labels. First, a
unified convolution is performed, and then two different convolutions are performed to
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generate γ and β with the same number and size as the current number of channels. Next,
γ is multiplied by the layer that has just been normalized, and β is added. It is equivalent in
that each pixel point of each channel in a layer is normalized separately. In contrast to BN,
it depends on the input label image and varies depending on the location. With SPADE,
there is no need to input semantic images at the first level of the generator, because the
learned modulation parameters already encode enough information about the label layout.

 

Figure 5. Structure of SPADE.

The SPADE structure is shown in Equations (2)–(4), where hi represents the activation
of the ith layer of the deep convolutional network for a batch of N samples. ci is the number
of channels in the layer, Hi and wi are the height and width of the activation map in the
layer. hi

n,c,y,x denotes activation before normalization, μi
c and σi

c are the mean and variance
in channel c. normally, N is set to 1.

γi
c, y, x(m)

hi
n,c,y,x − μi

c

σi
c

+ βi
c,y,x(m), (2)

μi
c =

1
NHiWi ∑

n,y,x
hi

n,c,y,x, (3)

σi
c =

√
1

NHiWi ∑
n,y,x

((
hi

n,c,y,x

)2 − (
μi

c
)2
)

(4)

The SPADE is combined with the activation function and convolution to form a
SPADE block, refer Mescheder et al. [21] and Miyato et al. [22], the SPADE block replaces
the commonly used “convolution → activation → normalization” module with “SPADE
→ activation → convolution”. This module can be seen as using the image semantic
information to guide the feature map for normalization processing. The structure is shown
in Figure 6. In order to solve the problem that the number of channels before and after
the residual block is different, a skip connection is added to the structure [23]. That is the
portion within the dashed box in Figure 6.
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Figure 6. SPADE Block.

Since the learned modulation parameters already encode enough information about
the label layout, there is no need to feed the segmented images back to the first layer of the
generator, whereby the encoder part of the generator may not be used, which could make
the network more lightweight. Figure 7 shows the structure of the generator of SYGAN,
which is composed of a series of SPADE blocks and convolutions. The whole network
structure is formed by learning the data distribution in a row, and then stacking the SPADE
blocks layer by layer. The size of the feature map is from small to large, and the number
of channels is from large to small to generate the final real image. In each layer of SPADE
block, semantic segmentation images are continuously added to intervene, so that the
network can learn multi-scale semantic information in each layer.

 

Figure 7. Importing the SPADE block into the SYGAN generator.

In Figure 7, the SPADE block takes the previously output low-resolution image and
the different-sized label image of the input image as the input of the next block to generate
a higher-resolution image. The growing blue squares are images of increasing size.

2.2.3. Adding Attention Mechanism YLG

The YLG attention mechanism is a sparse attention mechanism, which can improve
the computational efficiency of the module. It divides the attention into multiple steps
for computation instead of concentrating the computation together. The second-order
complexity of the input attention can be expressed by a matrix AX,Y = XQ·YT

K .
X, Y is an intermediate representation that associates several matrices with the input.

At each step i, attention is directed to a subset of the input locations, which are determined
by the binary mask Mi, as shown in Equation (5).
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Ai
X,Y[a, b] =

{
AX,Y[a, b], Mi[a, b] = 1

−∞, Mi[a, b] = 0
(5)

−∞ means that after the function is activated, the value of this position will be cleared,
and the calculation will no longer be transferred, so it has no effect on it. Therefore, the
design of mask Mi is very important, which is related to the complexity of the data involved
in the calculation of attention. The mechanism is designed to solve this problem by using
a kind of attention mask that specifies which points have a calculation relationship with
points and which points are not settled. The mechanism also refers to the method of
Rewon Child et al. [24], which allows individual attention heads to operate on different
matrices in parallel, and then connect them in series along the feature dimension. This
attention mask also has two modes, which are Left to Right (LTR) in Figure 8a and Right
to Left (RTL) in Figure 8b. RTL is the transposed version of LTR. The related information
flow diagram is shown in Figure 4. These two modes only allow attention to some areas,
which can significantly reduce the quadratic complexity of attention. The mask is actually a
superposition of the connected graphs of the two calculations, in which dark blue represents
the position of both calculations, light blue represents the position of the first calculation,
and green represents the location of the second calculation. The remaining yellow squares
represent the positions that are not involved twice, from which the sparsity of the attention
mechanism can be reflected.

  
(a) (b) 

Figure 8. Attention masks. (a) Left to right (LTR). (b) Right to left (RTL).

2.3. Datasets

Experiments were conducted using the following three datasets:
COCO-Stuff [25]: From the COCO dataset. It has 118,000 training images and 5000 test

images from different scenes, containing 182 semantic categories.
ADE20K [26]: Consists of 20,210 training images and 2000 test images. Similar to

COCO-Stuff, the dataset contains 150 semantic categories.
UAVid [27]: An image segmentation dataset of urban scenes captured by UAVs, with

a total of 3296 images containing 8 semantic categories.

2.4. Design of Experiments
2.4.1. Hardware and Software Configuration

The deep learning framework PyTorch was used to implement the SYGAN model and
the experiments. The hardware and software configurations are shown in Table 1.
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Table 1. Software and hardware configuration.

Item Detail

CPU AMD Ryzen 7 3900X 12-Core processor
GPU NVIDIA GeForce RTX 3090
RAM 32GB

Operating system 64-bit Windows 11
CUDA CUDA11.3

Data processing Python 3.7

2.4.2. Evaluation Indicators

In order to evaluate the accuracy of the model, Pixel Accuracy (PA), Mean Inter-
section over Union (MIoU) and Fréchet Inception Distance (FID) [28] were used in this
paper to measure the gap between the synthetic image distribution and the ground truth
distribution.

Pixel Accuracy (PA) is an evaluation criterion for predicting the accuracy of pixels.
PA = number of correctly predicted pixels/total number of predicted pixels, as shown in
Equation (6):

PA =
∑k

i=0 pii

∑k
i=0 ∑k

j=0 pij
(6)

The definition of MIoU is given in Equation (7). Where k + 1 is the number of classes
(including null classes), i is the true value, j is the predicted value, and pji is the number of
true values i and predicted values j.

MIoU =
1

k + 1

k

∑
i=0

pii

∑k
j=0 pij + ∑k

j=0 pji − pii
(7)

FID is an index commonly used to evaluate GAN. Its idea is to send the samples
generated by the generator and those generated by the discriminator to the classifier
respectively, extract the abstract features of the middle layer of the classifier, assume that
the abstract features conform to the multivariate Gaussian distribution, and estimate the
mean value of the Gaussian distribution of the generated samples’ μg, variance ∑ g, training
samples μdata, and variance ∑ data to calculate the Fréchet distance between two gaussian
distributions. In addition, tr represents trace. This distance value is the FID, as shown in
Equation (8).

FID = ‖μdata − μg‖2 + tr
(

∑ data + ∑ g − 2
(
∑ data ∑ g

) 1
2

)
(8)

2.4.3. Parameters of Experiments

(1) Loss function.

The loss function is the combination of ordinary cross entropy loss (Cross Entropy
Loss) and Dice Loss. Dice coefficient is an aggregate similarity measure function, which
is used to calculate the similarity between two samples. The value is usually between
0 and 1, and the lower the loss value, the better the fitting effect and robustness of the
synthetic model.

(2) Training parameters.

The learning rates of the generator and discriminator are set to 0.0001 and 0.0004
respectively, and the setting of the learning rates is referred to Heusel et al. [29] The first
200 epochs are performed, and the learning rate is linearly attenuated to 0.00005 over the
course of 150 to 200 epochs. The test found that the loss value reached the lowest value of
0.15 after 110 times of training, and then there was almost no change, so the epoch = 120
was determined after comprehensive consideration. Due to the limitation of GPU memory,
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when the batch size is greater than 16, it is likely to stop training due to insufficient memory,
so it is determined as batch size = 16. The loss function diagram is shown in Figure 9 and
the hyperparameter setting is shown in Table 2.

Figure 9. Loss function.

Table 2. Hyperparameter setting.

Item Value

epoch 120
Batch size 16

Lr(G) 0.0001
Lr(D) 0.0004

Image size 512 × 512

2.4.4. Schemes of Experiments

(1) Comparative experiments.

This part includes two experimental subjects: natural scene and street scene. On the
basis of the three datasets, COCO-Stuff, ADE20K, and UAVid, images were selected and
classified, and then divided into two new datasets – natural scene and street scene – for
training and testing. These are the two most commonly used image scenes, and they have
different styles. The difficulty of model training is also different, so it is better to carry out
comparative experiments. The training set for each of the two new datasets consists of
10,000 images. The test set for each of the two new datasets consists of 1000 images. The
image size used is 512 × 512. Four other models, CRN, SIMS, pix2pixHD, and GauGAN,
were used to conduct the comparison experiments.

(2) Computational complexity experiments.

COCO-Stuff were used in this experiment. We counted the number of epochs that
reach the highest FID and the time it took each epoch. These data are used to calculate the
total time required for training for comparison, so as to compare the complexity between
SYGAN and SAGAN [11]. In contrast to SYGAN, other models such as CRN, SIMS,
pix2pixHD, and GauGAN do not incorporate attention mechanics, so we don’t compare
the complexity of SYGAN with that of these models.

(3) Ablation experiments.

The ablation experiment is one of the key factors to assess the quality of the model.
The three datasets, COCO-Stuff, ADE20K and UAVid, were used for the experiments to
verify the necessity of the corresponding improvement features.
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3. Results and Discussion

3.1. Comparative Experiments

In the experiments, the proposed model SYGAN was compared with several image
synthesis models: CRN, SIMS, pix2pixHD, GauGAN. CRN uses a deep learning net-
work to repeatedly refine the output from low resolution to high resolution; SIMS uses a
semi-parametric method to synthesize real segments from the training set and refine the
boundary; pix2pixHD is a conditional image synthesis model based on GAN. A higher
value of MIoU and PA indicates better performance, while a lower value of FID indicates
better performance. Because the generated image does not need to be completely consistent
with the real image, such as vegetation and sky, the image synthesis only needs to be
subjectively reasonable to the naked eye, and does not need every tree and cloud to be
the same as ground truth, so the MioU index in the above experimental results will be
relatively low. However, as it can reflect the coincidence of the generated image and the
label image, it can also show the quality of the model to a certain extent.

3.1.1. Natural Scene

Experiments were conducted using natural scene images. MioU, PA, and FID were
used as indicators, where the higher the values of MioU and PA, the better the performance,
and the lower the value of FID, the better the performance. The results are shown in
Figure 10 and Table 3.

 
Figure 10. Visual comparison of natural scene image synthesis results. (a) Label. (b) Ground truth.
(c) CRN. (d) SIMS. (e) pix2pixHD. (f) GauGAN. (g) SYGAN (ours).

Table 3. Results of the comparison of natural scene images.

Model PA (%) MIoU (%) FID

CRN 68.4 45.3 48.6
SIMS 63.6 38.6 43.6

pix2pixHD 73.9 46.3 39.8
GauGAN 83.9 54.8 22.6

SYGAN(ours) 86.1 56.6 22.1

It can be seen from Figure 10 that SYGAN, the model proposed in this paper, suc-
cessfully synthesizes the real details of semantic labels, and the generated images are
significantly improved compared with other models, making the generated images closer
to human subjective feelings, more natural in various performances, smoother and more
natural in the edges of different generated categories. Various indicators also show that the
performance of SYGAN is better than the comparative methods.

As is shown in Table 3, the FID of SYGAN was 22.1, which was 26.5, 21.5, 17.7, and
0.5 lower than that of CRN, SIMS, pix2pixHD, and GauGAN, respectively. The MioU of
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SYGAN was 56.6%, which was 11.3%, 16%, 10.3%, and 1.8% higher than that of CRN,
SIMS, pix2pixHD, and GauGAN, respectively. The PA of SYGAN was 86.1%, which was
17.7%, 22.5%, 12.2%, and 2.2% higher than that of CRN, SIMS, pix2pixHD, and GauGAN,
respectively.

3.1.2. Street Scene

The results of experiments for street scenes using SYGAN and the four comparative
models are shown in Figure 11 and Table 4.

Figure 11. Visual comparison of street scene image synthesis results. (a) Label. (b) Ground truth.
(c) CRN. (d) SIMS. (e) pix2pixHD. (f) GauGAN. (g) SYGAN (ours).

Table 4. Results of the comparison of street scene images.

Model PA (%) MIoU (%) FID

CRN 67.5 43.5 58.2
SIMS 73.1 34.2 61.3

pix2pixHD 68.9 41.4 47.6
GauGAN 78.8 49.6 33.8

SYGAN(ours) 81.3 51.4 31.2

It can be seen from Figure 11 that the effect of CRN is not good in complex street
scenes. Although SIMS looks good, it often deviates from the input label image. Pix2pixHD
also has the same problem; the output will be deviated. On the whole, the results of our
model SYGAN can achieve more detail than others, which can better generate the semantic
information contained in the tags, and the indicators also show that SYGAN has better
performance.

As is shown in Table 4, the FID of SYGAN was 31.2, which was 27, 30.1, 16.4, and
2.6 lower than that of CRN, SIMS, pix2pixHD, and GauGAN, respectively. The MIoU
of SYGAN was 51.4%, which was 7.9%, 17.2%, 10%, and 1.8% higher than that of CRN,
SIMS, pix2pixHD, and GauGAN, respectively. The PA of SYGAN was 81.3%, which was
13.8%, 8.2%, 12.4%, and 2.5% higher than that of CRN, SIMS, pix2pixHD, and GauGAN,
respectively.

3.1.3. Comparison of the Two Scenes

According to the indicators in Tables 3 and 4, the performance of all the mentioned
methods for natural scenes is better than that for street scenes. As to SYGAN, its PA and
MIoU for natural scenes are 86.1 and 56.6 which are 5.90% and 10.12% higher than those
for street scenes, respectively, and its FID for natural scenes is 22.1 which is 29.17% lower
than that for street scenes.
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The reason for the above conclusion is that street scenes are usually more complex
than natural scenes. Street scenes usually include many relatively small elements, and
there are many complex boundaries between different elements. Conversely, natural scenes
tend to have few and large elements, and the boundaries between different elements are
relatively long and obvious.

In natural scenes, there are usually four or five elements, and the existence of sky is
very frequent. This element often makes up a large proportion of the entire image, ranging
from 10% to 70%. Other elements that appear in high proportions are mountains, trees,
and water. The distribution of these elements is concentrated, and they usually have long,
smooth boundaries. In a street scene, there are usually groups of seven or eight elements.
The components are fixed, like buildings, cars, trees. The different elements are scattered
and cover each other. Trees usually appear alone, so they have uneven boundaries.

3.2. Computational Complexity Experiments

Compared with CRN, SIMS, pix2pixHD, and GauGAN, SYGAN has a relatively high
complexity due to the addition of attention mechanism, but it achieves better synthesis
quality. Therefore, the complexity analysis in this paper does not consider the comparison
with the above four methods, but only with SAGAN in terms of complexity. SAGAN also
introduces the attention mechanism in the network, which solves the limitation of the
receptive field size caused by the convolutional structure, and also enables the network to
learn different areas that to which attention should be paid in the process of generating
images. However, the dense attention mechanism also brings some problems, such as
high computational cost. Compared with the comparison method, SYGAN uses the YLG
attention mechanism. In terms of ensuring accuracy, it can also reduce the overhead
brought by the attention mechanism. The experimental results are shown in Figure 12. It
can be seen that the proposed model SYGAN has reached the best FID at about epoch = 110,
with an average of 21 min each time, while SAGAN needs about 140 times to reach the best
FID, with an average of 19 min each time. The overall time of SYGAN has an advantage
over SAGAN and the FID performance is better.

 
Figure 12. Relationship between epoch and FID.

3.3. Ablation Experiments

Ablation experiments were performed using public datasets with the same hyper-
parameters. The results of ablation experiments are shown in Tables 5–7 where SGAN
represents the model without YLG, YGAN represents the model without SPADE, GAN
represents the models without SPADE and YLG. Higher MIoU and PA values in the table
indicate better performance, and lower FID values indicate better performance.
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Table 5. Results of ablation experiments on the COCO-stuff.

Model PA (%) MIoU (%) FID

SYGAN 69.5 48.2 22.3
SGAN 66.3 46.1 25.3
YGAN 55.4 38.6 36.5
GAN 33.4 30.6 68.2

Table 6. Results of ablation experiments on the ADE20K.

Model PA (%) MIoU (%) FID

SYGAN 81.4 51.3 37.8
SGAN 78.6 48.1 42.3
YGAN 68.2 41.8 51.2
GAN 44.3 25.6 71.5

Table 7. Results of ablation experiments on the UAVid.

Model PA (%) MIoU (%) FID

SYGAN 86.3 57.1 32.3
SGAN 82.9 54.3 36.2
YGAN 71.5 46.3 46.1
GAN 49.6 29.8 70.3

It can be seen from Tables 5–7 that the FID of SGAN and YGAN has a high improve-
ment compared with that of GAN, indicating that SPADE and YLG have a very good
improvement on the performance of the model. The FID of SGAN is improved by about
10 compared with that of YGAN, indicating that the performance improvement of SPADE
is greater than that of YLG. SYGAN, when combined with SPADE and YLG, has about 4
and 14 improvements, respectively, compared with SGAN and YGAN. The YLG attention
mechanism combined with Figure 12 shows that compared with the usual intensive atten-
tion mechanism, it can significantly reduce the computational complexity and improve the
training speed.

4. Conclusions

An image synthesis model SYGAN is proposed in this paper, which imports a spatial
adaptive normalization module SPADE and an attention mechanism YLG on the basis of
GAN. These improvements ensure the model has good performance, increases the accuracy
of image synthesis, reduces the generation of false features, expands the receptive field
of the model, and shortens the training time. The PA of the model SYGAN is 86.1% in
the natural scene dataset, and 81.3% in the street scene dataset. The MIoU of the model
SYGAN is 56.6% in the natural scene dataset, and 51.4% in the street scene dataset. The
FID score of the model is 22.1 in the natural scene dataset, and 31.2 in the street scene
dataset. SYGAN has a better performance in the natural than the street scene. Compared
with other models in the experiment, the synthesis effect is better in both datasets. In the
computational complexity experiments, the training time of SYGAN is shorter and the FID
lower than that of SAGAN with the addition of typical attention mechanisms. From the
experimental results, we can see that the model has a good performance as it generates a
virtual image through the label image, which can easily preview engineering tasks. This
has a very positive significance for the construction of smart cities.

Although SYGAN can complete the task of image synthesis well, it generates some
problem images in complex environments, edge generation, and shadow display, which
does not conform to the subjective impression of human beings. This will be studied and
solved in our future study and work.
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Abstract: As a special type of transformer, vision transformers (ViTs) can be used for various computer
vision (CV) applications. Convolutional neural networks (CNNs) have several potential problems
that can be resolved with ViTs. For image coding tasks such as compression, super-resolution,
segmentation, and denoising, different variants of ViTs are used. In our survey, we determined
the many CV applications to which ViTs are applicable. CV applications reviewed included image
classification, object detection, image segmentation, image compression, image super-resolution,
image denoising, anomaly detection, and drone imagery. We reviewed the state of the-art and
compiled a list of available models and discussed the pros and cons of each model.

Keywords: vision transformers; computer vision; deep learning; image coding; drone imagery; drone
surveillance

1. Introduction

Vision transformers (ViTs) are designed for tasks related to vision, including image
recognition [1]. Originally, transformers were used to process natural language (NLP). Bidi-
rectional encoder representations from transformers (BERT) [2] and generative pretrained
transformer 3 (GPT-3) [3] were the pioneers of transformer models for natural language
processing. In contrast, classical image processing systems use convolutional neural net-
works (CNNs) for different computer vision (CV) tasks. The most common CNN models
are AlexNet [4,5], ResNet [6], VGG [7], GoogleNet [8], Xception [9], Inception [10,11],
DenseNet [12], and EfficientNet [13].

To track attention links between two input tokens, transformers are used. With an
increasing number of tokens, the cost rises inexorably. The pixel is the most basic unit of
measurement in photography, but calculating every pixel relationship in a normal image
would be time-consuming; memory-intensive [14]. ViTs, however, take several steps to do
this, as described below:

• ViTs divide the full image into a grid of small image patches.
• ViTs apply linear projection to embed each patch.
• Then, each embedded patch becomes a token, and the resulting sequence of embedded

patches is passed to the transformer encoder (TE).
• Then, TE encodes the input patches, and the output is given to the multilayer percep-

tron (MLP) head, with the output of the MLP head being the input class.

Figure 1 shows the primary illustration of ViTs. In the beginning, the input image is
divided into smaller patches. Each patch is then embedded using linear projection. Tokens
are created from embedded patches that are given to the TE as inputs. Multihead attention
and normalization are used by the TE to encode the information embedded in patches. The
TE output is given to the MLP head, and the MLP head output is the input image class.

For image classification, the most popular architecture uses the TE to convert multiple
input tokens. However, the transformer’s decoder can also be used for other purposes. As
described in 2017, transformers have rapidly spread across NLP, becoming one of the most
widely used and promising designs [15].
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Figure 1. ViT for Image Classification.

For CV tasks, ViTs were applied in 2020 [16]. The aim was to construct a sequence
of patches that, once reconstructed into vectors, are interpreted as words by a standard
transformer. Imagine that the attention mechanism of NLP transformers was designed to
capture the relationships between different words within the text. In this case, the CV takes
into account how the different patches of the image relate to one another.

In 2020, a pure transformer outperformed CNNs in image classification [16]. Later,
a transformer backend was added to the conventional ResNet, drastically lowering costs
while enhancing accuracy [17,18].

In the same year, several key ViT versions were released. These variants were more
efficient, accurate, or applicable to specific regions. Swin transformers are the most promi-
nent variants [19]. Using a multistage approach and altering the attention mechanism, the
Swin transformer achieved cutting-edge performance on object detection datasets. There
is also the TimeSformer, which was proposed for video comprehension issues and may
capture spatial and temporal information through divided space–time attention [20].

ViT performance is influenced by decisions such as optimizers, dataset-specific hy-
perparameters, and network depth. Optimizing a CNN is significantly easier. Even when
trained on data quantities that are not as large as those required by ViTs, CNNs perform ad-
mirably. Apparently, CNNs exhibit this distinct behavior because of some inductive biases
that they can use to comprehend the particularities of images more rapidly, even if they
end up restricting them, making it more difficult for them to recognize global connections.
ViTs, on the other hand, are devoid of these biases, allowing them to capture a broader and
more global set of relationships at the expense of more difficult data training [21].

ViTs are also more resistant to input visual distortions such as hostile patches and
permutations [22]. Conversely, preferring one architecture over another may not be the
best choice. The combination of convolutional layers with ViTs has been shown to yield
excellent results in numerous CV tasks [23–25].

To train these models, alternate approaches were developed due to the massive amount
of data required. It is feasible to train a neural network virtually autonomously, allowing
it to infer the characteristics of a given issue without requiring a large dataset or precise
labeling. It might be the ability to train ViTs without a massive vision dataset that makes
this novel architecture so appealing.

ViTs have been employed in numerous CV jobs with outstanding and, in some cases,
cutting-edge outcomes. The following are some of the important application areas:

• Image classification;
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• Anomaly detection;
• Object detection;
• Image compression;
• Image segmentation;
• Video deepfake detection;
• Cluster analysis.

Figure 2 shows that the percentage of the application of ViTs for image classification,
object detection, image segmentation, image compression, image super-resolution, image
denoising, and anomaly detection is 50%, 40%, 3%, less than 1%, less than 1%, 2%, and 3%
respectively.

Figure 2. Use of ViTs for CV applications.

ViTs have been widely utilized in CV tasks. ViTs can solve the problems faced by CNNs.
Different variants of ViTs are used for image compression, super-resolution, denoising, and
segmentation. With the advancement in the ViTs for CV applications, a state-of-the-art
survey is needed to demonstrate the performance advantage of ViTs over current CV
application approaches.

Our approach was to classify CV applications where ViTs are used, such as in image
classification, object detection, image segmentation, image compression, image super-
resolution, image denoising, and anomaly detection. Then we surveyed the state-of-the-
art in each CV application and tabulated the existing ViT-based models, discussing the
pros and cons of each model and lessons learned for each model. We also analyzed
the advanced transformers and summarized open-source ViTs, briefly discussing drone
imagery using ViTs.

The remainder of this paper is structured as follows: In Section 2, we discuss related
work, while in Section 3, we present the application of ViTs in CV. In Section 4, we analyze
advanced transformers. In Section 5, we summarize the open-source ViTs and their CV
applications. In Section 6, we discuss ViT applications in drone imagery. In Section 7, we
examine open research challenges and future directions. In Section 8, we conclude our
survey with final thoughts on ViTs in place of CV applications and the results of our survey.
A complete organization of the survey is shown in Figure 3.
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Figure 3. Organization of the survey.

2. Related Work

A number of surveys have been conducted on ViTs in the literature. The authors of [26]
review the theoretical concepts, foundation, and applications of the transformer for memory
efficiency. They also discussed the applications of efficient transformers in NLP. CV tasks,
however, were not included. A similar study, ref. [27], examined the theoretical aspects of
the ViTs, the foundations of transformers, the role of multihead attention in transformers,
and the applications of transformers in image classification, segmentation, super-resolution,
and object detection. The survey did not include applications of transformers for image
denoising or compression.

In [28], the authors describe the architectures of transformers for segmenting, classi-
fying, and detecting objects in images. Their survey did not include tasks such as image
super-resolution, denoising, or compression associated with CV and image processing.

Lin et al. in [29] summarized different architectures of NLP. Their survey, however, did
not include any applications of transformers for CV tasks. In [30], the authors discuss differ-
ent architectures of transformers for computational visual media, including the application
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of transformers for low-level vision and generation, such as image colorization, image
super-resolution, image generation, and text-to-image conversion. Additionally, the survey
focused on high-level vision tasks such as segmentation and object detection. However, the
survey did not discuss the transformer for image compression and classification.

Han et al. in [31] surveyed the application of transformers in high-, mid-, and low-
level vision and video processing. They also provided a comprehensive discussion of
self-attention and the role of transformers in real-device-based applications, and the survey
did not discuss the transformer for image compression.

Table 1 summarizes all existing surveys on the ViTs. As a result of an analysis of Table 1,
it is evident that the survey is needed to provide insight into the latest developments in ViTs
for several image processing and CV tasks, including classification, detection, segmentation,
compression, denoising, and super-resolution.

Table 1. Summary of the available surveys on ViTs.

Survey Year

Scope
Contributions and
LimitationsClass. Det. Seg. Com.

Super
Res.

Den. AD.

[26] 2020 � � � � � � �
• Foundation of transformers
• Applications of transformers
• History-based survey

[27] 2022 � � � � � � �

• Basic concepts
• Applications of transformers

in CV
• History-based
• Advanced ViTs not explored

[28] 2021 � � � � � � �

• Different architectures
• Future perspectives
• Limited to classification, de-

tection, and segmentation
models

[30] 2022 � � � � � � �

• Transformers in computa-
tional visual media

• Limited to detection, segmen-
tation, and super-resolution
models

[31] 2022 � � � � � � �

• Transformers in high, mid,
and low-level vision

• Comprehensive discussion of
self-attention

• Role of transformers in real-
device-based applications

Our
survey 2023 � � � � � � �

• Applications of transformers
in CV

• Advanced transformers
• ViTs and drone Imagery
• New outlook to the open re-

search gaps

Class.—classification; Det.—detection; Seg.—segmentation; Com.—compression; Super Res.—super-resolution;
AD.—anomaly detection; �— fully explained; �—partially explained; �—not explained.

2.1. Bibliometric Analysis and Methodology

We used Google Scholar, Web of Science, IEEE Xplore, and ScienceDirect as the
databases to select papers.

2.1.1. Bibliometric Analysis

We considered papers published between 2017 and 2023. In 2017, a total of 21 articles
were published on transformers in CV, while 24 papers were published in 2018. A total
of 44 papers were published in 2019. Additionally, in 2020, 2021, 2022, and 2023, a total
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of 52, 418, 494, and 8 papers were published, respectively. Figure 4 shows the number of
publications per year from 2017 to 2023.

Figure 4. Number of publications in each year from 2017 to 2023 based on Web of Science.

In terms of publishers, the Institute of Electrical and Electronics Engineers (IEEE)
has published 527 publications on transformers in CV. Springer Nature, Multidisciplinary
Digital Publishing Institute (MDPI), and Elsevier published 177, 104, and 82 papers, respec-
tively. Assoc Computing Machinery (ACM) published the least number of publications on
transformers in CV, which is 25. Figure 5 displays the number of publications by different
publishers from 2017 to 2023.

Figure 5. Number of publications by different publishers from 2017 to 2023 based on Web of Science.

In terms of topic popularity in different countries, we present a world map showing
the top countries working on transformers in CV. From 2017 to 2023, China published
517 publications on transformers in CV. United States of America (USA), England, and
South Korea published 242, 64, and 55 papers, respectively, from 2017 to 2023. Figure 6
shows which countries are leading in learning-driven image compression.
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Figure 6. Leading countries working on transformers in CV based on Web of Science.

2.1.2. Methodology

Based on the following criteria as described in Algorithm 1 and Figure 7, 100 papers
were selected for analysis:

Figure 7. Article Selection Algorithm.
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Algorithm 1 Article Selection Criteria

Require: Search on databases
Ensure: Article from 2017 to 2023

while keyword—transformers in computer vision do
if Discuss new architectures of ViTs | Evaluate performance of ViTs | Variants of ViTs

then
Consider for analysis

else if Does not discuss ViTs architectures in vision then
Exclude from the analysis

end if
end while

3. Applications of ViTs in CV

In addition to classical ViTs, modified versions of classical ViTs are used for object
detection, image segmentation, compression, super-resolution, denoising, and anomaly
detection. Figure 8 shows the organization of Section 3.

Section 3 Application of ViT in CV

Section 3.1 ViTs for
Image Classification

Section 3.2 ViTs for
Object Detection

Section 3.3 ViTs for
Image Segmentation

Section 3.4 ViTs for
Image Compression

Section 3.5 ViTs for Im-
age Super Resolution

Section 3.6 ViTs for
Image Denoising

Section 3.7 ViTs for
Anomaly Detection

Figure 8. Organization of the Section 3.

3.1. ViTs for Image Classification

In image classification, the image is initially divided into patches; these patches are fed
linearly to the transformer encoder, where MLP, normalization, and multihead attention
are applied to create embedded patches. Embedded patches are fed to the MLP head,
which predicts the output class. These classical ViTs have been used by many researchers
to classify visual objects.

In [32], the authors proposed CrossViT-15, CrossViT-18, CrossViT-9†, CrossViT-15†,
and CrossViT-18† for image classification. They used the ImageNet1K, CIFAR10, CIFAR100,
pet, crop disease, and ChestXRay8 datasets to evaluate the different variants of CrossViT.
They achieved 77.1% accuracy on the ImageNet1K dataset by using CrossViT-9†. Similarly,
they attained 82.3% and 82.8% accuracy on ImageNet1K dataset using CrossViT-15† and
CrossViT-18†, respectively. Similarly, the authors obtained an 99.0% and 99.11% accuracy
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with CrossViT-15 and CrossViT-18, respectively, on the CIFAR10 dataset. However, they
obtained 90.77% and 91.36% accuracy on the CIFAR100 dataset using CrossViT-15 and
CrossViT-18, respectively. The authors also used CrossViT for pet classification, crop
disease classification, and chest X-ray classification. They observed the highest accuracy
of 95.07% with CrossViT-18 for the pet classification. Similarly, they achieved the highest
accuracy of 99.97% with CrossViT-15 and CrossViT-18 for the crop diseases classification.
Moreover, they achieved the highest accuracy of 55.94% using CrossViT-18 for the chest
X-ray classification.

Deng et al. in [33], proposed a combined CNN and ViT model named CTNet for
the classification of high-resolution remote sensing images. To evaluate the model, they
used the aerial image dataset (AID) and Northwestern Polytechnical University (NWPU)-
RESISC45 dataset. CTNet obtained an accuracy of 97.70% and 95.49% using the AID and
NWPU-RESISC45 datasets, respectively. Yu et al. in [34], presented multiple instance-
enhanced ViT (MIL-ViT) for fundus image classification. They used APTOS 2019 blindness
detection and the 2020 retinal fundus multidisease image dataset (RFMiD2020). MIL-ViT
yielded an accuracy of 97.9% on the APTOS2019 dataset and 95.9% on the RFMiD2020 dataset.
Similarly, Graham et al. in [35] proposed LeViT for fast inference image classification.

In [36], the authors proposed excellent teacher-guiding small networks (ES-GSNet)
for the classification of the remote sensing image scenes. They used four datasets: AID,
NWPU-RESISC45, UC-Mered Land use dataset (UCM), and OPTIMAL-31. They obtained
accuracies of 96.88%, 94.50%, 99.29%, and 96.45% for the AID, NWPU-RESISC45, UCM,
and OPTIMAL-31 datasets, respectively.

Xue et al. in [37] proposed deep hierarchical ViT (DHViT) for the hyperspectral and
light detection and ranging (LiDAR) data classification. The authors used the Trento,
Houston 2013, and Houston 2018 datasets and obtained accuracies of 99.58%, 99.55%, and
96.40%, respectively.

In [38], the authors elaborated on the use of ViT for the satellite imagery multilabel
classification and proposed ForestViT. ForestViT demonstrated an accuracy of 94.28% on
planet understanding of the Amazon from space (PUAS) dataset. In [39], the researchers
put forward the concept of LeViT for pavement image classification. They used Chinese
asphalt pavement and German asphalt pavement to evaluate the model’s performance.
They obtained an accuracy of 91.56% using the Chinese asphalt pavement dataset and
99.17% using the German asphalt pavement dataset.

In [40], the authors used ViT to distinguish malicious drones from airplanes, birds,
drones, and helicopters. They demonstrated the efficiency of ViT for the classification
over several CNNs such as AlexNet [4], ResNet-50 [41], MobileNet-V2 [42], ShuffleNet [43],
SqueezeNet [44], and EfficicentNetb0 [45]. The ViT model achieved 98.3% accuracy on the
malicious drones dataset.

Tanzi et al. in [46] applied ViT for the classification of the femur fracture. They
used a dataset of real X-rays. The model achieved an accuracy of 83% with 77% precision,
76% recall, and 77% F1-score. In [47], the authors modified the classical ViT and proposed
SeedViT for the classification of maize seed quality. They used a custom dataset. The model
outperformed CNN and achieved a 96.70% accuracy.

Similarly, in [48], the researchers put forward double output ViT (DOViT) for the
classification of air quality and its measurement. They used two datasets named get
AQI in one shot-1 (GAOs-1) and get AQI in one shot-2 (GAOs-2). The model achieved
a 90.32% accuracy for the GAOs-1 dataset and 92.78% accuracy for the GAOs-2 dataset.
In [49], the authors developed a novel multi-instance ViT called MITformer for remote
sensing scene classification. They evaluated their model on three different datasets. The
model achieved 99.83% accuracy for the UCM dataset, 97.96% accuracy for the AID dataset,
and 95.93% accuracy for the NWPU dataset.

Table 2 shows the summary of the application of ViT for image classification.
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Table 2. ViT for Image Classification.

Research Model Dataset Objective Classification Accuracy

[32]

CrossViT-9† a

ImageNet1K Image

77.100%

CrossViT-15† a 82.300%

CrossViT-18† a 82.800%

CrossViT-15 a

CIFAR10
Image

99.000%

CIFAR100 90.770%

Pet Pet classification 94.550%

Crop Diseases Crop disease classification 99.970%

ChestXRay8 Chest X-ray classification 55.890%

CrossViT-18 a

CIFAR10
Image

99.110%

CIFAR100 91.360%

Pet Pet classification 95.070%

Crop Diseases Crop diseases 99.970%

ChestXRay8 Chest X-rays 55.940%

[33] CTNet
AID

Remote sensing scene
97.700%

NWPU-RESISC45 95.490%

[34] MIL-ViT b APTOS2019
Fundus image

97.900%

RFMiD2020 95.900%

[36] ET-GSNet

AID

Remote sensing images

96.880%

NWPU-RESISC45 94.500%

UCM 99.290%

OPTIMAL-31 96.450%

[37] DHViT

Trento

Hyperspectral & LiDAR

99.580%

Houston 2013 99.550%

Houston 2018 96.400%

[38] ForestViT PUAS Satellite imagery multilabel 94.280%

[39] LeViT c
Chinese asphalt pavement

Pavement image
91.560%

German asphalt pavement 99.170%

[40] ViT Malicious drone Malicious drones 98.300%

[46] ViT Real X Rays Femur fracture 83.000%

[47] SeedViT Maize seeds Maize seed quality 96.700%

[48] DOViT
GAOs-1

Air quality
90.320%

GAOs-2 92.780%

[49] MITformer

UCM

Remote sensing scene

99.830%

AID 97.960%

NWPU 95.930%
a https://github.com/IBM/CrossViT (accessed on 19 April 2023); b https://github.com/greentreeys/MIL-VT
(accessed on 19 April 2023); c https://github.com/facebookresearch/LeViT (accessed on 19 April 2023).

Key Takeaways—Transformers in image classification show better performance than do
CNNs and use an attention mechanism [50] instead of convolution. However, the major drawback
of using transformers in image classification is the requirement of a huge dataset for training [51].
thus, ViT is the best choice for image classification in cases where a huge dataset is easily available.

3.2. ViTs for Object Detection

The effort to tame pretrained vanilla ViT for object detection has never stopped since
the evolution of transformer [15] to CV [16]. Beal et al. [52] were the first to use a faster
region-based convolutional neural network (R-CNN) detector with a supervised pretrained
ViT for object detection. You only look at one sequence (YOLOS) [53] suggests simply using
a pretrained ViT encoder to conduct object detection in a pure sequence-to-sequence manner.
Li et al. [54] were the first to complete a large-scale study of vanilla ViT on object detection
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using sophisticated masked image modeling (MIM) pretrained representations [55,56],
confirming vanilla ViT’s promising potential and capacity in object-level recognition.

In [57], the authors proposed the unsupervised learning-based technique using ViT for
the detection of the manipulation in the satellite images. They used two different datasets
for the evaluation of the framework. The ViT model with postprocessing (ViT-PP) achieved
an F1-score of 0.354 and a Jaccord index (JI) of 0.275 for dataset 2. The F1-score and JI can
be calculated by Equations (1) and (2) respectively.

F1 =
2 ∗ TP

2 ∗ TP + FP + FN
, (1)

J I =
TP

TP + FP + FN
, (2)

where TP, FP, and FN denote true positive, false positive, and false negative, respectively.
In [58], the authors proposed a bridged transformer (BrT) for the 3D object detection.

The model was applied for the vision and point cloud 3D object detection. They used
the ScanNet-V2 [59] and SUN RGB-D [60] datasets to validate their model. The model
demonstrated the mean average precision (mAP)@0.5 of 52.8 for the ScanNet-V2 dataset
and 55.2 for the SUN RGB-D dataset.

Similarly, in [61], the authors proposed a transformer-based framework for the de-
tection of 3D objects using point cloud data. They used the ScanNet-V2 [59] and SUN
RGB-D [60] datasets to validate their model. The model demonstrated a mean average
precision (mAP)@0.5 of 52.8 for the ScanNet-V2 dataset and 45.2 for the SUN RGB-D dataset.

Table 3 shows the application of ViT for object detection.

Table 3. ViT for Object Detection.

Research Model Dataset Objective
Perf.
Metric

Value

[53] YOLOS a COCO Object detection APbox 42.000

[57] ViT Satellite images Manipulation detection
F1-score 0.354

JI 0.275

[58] BrT
ScanNet-V2

3D object detection mAP@0.5
55.200

SUN RGB-D 48.100

[61] ViT b ScanNet-V2
3D object detection mAP@0.5

52.800

SUN RGB-D 45.200
a https://github.com/hustvl/YOLOS (accessed on 19 April 2023); b https://github.com/zeliu98/Group-Free-3D
(accessed on 19 April 2023).

Key Takeaways—Transformers are used for object detection in three different ways: (a) Feature
extraction with transformers and detection with R-CNN as in [62], (b) feature extraction with
CNN and detection head based on transformers as in [63,64], and (c) a complete end-to-end pure
transformer-based object detection as in [53]. The third method is more feasible and requires more
effort to create more end-to-end object detection models using ViTs.

3.3. ViTs for Image Segmentation

Image segmentation can also be performed using transformers. A combination of
ViT and U-Net was used in [65] to segment medical images. The authors replaced the
encoder part of the classical U-Net with a transformer. A multi-atlas abdomen-labeling
challenge dataset from MICCAI 2015 was used. By using images with a resolution of
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224, the TransUNet achieved an average dice score of 77.48%, and while using images of
resolution 512, it achieved an average dice score of 84.36%.

In [66], the authors proposed a “ViT for biomedical image segmentation (ViTBIS)” for
medical image segmentation. Transformers were used for both encoders and decoders
in their transformer-based model. In addition, the MICCAI 2015 multi-atlas abdomen-
labeling challenge dataset and the Brain Tumor Segmentation (BraTS 2019) challenge
dataset were used. The evaluation metric used was dice score and Hausdorff distance
(HD) [67]. According to the MICCAI 2015 dataset, the average dice scores were 80.45%,
and the average HDs were 21.24%.

In [68], the authors proposed a novel “language-aware ViT (LAVT)” for image seg-
mentation. They used four different datasets for the evaluation of the model. The datasets
were RefCOCO [69], RefCOCO+ [69], G-Ref (UMD partition) [70], and G-Ref (Google
partition) [71]. They used intersection over union (IoU) as the performance metric. The
value of IoU for the RefCOCO dataset was 72.73%, and for RefCOCO+, the IoU was 62.14%.
Similarly, for G-Ref (UMD partition), the IoU was 61.24%, and for G-Ref (Google partition),
the IoU was 60.50%. Similarly, another work [72] proposed high-resolution ViT for se-
mantic segmentation. The authors of this work used several branch block co-optimization
techniques and achieved good results for the semantic segmentation on the ADE20K and
Cityscapes datasets.

Cheng et al. in [73] proposed MaskFormer for image segmentation. This model
outperformed state-of-the-art semantic [19,74–78] and panoptic [79] segmentation models.

Hatamizadeh et al. in [80] proposed UNetFormer for medical image segmentation.
The model contained a transformer-based encoder, decoder, and bottleneck part. They
used the medical segmentation decathlon (MSD) [81] and BraTS 2021 [82] dataset to test
UNetFormer. They evaluated dice scores and HD. The dice score using the MSD dataset
was 96.03% for the liver and 59.16% for the tumor, whereas the value of HD was 7.21%
for the liver and 8.49% for the tumor. Moreover, the average dice score on the BraTS 2021
dataset was 91.54%.

Table 4 shows the application of ViT for image segmentation.
Key Takeaways—Transformers use self-attention [31,83,84] for image segmentation. With

the help of self-attention, the transformers make rich interactions between pixels. However, the
transformers show remarkable performance for image segmentation but require a huge dataset for
training.

3.4. ViTs for Image Compression

In recent years, learning-based image compression has been a major focus of research.
For lossy image compression based on learning, different CNN-based architectures have
proven effective [85,86]. As ViTs evolved, learning-based image compression has also been
performed using transformer-based models. In [87], the authors modified the entropy
module of the Ballé 2018 mode [88] with the ViT. Due to the fact that the entropy module
used a transformer, this model was called Entroformer. Entroformer effectively captured
long-range dependencies in probability distribution estimation. On the Kodak dataset, they
demonstrated the performance of the Entroformer. When the model was optimized for
the mean squared error (MSE) loss function, the average peak signal-to-noise ratio (PSNR)
and multiscale structural similarity (MS-SSIM) were 27.63 dB and 0.90132, respectively.
Similarly, in [89], the authors proposed Contextformer and achieved 11% bit savings over
Versatile Video Coding (VVC) [90].

Key Takeaways—End-to-end transformer-based image compression models outperform other
learning-driven image compression models and produce the reconstructed image with better visual
quality [91]. However, these models possess high complexity and massive memory utilization [87].
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Table 4. ViT for Image Segmentation.

Research Model Dataset Objective
Performance
Metric

Value

[65] TransUNet a MICCAI 2015 Medical image segmentation Dice score 77.480%

[66] ViTBIS MICCAI 2015 Medical image segmentation
Dice score 80.450%

HD 21.240%

[68] LAVT

RefCOCO

Image segmentation IoU

72.730%

RefCOCO+ 62.140%

G-Ref (UMD partition) 61.240%

G-Ref (Google partition) 60.500%

[80] UNetFormer b
MSD

Liver segmentation
Dice score 96.030%

HD 7.210%

Tumor segmentation
Dice score 59.160%

HD 8.490%

BraTS 2021 Brain tumor segmentation Dice score 91.540%

a https://github.com/Beckschen/TransUNet (accessed on 19 April 2023); b https://github.com/Project-MONAI/
research-contributions (accessed on 19 April 2023).

3.5. ViTs for Image Super-Resolution

CNN has been used to perform image super-resolution. With ViT’s superiority over
CNN, image super-resolution can also be achieved by transformers. Spatio-temporal ViT, a
transformer-based model for the super-resolution of microscopic images, was developed
in [92]. Additionally, the model addressed the problem of video super-resolution. To
test the model’s performance, the authors used a video dataset. PSNR was calculated for
static and dynamic videos. Static, medium, fast, and extreme motions were considered.
The PSNR for static was 34.74 dB, whereas the PSNR for medium, fast, and extreme was
30.15 dB, 26.04 dB, and 22.95 dB, respectively.

3.6. ViTs for Image Denoising

Denoising images has also been a challenging problem for researchers. In spite of
this, ViT has found a solution. A transformer was used to denoise CT images in [93]. In
this work, the authors proposed a model called TED-Net for low-dose CT denoising. The
authors used a transformer for both the encoder and decoder parts. Using the AAPM-Mayo
clinic LDCT Grand Challenge dataset, they obtained a structural similarity (SSIM) of 0.9144
and a root mean square error (RMSE) of 8.7681.

Luthra et al. in [94] proposed Eformer for medical image denoising. Eformer was
based on edge enhancement and incorporated the Sobel operator. They evaluated the model
on AAPM-Mayo Clinic Low-Dose CT Grand Challenge Dataset [95]. Eformer achieved a
PSNR of 43.487, an RMSE of 0.0067, and an SSIM of 0.9861.

In [96], the authors combined UNet [97] and Swin transformer [19] to propose SUNet
for image denoising. The model was evaluated on CBSD68 [98] and Kodak24 [99] dataset.
The model achieved a PSNR of 27.85 and SSIM of 0.799 for the CBSD68 dataset when the
noise level (σ) was 50. Similarly, the model achieved a PSNR of 29.54 and SSIM of 0.810 for
the Kodak24 dataset when the σ was kept at 50.

In [100], the authors proposed DenSformer for image denoising. The DenSformer was
composed of three modules, preprocessing, feature extraction, and reconstruction. The
model achieved a PSNR of 39.68 and an SSIM of 0.958 on the SIDD dataset [101]. Similarly,
the model yielded a PSNR of 39.87 and an SSIM of 0.955 on the Dnd dataset [102].

Xu et al. in [103] proposed the CUR transformer for image denoising.The CUR
transformer was deduced from the convolutional unbiased regional transformer. Similarly,
in [104–106], the combined transformers and CNN for image denoising and achieved
better performance. In [107], the authors proposed Hider, a transformer-based model for
image denoising. The model was designed for hyperspectral images. The authors in [108]
proposed CSformer for image denoising. The model was based on cross-scale feature fusion.
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The model was evaluated on Set12 [109], BSD68 [98] and General100 [110] dataset. The
model outperformed DnCNN [109], FDnCNN [109], FFDNet [111], IRCNN [112], DRUnet
[113], Uformer [114], and SwinIR [115] in terms of PSNR and SSIM.

Key Takeaways—Transformer models can be used for image denoising either in standalone
fashion, i.e., end-to-end, or hybrid, i.e., combined with CNN. Standalone models have relatively
better performance than do hybrid models.

3.7. ViTs for Anomaly Detection

Additionally, ViT is used for anomaly detection. A novel ViT network for image
anomaly detection and localization (VT-ADL) was developed in [116]. In this study, the
authors used a real-world dataset called BTAD. The model was also tested on two publicly
available datasets, MNIST and MVTec [117]. For all three datasets, they calculated the
model’s per region overlap (PRO) score. A mean PRO score of 0.984 was obtained for the
MNIST dataset, 0.807 for the MVTec dataset, and 0.89 for the BTAD dataset.

Similarly, in [118], the authors proposed AnoViT for the detection and localization of
anomalies. The MNIST, CIFAR, and MVTecAD datasets were used by the authors. Based
on the MINST, CIFAR, and MVTecAD datasets, the mean area under the region operating
characteristics (AUROC) curve was 92.4, 60.1, and 78, respectively.

Yuan et al. in [119] proposed TransAnomaly, a video ViT and U-Net-based framework
for the detection of the anomalies in the videos. They used three datasets, Pred1, Pred2, and
Avenue. The calculated area under the curve (AUC) for three datasets, achieving 84.0%,
96.10%, and 85.80%, respectively, without using the sliding windows method (swm). With
the swm, the model yielded an AUC of 86.70%, 96.40%, and 87.00% for the Pred1, Pred2,
and Avenue datasets, respectively.

Table 5 shows the summary of the ViT for anomaly detection.

Table 5. ViT for Anomaly Detection.

Research Model Dataset Objective
Perf.
Metric

Value

[116] VT-ADL a

MNIST

Anomaly detection PRO

0.984

MVTec 0.807

BTAD 0.890

[118] AnoViT b

MNIST

Anomaly detection AUROC

92.400%

CIFAR 60.100%

MVTec 78.000%

[119]

TransAnomaly

Pred1

Anomaly detection AUC

84.000%

Pred2 96.100%

Avenue 85.800%

TransAnomaly

Pred1 86.700%

Pred2 96.400%

Avenue 87.000%
a https://github.com/pankajmishra000/VT-ADL (accessed on 19 April 2023); b https://github.com/tkdleksms/
LG_ES_anomaly (accessed on 19 April 2023).

4. Advanced ViTs

In addition to their promising use in vision, some transformers have been particularly
designed to perform a specific task or to solve a particular problem. In this section, we
analyze the different advanced transformer models by categorizing them into the following
categories:
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• Task-based ViTs;
• Problem-based ViTs.

4.1. Task-Based ViTs

In this subsection, we summarize task-based ViTs. Task-based ViTs are those ViTs that are
designed for a specific task and perform exceptionally well for that task. Lee et al. in [120]
proposed the multipath ViT (MPViT) for dense prediction by embedding features of the
same sequence length with the patches of the different scales. The model achieved superior
performance for classification, object detection, and segmentation. However, the model is
specific to dense prediction.

In [121], the authors proposed the coarse-to-fine ViT (C2FViT) for medical image
registration. C2FViT uses convolutional ViT [24,122] an ad multiresolution strategy [123]
to learn global affine for image registration. The model was specifically designed for
affine medical image registration. Similarly, in [124], the authors proposed TransMorph for
medical image registration and achieved state-of-the-art results. However, these models
are task-specific, which is why they are categorized as task-based ViTs here.

4.2. Problem-Based ViTs

In this subsection, we present problem-based ViTs. Problem-based ViTs are those ViTs
which are proposed to solve a particular problem that cannot be solved by pure ViTs. These
types of ViTs are not dependent on tasks but rather on problems. For example, ViTs are
not flexible. To make a ViT more flexible and to reduce its complexity, the authors in [125]
proposed a messenger (MSG) transformer. They used specialized MSG tokens for each
region. By manipulating these tokens, one can flexibly exchange visual information across
the regions. This reduces the computational complexity of ViTs.

Similarly, it has been discovered that mixup-based augmentation works well for gen-
eralizing models during training, especially for ViTs because they are prone to overfitting.
However, the basic presumption of earlier mixup-based approaches is that the linearly
interpolated ratio of targets should be maintained constantly with the percentage suggested
by input interpolation. As a result, there may occasionally be no valid object in the mixed
image due to the random augmentation procedure, but there is still a response in the label
space. Chen et al. in [126] proposed TransMix for bridging this gap between the input and
label spaces. TransMix blends labels based on the attention maps of ViTs.

In ViTs, global attention is computationally expensive, whereas local attention provides
limited interactions between tokens. To solve this problem, the authors in [127] proposed
the CSWin transformer based on the cross-shaped window self-attention. This provided
efficient computation of self-attention and achieved better results than did the pure ViTs.

5. Open Source ViTs

This section summarizes the available open-source ViTs with potential CV applications.
We also provide the links to the source codes of each model discussed. Table 6 presents the
comprehensive summary of the open-source ViTs for the different applications of CV such
as image classification, object detection, instance segmentation, semantic segmentation,
video action classification, and robustness evaluation.
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Table 6. Summary of the open-source ViTs present in the literature for different applications of CV.

Research Year Model Name CV Application Source Code

[1] 2021 PiT α
• Img. class. a

• Object det. b

• Rob. eval. e

https://github.com/naver-ai/pit (accessed on
19 April 2023)

[16] 2020 ViT ∗
• Img. class. a

https://github.com/google-research/vision_
transformer (accessed on 19 April 2023)

[19] 2021 Swin Transformer
• Img. class. a

• Object det. b

• Semantic seg. c

https://github.com/microsoft/Swin-
Transformer (accessed on 19 April 2023)

[32] 2021 Cross-ViT • Img. class. a

• Object det. b
https://github.com/IBM/CrossViT (accessed
on 19 April 2023)

[122] 2021 CeiT γ
• Img. class. a

https://github.com/rishikksh20/CeiT-pytorch
(accessed on 19 April 2023)

[128] 2022 Swin Transformer
V2

• Img. class. a

• Object det. b

• Semantic seg. c

• Vid. act. class. d

https://github.com/microsoft/Swin-
Transformer (accessed on 19 April 2023)

[129] 2021 DVT †
• Img. class. a

https://github.com/blackfeather-wang/
Dynamic-Vision-Transformer (accessed on
19 April 2023)

[130] 2021 PVT ††
• Object det. b

• Instance seg. c

• Semantic seg. c

https://github.com/whai362/PVT (accessed on
19 April 2023)

[131] 2021 Twins
• Img. class. a

• Dense det. b

• Seg. c

https://github.com/Meituan-AutoML/Twins
(accessed on 19 April 2023)

[132] 2021 Mobile-ViT • Object det. b
https://github.com/apple/ml-cvnets (accessed
on 19 April 2023)

[133] 2021 Refiner • Img. class. a
https://github.com/zhoudaquan/Refiner_ViT
(accessed on 19 April 2023)

[134] 2021 DeepViT †††
• Img. class. b

https://github.com/zhoudaquan/dvit_repo
(accessed on 19 April 2023)

[135] 2021 DeiT ††††
• Img. class. a

https://github.com/facebookresearch/deit (ac-
cessed on 19 April 2023)

[136] 2021 Visformer • Img. class. a
https://github.com/danczs/Visformer (ac-
cessed on 19 April 2023)

α Pooling-based Vision Transformer, ∗ Vision transformer, † Dynamic vision transformer, †† Pyramid vision
transformer, ††† Deeper vision transformer, †††† Data-efficient image Transformer, γ Convolution-enhanced
image Transformer; a Image classification, b Detection, c Segmentation, d Video action classification, e Robustness
evaluation.

6. ViTs and Drone Imagery

In drone imagery, unmanned aerial vehicles (UAVs) or drones capture images or
videos. Images of this type can provide a birds-eye view of a particular area, which can be
useful for various applications, such as land surveys, disaster management, agricultural
planning, and urban development.

Initially, DL models such as CNNs [137], recurrent neural networks (RNNs) [138], fully
convolutional networks (FCNs) [139], and generative adversarial networks (GANs) [140]
were widely used for tasks in which drone image processing was involved. CNNs are
commonly used for image classification and object detection using drone images. These are
particularly useful, as these models can learn to detect features such as buildings, roads,
and other objects of interest. Similarly, RNNs are commonly used for processing time-series
data, such as drone imagery. These models are able to learn to detect changes in the
landscape over time. These are useful for tasks such as crop monitoring and environmental
monitoring.

FCNs are mainly used for semantic segmentation tasks, such as identifying different
types of vegetation in drone imagery. These can be used to create high-resolution maps of
the landscape, which can be useful for various applications.

GANs are commonly used for image synthesis tasks, such as generating high-resolution
images of the landscape from low-resolution drone imagery. These can also be used for
data augmentation, which can help to improve the performance of other DL models.
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When it comes to drone imagery, ViTs can be used for a variety of tasks because of
the advantages of ViTs over traditional DL models [26–28,31]. ViTs use a self-attention
mechanism that allows these models to focus on relevant parts of the input data [21]. This
is particularly useful when processing drone imagery, which may contain a lot of irrelevant
information, such as clouds or trees, that can distract traditional DL models. By selectively
attending to relevant parts of the image, transformers can improve their accuracy. Similarly,
traditional DL models typically process data in a sequential manner, which is slow and
inefficient, especially when dealing with large amounts of data. ViTs, on the other hand, can
process data in parallel, making them much faster and more efficient. Another advantage
of ViTs over traditional DL models is efficient transfer learning ability [141], as ViTs are
pretrained on large amounts of data, allowing them to learn general features that can be
applied to a wide range of tasks. This means that they can be easily fine-tuned for specific
tasks, such as processing drone imagery, with relatively little training data. Moreover, one
of the most important advantages is the ability to handle variable-length input as drone
imagery can vary in size and shape, making it difficult for traditional DL models to process.
ViTs, on the other hand, can handle variable-length input, making them better suited for
processing drone imagery.

Similarly, another main advantage of using ViTs for drone imagery analysis is their
ability to handle long sequences of inputs. This is particularly useful for drone imagery,
where large images or video frames must be processed. Additionally, ViTs can learn
complex spatial relationships between different image features, leading to more accurate
results than those produced with other DL models.

ViTs are used for object detection, disease detection, prediction, classification, and
segmentation using drone imagery. This section briefly summarizes the applications of ViT
using drone imagery.

In [142], the authors proposed TransVisDrone, which is a spatio-temporal transformer
for the detection of drones in aerial videos. The model obtained state-of-the-art performance
on the NPS [143], FLDrones [144], and Airborne Object Tracking (AOT) datasets.

Liu et al. [145] reported the use of ViT for drone crowd counting. The dataset used in
the challenge was collected by drones.

In [146], the authors used unmanned aerial vehicle (UAV) images of date palm trees
to investigate the reliability and efficiency of various deep-ViTs. They used different ViTs
such as Segformer [147], the Segmeter [148], the UperNet-Swin transformer, and dense
prediction transformers (DPT) [149]. Based on the comprehensive experimental analysis,
Segformer achieved the highest performance.

Zhu et al. [150], proposed TPH-YOLOv5 for which they replaced the original pre-
diction head of YOLOv5 with the transformer prediction head (TPH) to overcome the
challenges of objection in the drone-captured images.

In [151], the authors summarized the results of the challenger VisDrone-DET2021 in
which the proponents used different transformers, such as Scaled-YOLOv4 with trans-
former and BiFPN (SOLOER), Swin-transformer (Swin-T), stronger visual information for
tiny object detection (VistrongerDet), and EfficientDet for object detection in the drone
imagery. Thai et al. [152] demonstrated the use of ViT for cassava leaf disease classification
and achieved better performance than did the CNNs. A detailed summary of the existing
ViTs for drone imagery data is presented in Table 7.
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Table 7. ViTs for drone imagery.

Ref. Model Dataset Objective Perf. Metric Value

[142] TransVisDrone †
• NPS
• FLDrones
• AOT

Drone detection AP@0.5IoU
• 0.95
• 0.75
• 0.80

[146]

• Segformer
• Segmenter
• UperNet-Swin
• DPT

Date palm trees Segmentation mIoU α

• ≈86.2%
• ≈85.3%
• ≈85.8%
• ≈85.4%

[146]

• Segformer
• Segmenter
• UperNet-Swin
• DPT

Date palm trees Segmentation mF-Score β

• ≈92.5%
• ≈91.9%
• ≈92.3%
• ≈92.0%

[146]

• Segformer
• Segmenter
• UperNet-Swin
• DPT

Date palm trees Segmentation mAcc γ

• ≈92.8%
• ≈92.0%
• ≈92.4%
• ≈91.7%

[150] TPH-YOLOv5 †† VisDrone2021 Object detection mAP δ • 39.2%

[151]

• DBNet
• SOLOer
• Swin-T
• TPH-YOLOv5
• VistrongerDet
• cascade ††

• DNEFS
• EfficientDet
• DPNet-

ensemble
• DroneEye2020
• Cascade R-CNN

VisDrone-
DET2021 Object detection AP

• 39.43%
• 39.42%
• 39.40%
• 39.18%
• 38.77%
• 38.72%
• 38.53%
• 38.51%
• 37.37%
• 34.57%
• 16.09%

† https://github.com/tusharsangam/TransVisDrone (accessed on 19 April 2023), †† https://github.com/cv516
Buaa/tph-yolov5 (accessed on 19 April 2023); α mean intersection over union, β mean F-Score, γ mean accuracy,
δ mean average precision. red color text: Worst performing model, green color text: best-performing model.

7. Open Research Challenges and Future Directions

Despite showing promising results for different image coding and CV tasks, in ad-
dition to high computational costs, large training datasets, neural architecture search,
interpretability of transformers, and efficient hardware designs, ViTs implementation still
faces challenges. The purpose of this section is to explain the challenges and future direc-
tions of ViTs.

7.1. High Computational Cost

There are millions of parameters in ViT-based models. Computers with high com-
putational power are needed to train these models. Due to their high cost, these high-
performance computers increase the computational cost of ViTs. In comparison to CNN,
ViT performs better; however, its computational cost is much higher. One of the biggest
challenges researchers face is reducing the computational cost of ViTs. In [153], the authors
proposed the glance-and-gaze ViT to reduce the memory consumption and computational
cost of the ViT. However, this critical issue needs more attention and research to make ViTs
more effective in terms of computational cost.

7.2. Large Training Dataset

The training of ViTs requires a large amount of data. With a small training dataset,
ViTs perform poorly [154]. A ViT trained with the ImageNet1K dataset was found to
perform worse than did ResNet, but a ViT trained with ImageNet21K performed better
than did ResNet [16]. However, in [51], the authors trained ViT on a small dataset, but the
model could not be generalized. Similarly, other authors [155] demonstrated the method to
train ViT on 2040 images. Chen et al. in [136] proposed Visformer to reduce the model’s
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complexity and train ViTs on a small dataset. Despite these efforts from researchers, training
a ViT with a small dataset to achieve remarkable performance is still challenging.

7.3. Neural Architecture Search (NAS)

There has been a great deal of exploration of NAS for CNNs [156–159]. In contrast,
NAS has not yet been fully explored for ViTs. In [160], the authors surveyed several
NAS techniques for ViTs. To the best of our knowledge, there are limited studies on the
NAS exploration in ViTs [161–166], and more attention is needed in the future. The NAS
exploration for ViTs may a new direction for young investigators in the future.

7.4. Interpretability of the Transformers

It is difficult to visualize the relative contribution of input tokens to the final predictions
with ViTs since the attention that originates in each layer is intermixed in succeeding layers.
In [167,168], the authors demonstrated the interpretability of the transformers to some
extent. However, the problem remains unresolved.

7.5. Hardware-Efficient Designs

Power and processing requirements can make large-scale ViTs networks unsuitable
for edge devices and resource-constrained contexts such as the Internet of Things (IoT).
In [169], the authors proposed a framework for low-bit ViTs. However, the issue is still
unresolved.

7.6. Large CV Model

With the advancement of technologies such as green communication [170], digital
twins [171], and usage of ViTs, researchers have started to focus on large CV models and
large language models [172] with billions of parameters. A large model can be used as a
basis for transfer learning and fine-tuning, so there is interest in developing increasingly
high-performance models. Google ViT-22B [173] paves the way for new large transformers
and to revolutionizing CV. It consists of 22 billion parameters and is trained on four billion
images. It can be used for image classification, video classification, semantic segmentation,
and depth estimation. Inspired by Google ViT-22B, the authors in [174] proposed the EVA-
02 model with 304 M parameters. Despite the remarkable performance of large models,
retraining these models on new datasets is a daunting task, but one approach to solving
this problem is the usage of a pretrained model. The researchers in [175] demonstrated that
continual learning (CL) can help pretrained vision-language models efficiently adapt to
new or undertrained data distributions without retraining. Although they achieved good
performance, this problem still needs to be explored in future research.

8. Conclusions

It is becoming more common to use ViTs for image coding and CV instead of CNNs.
The use of ViTs for classification, detection, segmentation, compression, and image super-
resolution has risen dramatically since the introduction of the classical ViT for image
classification. This survey presented the existing surveys on ViTs in the literature. This
survey highlighted the applications of different variants of ViTs in CV and further exam-
ined the use of ViTs for image classification, object detection, image segmentation, image
compression, image super-resolution, image denoising, and anomaly detection. We also
presented the lessons learned in each category. From the detailed analysis, we observed
that ViTs are replacing traditional DL models for CV applications. Significant achievement
has been made in image classification and object detection, where ViTs are widely used
because of the self-attention mechanism and effective transfer learning. Additionally, we
discussed the open research challenges faced by researchers during the implementation of
ViTs, which include the high computational costs, large training datasets, interpretability
of transformers, and hardware efficiency. By providing future directions, we offer young
researchers a new perspective. Recently, large CV models have attracted the focus of the
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research community as Google’s ViT22B has paved the way for future research in this
direction.
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Abbreviations

The following abbreviations are used in this manuscript:

AID Aerial image dataset
AP Average precision
AQI Air quality index
AUC Area under the curve
AUROC Area under receiver operating characteristic curve
APbox Box average precision
BERT Bidirectional encoder representations from transformers
bpp Bits per pixel
BrT Bridged transformer
BTAD BeanTech anomaly detection
CIFAR Canadian Institute for Advanced Research
CV Computer vision
CNN Convolutional neural network
DHViT Deep hierarchical ViT
DOViT Double output ViT
ES-GSNet Excellent teacher guiding small networks
GAOs-1 Get AQI in one shot-1
GAOs-2 Get AQI in one shot-2
GPT-3 Generative pretrained transformer 3
HD Hausdorff distance
IoU Intersection over union
JI Jaccord index
LiDAR Light detection and ranging
mAP Mean average precision
MLP Multilayer perceptron
MIL-ViT Multiple instance-enhanced ViT
MIM Masked image modeling
MITformer Multi-instance ViT
MSE Mean squared error
MS-SSIM Multiscale structural similarity
NLP Natural language processing
NWPU Northwestern Polytechnical University
PSNR Peak signal to noise ratio
PRO Per region overlap
PUAS Planet Understanding the Amazon from Space
RFMiD2020 2020 retinal fundus multidisease image dataset
R-CNN Region-based convolutional neural network
RMSE Root mean square error
SSIM Structural similarity
TE Transformer encoder
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UCM UC-Mered land use dataset
ViTs Vision transformers
VT-ADL ViT network for image anomaly detection and localization
ViT-PP ViT with postprocessing
YOLOS You only look at one sequence
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