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Abstract 

 
 
The factors that explain differences in the economic productivity of urban areas have remained 
difficult to measure and identify unambiguously. Here we show that a synthesis of the classical 
representation of economic activity in a city in terms of a production function, together with a 
scaling perspective that accounts for the systematic effects of population size, leads to a new 
expression for the Total Factor Productivity (TFP) of urban areas. We empirically demonstrate 
that there is a systematic dependence of urban productivity on population size, resulting from the 
mismatch between the size dependence of wages and labor, so productivity increases by about 
11% with each doubling in population. Moreover, deviations from the scale dependence, 
capturing the effect of local factors (including history and other contingencies) also manifest 
surprising regularities. Although productivity is maximized by the combination of high wages 
and low labor input requirement, high TFP cities show invariably high wages and high levels of 
employment relative to their size expectation. Conversely, low TFP cities show both low wages 
and employment. Finally we show that how educational attainment relates to these patterns and 
derive how it can naturally parameterize the TFP. We believe that these results shed new light on 
the important problem of establishing the determinants of urban productivity and inform the 
development of economic theory related to growth. 
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1. Introduction 
 

Much research has been carried out over the past two decades trying to elucidate the 
causes of productivity differences across urban areas in the United States. The prevalent 
approach has been to utilize a variant of the growth accounting method (Solow, 1957) in order to 
statistically examine which of the myriad characteristics of urban areas affect their productivity 
(see, for example, Drennan et al., 2002; Florida, Mellander and Stolarick, 2008; Glaeser et al. 
1992, 1995; Henderson, 1988; Lobo and Rantisi, 1999; Lobo and Smole, 2002). Among the 
many possible determinants of location-specific productivity, agglomeration economies ― a set 
of phenomena ultimately dependent on the size and density of urban populations ― have been 
highlighted in the literature (e.g., Carlino, Chatterjee and Hunt, 2007; Harris and Ioannides, 
2000; Knudsen et al., 2008; Puga, 2010; Rosenthal and Strange, 2004). An earlier literature 
documented the positive effects of urban (population) size on productivity measured as average 
wage (Carlino, 1979; Moomaw, 1981; Segal, 1976; Shefer, 1973; Sveikauskas, 1975). The 
relationship between urban size and productivity is indeed a central fact of urban economics 
(Glaeser and Resseger, 2010). 

 
The privileged role of cities as centers for the generation, recombination and exchange of 

knowledge―a role rediscovered by the new economic growth theory (Lucas, 1988)―provides a 
mechanism through which urban economies can become differentiated with regards to their 
productivity. As Florida (2005) and Glaeser (2011) point out, those cities which succeed in 
attracting skilled and creative individuals, responsible for the generation of new ideas and the 
application of existing ideas in novel ways, are bound to be more productive. Jones and Romer 
(2010) remind us—in a discussion centered on economic growth at the national level but which 
is also relevant for urban economies—of the possibly virtuous cycle for the acceleration of 
growth between size of population and the generation of ideas. A larger agglomeration of 
individuals can be expected to sustain a larger repertoire of intellectual capabilities, thereby 
facilitating the creation and recombination of ideas, and increasing the likelihood that 
interactions among individuals will occur through which new ideas are generated and shared.1 

 
 The importance of population size as a major determinant of the intensity of socio-
economic activity in urban areas has recently been re-emphasized by research applying scaling 
analysis to a diverse spectrum of urban indicators (Bettencourt et al. 2007, 2010; Bettencourt, 
Lobo and Strumsky, 2007). Scaling analysis, which has been a powerful tool across many 
science domains, represents how measurable characteristics of a system respond to a change in 
the size of the system. Its analytical punch stems from the observation that this response 
is often a simple, regular, and systematic function over a wide range of sizes, indicating that 
there are underlying generic constraints at work on the system. Cities are one such system: on the 
average, they manifest non-trivial scaling across many metrics, whether infrastructural or socio-
economic, and appear to scale in the same way across a variety of urban systems. Indeed, simple 
power law scaling, discussed below, seems to be an approximately universal characteristic of 
cities world-wide, suggesting that a common dynamic has been at play in the development of 
cities and their economies, independent of local history, geography and culture.  

                                                 
1 The argument that increases in urban scale generate greater positive externalities was eloquently made by Marshall 
(1890) and Jacobs (1969). 
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The methodological hallmark of investigations into the sources of economic growth and 
the determinants of productivity, whether at the national or sub-national levels, has been the use 
of a production function as a compact description of how economic output is generated. The 
framework of scaling provides a different perspective on metropolitan productivity from that 
implicit in the production function framework as it does not necessarily require that urban 
characteristics be outputs of a productive process, and as such can be applied very generally to 
characterize economic quantities, social metrics and infrastructural urban properties in the same 
manner. Measured deviations from the idealized average scaling relationships capture the effect 
of location-specific variations―due to history, geography, environment, culture, or 
contingency―on the performance of cities (Bettencourt, Lobo, Strumsky, West 2010). 
Deviations from the scaling relationship in effect represent the true unique “essence” of any 
given city. In this sense scaling analysis offers a complementary perspective on urban properties 
from a production analysis.  

 
The integration of the production function and scaling analysis frameworks presented 

here rests on four “stylized” facts about urban economies. 
 

1. Population size matters for urban productivity. 
2. The share of total urban income accrued by urban labor is approximately the same (~0.7) 

across the urban economies of the United States, and has remained the same across the 
four decades for which data is reliably available. 

3. The generation, recombination and exchange of ideas by and among individuals is the 
primary engine of economic growth. 

4. Important indicators of urban economic life exhibit non-linear scaling behavior. 
 

Bringing together the scaling and production function frameworks under the empirical cover of 
these facts makes it explicit how size constrains metropolitan total factor productivity (TFP). If it 
is the case that larger cities are more productive by virtue of their larger population size, then this 
systematic scale-dependence should be incorporated into a model of urban economic production 
that is common across cities of different sizes.   
 

The decomposition of urban productivity effects in terms of their systematic population 
scale-dependence from other factors is an analytically important step towards accurately 
identifying the causes of economic under- or over-performance. The expression for urban TFP 
derived here explicitly incorporates the effects of scale on productivity by accounting for the 
systematic variation of urban characteristics with population size. To achieve this, we adopt a 
parameterization of urban indicators of productivity and economic inputs in terms of both 
systematic dependences on city size, which are common to all cities, and scale-independent local 
deviations from this general trend in terms of indicators we call Scale Adjusted Metropolitan 
Indicators, or SAMIs (Bettencourt et al., 2010). The final result is an expression for urban TFP 
which explicitly controls for the effects of population size. With this scale-adjusted productivity 
metric it is therefore possible to disentangle the effects on productivity of urban characteristics, 
many of which can themselves be expected to be scale-dependent. As an example of this exercise 
we explicitly consider the effects of human capital, measured in the usual way as educational 
attainment and which also scales with population size, on urban TFP.  
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The discussion is organized as follows. The next section briefly introduces scaling 
analysis. Section three builds upon the scaling relationship to construct a scale-adjusted indicator 
of metropolitan performance. Section four utilizes the framework of a production function to 
derive a scale-adjusted measure of metropolitan productivity while section five presents a 
parametrization of the measure. The scale-adjusted effects of human capital on productivity are 
quantified in section six. Section seven decomposes the scale-adjusted productivity measure 
along two dimensions, total wages and employment. Section eight presents our conclusions and 
discusses their implications for further research.  

 
2. Scaling Analysis 
 

Scaling characterizes how a given systemic quantity of interest, Y, depends on a measure 
of the size of a system, N.  A common feature of scaling is scale invariance, which corresponds 
to a relationship formalized as:  

 
 Y(N) = Y0N

β  (1) 
 
where Y0  is a normalization constant and β  is the scaling exponent (which can also be 
interpreted as an elasticity as usually defined in economics). The significance of this “power 
law” relation becomes evident when we consider an arbitrary scale change by a factor λ  from N 
to λN . (The use of a power-law functional form in equation (1) is not essential to the main 
argument.) This induces a change in Y from Y(N) to Y(λN)that, in general, can be expressed as  
 
 Y(λN) = Z(λ,N)Y (N)  (2) 
 
This equation expresses the relation between Y for a system of size N, to Y for a system λ times 
larger. When the scale factor Z depends only on λ , i.e. Z(λ,N) = Z(λ), equation (2) can be 
solved uniquely to give the scale-invariant result of equation (1) with Z(λ) = λβ . Scale-
invariance implies that such a relationship—the ratioY(λN) /Y(N)—is parameterized by a single 
dimensionless number β, usually referred to as the scaling exponent. The quantity Y(λN) /Y(N) 
is independent of the particular system size N but is dependent on the ratio between sizes λ; such 
systems are often referred to as “self-similar.” (Non-interacting systems are extensive and are 
characterized by β  = 1.) 
 

The observation of scale invariance implies that the effects of increasing population size 
are general and can be observed by comparing any two cities, regardless of their size. If, for 
example, Y measures economic output, and two metropolitan areas have population sizes of N 
and λ N, respectively, scaling implies that the ratio of their outputs is a function of the proportion 
of their population sizes λ, but not of N. As remarked by Barenblatt (2003), scaling relations 
manifest an important empirical property: the phenomenon, so to speak, repeats itself (albeit 
nontrivially) on changing scales. Such repetition strongly suggests that there are underlying 
dynamical processes generating and maintaining the same relationship among structural and 
functional variables over the range of the scale — typically many orders of magnitude. The 
existence of approximate scaling phenomena for urban areas ― documented in Bettencourt et al. 
(2007) and Bettencourt et al. (2010) using a variety of socio-economic metrics ― is an indication 
that there are generic social mechanisms at play across an entire urban system, integrating 



 4

together in a single swoop many of the complex interactions among the individuals, households, 
firms, and institutions living, residing and operating in these spaces.2  

 
Note that equation (1) bears a close resemblance to an urban production function with Y 

denoting total output of urban areas and N the size of urban populations (see, e.g., Glaeser et al. 
(1995)). Dividing both sides of the equal sign by N we get 1

0y Y N β −= , which can be interpreted 
as an equation for output per person as a function of the maximal number of people sharing ideas 
with each other (see, e.g., Jones and Romer, (2010)). In a sense then the mathematical machinery 
of production functions and scaling analysis are very similar (especially considering that in both 
cases the functions are homogenous).    

 
The value of the scaling exponent can be expressed using the log-transformed function: 
 

 0ln ln ln ,i i iY Y Nβ ξ= + +  (3) 
 
where the ξ i  represent deviations from the scale-invariant form. The simplicity of a straight line 
when lnY  is plotted against lnN  conveys graphically the striking result of self-similarity: as the 
size of the metropolitan area changes, the relationships among its different components and 
processes must adjust so that the relationship between size and Y is maintained. Ordinary least 
squares estimation (OLS) of equation (3) ― correcting for heteroskedasticity, and using data on 
Gross Metropolitan Product (GMP) and population for the 363 continental metropolitan 
statistical areas (MSAs) of the United States smoothed over the 2005-2007 period ― gives the 
following result:   
 
 2ln( ) 8.961 1.151*ln( ), 0.96,i iGMP Pop R= + =  (4) 
  
with p-values virtually zero.3 It is no surprise that larger metropolitan areas produce more output, 
or that population size explains most of the variability in output, but what is surprising is that the 
scaling relationship is systematically superlinear: a 1% increase in population is associated on 
average with a 1.15% increase in output, regardless of city size. These self-similar and increasing 
returns to scale establish quantitatively the economic advantages of large cities. 
 
 The scaling relationship in equation (3) can be hypothesized to apply for other socio-
economic phenomena likely to be affected by agglomeration economies. Two examples are 
provided by the number of patent applications submitted by metropolitan residents to the U.S. 
Patent Office (a broad measure of inventive activity), and the number of individuals employed in 

                                                 
2  Examples of scaling relationships in the socio-economic realm include the well-known “Zipf’s Law”, which states 
that a city’s size decreases in inverse proportion to its rank among other cities within the same urban system (Zipf 
1949); the rank-size distribution of firms (Steindl 1965; Ijiri and Simon 1977); the distribution of executive 
compensation (Walls 1999); and “Pareto’s Law” for the distribution of personal income, (Mandelbrot 1963). For a 
review of scaling analysis in economics see Brock (1999) and Stanley and Plerou (2001). 
3 Data on Gross Metropolitan Product, and on metropolitan employment and population, is provided by the 
Commerce Department’s Bureau of Economic Analysis (www.bea.gov/regional/index.htm#gsp).  
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“creative” occupations (as defined in Florida (2002)).4 The estimation results, also using data for 
the 363 continental metropolitan statistical areas (MSAs) of the United States smoothed over the 
2005-2007 period, are: 
 
 2ln( ) 13.103 1.372ln( ), 0.72,i ipatent applications population R= − + =  (5) 
 
 2ln( ) 4.006 1.121ln( ), 0.91,i icreative employment population R= − + =  (6) 
 
with p-values also virtually zero. Again, it is to be expected that larger metropolitan areas would 
generate more patent applications, or have more creative employment, than smaller-sized urban 
areas. But the pronounced superlinearity of the scaling coefficients and the consistency of their 
values across quantities might again be considered surprising, and clear evidence for how scale 
brings about systematic disproportionate increases in human capital and inventive activity. It is 
worth pointing out that population size alone accounts for most of the metropolitan variability in 
wealth, inventive activity and creative employment.   
 
3. A Scale-Adjusted Metropolitan Indicator 
 

The scaling relationship between urban economic output and population has an 
immediate practical implication when it comes to measuring and comparing metropolitan 
productivity levels. The most common productivity measure, output per worker (or its close 
relative, output per capita), implicitly assumes that output, which is a function of population, 
increases linearly with either population or employment. In other words, the implicit assumption 
of per capita measures is that Y N∝  (Uslaner, 1976), thereby ignoring an essential feature of 
cities, namely agglomeration, that produces the non-linearity inherent in scaling laws.  Given the 
scaling manifested by the data, it is clearly more meaningful to subtract the effects of urban size 
that are independent of location so as to focus on size-independent exceptions to these general 
dynamics. Such a scale-independent indicator is easy to construct if one uses the average scaling 
relations discussed in the previous section as the null model against which urban areas are to be 
compared. For any given metropolitan area the actual value of Y typically deviates from its 
idealized value as given by the scaling relationship.   

 
To be more specific, consider the scaling equation (1) as a starting point. With each 

fractional increase of population size, ∆N/N, the relative increase in per capita output, y = Y/N, is 
given by  

 

 ( 1) .y N
y N

βΔ Δ
≈ −  (7) 

 
If β ≈ 1, then, on average, ∆y ~ 0, y is constant and Y is linear in N. In this case, a standard per 
capita measure would be an appropriate baseline for ranking urban areas. However, for β > 1 the 
baseline is itself a function of size (N). Furthermore, for a given value of ∆N/N, y depends only 
                                                 
4 Data on patent applications was obtained from the U.S. Patent and Trademark Office; creative class employment 
counts were compiled by the Martin Prosperity Institute (Rotman School of Management, University of Toronto) 
using data provided by the Bureau of Labor Statistics (BLS). 
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on β but not on initial population size, expressing the principle that a meaningful comparison of 
productivity among urban areas should rely on relative magnitudes rather than on their absolute 
values.       
 
 Equation (4) expresses the average productivity for a city of size N. Deviations from this 
average behavior capture the characteristics of each individual urban area not accounted for by 
the general agglomeration effects of population size. These deviations can be quantified by the 
residuals, equation (3): 
 

 
0

ln ln ,
( )

i i
i

i i

Y Y
Y N Y N βξ = =  (8) 

 
where Yi is the observed value of output for each metropolitan area.5 We refer to ξ as a Scale-
Adjusted Metropolitan Indicator (SAMI). Unlike per capita indicators, SAMIs are dimensionless 
and, by construction, independent of urban size (Bettencourt et al. 2010). SAMIs can be 
constructed for any variable capturing features of urban life, which are subject to agglomeration 
effects. The scaling equation for an urban metric can be re-written as: 
 
 0 ,

Y
i

i iY Y N eξβ=  (9) 
 
where as before Y and N denote, respectively, a measure of urban economic performance and 
size of the urban population.   
 
4. Urban Total Factor Productivity 
 

It is often assumed, but rarely verified, that there is a production function that applies to 
all cites within an urban system, regardless of population size and other salient characteristics. A 
necessary condition for this assumption to hold is that the factors’ share of total output (or 
income) are constants, independent of time and common throughout all cities in an urban system.  
An expression for urban total factor productivity (TFP) can then be obtained if a production 
function for urban output can indeed be specified.  

 
We find it useful to recapitulate the derivation of an urban production function. We 

proceed by first stating an accounting truism: at any time, t 
 

 ( ) ( ) ( ),i i iY t W t R t= +  (10) 
 
with Y signifying the pecuniary value of the total output generated in the ith metropolitan area, W 
denoting total labor income, and R the total capital income (all three variables being time and 
place dependent). Defining the factor shares as: 
 

 ( ) ( )1 , ,
( ) ( )

i i

i i

W t R t
Y t Y t

α α− = =  (11) 

                                                 
5 The construction of SAMIs is similar to other uses of the method of residues (Batty and March, 1976). 
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the assumption of the constancy of factor shares in time and across population size requires that 
 

 | 0, | 0.t NN t
α α∂ ∂

= =
∂ ∂

 (12) 

 
The share of total income accruing to labor (1 – α) can be calculated for both 

Metropolitan Statistical Areas (MSAs) and Micropolitan Statistical Areas, which together 
constitute the urban areas of the United States and which represent a wide variety of geographic, 
demographic and socio-economic characteristics.6 Figures 1 and 2 show the time series, from 
1969 to 2009, for the economy-wide value and the urban mean of the ratio of labor income to 
total income (1 – α); the urban mean is calculated for all 942 urban areas.7 As shown in Figure 1, 
urban labor’s share of total income displays the same temporal trend as the national labor’s share 
of income, both hovering around a value of 0.70. As indicated by the standard error bars in 
Figure 2, the ratio of urban labor income to total income (1 – α) exhibits little variation across 
urban areas.8 (Strictly speaking, however, the value of 1 – α is not precisely constant over time, 
as clearly shown by Figure 2, but is slowly varying; note the granularity of the vertical scale in 
the figure.) Reassuringly, there is little systematic relationship between labor’s share of total 
income and urban population size as the correlation between location-specific values for 1 - α 
and urban population is around 0.10 for every year between 1969 and 2009. 

 
Returning to equation (10), we now differentiate it relative to time and divide by output 

to obtain 
 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )1 (1 ) ( ) .
( ) ( ) ( ) ( ) ( )

i i i i i i i

i i i i i

dY t W t dW t R t dR t dW t dR t
Y t dt Y t dt Y t dt dY t dY t

α α= + = − +  (13) 

 
Similarly, equation (10) can be differentiated with respect to population size. The constancy of α 
is now invoked in order to integrate the relation in (13) to obtain 
 
 1( ) ( ) ( ) .i i iY t CW t R tα α−=  (14) 
 
The integration constant, C, is independent of time but would, in general, have been expected to 
be a function of N. However, an identical equation can be derived by using population as the 
dependent variable, in which case, integrating with respect to N leads to an integration constant, 
                                                 
6 MSAs and Micropolitan Areas are defined by the U.S. Office of Management and Budget and are standardized 
county-based areas having at least one urbanized area (with 50,000 or more population in the case of MSAs or at 
least 10,000, but less than 50,000, in the case of Micropolitan Areas), plus adjacent territory with a high degree of 
social and economic integration with the core as measured by commuting ties. Both MSAs and Micropolitan Areas 
are in effect unified labor markets. There are 366 MSAs and 576 Micropolitan Areas as of June 2011. 
7 Total personal income is calculated as the sum of wage and salary disbursements, supplements to wages and 
salaries, proprietors' income, rental, dividend and interest income, and personal current transfer receipts, less 
contributions for government social insurance. Labor income is the sum of wage and salary disbursements and 
supplements to wages and salaries. Data for metropolitan personal income is provided by the Commerce 
Department’s Bureau of Economic Analysis (BEA) – Table CA04 “Personal income and employment summary” 
(http://www.bea.gov/regional/reis/default.cfm?selTable=CA04). 
8 Calculating 1 – α using data for Gross Metropolitan Product (available only for the 2001 – 2009 period) yields 
comparable results to those using data on labor income and total income. 
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C, independent of N but potentially dependent on t. Because the two identical forms must match, 
we conclude that the integration constant C must be independent of both time and population 
size. Furthermore, inserting the definition of α into equation (14) shows that C is, in fact, 
completely determined in terms of only α: 
 
 1( ) (1 ) .C α αα α α− −= −  (15) 

 
Equation (14) can be related to the familiar Cobb-Douglas production function, which is 

a widely-used model for national and urban economies.9  This requires the conversation factors: 
 

 ( ) ( )( ) , ( ) ;
( ) ( )

i i
i i

i i

W t R tw t r t
L t K t

= =  (16) 

 
w and r are, respectively, the marginal product of labor (MPL) and the marginal product of 
capital (MPK). We then have that: 
 
   Yi(t, N ) = C(α )Wi (t, N )1−α R i (t, N )α = Ai (t, N )Li(t)

1−α Ki(t)
α ,  (17) 

 
with the A term a measure of the location-specific technology, or “Total Factor Productivity” 
(TFP) of the ith urban area. Technology can be interpreted broadly so that it can encompass all 
the social, demographic, technological, environmental, policy and even cultural factors which 
determine the overall productivity of an urban area.  
 
 From equation (17) we get the following expression for metropolitan TFP as a function of 
the marginal productivity of labor and capital: 
 

 
  
Ai(t, Ni ) = C(α )

Wi(t, Ni )
Li(t, Ni )

⎛

⎝⎜
⎞

⎠⎟

1−α
Ri (t, Ni )
Ki(t, Ni )

⎛

⎝⎜
⎞

⎠⎟

α

= C(α )wi (t, Ni )
1−α ri (t, Ni )

α . (18) 

 
Equation (18) conveys the familiar economic logic under which technology improvements are 
manifested through the more effective utilization of the factors of production. Next, we show 
how scaling analysis provides constraints on the form of the TFP term (A) resulting in its 
systematic parameterization as an explicit function of general population size effects and specific 
local deviations. 
 
5. Parameterization of Urban TFP from Scaling Analysis 
 
 We first note that both the numerator and denominator in the expressions for the marginal 
product of labor (MPL) and marginal product of capital (MPK) exhibit scaling behavior so that 
the marginal productivity of the two production factors can be recast using their associated 
SAMIs as: 

                                                 
9 See, for example, Glaeser et al. (1992, 1995), Lobo and Smole (2002), and Abel, Dey and Gabe (2010).  
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wi (t) =

Wi(t, Ni )
Li (t, Ni )

=
W0e

ξi
W (t )Ni(t)

βW

L0e
ξi

L (t )Ni (t)
βL

=
W0

L0

eξi
W (t )−ξi

L (t )Ni(t)
βW −βL ,  (19) 

 

 
  
ri(t) =

Ri(t, Ni )
Ki (t, Ni )

=
R0e

ξi
R (t )Ni(t)

βR

K0e
ξi

K (t )Ni (t)
βK

=
R0

K0

eξi
R (t )−ξi

K (t )Ni (t)
βR −βK .  (20) 

 
An expression for A then takes the general form: 
 
 0( ) ( ) ( ) ,

A
i A

i iA t A t e N tξ β=  (21) 
with  
 

 
1

0 0
0

( ) ( )( ) ( ) ,
( ) ( )o o

W t R tA t C
L t K t

α α

α
−

⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
 (22) 

 
 (1 )( ) ( ),A W L R K

i i i i iξ α ξ ξ α ξ ξ= − − + −  (23) 
 
 (1 )( ) ( ).A W L R Kβ α β β α β β= − − + −  (24) 

 
Equations (21) – (24) make explicit how urban TFP depends on both population scale, 

through the scaling exponents, and on local, scale-independent fluctuations (through the 
SAMI’s). Evaluating A, requires knowledge of how K, the metropolitan capital stock, scales with 
urban size but unfortunately reliable data on urban capital stocks in the U.S. is not available at 
present. We can, however, estimate the value of the scaling coefficient for urban TFP. Given the 
observed values for the scaling coefficients for total wages and labor, βW  ≈ 1.13  and βL ≈ 1, and 
with (1 ) 0.7,α− ≅  the first term to the right of the equal sign on equation (24) has a value of 
0.09. What about the value of the ( )R Kα β β−  term? Under the widely-made assumption that the 
rental price of capital (r) is constant, or nearly so, across metropolitan areas, and given that 

,R r K= ×  or equivalently, 0 0 ,R KR N rK Nβ β=  then  0 0( / ) .R Kr R K N β β−=  For r to be a constant, 

 βR = βK  must hold.  Another line of reasoning we can invoke for ignoring the term ( )R Kβ β−  is 
that the capital to labor ratio must remain nearly the same across urban areas in order for MPK to 
remain invariant across those areas—thus metropolitan capital income and capital stocks must 
scale similarly.   Therefore   β A ≅ 0.09;  urban productivity increases, on average, at about 9% 
with each doubling of population.  

 
The systematic (i.e., average) dependence of A on urban population size originates in the 

mismatches of the scaling of total wages (W) versus labor (L), and, potentially, of capital income 
(R) versus capital returns (K). Given the observed values for the scaling coefficients for total 
wages and labor, their difference can generate an average increase in productivity resulting from 
a self-similar wage premium for the same amount of labor (and also, potentially, a savings in the 
amount of labor input). The scale-adjusted measure for urban TFP can be approximated by: 
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 (1 )( ).A W L
i i iξ α ξ ξ≈ − −  (25) 

 
According to equation (25), the systematic dependence of urban productivity on population size 
can be represented as the differential scaling of total wages and employment.  
 
6.  What About Human Capital? 
 

Much research has identified “human capital” (captured through a measure of educational 
attainment or professional occupations) as the principal reason why some cities are more 
economically productive than others (see, for example, Glaeser and Saiz (2004)). In this section 
we modify the derived scale-free expression for urban TFP so that it incorporates the possible 
effects of human capital. A general expression for urban TFP is given by:   

 
 ( ) [ ( ), , ],i i i i i iA N A H N N= •  (26) 
 
with productivity depending not only on population size (N), but also on the number of educated 
or skilled individuals, denoted by H, which itself scales with population (urban TFP may, of 
course depend additionally on other characteristics). 
 
 We take equation (21) as our point of departure and specify the following exact equation 
for metropolitan human capital:  
 
 0 ,

H
i H

i iH H e Nξ β=  (27) 
 
where H measures the number of educated (or skilled or creative or inventive) individuals in the 
ith metropolitan area.  (Using data from 2009 βH  is approximately 1.11.) From equation (27) we 
get an expression for N: 
 

 

1
1

0

,
H

H i
Hi

i
HN e
H

β ξ
β

−⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (28) 

  
which is substituted for the population size variable in (21): 
 

 0
1

0

( ) .
A HAA i i

H H

H
i i i

AA H H e
H

ββ ξ ξ
β β

β

−⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎣ ⎦

 (29) 

 
Equation (29) is admittedly not very elegant but dissecting it reveals a surprising result 

regarding the effects of human capital on urban productivity once scaling effects are controlled 
for. Note that the ratio of scaling coefficients for TFP and for human capital is quite small:  

 

 
  

βA

βH

= (1− α )
βW − βL

βH

⎛

⎝⎜
⎞

⎠⎟
= (0.7) 0.13

1.11
⎛
⎝⎜

⎞
⎠⎟

≅ 0.08.  (30) 
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Turning to the other term on the right-hand side of equation (29): 
 

 ( )(1 ) ,A H W L HA A
i i i i i

H H

β βξ ξ α ξ ξ ξ
β β

− = − − −  (31) 

 
which shows that the correction due to H, even if H

iξ is high (meaning that a given urban area has 
an unusually high concentration of human capital for its population size), is bound to be a very 
small number.  
 

Thus, the dependence of metropolitan TFP on H is in general quite slow, slower than for 
population size in fact. Note however that if we had instead used a per capita measure of 
educational attainment, /i i ih H N= , we would have found a much stronger dependence since 
βh ≈ 0.8.  This observation highlights the importance of searching for the dynamical mechanisms 
that propel economic productivity and that we see as being largely proxied by population size. 
Most socio-economic variables, from violent crime to the incidence of certain infectious 
diseases, increase with population size in similar ways as educational attainment but are almost 
certainly not causally linked to increased economic productivity. While the case for educational 
attainment is certainly much more suggestive, its use in the context of a production function still 
leaves unexplained the mechanisms of how it is incorporated into economic production. 

 
7.  Decomposition of Urban TFP  
 

We calculated the scale-adjusted TFP using equation (25) and data for both Metropolitan 
and Micropolitan Areas averaged over the period 2001-2005, and setting 1 – α (labor’s share of 
income), to equal 0.7.10 For this decomposition we only use data on metropolitan wages and 
employment as these two variables are “directly” and unambiguously measurable, and the effects 
of human capital can be expected to be subsumed under accrued wages.    

    
The top fifty urban areas, ranked according to the values of their scale-adjusted 

productivity (ξA), are shown on Table 1, while Table 2 shows the rankings for the top fifty 
Metropolitan Areas (MSAs). One result immediately stands out: the absence of the large 
metropolitan areas from the top ranks of the most productive urban centers (in contrast to a 
ranking generated by using output per worker as the measure of productivity).    

 
Figure 3 shows all urban areas in terms of their two performance metrics, wages, ξW, and 

labor, ξL plotted as coordinates on a two-dimensional graph, including their population size 
denoted by the size of the circles, and their scale adjusted productivity ξA as their color. From 
equation (25) we easily se that the 45-degree solid green line divides the plane into two regions: 
above the line, where ξA > 0, urban areas display above average TFP and are denoted in warm 
colors (green to red); below the line, where ξA > 0, and denoted in cold colors (green to dark 
blue) appear urban areas with below average TFP.  
                                                 
10 Data on total wages, employment and population were obtained from the Regional Economic Accounts produced 
by the Commerce Department’s Bureau of Economic Analysis (http://www.bea.gov/regional/reis/). Wage data was 
deflated using the Federal Reserve’s chain-type price index and is expressed in 2005 dollars 
(http://research.stlouisfed.org/fred2/series/GDPCTPI?cid=21). 
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The tabular and graphical results taken together show an interesting trend in the 
exceptionality of urban TFPs, once population size has been accounted for (recall that, by using 
the SAMI’s, the effects of population size have already been factored out). While the way to 
maximize TFP is to have exceptionally high wages and exceptionally low labor input 
(employment), few cities with such properties exist (they appear in the 2nd quadrant of Figure 3, 
which is hardly populated). The urban area with the highest productivity, by far, is Los Alamos 
(a Micropolitan Area in the state of New Mexico not shown in Figure 3 because it is so far off-
scale), a location very familiar to some of us. Los Alamos, with a population of about 18,000 
inhabitants, receives an annual injection of approximately $2.2 billon in federal funds allocated 
to Los Alamos National Laboratory. Los Alamos shows both exceptionally high wages and 
levels of employment. The second highest urban TFP, even after accounting for population size, 
corresponds to Silicon Valley (the San Jose-Santa Clara, Metropolitan Area in California). San 
Jose also shows exceptionally high wages, and to a lesser extent high levels of employment. All 
other urban areas with highest TFP (dark red in Figure 3) share most of the same general 
characteristics. An exception is Harriman (TN), which shows a high TFP as a result of low levels 
of employment, and not particularly exceptional wages.  

 
As already mentioned there are two a priori independent ways in which an urban area can 

obtain greater than expected productivity, given its size,, corresponding to a 45-degree line on 
the ξW- ξL plane: ξW = C + ξL , where the intercept C = ξA/α is set for different values of ξA. Τhe 
red solid line in Figure 3 maps the space of equal TFP at varying ξW and ξL for Silicon Valley. 
Note how no other urban area approaches the performance of San Jose, and no urban areas even 
come close among those with employment less than average (2nd and 3rd quadrants).  Similarly 
the lowest possible TFP would correspond to low wages and high employment (4th quadrant of 
Figure 3, which again is hardly populated at all).  The line in dark blue in Figure 3, tracks the 
TFP of the lowest ranked metropolitan area: Rio Grande City-Roma (TX). Most actual cities 
with very low TFP, including the metropolitan areas of McAllen and Brownsville (TX), show 
similar patterns of low wages and low employment. However there are some exceptions, such as 
Vermillion (South Dakota), which shows exceptionally large employment (ξL =0.44) but only 
average total wages (ξW = 0.03).  While arguably this is a symptom of a functioning community it 
is penalized in terms of an exceptionally low TFP because its marginal product of labor (MPL) is 
small, resulting in low productivity.  

 
Thus we see that most actual cities lie in the first and third quadrants of Figure 3. The 

most productive actual urban areas show exceptionally high wages and high employment, 
whereas those least economically successful tend to show both low wages and low employment. 
This is expressed in terms of a linear regression (ξW  = -0.02 + 1.17 ξL, R2 = 0.74, black solid 
line), which is close to a 45-degree line but also shows a slightly greater slope emphasizing the 
trend for higher wages and lower employment in high TFP cities and lower wages and higher 
employment for those with lower TFP.  These results suggest that, unlike firms, the principal 
objective of cities is not to maximize their productivity alone. In fact as decentralized economies, 
the key property of economically successful cities is that they appear to maximize wages, and 
this in turn may lead to general high levels of employment.  This close relationship between high 
wages and high levels of employment and vice versa seems to be a general feature of urban 
economies. 
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8. Conclusions  
 

Understanding cities has remained difficult because there are many important variables 
that are interdependent and that strongly co-vary. As Jane Jacobs remarked “Real cities 
present…situations in which several dozen quantities are all varying simultaneously and in 
subtly connected ways.” (Jacobs, 1969, pp. 433) It is therefore essential to develop 
methodologies that make it possible to evaluate the separate effects of different characteristics on 
urban metrics, and on urban economic productivity in particular. Few characteristics are as 
consequential for urban life as population size, which is both a facilitator and consequence of 
socio-economic activities.  

 
Here we have shown that an integrated consideration of the standard approach to urban 

areas as production devices, and of the systematic dependence of the main factors of production 
on population size (via urban scaling analysis) results in a more general form of a Cobb-Douglas 
production function. The resulting functional form manifests explicitly dependences of urban 
productivity on population size and local factors in terms of size-independent deviations 
(SAMIs). In particular, the analysis leads to a new expression for the total factor productivity 
(TFP) in terms of an explicit scale-invariant dependence on population size and on size-
independent deviations due to the mismatch between labor income and employment (as well as 
capital income and capital stock).  

 
The decomposition of urban productivity through scaling analysis shows that the 

productivity of urban areas is actually a fairly low dimensional quantity characterized not only 
by a systematic dependence on population size but also by a close relationship between 
exceptions to population size expectations in terms of wages and labor. Empirical estimation 
shows that there are two main effects that determine, in practice, the differentials in economic 
productivity of urban areas. First there is a general effect associated with population size. This 
effect results from different scaling between total wages (which scales super-linearly) and labor 
(which scales linearly). This difference results on a systematic scale invariant effect such that 
urban TFP increases by approximately 11% with each doubling in population size of an urban 
area, whether from 10 to 20 thousand or from 1 to 2 million. Once expressed in terms of human 
capital, instead of total population, this dependence becomes somewhat slower, though still 
positive. Second, deviations from this trend are themselves regular, with most urban areas 
manifesting high TFP showing exceptional high wages and high employment while those with 
low TFP showing low wages and low employment. It is the fact that larger deviations in 
magnitude occur in terms of wages than of employment that makes this co-variation be positive 
or negative. The local effects of higher wages are partially accounted for by higher human 
capital, but only to a limited extent. These results suggest that the economies of cities are not 
maximizing total productivity per se, as might be the case for a firm, but instead providing 
environments for economic development and productivity enhancements than when successful 
lead to growth in both wages and employment. Economic theory aimed at explaining the 
productivity of urban areas (in the U.S., at least) should be aimed at these clear and regular 
empirical relationships. 
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Figure 1.  Ratio of urban labor income to total income (1 – α). 
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Figure 2.  Variability across urban areas in the ratio of metropolitan labor income to total 
income.  (Bars above the mean line indicate standard errors.) 
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Figure 3 The SAMIs for urban areas’ TFP (color) in the ξW- ξL plane. The size of each symbol 
denotes its population (smallest cities are shown at the same small symbol size). The solid green 
line divides the space into TFPs above (positive) and below (negative) the expected value for 
each city’s population. The solid red line is the equal TPF parameter space for Silicon Valley, 
while the solid blue line is the equal TFP space for the least productive city in the sample (Rio 
Grande City-Roma, TX). The black solid line shows the linear best fit to the data ξW =-0.02+ 
1.17 ξL (R2=0.74). 
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Table 1.  Top 50 urban areas, ranked by their scale-adjusted measure of TFP (ξA). 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Urban Area ξ A ξ W ξ L

1 Los Alamos, NM (Micropolitan  Area) 0.6964 1.7771 0.7822
2 San Jose-Sunnyvale-Santa Clara, CA (Metropolitan  Area) 0.3674 0.6155 0.0907
3 Gillette, WY (Micropolitan  Area) 0.3480 0.7895 0.2923
4 Bridgeport-Stamford-Norwalk, CT (Metropolitan  Area) 0.3342 0.5672 0.0898
5 Rock Springs, WY (Micropolitan  Area) 0.2937 0.6664 0.2467
6 Trenton-Ewing, NJ (Metropolitan  Area) 0.2799 0.6054 0.2056
7 Harriman, TN (Micropolitan  Area) 0.2791 0.1053 -0.2934
8 Midland, MI (Micropolitan  Area) 0.2691 0.3906 0.0061
9 Kokomo, IN (Metropolitan  Area) 0.2652 0.4415 0.0627
10 Elko, NV (Micropolitan  Area) 0.2544 0.4585 0.0950
11 Sidney, OH (Micropolitan  Area) 0.2369 0.6268 0.2884
12 Borger, TX (Micropolitan  Area) 0.2328 0.2749 -0.0576
13 Marshfield-Wisconsin Rapids, WI (Micropolitan  Area) 0.2196 0.5390 0.2253
14 Lexington Park, MD (Micropolitan  Area) 0.2189 0.3729 0.0602
15 Wilmington, OH (Micropolitan  Area) 0.2045 0.5831 0.2909
16 Columbus, IN (Metropolitan  Area) 0.1995 0.5330 0.2480
17 Connersville, IN (Micropolitan  Area) 0.1845 0.1965 -0.0671
18 Columbia, TN (Micropolitan  Area) 0.1783 0.3424 0.0878
19 Boulder, CO (Metropolitan  Area) 0.1776 0.5536 0.3000
20 Hinesville-Fort Stewart, GA (Metropolitan  Area) 0.1762 0.1730 -0.0787
21 Oshkosh-Neenah, WI (Metropolitan  Area) 0.1731 0.4166 0.1694
22 Ann Arbor, MI (Metropolitan  Area) 0.1728 0.4689 0.2220
23 Durham-Chapel Hill, NC (Metropolitan  Area) 0.1715 0.4795 0.2344
24 Bellefontaine, OH (Micropolitan  Area) 0.1676 0.2733 0.0340
25 Auburn, IN (Micropolitan  Area) 0.1652 0.4951 0.2590
26 Bloomington-Normal, IL (Metropolitan  Area) 0.1643 0.4435 0.2089
27 Defiance, OH (Micropolitan  Area) 0.1640 0.3351 0.1008
28 Corning, NY (Micropolitan  Area) 0.1636 0.1331 -0.1006
29 Battle Creek, MI (Metropolitan  Area) 0.1612 0.1723 -0.0579
30 Andrews, TX (Micropolitan  Area) 0.1559 0.1135 -0.1092
31 Pahrump, NV (Micropolitan  Area) 0.1546 -0.0364 -0.2573
32 Fort Leonard Wood, MO (Micropolitan  Area) 0.1542 0.2880 0.0677
33 Carson City, NV (Metropolitan  Area) 0.1540 0.5265 0.3065
34 Norwich-New London, CT (Metropolitan  Area) 0.1534 0.3287 0.1095
35 Decatur, IL (Metropolitan  Area) 0.1533 0.2927 0.0736
36 St. Marys, GA (Micropolitan  Area) 0.1511 0.1630 -0.0529
37 Rochester, MN (Metropolitan  Area) 0.1511 0.4771 0.2613
38 Warsaw, IN (Micropolitan  Area) 0.1510 0.2754 0.0597
39 Manchester-Nashua, NH (Metropolitan  Area) 0.1471 0.2958 0.0857
40 Wilson, NC (Micropolitan  Area) 0.1450 0.2973 0.0902
41 Fort Valley, GA (Micropolitan  Area) 0.1395 -0.0795 -0.2787
42 Hartford, CT (Metropolitan  Area) 0.1357 0.2802 0.0864
43 Crawfordsville, IN (Micropolitan  Area) 0.1351 0.2644 0.0714
44 LaGrange, GA (Micropolitan  Area) 0.1321 0.3561 0.1674
45 Owatonna, MN (Micropolitan  Area) 0.1316 0.4748 0.2869
46 Warner Robins, GA (Metropolitan  Area) 0.1313 0.2055 0.0178
47 Findlay, OH (Micropolitan  Area) 0.1304 0.4602 0.2739
48 Racine, WI (Metropolitan  Area) 0.1285 0.0224 -0.1612
49 Kennewick-Pasco-Richland, WA (Metropolitan  Area) 0.1281 0.1230 -0.0600
50 San Francisco-Oakland-Fremont, CA (Metropolitan  Area) 0.1241 0.2166 0.0394
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Table 2.  Top 50 metropolitan areas, ranked by their scale-adjusted TFP (ξA).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Area ξ A ξ W ξ L

1 AreaName SAMI A SAMI W SAMI L
2 San Jose-Sunnyvale-Santa Clara, CA   0.4743 0.7609 0.0834
3 Bridgeport-Stamford-Norwalk, CT   0.4433 0.7178 0.0845
4 Trenton-Ewing, NJ   0.3917 0.7567 0.1972
5 Kokomo, IN   0.3784 0.5597 0.0192
6 Columbus, IN   0.3140 0.6575 0.2088
7 Hinesville-Fort Stewart, GA   0.2920 0.3145 -0.1026
8 Oshkosh-Neenah, WI   0.2860 0.5504 0.1418
9 Ann Arbor, MI   0.2856 0.6314 0.2235
10 Boulder, CO   0.2852 0.6337 0.2263
11 Durham-Chapel Hill, NC   0.2839 0.6480 0.2424
12 Bloomington-Normal, IL   0.2789 0.6014 0.2030
13 Battle Creek, MI   0.2742 0.3022 -0.0895
14 Carson City, NV   0.2709 0.6742 0.2871
15 Norwich-New London, CT   0.2659 0.4771 0.0973
16 Rochester, MN   0.2657 0.6396 0.2599
17 Decatur, IL   0.2652 0.3952 0.0164
18 Manchester-Nashua, NH   0.2588 0.4495 0.0798
19 Warner Robins, GA   0.2489 0.3947 0.0392
20 Hartford-West Hartford-East Hartford, CT   0.2449 0.4428 0.0930
21 Kennewick-Pasco-Richland, WA   0.2445 0.3191 -0.0303
22 Racine, WI   0.2420 0.1725 -0.1733
23 Huntsville, AL   0.2343 0.4667 0.1320
24 Vineland-Millville-Bridgeton, NJ   0.2321 0.1744 -0.1572
25 San Francisco-Oakland-Fremont, CA   0.2292 0.3744 0.0469
26 Napa, CA   0.2287 0.5025 0.1757
27 Ithaca, NY   0.2151 0.4459 0.1386
28 Washington-Arlington-Alexandria, DC-VA-MD-WV   0.2146 0.4588 0.1522
29 Monroe, MI   0.2146 -0.0639 -0.3705
30 Saginaw-Saginaw Township North, MI   0.2130 0.2330 -0.0712
31 Longview, WA   0.2101 0.1487 -0.1515
32 Springfield, IL   0.2081 0.4361 0.1389
33 Sheboygan, WI   0.2079 0.4470 0.1500
34 Atlantic City-Hammonton, NJ   0.2050 0.4705 0.1776
35 Dalton, GA   0.2048 0.4995 0.2069
36 Boston-Cambridge-Quincy, MA-NH   0.1980 0.3698 0.0870
37 Sandusky, OH   0.1974 0.3751 0.0931
38 Elkhart-Goshen, IN   0.1925 0.5796 0.3046
39 Janesville, WI   0.1899 0.2121 -0.0591
40 Corvallis, OR   0.1840 0.4342 0.1713
41 Burlington-South Burlington, VT   0.1837 0.4833 0.2209
42 Mansfield, OH   0.1828 0.2294 -0.0318
43 Peoria, IL   0.1783 0.2633 0.0086
44 Rome, GA   0.1781 0.2529 -0.0015
45 New Haven-Milford, CT   0.1779 0.2168 -0.0374
46 Holland-Grand Haven, MI   0.1757 0.2310 -0.0201
47 Cheyenne, WY   0.1749 0.4234 0.1736
48 Cedar Rapids, IA   0.1722 0.3898 0.1438
49 Spartanburg, SC 0.1717 0.2269 -0.0183
50 Harrisburg-Carlisle, PA 0.1716 0.4782 0.2330


