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A. Credility - what it was and what it is. In actuarial parlance the
term credibility was originally attached to experience rating formulas that
were convex combinations (weighted averages) of individual and class es-
timates of the individual risk premium. Credibility theory, thus, was the
branch of insurance mathematics that explored model-based principles for
construction of such formulas. The development of the theory brought it far
beyond the original scope so that in today’s usage credibility covers more
broadly linear estimation and prediction in latent variable models.

B. The origins. The advent of credibility dates back to Whitney [46], who
in 1918 addressed the problem of assessing the risk premium m, defined as
the expected claims expenses per unit of risk exposed, for an individual risk
selected from a portfolio (class) of similar risks. Advocating the combined
use of individual risk experience and class risk experience, he proposed that
the premium rate be a weighted average of the form

m̄ = z m̂ + (1− z) µ , (1)

where m̂ is the observed mean claim amount per unit of risk exposed for the
individual contract and µ is the corresponding overall mean in the insurance
portfolio. Whitney viewed the risk premium as a random variable. In the
language of modern credibility theory, it is a function m(Θ) of a random
element Θ representing the unobservable characteristics of the individual
risk. The random nature of Θ expresses the notion of heterogeneity; the
individual risk is a random selection from a portfolio of similar but not
identical risks, and the distribution of Θ describes the variation of individual
risk characteristics across the portfolio.
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The weight z in (1) was soon to be named credibility (factor) since it
measures the amount of credence attached to the individual experience, and
m̄ was called the credibility premium.

Attempts to lay a theoretical foundation for rating by credibility for-
mulas bifurcated into two streams usually referred to as limited fluctuation
credibility theory and greatest accuracy credibility theory. In more descrip-
tive statistical terms they could appropriately be called the “fixed effect”
and the “random effect” theories of credibility.

C. The limited fluctuation approach. The genealogy of the limited
fluctuations approach takes us back to 1914, when Mowbray [29] suggested
how to determine the amount of individual risk exposure needed for m̂ to
be a fully reliable estimate of m. He worked with annual claim amounts
X1, . . . , Xn, assumed to be i.i.d. (independent and identically distributed)
selections from a probability distribution with density f(x|θ), mean m(θ),
and variance s2(θ). The parameter θ was viewed as non-random. Taking
m̂ = 1

n

∑n
i=1 Xj , he sought to determine how many years n of observation

are needed to make Pθ [|m̂−m(θ)| ≤ k m(θ)] ≥ 1− ε for some given (small)
k and ε. Using the normal approximation m̂ ∼ N(m(θ), s(θ)√

n
), he deduced

the criterion k m(θ) ≥ z1−ε/2
s(θ)√

n
, where z1−ε/2 is the upper ε/2 fractile in

the standard normal distribution. Plugging in the empirical estimates m̂
and ŝ2 = 1

n−1

∑n
i=1(Xi − m̂)2 for the unknown parameters, he arrived at

n ≥
z2
1−ε/2 ŝ2

k2m̂2
. (2)

Whitney’s and Mowbray’s immediate successors adopted Whitney’s ap-
pealing formula and, replacing his random effect model with Mowbray’s
fixed effect model, they saw Mowbray’s result (2) as a criterion for full cred-
ibility of m̂, which means setting z = 1 in (1). The issue of partial credibility
was raised: how to choose z when n does not satisfy (2)? The plethora of
papers that followed brought many tentative answers, but never settled on
a unifying principle that covered all special cases and that opened for signif-
icant generalizations. Therefore, the limited fluctuation approach, despite
its grand scale, does not really constitute a theory in the usual sense. A
survey of the area is given in [27].

D. The greatest accuracy point of view. After three decades dom-
inated by limited fluctuation studies, the post World War II era saw the
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revival of Whitney’s random effect idea. Combined with suitable elements
of statistical decision theory developed meanwhile, it rapidly developed into
a huge body of models and methods - the greatest accuracy theory. The
experience rating problem was now seen as a matter of estimating the ran-
dom variable m(Θ) with some function m̌(X) of the individual data X, the
objective being to minimize the mean squared error (MSE)

ρ(m̌) = E [m(Θ)− m̌(X)]2 . (3)

The calculation

E [m(Θ)− m̌(X)]2 = E [m(Θ)− E[m|X]]2 + E [E[m|X]− m̌(X)]2 (4)

shows that the optimal estimator is the conditional mean,

m̃(X) = E[m|X], (5)

and that its MSE is

ρ̃ = E Var[m(Θ)|X] = Varm− Var m̃ .

In statistical terminology m̃ is the Bayes estimator under squared loss and
ρ̃ is the Bayes risk.

Assuming that the data is a vector X = (X1, . . . , Xn) with density
f(x1, . . . , xn|θ) conditional on Θ = θ, and denoting the distribution of Θ
by G, we have

m̃(X) =
∫

m(θ) dG(θ|X1, . . . , Xn) , (6)

where G( · |x1, . . . , xn) is the conditional distribution of Θ, given the data:

dG(θ|x1, . . . , xn) =
f(x1, . . . , xn|θ) dG(θ)∫
f(x1, . . . , xn|θ′) dG(θ′)

. (7)

In certain well structured models, with f(x1, . . . , xn|θ) parametric (i.e. θ
finite-dimensional) and G conveniently chosen, the integrals appearing in
(6) and (7) are closed form expressions. The quest for such models is a
major enterprise in Bayesian statistics, where f( · |θ) is called the likelihood
(function), G is called the prior (distribution) since it expresses subjective
beliefs prior to data, and G( · |x1, . . . , xn) is called the posterior (distribution)
accordingly. A family of priors is said to be conjugate to a given likelihood
if the posterior stays within the same family. If the conjugate prior is math-
ematically tractable, then so is the posterior. The Bayes theory boasts a
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huge body of results on conjugate priors for well structured parametric like-
lihoods that possess finite-dimensional sufficient statistics. For an overview
see e.g. [8]. In 1972 Ferguson [12] launched the Dirichlet process (a gamma
process normed to a probability) and showed that it is a conjugate prior to
the non-parametric family of distributions in the case of i.i.d. observations.
Conjugate analysis has had limited impact on credibility theory, the reason
being that in insurance applications it is typically not appropriate to impose
much structure on the distributions. In quest for a nice estimator it is better
to impose structure on the class of admitted estimators and seek the optimal
solution in the restricted class. This is what the insurance mathematicians
did, and the programme of greatest accuracy credibility thus became to find
the best estimator of the linear form

m̌(X) = a + b m̂(X) ,

where m̂ is some natural estimator based on the individual data. The MSE
of such an estimator is just a quadratic form in a and b, which is straight-
forwardly minimized. One arrives at the linear Bayes (LB) estimator

m̄ = E m(Θ) +
Cov[m, m̂]

Var m̂
(m̂− E m̂) , (8)

and the LB risk

ρ̄ = Varm − Cov2[m, m̂]
Var m̂

. (9)

The LB risk measures the accuracy of the LB estimator. For linear estima-
tion to make sense, the LB risk ought to approach 0 with increasing amounts
of data X. Since

ρ̄ ≤ E[m− m̂]2 ,

a sufficient condition for ρ̄ to tend to 0 is

E[m− m̂]2 → 0 . (10)

From the decomposition

E [m(Θ)− m̂]2 = E [m(Θ)− E[m̂|Θ]]2 + E Var[m̂|Θ]

it is seen that a pair of sufficient conditions for (10) to hold true are asymp-
totic conditional unbiasedness in the sense

E [m(Θ)− E[m̂|Θ]]2 → 0

4



and asymptotic conditional consistency in the sense

E Var[m̂|Θ] → 0 .

Usually m̂ is conditionally unbiased, not only asymptotically:

E[m̂|Θ] = m(Θ) .

If this condition is in place, then

E m̂ = E m ,

Cov[m, m̂] = Varm ,

Var m̂ = Varm + E Var[m̂|Θ] ,

and (8) assumes the form (1) with

µ = E m(Θ) ,

z =
Varm(Θ)

Varm(Θ) + E Var[m̂|Θ]
.

This is the greatest accuracy justification of the credibility approach.

E. The greatest accuracy break-through. The programme of the the-
ory was set out clearly in the late 1960-es by Bühlmann [4] [5]. He empha-
sized that the optimization problem is simple (a matter of elementary alge-
bra) and that the optimal estimator and its MSE depend only on first and
second moments that are usually easy to estimate from statistical data. The
greatest accuracy resolution to the credibility problem had essentially been
set out already two decades earlier by Bailey [1] [2], but like many other
scientific works ahead of their time, they did not receive wide recognition.
They came prior to, and could not benefit from, modern statistical decision
theory, and the audience was not prepared to collect the message.

Bühlmann considered a non-parametric model specifying only that, con-
ditional on Θ, the annual claim amounts X1, . . . , Xn are i.i.d. with mean
m(Θ) and variance s2(Θ). Taking

m̂ = X̄ =
1
n

n∑
i=1

Xj , (11)

which is best linear unbiased estimator (BLUE) of m(θ) in the conditional
model, given Θ = θ, he arrived at the credibility formula (1) with

µ = E m(Θ) = E Xj , (12)

5



z =
λn

λn + φ
, (13)

λ = Var[m(Θ)] , φ = E s2(Θ) . (14)

The credibility factor z behaves as it ought to do: it increases and tends to 1
with increasing number of observations n; it increases with λ, which means
that great uncertainty about the value of the true risk premium will give
much weight to the individual risk experience; it decreases with φ, which
measures the purely erratic variation in the observations. The LB risk (9)
becomes

ρ̄ =
φλ

λn + φ
= (1− z)λ , (15)

which depends in a natural way on n and the parameters.

F. The Bühlmann-Straub model. The greatest accuracy paradigm, a
merger of a sophisticated model concept and a constructive optimization
criterion, had great potential for extensions and generalizations. This was
demonstrated in a much cited paper by Bühlmann and Straub [6], henceforth
abbreviated B-S, where the i.i.d. assumption in Bühlmann’s model was
relaxed by letting the conditional variances be of the form Var[Xj |Θ] =
s2(Θ)/pj , j = 1, . . . , n. The motivation was that Xj is the loss ratio in year
j, which is the total claim amount divided by the amount of risk exposed,
pj . The volumes (p1, . . . , pn) constitute the observational design, a piece
of statistical terminolgy that has been adopted in insurance mathematics
despite its connotation of planned experiments. The admitted estimators
were taken to be of the linear form

m̌ = g0 + g1X1 + · · ·+ gnXn ,

with constant coefficients gj . Minimization of the MSE (3) is just another
exercise in differentiation of a quadratic form and solving the resulting set of
linear equations. The LB estimator is of the credibility form (1), now with

m̂ =

∑n
j=1 pjXj∑n

j=1 pj
(16)

(the BLUE of m(θ) in the conditional or fixed effects model), and

z =

∑n
j=1 pjλ∑n

j=1 pjλ + φ
. (17)
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The LB risk is
ρ̄ = (1− z)λ . (18)

In retrospect this was a humble extension of the results (11) – (15) for the
i.i.d. case, but of great importance in its time since it manifestly showed
the wide applicability of the greatest accuracy construction. The way was
now paved to more elaborate models, and new results followed in rapid
succession.

G. Multi-dimensional credibility. Jewell [20] introduced a multi-dimensional
model in which the data is a random n × 1 vector x, the estimand m is a
random s× 1 vector , and the admitted estimators are of the linear form

m̌ = g + Gx ,

with constant coefficients g (s × 1) and G (s × n). The objective is to
minimize the MSE

ρ(m̌) = (m− m̌)′A(m− m̌) ,

where A is a fixed positive definite s × s matrix. Again one needs only
to minimize a quadratic form. The LB solution is a transparent multi-
dimensional extension of the one-dimensional formulas (8) - (9):

m̄ = Em + Cov[m,x′][Varx]−1(x− Ex) , (19)

ρ̄ = tr(AR̄) ,

where tr denotes the trace operator and R is the LB risk matrix

R̄ = Varm− Cov[m,x′][Varx]−1Cov[x,m′] . (20)

H. The random coefficient regression model Hachemeister [16] in-
troduced a regression extension of the B-S model specifying that

E[Xj |Θ] =
s∑

r=1

yjrbr(Θ) ,

where the regressors yjr are observable, and

Var[Xj |Θ] = s2(Θ)/pj .

The design now consists of the n × q regressor matrix Y = (Yjr) and the
n × n volume matrix P = Diag(pj) with the pj placed down the principal
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diagonal and all off-diagonal entries equal to 0. In matrix form, denoting
the n × 1 vector of observations by x and the s × 1 vector of regression
coefficients by b(Θ),

E[x|Θ] = Yb(Θ) ,

Var[x|Θ] = s2(Θ)P−1 .

The problem is to estimate the regression coefficients b(Θ). Introducing

β = Eb , Λ = Varb , φ = E s2(Θ) ,

the entities involved in (19) and (20) now become

Ex = Y β ,

Varx = YΛY′ + φP−1 ,

Cov[x,b′] = YΛ .

If Y has full rank s, some matrix algebra leads to the appealing formulas

b̄ = Z b̂ + (I− Z) β , (21)
R̄ = (I− Z)Λ , (22)

where

b̂ = (Y′PY)−1Y′Px , (23)
Z = (ΛY′PY + φI)−1ΛY′PY . (24)

Formula (21) expresses the LB estimator as a credibility weighted average
of the sample estimator b̂, which is BLUE in the conditional model, and
the prior estimate β. The matrix Z is the called the credibility matrix. The
expressions in (23) and (24) are matrix extensions of (16) and (17), and
their dependence on the design and the parameters follows along the same
lines as in the univariate case in Paragraph E.

I. Heterogeneity models and empirical Bayes. Whitney’s notion of
heterogeneity (Paragraph B) was set out in precise terms in the cited works
of Bailey and Bühlmann: The portfolio consists of N independent risks,
the unobservable risk characteristics of risk No. i is denoted by Θi, and
the Θi are i.i.d. selections from some distribution G called the structural
distribution. The device clarifies the idea that the risks are different, but
still have something in common that motivates pooling them into one risk
class or portfolio.
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Thus, in the B-S set-up the annual loss ratios of risk No. i, Xi1, . . . , Xini ,
are conditionally independent with

E[Xij |Θ] = m(Θi) , Var[Xij |Θ] = s2(Θi)/pij .

Due to independence, the Bayes estimator and the linear Bayes estimator
of each individual risk premium m(Θi) remain as in Paragraphs E and F
(add subscript i to all entities.) Thus, for the purpose of assessing m(Θi),
the observations stemming from the collateral risks i′ 6= i are irrelevant if
the parameters in the model would be known. However, the parameters
are unknown and are to be estimated from portfolio statistics. This is how
data from collateral risks become useful in the assessment of the individual
risk premium m(Θi). The idea fits perfectly into the framework of empiri-
cal Bayes theory, instituted by Robbins [37] [38], which was well developed
at the time when the matter arose in the credibility context. The empiri-
cal linear Bayes procedure amounts to inserting statistical point estimators
µ∗, λ∗, φ∗ for the parameters involved in (1) and (17) to obtain an estimated
LB estimator,

m̄∗ = z∗ m̂ + (1− z∗) µ∗

(dropping now the index i of the given individual). The credibility litera-
ture has given much attention to the parameter estimation problem, which
essentially is a matter of mean and variance component estimation in linear
models. This is an established branch of statistical inference theory, well
documented in textbooks and monographs, see e.g. [36] and [43].

Empirical Bayes theory works with certain criteria for assessing the per-
formance of the estimators. An estimated Bayes estimator is called an empir-
ical Bayes estimator if it converges in probability to the Bayes estimator as
the amount of collateral data increases, and it is said to be asymptotically op-
timal (a.o.) if its MSE converges to the Bayes risk. Carrying these concepts
over to LB estimation, Norberg [33] proved a.o. of the empirical LB estima-
tor under the conditions that E [µ∗ − µ]2 → 0 and that (λ∗, φ∗) → (λ, φ) in
probability (the latter condition is sufficient because z is a bounded function
of (λ, φ)). Weaker conditions were obtained by Mashayeki [28]. We men-
tion two more results obtained in the credibility literature that go beyond
standard empirical Bayes theory: Neuhaus [31] considered the observational
designs as i.i.d. replicates, and obtained asymptotic normality of the param-
eter estimators, hence possibilities of confidence estimation and testing of
hypotheses. Hesselager [18] proved that the rate of convergence (to 0) of the
MSE of the parameter estimators is inherited by the MSE of the empirical
LB estimator.
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J. The Bayes point of view. When no collateral data are available, the
frequency theoretical empirical Bayes model does not apply. This appears
to be the situation Mowbray had in mind (Paragraph C); his problem was
to quote a premium for a unique, single standing risk or class of risks. The
Bayesian approach to this problem is to place a prior G on the possible values
of θ, probabilities now representing subjective degrees of belief prior to any
risk experience. This way the fixed effect θ is turned into a random variable
Θ just as in the frequency theory set-up, only with a different interpretation,
and the Bayes and linear Bayes analyses become the same as before.

K. Hierarchical models. The notion of hierarchies was introduced in
credibility theory by Gerber and Jones [13], Taylor [44], and Jewell [24].
To explain the idea in its fully developed form, it is convenient to work
with observations in “coordinate form” as is usual in statistical analysis of
variance. With this device the B-S model in Paragraph F is cast as

Xij = µ + ϑi + εij ,

where ϑi = m(Θi) − µ is the deviation of risk No. i from the overall mean
risk level and εij = Xij −m(Θi) is the erratic deviation of its year j result
from the individual mean. The ϑi, i = 1, . . . , N , are i.i.d. with zero mean
and variance λ, and the εij , j = 1, . . . , nij , are conditionally independent,
given Θi, and have zero mean and variances Var εij = φ/pij .

In the hierarchical extension of the model the data are of the form

Xi1...isj = µ + ϑi1 + ϑi1i2 + · · · + ϑi1...is + εi1...isj ,

j = 1, . . . , ni1...is , is = 1, . . . , Ni1...is−1 , . . ., ir = 1, . . . , Ni1...ir−1 , . . ., i1 =
1, . . . , N . The index i1 labels risk classes at first level (the coarsest classifi-
cation), the index i2 labels risk (sub)classes at second level within a given
first level class, and so on up to the index is which labels the individual
risks (the finest classification) within a given class at level s− 1. The index
j labels annual results for a given risk.

The latent variables are uncorrelated with zero means and variances
Varϑi1...ir = λr and Var εi1...isj = φ/pi1...isj . The variance component λr

measures the variation between level r risk classes within a given level r− 1
class.

The problem is to estimate the mean

mi1...ir = µ + ϑi1 + · · · + ϑi1...ir
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for each class i1 . . . ir. The LB solution is a system of recursive relationships:
Firstly, recursions upwards,

m̄i1...ir = zi1...ir m̂i1...ir + (1− zi1...ir) m̄i1...ir−1 , (25)

starting from m̄i1 = zi1 m̂i1 + (1 − zi1) µ at level 1. These are credibility
formulas. Secondly, recursions downwards,

zi1...ir =
λr

∑Ni1...ir

ir+1=1 zi1...ir ir+1

λr
∑Ni1...ir

ir+1=1 zi1...ir ir+1 + λr+1

, (26)

m̂i1...ir =

∑Ni1...ir

ir+1=1 zi1...ir ir+1m̂i1...ir ir+1∑Ni1...ir

ir+1=1 zi1...ir ir+1

, (27)

starting from (16) and (17) at level s (with i1 . . . is added in the subscripts).
There is also a set of recursive equations for the LB risks:

ρ̄i1...ir = (1− zi1...ir)λr + (1− zi1...ir)
2 ρ̄i1...ir−1 . (28)

The formulas bear a resemblance to those in Paragraphs E, F, and G
and are easy to interpret. They show how the estimator of any class mean
mi1...ir depends on the parameters and on data more or less remote in the
hierarchy. The recursion (25) was proved by Jewell [24] and extended to the
regression case by Sundt [39] [40]. Displaying the complete data structure
of the hierarchy, Norberg [34] established the recursions (26), (27), and (28)
in a regression setting.

L. Hilbert space methods. For a fixed probability space the set L2 of
all square integrable random variables is a linear space and, when equipped
with the inner product 〈X, Y 〉 = E[XY ], it becomes a Hilbert space. The
corresponding norm of an X in L2 is ‖ X ‖=

√
〈X, X〉, and the distance

between any X and Y in L2 is ‖ X − Y ‖. In this set-up the MSE (3) is the
squared distance between the estimand and the estimator, and finding the
best estimator in some family of estimators amounts to finding the minimum
distance point to m in that family. If the family of admitted estimators is
a closed linear subspace, M̄ ⊂ L2, then a unique minimum distance point
exists, and it is the random variable m̄ ∈ M̄ such that

〈m− m̄, m̌〉 = 0 , ∀m̌ ∈ M̄. (29)
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In geometric terms, m̄ is the projection of m onto M̄, the equations (29)
are the normal equations stating that m − m̄ is orthogonal to M̄, and the
Pythagoras relationship ‖ m ‖2 = ‖ m̄ ‖2 + ‖ m− m̄ ‖2 gives

ρ̄ = ‖ m− m̄ ‖2 = ‖ m ‖2 − ‖ m̄ ‖2 .

The Hilbert space approach to linear estimation under the MSE criterion was
taken by Gerber and Jones [13], De Vylder [9] and Taylor [45]. It adds in-
sight into the structure of the problem and its solution, but can be dispensed
with if M̄ is of finite dimension since the problem then reduces to minimiz-
ing a finite-dimensional quadratic form. Hilbert space methods are usually
needed in linear spaces M̄ of infinite dimension. Paradoxically, maybe, for
the biggest conceivable M̃ consisting of all square integrable functions of the
data, the best estimator (5) can be obtained from the purely probabilistic
argument (4) without visible use of the normal equations. In the follow-
ing situations the optimal estimator can only be obtained by solving the
infinite-dimensional system of normal equations (29): The “semilinear cred-
ibility” problem [10], where X1, . . . , Xn are conditionally i.i.d., given Θ, and
M̄ consists of all estimators of the form m̂ =

∑n
i=1 f(Xi) with f(Xi) square

integrable. The continuous time credibility problem, where the claims pro-
cess X has been observed continually up to some time τ and M̄ consists of
all estimators of the form m̂ = g0+

∫ τ
0 gtdXt with constant coefficients gt. In

[19] X is of diffusion type and in [35] it is of bounded variation. The Hilbert
space approach may simplify matters also in finite-dimensional problems of
high complexity. An example is [7] on hierarchical credibility.

M. Exact credibility. The problem studied under this headline is: when
is the linear Bayes estimator also Bayes? The issue is closely related to
conjugate Bayes analysis (Paragraph D). In [21] [22] [23] Jewell showed that
m̄ = m̃ if the likelihood is of exponential form with X̄ as canonical sufficient
statistic and the prior is conjugate. Diaconis and Ylvisaker [11] completed
the picture by proving that these conditions are also sufficient. Pertinently,
since the spirit of credibility is very much non-parametric, Zehnwirth [49]
pointed out that Bayes estimators are of credibility form in Ferguson’s non-
parametric model (Paragraph D). These results require observations to be
conditionally i.i.d., and thus already the B-S model falls outside their remit.
In insurance applications, where non-parametric distributions and imbal-
anced designs are commonplace, the LB approach is justified by its practi-
cability rather than its theoretical optimality properties. One may, however,
show that LB estimators in a certain sense are restricted minimax under mild
conditions.
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N. Linear sufficiency A linear premium formula need not necessarily
be linear in the claim amounts themselves. In the simple framework of
Paragraphs D and E, the question is how to choose the sample statistic
m̂. Taylor [45] used results from parametric statistical inference theory
to show that the best choice is the unbiased minimal sufficient estimator
(when it exists). More in the vein of non-parametric credibility, and related
to the choice of regressors problem in statistics, Neuhaus [32] gave a rule for
discarding data that do not significantly help reducing the MSE. Related
work was done by Witting [48] and Sundt [42] under the heading linear
sufficiency.

O. Recursive formulas. The credibility premium is to be currently up-
dated as claims data accrue. From a practical computational point of view
it would be convenient if the new premium would be a simple function of
the former premium and the new data. Key references on this topic are [13],
[25], and - including regression and dynamical risk characteristics - [41].

P. A view to related work outside actuarial science. Credibility
Theory in actuarial science and Linear Bayes in statistics are non-identical
twins: imperfect communication between the two communities caused par-
allel studies and discoveries and also some rediscoveries. Several works cited
here are from statistics, and they are easily identified by inspection of the
list of references. At the time when the greatest accuracy theory gained
momentum Linear Bayes theory was an issue also in statistics [17]. Later
notable contributions are [43], [47], and [3] on random coefficient regression
models, [14] and [15] on standard LB theory, [30] on continuous time linear
filtering, and [36] on parameter estimation and hierarchical models.

Linear estimation and prediction is a major project also in engineering,
control theory, and operations research. Kalman’s [26] linear filtering theory
covers many early results in Credibility and Linear Bayes and, in one respect,
goes far beyond as the latent variables are seen as dynamical objects.

Even when seen in this bigger perspective of its environments, credi-
bility theory counts as a prominent scientific area with claim to a number
of significant discoveries and with a wealth of special models arising from
applications in practical insurance.

13



References

[1] Bailey, A.L. (1945): A generalized theory of credibility. Proceedings of
the Casualty Actuarial Society 32, 13-20.

[2] Bailey, A.L. (1950): Credibility procedures, La Place’s generalization of
Bayes’ rule, and the combination of collateral knowledge with observed
data. Proceedings of the Casualty Actuarial Society 37, 7-23. Discussion
in 37, 94-115.

[3] Bunke, H. and Gladitz, J. (1974): Empirical linear Bayes decision rules
for a sequence of linear models with different regressor matrices. Math-
ematische Operationsforschung und Statistik 5, 235-244.
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