
Network Security March 2007
4

The web 2.0 concept is not sufficiently
defined to allow a critical discussion
of it, but we can discuss AJAX (asyn-
chronous Javascript and XML). This
concept, which underpins many web
2.0 sites, repackages and applies existing
technologies to achieve a new structure
for internet applications. Unfortunately,
increased flexibility creates conditions for
new security problems.

To understand how AJAX alters the
security landscape for web application
testing it is necessary to show the funda-
mental differences between it and tradi-
tional internet application models.

Traditional internet
model
A web browser requests a webpage,
normally indicating that the request is
being processed by animating a logo
and altering the status bar. Internet
Explorer, for example, animates the
chequered flag. Figure 1 summarises
this interaction.

When the user clicks on a link,
an HTTP Get request is sent to the
server. The web server deals with the
request, and sends the web page to the
client. If the client is to send informa-
tion back to the server, another request
is made following the same process.

Under this synchronous ‘click-and-wait’
communication method, information
is exchanged by requesting and receiv-
ing whole web pages. While waiting for
the server, the user loses the focus of the

application and cannot interact with it.
This loss of focus has long been a source
of dissatisfaction with traditional web
applications, and if the wait for a round
trip from the server is sufficiently long,
users may leave the site.

The AJAX-enabled
internet model
In this model a client requests a webpage.
Once this full page is loaded, communi-
cation between the client and the server
can be conducted in an asynchronous
manner. This minimises the client’s wait-
ing time, because only partial user inter-
face update requests are made.

The security risks
of AJAX/web 2.0
applications
Paul Ritchie, security consultant, SecureTest Ltd

The term ‘web 2.0’ was coined by O’Reilly Media
following a number of conferences that it hosted in 2004. The popu-
lar media latched onto the concept and turned it into a popular
phrase that has become synonymous with a new breed of website.
Web 2.0 sites typically bring user collaboration to the foreground and
offer interactivity closer to that of a desktop application.

Paul Ritchie

Figure 1: Traditional synchronous model for the internet

Figure 2: AJAX-enabled asynchronous internet model

AJAX

March 2007 Network Security
5

Only aspects of the client’s user inter-
face are updated in an AJAX scenario.
Those that are not modified by the user
remain static, reducing the communica-
tion overhead. This leaves the focus of
the application with the user, creating a
feeling of seamless interactivity.

Figure 2 shows this style of commu-
nication.

The AJAX engine is the client side code
that handles calls between the client and
server. Typically this would be a library of
Javascript functions included on the page.

While this is a generally accepted
terminology, it can be confusing
because it is not standard across AJAX
applications. A more appropriate term
might be ’application logic’.

Underlying scripts and
protocols
AJAX is nothing new per se as it is
based on technologies that have existed
for many years. AJAX applications use
the following components to achieve
this asynchronous interaction: a cli-
ent-side scripting language such as
Javascript, an XmlHttpRequest object
provided by the web browser, and a
response data format.

The XmlHttpRequest object pro-
vides an API for making server requests
via HTTP, with the chosen script-
ing language making the appropriate
calls. The client-side scripting lan-
guage needs to be able to access the
XmlHttpRequest object provided by the
web browser and interpret its responses
appropriately. Many client-side script-
ing languages are capable of this, but
typically Javascript is used since most
browsers support it. The data format
returned from the server is entirely
up to the developer, but it is usual for
XML, plain text or HTML to be used.

The fact that all web developers are
familiar with Javascript and HTML can
explain the rapid adoption of the AJAX
approach because the learning curve
was sufficiently low.

With these basic models defined
it is possible to discuss some of the
categories of security problems most

applicable to an AJAX - enabled web
application.

An article from www.securityfocus.
com, Ajax Security Basics1, points out
three important ways in which an
AJAX-enabled application can intro-
duce more, or different, security vulner-
abilities than a traditional synchronous
request/response application. These are
client-side security controls, increased
attack surfaces, and new possibilities for
Cross-Site Scripting (XSS).

 Penetration testers have been
advising for years that all input vali-
dation on the client side should be
replicated on the server side. This is
because any attacker with basic skills
can use proxy software (or call script
functions directly) to bypass the
intended logic.

While this is not a new security con-
cept, AJAX potentially increases the
reliance on client technologies for secu-
rity measures, since more application
logic is being delegated to web brows-
ers. This allows intruders to easily read
the source code and look for areas of
weakness.

Client-side security
control vulnerability
example
Here is a simple example of an applica-
tion using the AJAX structure to permit a
login request. Assume that the Javascript
in listing 1 appears on a simple login
page. The function calls in bold are calls
to locally defined functions.

The user types in their username and
password as normal but when the sub-
mit button is clicked a Javascript com-
mand (doLogin) is called instead of a
request being made directly to the server.
The doLogin function ensures that the
parameters match a valid format before
the login request is made using the
XMLHttpRequest object.

The server’s response is passed to the
handleResponse Javascript function
when it arrives. It is in this function
that the problem exists and can be sum-
marised with listing 3.

When the login has failed the mes-
sage is displayed as a Javascript alert
but when the login has succeeded the
loginUser function is called.

It is logically the correct behaviour but
because this has been located as part of the
client - side AJAX system an attacker can
simply call the loginUser request themselves
which bypasses the server check. This can
be achieved by typing directly into the
URL bar of a web browser, as in figure 3.

This issue is a consequence of mov-
ing critical security logic to the client’s
computer, showing how client-side
security measures can be bypassed.
Developers should use the server-side
application to implement all security
procedures, keeping the application
logic further away from intruders.

The second general threat category
mentioned by the securityfocus.com
article1 is increased attack surface.
AJAX encourages developers to create
their applications in smaller chunks
than conventional web applications.
Traditionally, one page would serve
multiple smaller tasks to compensate
for the network overheads.

A more granular application design
increases the number of distinct AJAX
endpoints on the system, which is logi-
cally analogous to a host offering more
open TCP ports to network layer attack-
ers. Each additional AJAX endpoint both
increases the complexity of development
and the likelihood that a necessary secu-
rity control is neglected.

For example, consider a common prac-
tice where a PHP file is set as required
for inclusion by a set of web pages2. This

AJAX

"Client-side security
control is a well-known
problem when devel-
opers rely on client
technology for anything
more than reducing
spurious requests to
the server."

http://www.securityfocus.com
http://www.securityfocus.com
http://securityfocus.com

Network Security March 2007
6

could be used to ensure users are authen-
ticated to the system. A developer could
easily forget to set this option when add-
ing a new page, and the chances can only
increase as the number of pages increases.

The more components a system has,
the more complex it will become to
maintain, manage, and update. In turn
this increases the chances of critical flaws
going unnoticed by internal auditing.

SecureTest has seen a case where this
added complexity has led to a potential
security vulnerability. While testing an

AJAX-enabled application with multiple
levels of user account it was found that
the site employed one Javascript include
file for the entire client-side logic.

This meant that an anonymous user
with a trial account could see the logic
behind an administrator-level service
call. The locations of all the admin-
istrator service scripts were disclosed,
providing a definitive map of the
application to a potential attacker.

It can be argued that this is a direct
result of system complexity because the

developers have attempted to simplify
things by putting all AJAX-style service
calls in one file for editing reasons. The
only effective guard against this category
is to ensure a good policy for peer code
review and to implement effective proce-
dures for the application of all the neces-
sary security checks in any new code.

Cross-site scripting
The final point from the security-

focus.com article concerns the new

AJAX

Listing 1: Vulnerable client-side login script

<script type=”text/javascript” language=”javascript”>

/* Get an XMLHttpRequest Object for most web browsers

 cleanly and return it */

function getXMLhttpRequest() {

 // Code has been removed since it is unimportant

 return xmlhttp ;

}

/* Ensures that user and pass are correctly formatted */

function validateLogin(user, pass) {

 // Code has been simplified

 if(invalid) { return false ; }

 return true ;

}

/* This is called when the form submits */

function doLogin() {

 var user = document.getElementById(“user”).value ;

 var pass = document.getElementById(“pass”).value ;

 // validate params.

 valid = validateLogin(user, pass) ;

 if (valid==true) {

 // Parameters formatted correctly

 var xmlhttp = getXMLhttpRequest() ;

 xmlhttp.onreadystatechange

= function() { handleResponse(xmlhttp); };

 xmlhttp.open(‘GET’,

 “login.php?user=”+user+”&pass=”+pass,

true);

 xmlhttp.send(null);

 } else {

 // Parameters invalidly formatted

 alert(“Username or password were not correctly formatted”);

 }

}

/* Handles the login request’s response */

function handleResponse(xmlhttp) {

 if (xmlhttp.readyState == 4) {

 if (xmlhttp.status == 200) {

 var response = xmlhttp.responseText ;

 if (response != “Login Successful”) {

 // Login Failed

 alert(response);

 } else {

 // Login Succeeded

 loginUser() ;

 }

 } else {

 alert(‘There was a problem with the request.’);

 }

 }

}

/* Called when supplied credentials were valid */

function loginUser() {

 var user = document.getElementById(“user”).value ;

 var xmlhttp = getXMLhttpRequest() ;

 xmlhttp.onreadystatechange

= function() { updateContent(xmlhttp); };

 xmlhttp.open(‘GET’, “createSession.php?user=”+user, true);

 xmlhttp.send(null);

}

/* Updates part of the page to show the authenticated content */

function updateContent(xmlhttp) {

 if (xmlhttp.readyState == 4) {

 if (xmlhttp.status == 200) {

 var response = xmlhttp.responseText ;

 document.getElementById(“content”).innerHTML

= response ;

 } else {

 alert(‘There was a problem with the request.’);

 }

}

 }

</script>

http://securityfocus.com
http://securityfocus.com

March 2007 Network Security
7

possibilities for cross-site scripting

(XSS). This has recently been the most

fertile ground for the exploitation of

AJAX-enabled web applications in the

real world leading to the high profile
Samy3 worm for myspace.com. XSS is
the injection of HTML and client-side
scripting (i.e. Javascript) into a page
that is returned to the user’s browser.
Typically this is possible where an
HTTP Get parameter is accepted with-
out proper input validation checks and
then echoed back to the user.

In this case a clickable URL can be
created which contains maliciously
embedded script commands. The
attacker emails this link to a victim
and when the page loads the mali-
cious scripting is executed and an

attacker can potentially hijack a ses-
sion (access the victim’s account by
stealing cookies). Other possibilities
include creating a fake login (to steal
credentials) or logging keystrokes (to
steal credentials).

XSS is a common problem on the
Internet which is often a core compo-
nent of phishing attacks. In an AJAX
application the dangers of XSS actu-
ally increase for a number of reasons.
Firstly XSS lasts as long as the affect-
ed page is loaded. Since, in theory,
only one page is loaded in an AJAX
application there is potential to create
a permanent XSS issue throughout an
entire user session.

In a traditional web application the
XSS would typically be short lived as
clicking on any link could effectively
end the attack. This has led to a class
of limited exploitation with a one-shot
payload. The exploit had to execute
immediately on clicking. An XSS
attack in an AJAX style application
enables the attacker to potentially con-
tinue the exploit in many more ways,
including logging of keystrokes across
the whole session.

An attacker may also issue requests
to the server which are completely
hidden from the victim. Internet
Explorer’s chequered flag and status
bar do not alter when a request is sent
through the XMLHttpRequest object.

This means that the victim has no
visual cue that something malicious is
happening since they still have the focus
of the web application to continue their
intended interactions. This is also the case

with Mozilla Firefox, Opera, and Safari,
which all show no visual cues when an
XMLHttpRequest object is used.

Exploiting XSS using traditional vec-
tors like a hidden iframe (an HTML
element which allows the embedding
of another HTML document inside
the main document) or a window.
location redirect (typically with cookie
values appended to the request) could
result in visual cues that would make a
victim suspicious.

The Samy worm
The Samy worm was based on defeat-
ing the input validation controls with a
clever iterative process to figure out how
to get certain commands echoed to the
user’s web browser. Effectively this is a
classic XSS vulnerability but it differed
by achieving a seamless self-propagating
exploit of the myspace.com website.

It worked as follows:
1) A victim visits an infected myspace.

com profile (originally this would
have been samy himself)

2) Javascript is used to get the User
ID of the victim from the HTML
source using DOM (Document
Object Model)

3) An AJAX request is used to get the
victim’s friend list

4) Adds a friend called “samy” to the
victim’s friend list (with the message
“but most of all, samy is my hero.”)

The friend profile for samy, which
is now on the victim’s profile page,
includes the code to infect people who
view their profile. This is a very good
example of the potential for an XSS
vulnerability in an AJAX environment
to more seamlessly infect a whole site
rapidly. If the worm had been chosen
to deliver another payload (i.e. add the
friend and then log a user out) there
would have been an effective denial of
service condition.

Cutting edge AJAX
vulnerabilities
The 23rd CCC (Chaos
Communication Congress) in Berlin,

"XSS has recently been"XSS has recently been
the most fertile groundthe most fertile ground
for the exploitation offor the exploitation of
AJAX-enabled webAJAX-enabled web
applications in the realapplications in the real
world, leading to theworld, leading to the
high profile Samy wormhigh profile Samy worm
for myspace.com."for myspace.com."

Figure 3: Execute ‘loginuser’ directly from
address bar

Listing 2: HMTL form
calling listing 1
<html>

…

<div id=”content”>

<form action=”javascript:doLogin()”>

 <input type=”text” name=”user”>

 <input type=”password” name=”pass”>

 <input type=”submit”/>

</form>

</div>

…

</html>

Listing 3: Offending
subsection of handle
Response function
if (response != “Login Successful”) {

// Login Failed

 alert(response);

} else {

 // Login Succeeded

 loginUser() ;

}

AJAX

http://myspace.com
http://myspace.com
http://myspace.com

Network Security March 2007
8

 “The mature information security pro-
gram is one that takes advantage of all
resources available,” says security guru

Thomas Peltier of security consultancy
Peltier Associates. “The security team
and the audit staff provide a formidable

force that can ensure the integration and
acceptance of an enterprise-wide infor-
mation security program.” A long-term
proposition of a fully functional security
program is a long-term proposition.
No one can gain assurance through a
one-time checklist or a single penetra-
tion attempt. On the contrary, ensuring
adequate security is a multi-year, multi-
faceted process. If the bad guys want
into an organisation bad enough, they
will not stop at one roadblock and will
continue to develop their tools and tech-
niques. As attacks evolve and change,
so must asset protection schemes and
audits.

Audits are sometimes benign, finding
very little of substance. This can mean
one of three things. Either all is well in
the security world, the audit did not look

December 2006, saw the release of
a paper entitled Subverting Ajax by
Stefano Di Paola and Giorgio Fedon4.
The paper discusses an interesting
concept that Di Paola calls prototype
hijacking, which exploits the design of
the Javascript language.

While Javascript is object-oriented, it
is based on prototypes. All objects are
simply clones of prototyped original
objects and it is possible to override
any member variable or function.

For example it is possible for code
inserted via an XSS vulnerability
to create a wrapper of the original
XMLHttpRequest object which would
allow the attacker to monitor the legit-
imate traffic remotely, leaving the vic-
tim unaware. News of this issue caused
a stir among the security commu-
nity in early 2007 with many people
claiming it is a flaw with Javascript.
Prototype-based programming is a
design choice which is a very useful
feature of Javascript and it is unlikely to
be removed.

The only effective solution is to pre-
vent the XSS flaws from happening by
improving input validation techniques
for web applications and ensuring
that any user input is HTML encoded

before being echoed back to a user’s
screen.

Conclusion
We are entering a new development
phase for internet applications which
is just being understood by security
researchers. It is expected that there are
plenty of potential issues with AJAX
yet to be discovered but this is no
reason to be scared. User satisfaction
is a worthy goal and an asynchronous
communication model can be the solu-
tion for web applications.

Potentially the biggest threat comes
from XSS, which can be used in new
and more dangerous ways. However,
XSS attacks can be avoided using more
stringent input validation and encod-
ing. The solution to all the problems
discussed in this article is due care and
regular auditing.

References
1. Hayre and Kelath, “Ajax

Security Basics”, Security Focus, 22
June 2006. Symantec. <www.secu-
rityfocus.com/infocus/1868>.

2. Entry for ‘require’ command, PHP
online manual, <http://ca3.php.net/
require>

3. Technical explanation of the Samy
MySpace worm by the author, 2005
<http://namb.la/popular/tech.html>

4. S. Di Paola and G. Fedon,
Subverting Ajax, 23rd Chaos
Communication Congress, Dec
2006 <http://events.ccc.de/con-
gress/2006/Fahrplan/attach-
ments/1158-Subverting_Ajax.pdf>

Resources
Andrew Sutherland, Periodic table of
the elements (AJAX demonstration).
<http://code.jalenack.com/periodic/>

Coach Wei, Ajax - Asynchronous Java
+ XML?, CoachWei blog.

<www.coachwei.com/blog/_archives/2
005/8/14/1135700.html>

About the author
Paul Ritchie is a penetration tester for
SecureTest Ltd. He is based in the UK.
He has a BSc (Hons) in Computer
Science and an MSc in ecommerce - both
from the University of Aberdeen. Paul’s
main professional focus is web applica-
tion security, where he has been the lead
consultant in many engagements for cli-
ents ranging from UK local government
to multinationals.

AUDITS

Maximizing the ROI
of a security audit
Ross Westcott, Chief IT auditor, Portland General
Electric Company

Audits generally cause IT security managers to
pause and wonder if their house is in order enough
to survive the effort. Having someone look over
your work may be nerve-wracking, but it is unarguably constructive,
and information security managers are learning to anticipate rather
than fear this event. It is an opportunity to highlight what is being
done correctly, and to identify areas that need improvement.

Ross Westcott

AJAX

http://www.securityfocus.com/infocus/1868
http://www.securityfocus.com/infocus/1868
http://ca3.php.net/require
http://ca3.php.net/require
http://namb.la/popular/tech.html
http://events.ccc.de/congress/2006/Fahrplan/attachments/1158-Subverting_Ajax.pdf
http://events.ccc.de/congress/2006/Fahrplan/attachments/1158-Subverting_Ajax.pdf
http://events.ccc.de/congress/2006/Fahrplan/attachments/1158-Subverting_Ajax.pdf
http://code.jalenack.com/periodic/
http://www.coachwei.com/blog/_archives/2005/8/14/1135700.html
http://www.coachwei.com/blog/_archives/2005/8/14/1135700.html

	The security risks of AJAX/web 2.0 applications
	Traditional internet model
	The AJAX-enabled internet model
	Underlying scripts and protocols
	Client-side security control vulnerability example
	Cross-site scripting
	The Samy worm
	Cutting edge AJAX vulnerabilities
	Conclusion
	References

