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Reduced genetic structure of the Iberian peninsula
revealed by Y-chromosome analysis: implications for
population demography
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Europe has been influenced by both intra- and intercontinental migrations. Since the Iberian peninsula was
a refuge during the Last Glacial Maximum, demographic factors associated with contraction, isolation,
subsequent expansion and gene flow episodes have contributed complexity to its population history. In
this work, we analysed 26 Y-chromosome biallelic markers in 568 chromosomes from 11 different Iberian
population groups and compared them to published data on the Basques and Catalans to gain insight into
the paternal gene pool of these populations and find out to what extent major demographic processes
account for their genetic structure. Our results reveal a reduced, although geographically correlated,
Y-chromosomal interpopulation variance (1.2%), which points to a limited heterogeneity in the region.
Coincidentally, spatial analysis of genetic distances points to a focal distribution of Y-chromosome
haplogroups in this area. These results indicate that neither old or recent Levantine expansions nor North
African contacts have influenced the current Iberian Y-chromosome diversity so that geographical patterns
can be identified.
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Introduction
The genealogical resolution recently achieved for mito-

chondrial DNA (mtDNA) and Y-chromosome binary mar-

kers has facilitated world-wide1 – 3 and regional4 – 6 studies

of human history and dispersals from matrilineal and

patrilineal perspectives. According to archaeological data,

most variation studies support the theory that the genetic

landscape of Europe has been shaped by two main

influences from the Levant:7 one occurring during the

Upper Palaeolithic period, when anatomically modern

humans entered the continent around 40 000 years ago;

the second occurring more recently, around 10 000 years

ago, with the spread of early farmers from the Near East

during the Neolithic period. In addition, the Mesolithic

expansion from isolated population nuclei,8 that followed

the Last Glacial Maximum (LGM), may also have affected

the European genetic background.6,9,10 Despite the debate

about the extent to which these demographic processes

have affected the present European genetic pool,4 both old

and more recent processes must have influenced the

current gene pool to generate the geographical frequency

gradients that have been observed all over Europe.4,7,10
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The Iberian peninsula, at the Southwestern part of

Europe (Figure 1a), is considered to be the region with less

Neolithic impact, based on archaeological and genetic

evidence. Their Palaeolithic component, with the Basques

being the most outstanding representative, have been

pointed out by classical markers,7,11 mtDNA studies12 – 15

and Y-chromosome variation.10,16 – 18 Furthermore, Alonso

and Armour19 found that the Basques diverged from other

Europeans by retaining less diversity and having a greater

proportion of ancestral (Palaeolithic) autosomal alleles.

However, the presence in high frequency of a number of

rare haplotypes, both in mtDNA12,14 and Y-chromosome18

analysis, suggests that the action of genetic drift may have

accentuated their distinctiveness. Owing to their charac-

teristic genetic variation, the Basques have often received

considerable attention in genetic studies of Western

Europe, in detriment of the genetic characterization of

the rest of Iberian populations. Outside a European

context, some studies have investigated the degree of

African gene flow in Iberian populations.20 – 23 Although

classical markers have failed to detect this influence,11

roughly 10% of Iberian mtDNA and Y-chromosome

haplotypes have been found to be of African ori-

gin.13,15,24 – 29 Moreover, unlike the rest of Europe, the

presence of markers with probable North African origin,

the mtDNA U613,30 and the Y-chromosome E3b,26 points to

a specific Northwest African influence in Iberia.4,25 – 29

If Iberian populations have been affected by the same

demographic processes that have clinally shaped the

genetic variation landscape deduced from continent-wide

studies, Y-chromosome diversity analysis, with well-known

phylogeographical patterns, could be able to detect the

existence of marker gradients even in such a regional scale.

With this in mind, we conducted a comprehensive high-

resolution survey of Y-chromosome diversity in the largest

and most diverse Iberian sample studied to date. This has

allowed us to determine the genetic structure and affinities

between Iberian populations, to examine if nonrandom

patterns of variation exist and to interpret these findings in

the light of the demographic processes that have taken

place in Europe.

Materials and methods
Samples

DNA isolated from blood samples from 568 unrelated

Iberian males were analysed. Appropriate informed con-

sent and information as to birthplace of paternal grand-

father were obtained from all participants. Individuals

analysed included: 109 from Northern Portugal, 19 from

Galicia, 60 from Leon, 70 from Cantabria, 21 from Castile,

31 from Valencia and 258 from Andalusia. These were

further subdivided into the following: 155 from Seville, 22

from Huelva, 28 from Cadiz, 27 from Cordoba and 26 from

Malaga. In addition, Northern Iberian samples from the

Basque Country (45 from Underhill et al31) and Catalonia

(16 from Bosch et al26) were incorporated, raising the

sample size to 629 chromosomes. The approximate

geographic locations of the samples are represented in

Figure 1a.

Polymorphism genotyping

We used a total of 26 markers of the nonrecombining

portion of the Y-chromosome validated in European

populations in previous studies.10,18,31 Markers typed

include YAP (an Alu insertion), the 12f2 deletion and 24

base substitutions: M2, 92R7, SRY10831.1, SRY10831.2,

SRY2627, Tat, P2, M9, M13, M26, M34, M52, M67, M70,

M78, M81, M89, M123, M153, M170, M172, M173, M178

and M201. All markers were typed as described in Flores

et al32 except M178, which was sequenced in both strands

(BigDye Terminator Kit v.3) using an ABI PRISM 310

Genetic Analyzer (Applied Biosystems, Foster City, CA,

USA). We typed nine phylogenetically basal markers in all

individuals (SRY10831.1, YAP, M89, P2, M9, M201, M170,

12f2 and 92R7). The rest of markers were typed following

the hierarchy of the phylogeny. Haplogroups (Hg’s) were

identified by lineage (Figure 2) following standardized

nomenclature guidelines.33

Software and statistical analysis

ARLEQUIN 200034 was used to test the variability among

populations based on Hg frequencies applying a hierarch-

ical analysis of molecular variance (AMOVA). Spatial

analysis of molecular variance (SAMOVA)35 was used to

obtain the groups of studied populations that maximize

the proportion of variance. PHYLIP package was used to

calculate Reynolds FST genetic distance.36 ARLEQUIN 2000

was also used to obtain the heterogeneity estimates by

population (H) and to assess the Mantel tests of the

correlation between geographical and Reynolds FST genetic

distances (1000 permutation steps). Geographic distances

were calculated as great circle distances (km) from the

geographical coordinates at Great Circle Distance Web site

(http://www.argray.org/dist/index).

Spatial autocorrelation analyses were performed by

means of the Autocorrelation Index for DNA Analysis,

AIDA.37 Autocorrelation coefficients (II) were calculated at

varying distance classes (four to 10), but always keeping the

same number of pairwise comparisons in each class.

Statistical significance of II values was assessed from

10 000 permutations. It is known that plots of II vs

geographical distance classes yield correlograms with

varying shapes under different evolutionary scenarios.37

Geographical patterns of genetic diversity were also

examined using the principal component analysis, as

performed by SPSS v.9 (SPSS, Inc.). This software was also

used to perform linear regressions.
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Figure 1 Sampled populations and Y-chromosome Hg frequencies in Iberia. (a) Approximate geographic locations of
sampling sites. Code numbers are referred to in Table 1. (b–g) Pie charts, with areas proportional to the number of sampled
individuals, of phylogenetically related Hg’s by population: (b) BC* (chequered), DE*(xE3) (transversals), E3* (black) and E3a
(grey); (c) E3b1 (chequered), E3b2 (black), E3b3* (transversals) and E3b3a (grey); (d) F* (black), G (chequered), I*(xI1b2)
(transversals) and I1b2 (grey); (e) J*(xJ2) (grey), J2*(xJ2f) (black) and J2f (transversals); (f) K* (grey), K2 (chequered), N3a
(black) and P*(xR1) (transversals); (g) R1a (black), R1* (chequered), R1b3d (transversals) and R1b3f (grey). The three
unassigned Catalan chromosomes are not represented.
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Results
We combined the allelic states at each of the 26 biallelic

markers typed and constructed 27 stable compound Hg’s

with a shared common ancestry (Figure 2). Of these Hg’s,

23 were found in 629 individuals from 13 locations in the

Iberian peninsula (Table 1, Figure 1b–g). Four Hg’s – A3b2,

A*(xA3b2), H and N3* – were not detected in the entire

sample set. Nearly all individuals (99.4%) belonged to

groups E (10.8%) and F (88.6%). The latter included R, the

most frequent group of the area (61.4%). Hg R1*, which is

known to be the most common in Western Europe,10,18

belongs to this group and defined more than 50% of

Iberian Y chromosomes, being the most frequent Hg in all

populations (range 31–63.1%). Several other Hg’s exhib-

ited relatively high frequencies (410%), but only in some

populations: E3b2, E3b3a, I*(xI1b2), I1b2, J2*(xJ2f), K2,

R1b3d and R1b3f. Heterogeneity estimates by population

(Table 1) are similar, with values ranging from

0.58570.076 obtained for the Basque region to

0.88970.047 obtained for Malaga, with no differences

(P¼0.159, Mann–Whitney U-test) between northern

(Galicia, Northern Portugal, Leon, Cantabria, Catalonia

and Basque Country) and southern (Seville, Huelva, Cadiz,

Cordoba and Malaga) regions.

Overall, some geographical clustering of Hg frequencies

was notable. According to previous data, R chromosomes

tended to be more frequent in the Cantabrian fringe

(Figure 1g).10,18,38 In contrast to Hurles et al,39 Hg R1b3f

was frequently detected and with a widespread distribution

(Figure 1g). On the other hand, I chromosomes reached

their highest frequencies in Andalusia and Eastern Iberia

(Figure 1d), although Hg I1b2 reached a frequency in

Castile comparable to that reported for Sardinia, which is

the highest in Europe.10,28,40 Since STR information for the

Catalonian sample is available26 and DYS388X15 repeat

alleles can be used as a proxy for J background,41 we

estimated 6.2% of J chromosomes in this sample. Taking

this value, or the 4.2% previously reported for an

independent sample,10 as an approximate frequency of

these Hg’s in Catalonia, J chromosomes show a trend of

decreasing frequencies in Mediterranean coastal popula-

tions, from 17.9 to 11% in Andalusia, 9.7% in Valencia, to

the lowest frequency in Catalonia (Figure 1e), although

with nonsignificant differences between the two extremes

(P¼0.193, Fisher’s exact test). With regard to Hg’s E3b1

and E3b2, they were widespread in Iberia (Figure 1c),

reaching similar frequencies (P¼ 0.170, Fisher’s exact test)

in both the Andalusian and Cantabrian fringes, but having

a minimal frequency (2.2%) in the Basques.

Consistent with the previous findings of Brion et al,42 the

overall value of the variance obtained between the 13

Iberian populations was low: 1.2%, Po0.010. SAMOVA

analysis was undertaken assuming two and three groups. In

the first case, Basque Country was separated from the rest

of Iberians yielding 1.6% of intergroup variance, although

this value was not significant (P40.05). In the second case,

Basque Country, Catalonia and the rest of Iberians formed

the three groups, which resulted in a statistically signifi-

cant maximum variance (2.5%, Po0.05). However, Mantel

test revealed that there is a correlation between geogra-

phical and Y-chromosome-based genetic distances

(r¼0.36, Po0.001), as in the rest of Europe.18
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Figure 2 Phylogenetic relationships and nomenclature of
the Y-chromosome Hg’s. Defining markers are shown on
branches; the status of the underlined marker was inferred.

Y-chromosome analysis in Iberia
C Flores et al

858

European Journal of Human Genetics



Table 1 Y-chromosome Hg frequencies (%) and heterogeneities (H7SD) in Iberian populations

Populations and identification no.

1 2 3 4 5 6 7 8 9 10 11 12 13

Seville Huelva Cadiz Cordoba Malaga N. Portugal Leon Galicia Cantabria Valencia Castile Basquesa Catalansb

Hg 155c 22c 28c 27c 26c 109c 60c 19c 70c 31c 21c 45c 16c

BC* F F F F F 0.9 F F F F F F F
DE*(xE3) F F F F 3.8 F F F 2.9 F F F F
E3* 0.6 F F F F 0.9 F 5.3 1.4 3.2 F F F
E3a F 4.5 F F 3.8 F F F F F F F F
E3b1 0.6 4.5 3.6 3.7 7.7 6.4 3.3 5.3 F F F F F
E3b2 4.5 4.5 F 7.4 11.5 5.5 5.0 10.5 8.6 6.5 4.8 2.2 F
E3b3* F F F F F 1.8 F F F F F F F
E3b3a 1.3 F F F 3.8 0.9 1.7 10.5 F 6.5 F F F
F* F F F F F 0.9 1.7 F F F F F Fd

G 4.0 F F F 3.8 7.3 6.7 F 8.6 F F F Fd

I*(xI1b2) 9.7 9.2 3.6 11.0 F 3.7 1.7 F 4.3 9.7 14.3 4.4 6.2

I1b2 2.6 F 10.7 3.7 F 1.8 1.7 F 1.4 3.2 19.0 4.4 F
J*(xJ2) 3.2 F 3.6 F F 3.7 1.7 5.3 2.9 F F F Fd

J2*(xJ2f) 5.2 13.7 14.3 11.0 7.7 4.6 3.3 F 2.9 9.7 F F F
J2f 2.6 F F 3.7 7.7 3.7 1.7 F F F 9.5 F F
K* F F F 3.7 F 0.9 3.3 F F F F F F
K2 4.5 4.5 10.7 F F 0.9 F F 4.3 3.2 F F F
N3a 0.6 F F F F F F F F F F F F
P*(xR1) F F F F F 2.8 F F F F F F F
R1* 57.4 54.6 42.8 55.8 31.0 50.5 58.2 63.1 48.4 45.1 38.1 62.3 43.8

R1a 0.6 F F F 7.7 F 6.7 F 4.3 3.2 F F F
R1b3d F F 3.6 F 3.8 F F F 1.4 3.2 9.5 15.6 F
R1b3f 2.6 4.5 7.1 F 7.7 2.8 3.3 F 8.6 6.5 4.8 11.1 31.3

H7SD 0.65470.042 0.69770.102 0.79170.066 0.68170.093 0.88970.047 0.73170.045 0.65370.069 0.60270.124 0.74470.052 0.78570.071 0.81470.062 0.58570.076 0.73370.079

aFrom Underhill et al.31

bFrom Bosch et al.26

cSample size.
dThe remaining three chromosomes could be assigned to one or several of these three Hg’s as M201 and 12f2 were not tested in the referred work.
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The autocorrelation index (II) was also used for evaluat-

ing patterns of geographical variation. Although plot

raggedness incremented with the number of classes, all

correlograms obtained from the Iberian Y-chromosome

data were very similar, showing significant positive values

at short distances and significant negative at long dis-

tances. One of these correlograms is represented in

Figure 3a, showing significant positive values at 0–

246 km distances, decreasing to significantly negative

values at 909 km. To explore if this pattern could be

explained by the distribution of a certain frequent Hg, we

reran AIDA again, removing from the data one frequent Hg

at a time (ie with 410% in at least one population), but all

the patterns obtained were similar (not shown). We next

examined the plot of geographical vs genetic distances

(Figure 3b) and, although a relatively high regression

coefficient was obtained (0.36, Po0.001, Mantel test), we

noted that the greater distances (falling above the upper

limit of 95% CI of the distribution) were due to just five

populations: the Basque Country, Catalonia, Malaga,

Galicia and Castile. Thus, it seemed that a minority of

genetic distances (33%) were responsible for most of the

correlation. After removing these outstanding values from

the distribution, the regression coefficient turned non-

significant (0.20, P¼0.153, Mantel test). To explore the

influence of these five populations in the autocorrelation

analysis, we repeated AIDA, but this time excluding one of

them at a time. The results without Galicia or Castile did

not change. When Catalonia or Malaga were removed, the

larger distance class turned nonsignificant. However, when

the Basque Country was omitted from the analysis, all

autocorrelation values were nonsignificant (not shown).

Although the outlier behaviour of these populations could

be attributed to their small sample sizes, given that 100%

of statistically significant FST genetic distances involved

them, that previously analysed population groups added

considerable heterogeneity to the region38 and that our

knowledge of Iberian Y-chromosome pool is still limited,

these results point to some degree of heterogeneity in

Iberia. A more thorough sampling in these areas, especially

in Basque Country where some heterogeneity among

districts have been detected,43 could shed some light to

this differentiation pattern. Recent findings in Italy and

Greece44 support that Y-chromosome heterogeneity in

such local regions are organized on focal rather than clinal

distributions as deduced from studies on larger spatial

scales.

The Y-chromosome variation landscape in Iberia was also

evaluated using principal component analysis, which

included samples with highly resolved Y-chromosome data

from Europe (78 Sardinians45 and 26 Normans, unpub-

lished), Near East (30 Turks, 139 Iraqis, 31 Lebanese and 20

Syrians from Al-Zahery et al,46 and unpublished data from

146 Jordanians (V Cabrera and N Karadsheh, personal

communication)), and Northwest Africa (29 Arabs and 46

Berbers from Morocco, 24 Saharans and 36 Mauritanians,

unpublished). The first two components of the analysis

accounted for 83.9% of genetic variance, and produced

three well-separated clusters of populations, evidencing the

sharp differences between the Y-chromosome pool of

Western Europe, Near East and Northwest Africa

(Figure 4). The main determinant Hg’s of the clustering

are Hg R1*(xR1a), which plays an important role in both

components, Hg’s J*(xJ2) and J2, and E3*(xE3a). Hg

R1*(xR1a) reach high frequencies in Iberia and west

European populations,10 whereas J*(xJ2)/J2 and E3*(xE3a)

have a low incidence and, in turn, are related to popula-

tions from the Near East and Northwest Africa, respec-

tively. Hg G, which together with groups J and E are related

to the genetic influence from Near East during the

Neolithic,10,47 does not play an important role in the

clustering of these populations.

Discussion
Archaeological,48,49 mtDNA12 and Y-chromosome data18

corroborate the view that Neolithic contributions are

expected to diminish towards Western Europe. Although

little is known about the Neolithic impact in Mesolithic

populations from Iberia, Basques are generally considered

to have received a very limited input of Near Eastern
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Figure 3 Genetic differentiation with distance. (a) Corre-
logram of II autocorrelation values (Y-axis) with distance
classes (X-axis). The significant points are denoted by one
(Po0.05) or two (Po0.01) asterisks. (b) Scatter plot of
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genes.7,49 In fact, their uniqueness has been revealed by

mtDNA12 – 14 and nuclear loci,7,11 confirming their isola-

tion and susceptibility to genetic drift. However, in a recent

Y-chromosome study, Basques were not differentiated from

neighbouring populations.26 Furthermore, Rosser et al18

found that within Western Europe, only a minor barrier

separated the Basques from their neighbours. Consistent

with these results, our findings indicate that Iberian

populations, Basques included, have a reduced genetic

structure. This means that the linguistic differences of this

area arose after a common Y-chromosome pattern was

established, or that there has been sufficient male gene

flow to eliminate past differences. In particular, the results

from Hurles et al39 suggested recent male gene flow

between Basques and surrounding populations. Our results

revealed that these recent events have not totally erased

the ancient structure established by past population

movements, indicating that a large fraction of the Iberian

male heritage was already present in Europe during the

Palaeolithic. Bolstering this hypothesis, Western Europe

accounts for the highest frequencies of R1*(xR1a) lineage,

and the tightly linked 49a,f ht XV and Hg1 haplotypes,

with an estimated age traced back to Palaeolithic

times.10,50 Moreover, Wilson et al51 calculated that the

coalescent times for Hg 1 in the British Isles and the

Atlantic zone of the continent were E7 000 ybp. These

findings are supported by the frequency and diversity

patterns found for the phylogenetically precedent Y-line-

age P(xR1).50

Salas et al52 interpreted the mtDNA diversity of the

population of Galicia as one of the Western edges of the

Neolithic expansion. In part, the Y-chromosome data

support this view, since Galicia lies at extreme edge of

the cluster of Europeans, showing some relatedness to

Basques, as evidenced by the second component (Figure 4).

On the other hand, Galicia, as well as other populations

from northern Iberia (Cantabria, N. Portugal) and south of

Andalusia (Malaga), are the Iberian populations closest to

the Northwest African cluster (Figure 4). Northwest African

influences in the south of Iberia are reconciled with the

slow reconquest of the Iberian peninsula from the North by

the Christians, which lasted seven centuries and ended in

Granada in 1492.53 In fact, Bosch et al26 dated the specific

Northwest African male influence to Iberia as E700 ybp,

which they linked to the historical Islamic occupation.

Favouring this, Lucotte et al27 detected that the character-

istic Berber Y-chromosome haplotype p49a,f htV showed a

gradient of decreasing frequencies with latitude in Iberia.

As the Moslem influence in the Cantabrian fringe was

barely appreciable, how can the Northwest African

influence in northern parts of Iberia be explained? Other

studies with the Y-chromosome,38,42 and also with other

genetic markers, have detected this Northwest African

influence in northern Iberia. For instance, Basque and

Berber Algerians share some infrequent HLA haplotypes,20

and Basques, but also Cantabrians and French from the

Pyrenees, share African-specific GM immunoglobulin

haplotypes.54 Moreover, haplotypes belonging to the

Northwest African U6 mtDNA cluster have been found in

Galicia and Northern Portugal, but are rare or absent in

Southern areas.15,25,29 Some authors consider that, at

least in part, this Northwest African influence was a

consequence of prehistoric links between Iberians and

North Africans.55,56 As such, the coincident dispersion

of Northwest African Y-chromosomes in Northern and

Southern parts of Iberia is a matter that needs further

consideration.

In conclusion, the detailed Y-chromosome binary Hg

analysis has offered valuable insights into the population

structure of the Iberian peninsula. The most important of

these being the close affinities between the populations,

the correlation between genetic and geographic distances

and the apparent patchy distribution of Y-chromosome

diversity. Despite the complex history of subsequent

demographic events that have affected the Iberian penin-

sula, our findings support the idea of a high degree of

underlying non-Neolithic ancestry being retained in

Iberian populations.
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affinities among human populations inhabiting the Subsaharan
area, Northwest Africa, and the Iberian Peninsula; in Arnaiz-
Villena A (ed): Prehistoric Iberia: Genetics, Anthropology, and
Linguistics. New York, Plenum Press, 2000, pp 33–50.

25 Pereira L, Prata MJ, Amorim A: Diversity of mtDNA lineages in
Portugal: not a genetic edge of European variation. Ann Hum
Genet 2000; 64: 491–506.

26 Bosch E, Calafell F, Comas D, Oefner PJ, Underhill PA,
Bertranpetit J: High-resolution analysis of human
Y-chromosome variation shows a sharp discontinuity and
limited gene flow between northwestern Africa and the Iberian
Peninsula. Am J Hum Genet 2001; 68: 1019–1029.

27 Lucotte G, Gérard N, Mercier G: North African genes in Iberia
studied by Y-chromosome DNA haplotype V. Hum Immunol 2001;
62: 885–888.

28 Scozzari R, Cruciani F, Pangrazio A et al: Human Y-chromosome
variation in the Western Mediterranean area: implications for the
peopling of the region. Hum Immunol 2001; 62: 871–884.
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