
Comments on Dual-EC-DRBG/NIST SP 800-90,

Draft December 2005

Kristian Gjøsteen∗

March 16, 2006

Abstract

We analyse the Dual-EC deterministic pseudo-random bit generator
(DRBG) proposed in draft of NIST SP 800-90 published December 2005.
The generator consists of two parts, one that generates a sequence of
points and one that extracts a bit string from the point sequence. We
show that the first part is essentially cryptographically sound, while the
second is not.

We give heuristic arguments that an efficient distinguisher exists for
the bit sequences that are extracted from random point sequences, and
construct a simple bit-predictor with advantage 0.0011. We also give
experimental evidence validating the heuristics.

1 Introduction

Logically, the Dual-EC-DBRG can be divided into two parts: one that generates
a point sequence and one that extracts a bit string from the point sequence. We
analyse each part separately.

1.1 Notation

We denote by x mod n the remainder of x when divided by n.
Let X be a distribution on some set. We denote the act of sampling x from

the set according to the distribution X by x
r← X.

Let X and Y be two distributions. An algorithm A has distinguishing ad-
vantage δ if

δ = |Pr[A(x) = 1 | x r← X]− Pr[A(x) = 1 | x r← Y]|

The statistical distance between the two distributions is

∆(X, Y) =
1
2

∑
s

|Pr[x = s | x r← X]− Pr[x = s | x r← Y]|.

∗E-mail: kristian.gjosteen@math.ntnu.no

1

Two distributions are ε-close if ∆(X, Y) ≤ ε. Note that for any adversary, the
distinguishing advantage is less than or equal to the statistical distance.

2 Generating point sequences

Note that we ignore reseeding and insertion of additional entropy in generating
the point sequences.

Let p be a prime, Fp be the field with p elements and E be an elliptic curve
defined over Fp. Let n = #E(Fp) be prime. (This is for convenient notation,
we could just as well work in a prime-ordered subgroup.) For any points P and
Q such that P = sQ, 0 ≤ s < n, define logP Q = s

Definition 1. Let XDDH be the uniform distribution on E(Fp)4, while YDDH

is the uniform distribution on the subset of E(Fp)4 where the tuples (Q,P,R, S)
satisfy logQ R = logP S. The elliptic curve decision Diffie-Hellman (ECDDH)
problem is distinguish the distributions X and Y .

Let φ : E(Fp)→ {0, 1, . . . , n−1} be a function such that when R is sampled
from the uniform distribution on E(Fp), φ(R) is ε-close to uniformly distributed
on {0, 1, . . . , n − 1}. (Note that the φ defined in the document does not have
this property for any usefully small ε. It may still be ok, though.)

Let P,Q be non-zero points in E(Fp). The Dual-EC-DRBG uses the equa-
tions

si+1 = φ(siP), (1)
Ri = siQ. (2)

to expand a seed s0 ∈ {0, 1, . . . , n − 1} into a sequence of internal states
(s0, s1, . . . , sk) and an output sequence (R0, R1, . . . , Rk).

2.1 Point sequence is pseudo-random

Let Xi be the distribution on {0, 1, . . . , n − 1}k+1 where the first i + 1 places
are iid. according to the uniform distribution, and the remaining k − i places
are determined by (1). X0 is the distribution followed by the internal states of
Dual-EC-DRBG.

Let Yi be the distribution on E(Fp)k+1 induced by the distribution Xi and
the map (2) applied to each place. Y0 is the actual output distribution of Dual-
EC-DRBG, while Yk consists of k + 1 random points from E(Fp).

We shall now prove that under the assumption that ECDDH is a hard prob-
lem, distinguishing Dual-EC-DRBG’s output (Y0) from random points (Yk) is
also hard.

Claim 1. Let A be an algorithm that can distinguish Yi from Yi+1 with advan-
tage δ. Then there exists an algorithm A′ that can solve the ECDDH problem
with advantage at least δ − ε. The run-time of A′ is essentially that of A.

2

Proof. Let (Q,P,R, S) ∈ E(Fp)4. The algorithm A′ proceeds as follows: It
samples R0, . . . , Ri−1 independently and uniformly at random from E(Fp). It
sets Ri = R and si+1 = φ(S). Then it computes sj+1 = φ(sjP) for i+1 ≤ j < k
and Rj = sjQ for i+1 ≤ j ≤ k. It runs A with p, E, n, P, Q and (R0, R1, . . . , Rk)
as input. If A claims that its input is from Yi, A′ claims that its input is
distributed according to YDDH . If A claims that its input is from Yi+1, A′

claims that its input is uniformly distributed in E(Fp)4, that is according to
XDDH .

Note that if there exists s such that R = sQ and S = sP , then Ri = sQ and
si+1 = φ(sP), so (R0, R1, . . . , Rk) is distributed according to Yi.

If S is independent of Q, P and R, then by the properties of φ, si+1 will be
ε-close to uniform and independent of R0, R1, . . . , Ri. Therefore Ri+1 will also
be independent of R0, . . . , Ri, and distributed ε-close to uniform. This means
that (R0, . . . , Rk) is distributed ε-close to Yi+1. Call this distribution Ỹi+1.

Let δ′ be the distinguishing advantage of A′. We get

δ = |Pr[A(y) = 1 | y r← Yi+1]− Pr[A(y) = 1 | y r← Yi]|
= |Pr[A(y) = 1 | y r← Yi+1]− Pr[A(y) = 1 | y r← Ỹi+1]+

Pr[A(y) = 1 | y r← Ỹi+1]− Pr[A(y) = 1 | y r← Yi]|
≤ |Pr[A(y) = 1 | y r← Yi+1]− Pr[A(y) = 1 | y r← Ỹi+1]|+
|Pr[A′(x) = 1 | x r← XDDH]− Pr[A′(x) = 1 | x r← YDDH]|

≤ ε + δ′,

in other words, δ′ ≥ δ − ε.

Claim 2. Let A be an algorithm that can distinguish the point sequence of length
k generated by (1) and (2) from a random point sequence with advantage δ. Then
there exists an algorithm A′ that solves the ECDDH problem with advantage at
least δ/k − ε.

Proof. By a standard hybrid argument, A will be able to distinguish Yi from
Yi+1 with advantage at least δ/k, for some i. From the previous claim, this
gives us an ECDDH distinguisher with advantage at least δ/k − ε.

3 Bit strings from point sequences

Note that Dual-EC-DRBG does not output the point sequence generated, but
instead generates a bit sequence from the point sequence. We have already
shown that the point sequence will look random, so we can restrict ourselves to
consider the following question: Given a sequence (R0, R1, . . . , Rk) of uniformly
distributed, independently sampled points, how do we extract a bit string that
consists of uniformly distributed, independently sampled bits?

Let ξ : E(Fp)→ {0, 1, . . . , p− 1} be the function giving the x-coordinate of
a point. Let p be a τ -bit prime (2τ−1 < p < 2τ), and let 0 ≤ t < τ . Define the
function f : E(Fp)→ {0, 1}τ−t given by f(P) = ξ(P) mod 2τ−t.

3

The proposed way to extract a bit sequence from the point sequence is by
extracting the τ− t least significant bits from the x-coordinate of the points and
concatenating:

f(R0)||f(R1)|| . . . ||f(Rk).

For this to be acceptable, we must have that if R is sampled uniformly at random
from E(Fp), then f(R) is uniformly distributed in {0, 1}τ−t.

3.1 The distinguisher

The first observation we make is that if t = 0, then it is very easy to distinguish
the bit string from a random bit string, simply by dividing the bit string into
strings of length τ and checking if they all represent the x-coordinate of some
point on the curve. A random l-bit string will pass that test with probability
roughly 2−l/τ , so this is an effective distinguisher. What happens when t > 0?

We shall in this section argue heuristically and use several approximations.
First we note that #E(Fp) ≈ p (the difference is on the order of

√
p). Second,

we asumme that p ≈ 2τ . (For all the NIST prime except the 256-bit prime, the
difference is negligible.)

Let N : {0, 1}τ−t → Z be the function that counts half the number of preim-
ages of bit strings under f , that is, N(x) = #f−1(x)/2. Note that #f−1(x)
will always be a multiple of 2: The curve used has no rational points of order
two, therefore every x-coordinate results in zero or two points on the curve.
We also note that for a random bit string x, the expected value of N(x) is
p/2τ−t+1 ≈ 2t−1.

In general, the probability that a random number in {0, 1, . . . , p− 1} is the
x-coordinate of some point on the elliptic curve E is very close to 1/2. We can
consider this a Bernoulli trial. Even if two x-coordinates are related by some
simple linear expression, it is reasonable to assume that there is little correlation
between the outcomes of the Bernoulli trials. Therefore, we can assume that for
a random bit string x, N(x) will follow a binomial distribution with parameters
1/2 and 2t.

Because the binomial distribution is symmetric around the expected value,
we expect the number of bit strings with N(x) = 2t−1 + r to be equal to the
number of bit strings with N(x) = 2t−1 − r for any r.

For each non-zero point R ∈ E(Fp), we can associate the number N(f(R)).
When R is sampled uniformly at random, what is the distribution of N(f(R))?
From the binomial distribution

g̃(i; 2t, 1/2) =
(

2t

i

)
1

22t , 0 ≤ i ≤ 2t,

we get the approximate probability distribution

g(i) =
i g̃(i; 2t, 1/2)∑2t

j=0 j g̃(j; 2t, 1/2)

4

Table 1: Computed variance for the distribution g(i) for various t.
t 6 10 13 16

σ2 15.75 255.75 2047.75 16383.75

for the value of N(f(R)), where R is a random point. Note that
∑2t

j=0 j g̃(j; 2t, 1/2)
is the expected value of the binomial distribution, that is 2t−1, so

g(i) =
i g̃(i; 2t, 1/2)

2t−1
.

We compute the expected value, which is

2t∑
i=0

ig(i) =
1

2t−1

2t∑
i=0

i2g̃(i; 2t, 1/2).

Note that the sum is the second moment of the binomial distribution around
the origin, so the expected value of N(f(R)) when R is a random point, is

1
2t−1

2t 1
2
(1 + (2t − 1)/2) = 2t−1 + 1/2.

We can also compute the second moment of the distribution to get the variance.
The results for various t are given in Table 1.

This gives us a distinguisher for bit strings derived from random point se-
quences versus random bit strings: We split the string into blocks x1, . . . , xr of
length 2τ−t and compute N(xi). If it comes from a random point sequence, we
expect the average value to be larger than 2t.

More concretely, we can design a simple bit-predictor. Given τ − t − 1
bits of output, we can derive two τ − t bit strings x0 and x1 by setting the
missing bit to 0 or 1. Then we compute N(x0) and N(x1) and guess b such that
N(xb) > N(x1−b) if they are different.

The basic assumption is that for the correct guess b′, N(xb′) will be dis-
tributed as if xb′ comes from a random point, while N(x1−b′) will be distributed
as if x1−b′ was a random bit string.

The success probability µ of this bit predictor is then

µ =
2t∑

i=0

g̃(i)(g(i)/2 +
2t∑

j=i+1

g(j)).

The predicted result for various t are given in Table 2.

Table 2: Bit predictor success probabilities for various t.
t 6 10 13 16
µ 0.5352 0.5088 0.5031 0.5011

5

Table 3: Sample mean µ̄ and sample variance σ̄2 for N(x) and curve p-196.
t n µ̄ σ̄2 |µ̄− µ|/(σ/

√
n)

6 100000 32.00558 16.00280889 0.441
10 110000 511.9450455 255.3650379 1.14
13 120000 4095.794708 2030.651852 1.57
16 146512 32767.90982 16366.00428 0.270

Table 4: Sample mean µ̄ and sample variance σ̄2 for N(f(R)) and curve p-196.
t n µ̄ σ̄2 |µ̄− µ|/(σ/

√
n)

6 100000 32.50482 15.79931476 0.384
10 110000 512.5071545 255.3475611 0.148
13 120000 4096.252675 2042.637786 1.89
16 146386 32768.89841 16474.97224 1.19

3.2 Experimental results

The randomness source used for the experiments was NTL’s random number
generator, seeded with the output of FreeBSD’s /dev/urandom. Most of the
data comes from experiments with the two NIST curves p-196 and p-256.

We would like to test the predictions we made above by sampling from the
various distributions and comparing the sample mean with the expected mean.
Remember that the average of n iid. random variables with variance σ2 has
variance σ2/n.

First, we sampled N(x) for uniformly random bit strings x, N(f(R)) for
uniformly random points R, both for various t and curves. The results are
given in Tables 3–8.

It seems reasonable to use a normal approximation for the average estimator
for the mean, which has variance σ2/n. The probability is roughly 99% that a
sample is within three standard deviations of the mean, and we see that this
holds. For t = 6 and t = 10, we see from Tables 3–6 that the experimental
results provide very strong evidence for the claim that the expected value of
N(f(R)) is larger than N(x). For all t, the sample means and variances are
consistent with the predictions.

Tables 7 and 8 suggests that these results hold equally well for all curves,
so even though p-196 should not be used with the generator, experiments with
curve can still be used to validate the heuristics in the previous section.

Note that Tables 5 and 6 suggest that N(x) is larger than N(f(R)), but this
is statistically insignificant.

Figure 1 shows the results for the bit-predictor. For low t, the results clearly
show that the bit-predictor has a success rate significantly different from one
half, while for larger t, the results are not statistically significant, though they
are consistent with the predictions.

6

Table 5: Sample mean µ̄ and sample variance σ̄2 for N(x) and curve p-256.
t n µ̄ σ̄2 |µ̄− µ|/(σ/

√
n)

6 30000 31.98556667 16.03589288 0.625
10 40000 511.928375 257.3605789 0.895
13 40000 4095.825525 2055.367818 0.771
16 50000 32768.70112 16349.64758 1.22

Table 6: Sample mean µ̄ and sample variance σ̄2 for N(f(R)) and curve p-256.
t n µ̄ σ̄2 |µ̄− µ|/(σ/

√
n)

6 30000 32.49006667 15.5692203 0.434
10 40000 512.625475 255.280188 1.57
13 40000 4096.8141 2061.115169 1.39
16 50000 32768.16766 16218.09703 0.581

Table 7: Sample mean µ̄ and sample variance σ̄2 for N(x) and t = 6.
Curve n µ̄ σ̄2

p-224 30000 32.0215 16.02857204
p-256 30000 31.98556667 16.03589288
p-384 30000 31.98953333 16.04369191
p-521 30000 32.01976667 16.01510978

Table 8: Sample mean µ̄ and sample variance σ̄2 for N(f(R)) and t = 6.
Curve n µ̄ σ̄2

p-224 30000 32.521 15.59854562
p-256 30000 32.49006667 15.5692203
p-384 30000 32.52756667 15.54489158
p-521 30000 32.5018 15.64978509

7

0.495

0.5

0.505

0.51

0.515

0.52

0.525

0.53

0.535

0.54

6 8 10 12 14 16

predicted
sampled

Figure 1: Predicted success rates, standard deviation for sample average, and
sample average for bit predictor.

4 Conclusions

We have shown that while the point sequence generation is cryptographically
sound, the way a bit string is derived from the point sequence is flawed. We
have given heuristic arguments that there exists a distinguisher for the out-
put bit strings and calculated its effectiveness. Our heuristics are validated by
experimental evidence.

While the practical impact of these results are modest, it is hard to see
how these flaws would be acceptable in a pseudo-random bit generator based on
symmetric cryptographic primitives. They should not be accepted in a generator
based on number-theoretic assumptions.

8

