

Risk Assessment and Mitigation Training Workshop

Exercise 1:

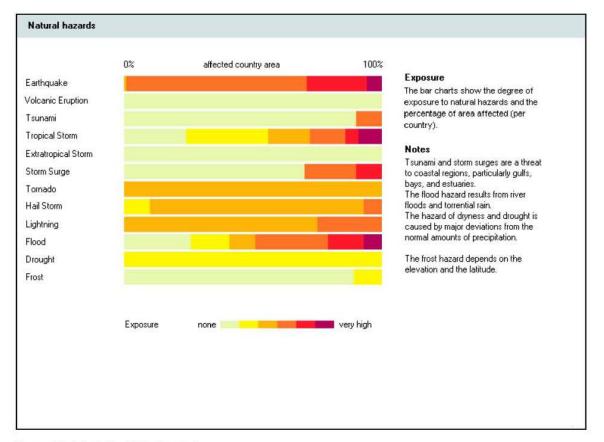
Cyclones, storm surges, floods, landslides

Introduction

- Cyclones and flood risk in Bangladesh (regional and local scale)
- Rainfall and Landslide in Bangladesh (regional and local scale)

Study area

- Bangladesh is almost every year affected by a natural disaster
- Coastal population over 1,000 persons per sq km
- Delta: high fertility and agricultural productivity



Source: Government of Bangladesh (2008): Cyclone Sidr in Bangladesh Damage, Loss and Needs Assessment For Disaster Recovery and Reconstruction

Natural hazard profile Bangladesh

Source: Munich Re Geo Risks Research

© 2009 Munich Reinsurance Company

Source: Munich RE (2009)

GFDRR Risk Assessment and Mitigation Training Workshop

Cyclones – storm surges - flooding

5

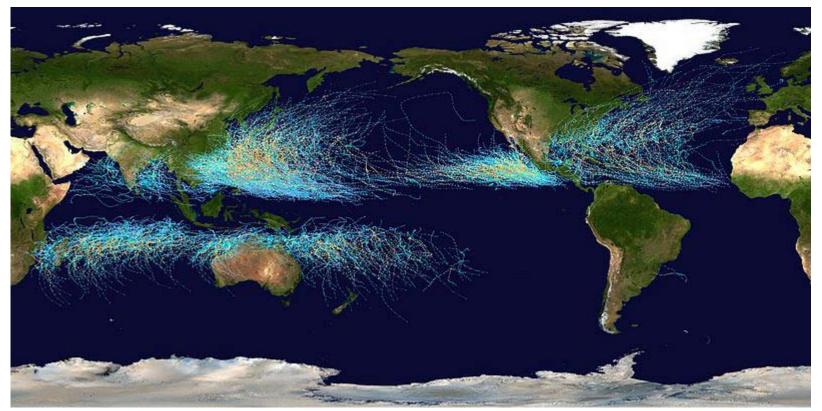
Risk Assessment and Mitigation Training Workshop

Cylone disasters

Year	Location	Deaths	Year	Location	Deaths	Year	Location	Deaths
1 584	Bangladesh	200,000	1897	Bangladesh	175,000	1963	Bangladesh	11,520
1737	India	300,000	1900	Texas, USA	6,000	1963	Cuba-Haiti	7,196
1779	India	20,000	1906	Hong Kong	10,000	1965	Bangladesh	19,279
1780	Antilles	20,000	1912	Bangladesh	40,000	1965	Bangladesh	12,000
1822	Bangladesh	40,000	1919	Bangladesh	40,000	1970	Bangladesh	500,000
1833	India	50,000	1923	Japan	250,000	1971	India	10,000
1839	India	20,000	1937	Hong Kong	11,000	1977	India	10,000
1854	India	50,000	1941	Bangladesh	7,500	1985	Bangladesh	11,069
1864	India	50,000	1942	India	40,000	1988	Bangladesh	5,708
1876	Bangladesh	100,000	1960	Bangladesh	5,149	1989	India	20,000
1881	China	300,000	1960	Japan	5,000	1991	Bangladesh	138,000
1895	India	5,000	1961	Bangladesh	11,468			

6

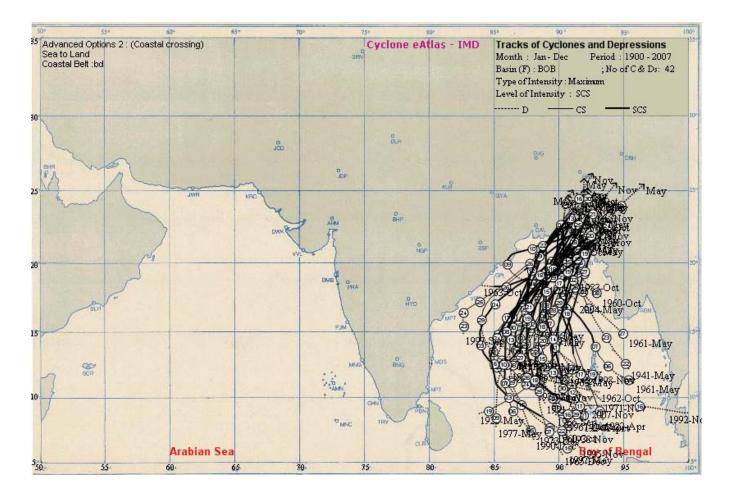
Table 4: Deaths Associated with Noteworthy Tropical Cyclones in the World


Not the strongest but the deadliest tropical cyclone ever recorded

Source: Government of Bangladesh Assisted and GFDRR (2008): Cyclone Sidr in Bangladesh Damage, Loss and Needs Assessment For Disaster Recovery and Reconstruction

26 - 30September 2011

Global cyclone tracks



7

Source: Wikipedia

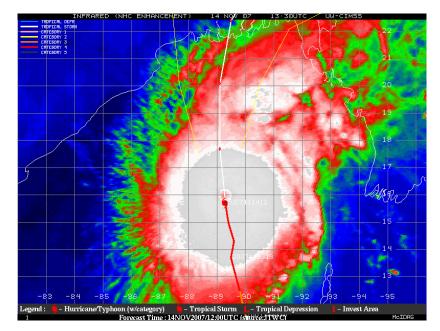
Cyclones in Bangladesh

8

Risk Assessment and Mitigation Training Workshop

Tropical cyclone scale - IMD

Scale according to the Indian Meteorological Department


Types of Disturbances	Wind speed knots	Wind speed km/h	
Depression	22 – 27	< 27	
Deep depression	28 – 33	52–61	
Cyclonic storm	34 – 47	62 – 87	
Severe Cyclonic storm	48 – 63	88 – 117	
Veryu Severe Cyclonic storm	> 64	> 118-221	
Super Cyclonic Storm	> 120	> 222	

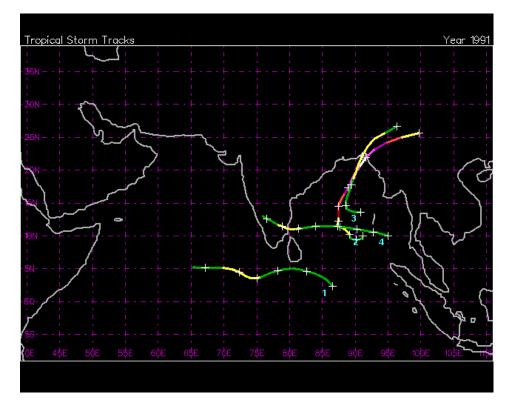
Cyclone Sidr 2007

- Category 5 cyclone (SSHS), very severe cyclonic storm (IMD), 2007
- Storm surges (3 -6 m), rainfall, winds up to 245 km/h
- 4,000 fatalities, 55,0000 injured,
 2.3 million households affected
- More fatalities would have been expected, but: EWS, shelters, mangroves
- \$1.7 billion USD

Source: Wikipedia

26 - 30

September


2011

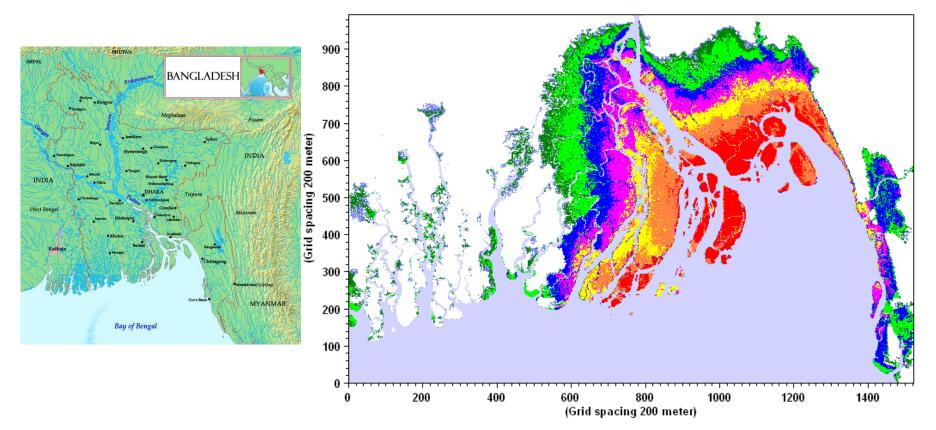
Source: Government of Bangladesh Assisted and GFDRR (2008): Cyclone Sidr in Bangladesh Damage, Loss and Needs Assessment For Disaster Recovery and Reconstruction

Cyclone BOB 01,1991

- 138.000 fatalities
- Maximum Wind speed: 160 km/h
- Category five (SSHS), Super cyclonic storm (IMD)
- Surge heights Chittagong: ~
 5 m above ground close to the shore
- Rainfall: ca 200 mm during landfall

Source: http://weather.unisys.com

Cyclone BOB 01, 1991



12

Source: Wikimedia

Inundation 1970 cyclone

Source: Institute of Water Modelling, Bangladesh, 2009

26-30 September 2011

GFDRR Risk Assessment and Mitigation Training Workshop

Exposure to cyclones

- Large parts of the country are only very few meters above sea level
- One of the largest deltas in the world (Ganges-Brahmaputra- Meghna river system) - increased flood risk even far in the hinterland
- High exposure in the flood prone areas, due to fertile land -> high population density

14

26-30

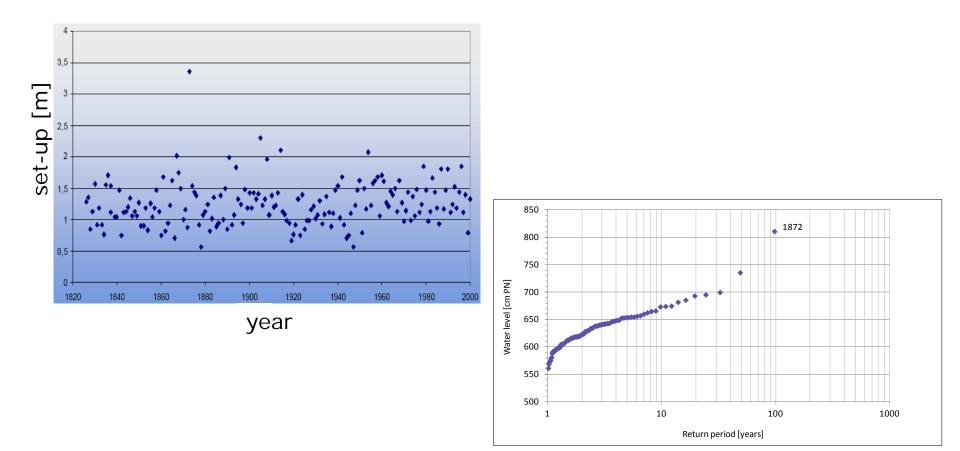
September

Risk assessment – flooding from cyclones

- 1. Wind intensities
- Inundation modelling or mapping -> water depth and flow velocities, probability of scenario
- 3. Exposure analysis people, assets, environment
- 4. Vulnerability assessment which factors or conditions make the communities vulnerable
- 5. Probability * consequences = risk

26-30

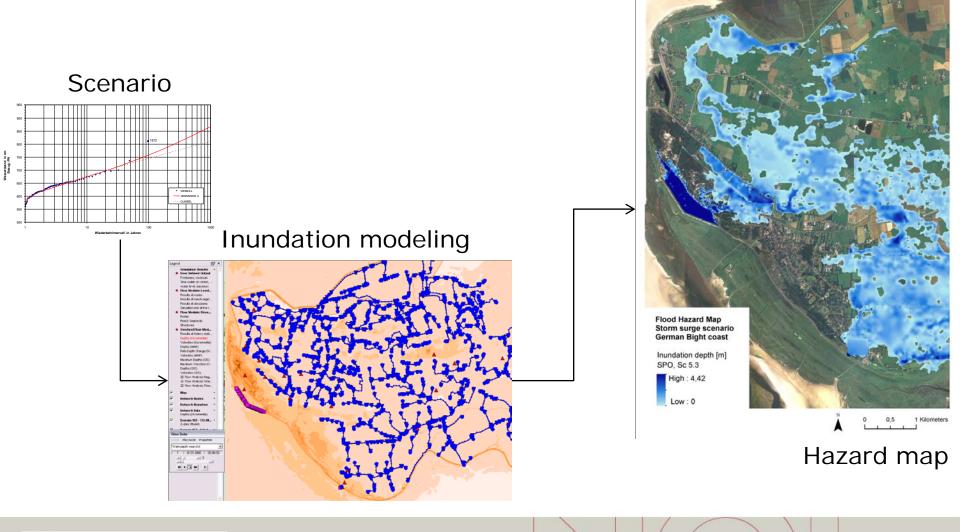
September


Risk assessment - scales

Scale	Dimension – Data	Application
Global	Macro-scale Coarse resolution data sets (GRUMP, SRTM, etc.) fast and "cheap" methods	Global risk studies Comparison of countries or regions International funding
Regional	Meso-scale medium resolution data sets for regions, settlement structures, population data	Transnational management
Local	Micro-scale Object-based studies high resolution data, detailed information on values and people	Local flood risk maps, evacuation planning, single protection measures

16

Hazard analysis Calculation of the return period



17

Risk Assessment and Mitigation Training Workshop

Hazard map – storm surge modeling

Risk Assessment and Mitigation Training Workshop

18

Exposure

- people
- buildings
- harbors, airports, roads, companies/industry
- critical infrastructure (hospitals, schools, etc.)

19

• ecosystems

Vulnerability criteria

People (loss of life models, depending on social characteristics)

• e.g. demography (age, poverty, education, etc.)

Assets, buildings, infrastructure

e.g.

- building material
- insurance
- dependencies

Environment

e.g

(JEDR

- Environmental degradation
- Recovery potential

Risk Assessment and Mitigation Training Workshop

20

26 - 30

September

Risk management

Many capacity building and disaster mitigation programmes in place, e.g.:

- Multipurpose Cyclone Shelter Program
- **Bangladesh Urban Disaster Mitigation Program** (BUDMP)/ADPC/USAID/OFDA/CARE

21

- Storm Warning Center
- Reforestation

Cyclones, storm surges, floods, landslides

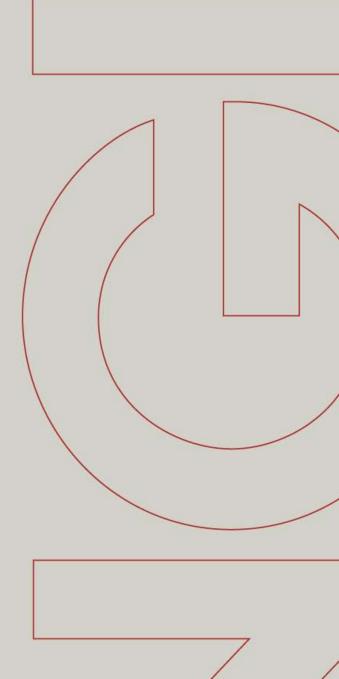
- Group 1: Scenario: Cyclone -> storm surge, flooding -> cascading effects Scale: regional
- Group 2: Scenario: Cyclone -> storm surge, flooding -> cascading effects Scale: local
- Group 3: Scenario: Monsoon -> rainfall -> flooding -> landslides -> cascading effects Scale: regional
- Group 4: Scenario: Monsoon -> rainfall -> flooding -> landslides -> cascading effects Scale: local

26 - 30

September

Group 1: Cyclone – regional (national) scale, Bangladesh Group 2: Cyclone – local scale, City of Chittagong

- 1. Return period and impacts?
- 2. Exposure?
- 3. Vulnerability?
- 4. Short- and long-term impacts, cascading effect?
- 5. Risk mitigation?



Risk Assessment and Mitigation Training Workshop

Precipitation-induced landslides: introduction to exercise

Dr. José Cepeda DIC MSc PhD

Importance of rainfall-induced landslides

Significant in total number of landslides:

~ 80%

Numerous transform in debris flows:

~ 90%

Debris flows:

Long runout distances: several kilometres

High velocities: > 18 km/h, but often > 100 km/h

Risk Assessment and Mitigation Training Workshop

Landslides

Landslide types based on material and movement (most common are named)

Type of movement → Material ↓	Fall	Topple	Slide	Spread	Flow
Rock	Rock fall	Rock topple	Rock slide		Rock flow (<i>rock avalanche</i>)
• Soil			Soil slide	Soil spread	Soil flow
Earth			Earth slide		Earth flow
Debris			Debris slide		Debris flow
GFDRR	Risk Assessment Training Worksho		26	$ \setminus (($	Sep 2

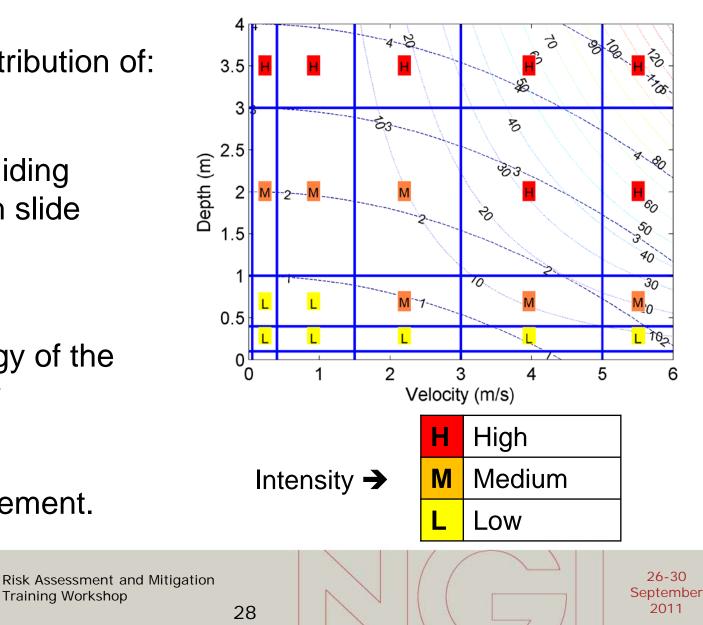
What happens after a landslide is initiated?

Casita landslide (Nicaragua, 1998): 2500 people killed 6 km away from release area

- Characteristics of landslide propagation:
 - Maximum distance (runout distance)
 - Thickness or depth
 - Velocity
- Landslide intensity (potential for destructiveness) is directly related to propagation characteristics.

26 - 30

September


2011

Landslide intensity

The spatial distribution of:

- velocity of sliding coupled with slide volume, or
- kinetic energy of the landslide, or

total displacement.

Training Workshop

GFDRR

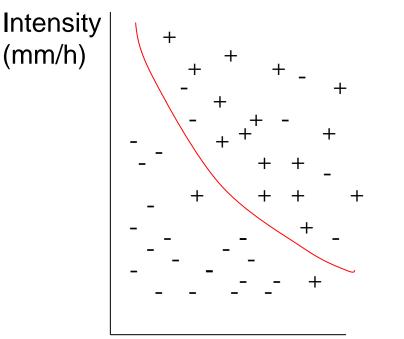
Susceptibility factors

- Slope (+): steeper slopes, higher susceptibility.
- Geology (-): lower resistance of geological materials, higher susceptibility.

29

26 - 30

September


2011

• Ground water (+): higher moisture and water pressures, higher susceptibility

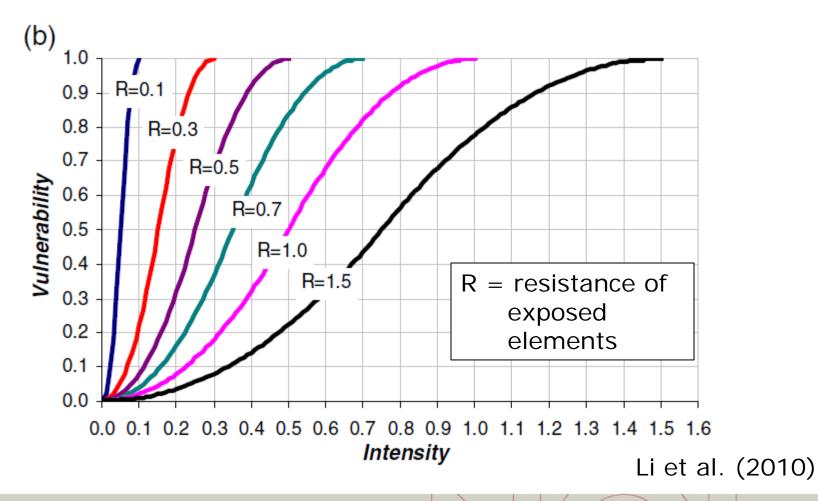
Triggering factors: precipitation

Rainfall threshold for landslide triggering

Boundary curve or surface separating triggering and nontriggering rainfall events.

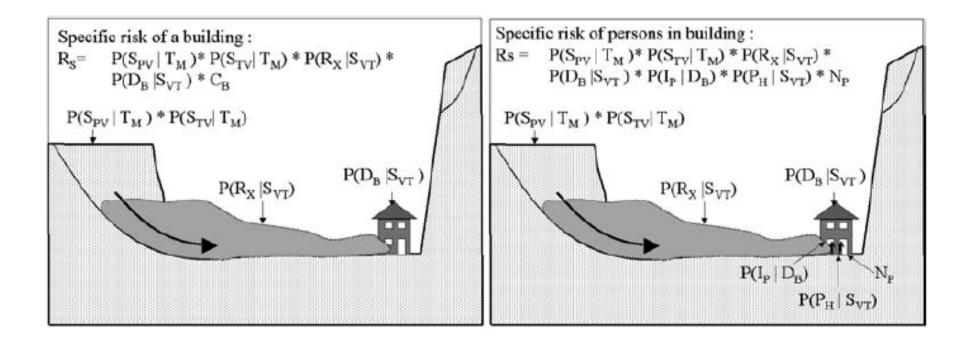
Global catalogue of precipitation thresholds:

Duration (h)


http://rainfallthresholds.irpi.cnr.it/

30

Vulnerability curves



Risk Assessment and Mitigation Training Workshop 26-30

September 2011

Risk assessment

GFDRR

Van Westen et al. (2006)

Risk Assessment and Mitigation Training Workshop 32

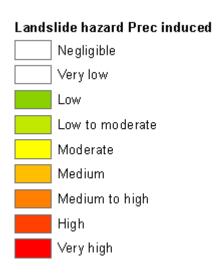
Landslide risk reduction - some relevant aspects

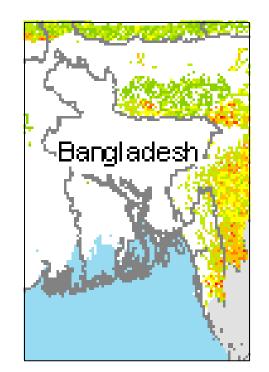
- When preventing landslide initiation (or reducing mobilisation) is feasible:
 - Slope stabilisation measures (increasing Factor of Safety to a minimum level, usually specified by building codes or country/regional guidelines)
- When preventing landslide is not feasible:
 - Deviate landslide path or trajectory away from exposed elements
 - Timely evacuation of exposed population (need for an Early Warning System, EWS)

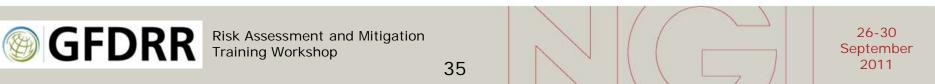
26 - 30

September

Case study: regional


- Based on landslide hazard assessment for Bangladesh.
- Discussions on the different factors that contribute to susceptibility, hazard, exposure and risk.
- Risk-based decisions for location of new critical facilities and for changes in population exposure.
- Material (to be distributed in A4 and A3 sheets):
 - List of aspects for discussion.
 - Slope, lithology, precipitation and hazard maps.
 - Population and exposure maps.




26 - 30

September

Case study: regional

Case study: local

- Discussion on vulnerability maps in a town potentially affected by precipitation-triggered debris flows having high mobility.
- Material (to be distributed separatealy in A4 sheets):

- List of aspects for discussion.
- Hazard maps.
- Vulnerability curves.
- Vulnerability maps.

Group building

- Prepare a presentation for Thursday
- 10 min per group
- Present and discuss the outcomes of the exercise

