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ROBEBT MA0PHERSOÏT 

Global Questions in the Topology 
of Singular Spaces 

During the last decade, several new tools have been found for the study 
of the topology of singular spaces. Our object here is to review the part 
of this work that relates to intersection homology. 

When he introduced homology for the study of manifolds, Poincaré 
made it clear that he was motivated by applications in three directions: 
analysis (differential equations), algebraic geometry, and group theory 
([68], p. 194). Each of these three fields leads to questions about singular 
spaces as well. After developing some general theory, we will illustrate 
its usefulness in three sections devoted to applications in these three areas. 

The singular spaces that arise in applications are usually complex 
algebraic (or analytic) varieties. In this report, we will restrict ourselves 
to methods which apply to these. Even here, desire for unity, limitations 
of space, and ignorance force the omission of many important subjects« 
Eor example, we do not mention the rather well developed theory of 
characteristic classes and Eiemann-Eoch (see [73], [59], [9], [10], [30], 
[31], [32]). 

§ 1. Stratifications. Perhaps the primary reason why the study of sin­
gular spaces blossomed at this time was the creation of stratification 
theory [58], [80], [74], [62]. This illuminated the local structure of analytic 
varieties. 

Let X be a complex analytic or algebraic variety of pure complex 
dimension n. Then X admits a locally finite decomposition into disjoint 
connected nonsingular analytic subvarieties {Sa} of varying dimension 
called strata, which satisfies a homogeneity condition along the stra»ta: 
for any two points p and g on a stratum Sa, there exists a homeomorphism 
of X to X, preserving all the strata and taking p to g. We denote the codi-
mension of Sa by ca, i.e. ca= n— dim#a . The space E which is the union 
of all 8a such that ca > 0 contains all the singularities of X. The strata 
8a cz E may be thought of as loci on which X is "uniformly singular". 

[213] 
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This homogeneity of X along Sa is guaranteed by the Whitney condi­
tions: (1) the closure Sa of Sa is a union of strata and (2) if a sequence of 
points bj e Sß and a sequence at e Sa both approach the same point ceSß, 
then the limit of the secant lines connecting ai to &t- is contained in the 
limit of the tangent spaces at ai7 if both limits exist. 

Intersection homology 

§ 2. Motivation. One of the important properties of the ordinary homology 
E4(M) of a compact oriented 2n real dimensional manifold M is Poincaré 
d%iality : 

(1) If i+j = 2n, then any pair of homology classes A eEt(M) and 
B e Hj(M) have representative cycles a e A cmd b eB that intersect infinitely 
many points. 

(2) The number of these intersection points counted according to their 
multiplicities is independent of the choice of a and b and is denoted Ac\B. 

(3) If M is compact, the bilinear pairing E^M, Q) xE^M, Q)->Q 
lohich sends (A,B) to AnB is nondegenerate. (See [53] for the definition 
of intersection multiplicities.) 

An obvious extension of E^M) to singular varieties X is the usual 
homology group Ei(X). Part (2) of the Poincaré duality fails even for the 
simplest singular space; the nodal cubic. 

From the position of a and 6 in the picture, we would conclude that 
AnB = 1 . However, b is the boundary of a chain c so B = 0; hence 
AnB =0.^ 
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Another obvious extension of E^M) to singular X would be E2n"\X) 
which coincidens with it in the nonsingular case. By viewing £T27l~*(.X) as 
traces in X of bigger cycles in an ambient nonsingular space, one may 
visualize JJ2n~?'(X) as the homology of a complex of chains which satisfy 
a transversality condition with respect to the singularities of X (see [37]). 
If X is the nodal cubic, a does not satisfy this condition, and neither does 
the chain c. So E1(X) is one-dimensional, generated by B. Property (2) of 
Poincaré duality holds but (3) fails since no class pairs nontrivially to B. 

In the definition of intersection homology, we will restore Poincaré 
duality to the singular case by placing conditions on how chains meet 
the singular strata which are less strict than the transversality condition 
for E2n~i(X). Por the nodal cubic, a will not be allowed but c will, so the 
first intersection homology group is zero. 

§ 3. Definition of intersection homology. Let X be an ^-dimensional com­
plex analytic variety with a Whitney stratification {Sa}, and let ca be the 
complex codimension of 8a. Denote by {Ü/(J$T)}, i e Z, the complex of 
geometric chains on X. (Several choices for this work equally well. For 
example, we can take O^X) to be the piecewise linear i-chains with respect 
to some piecewise linear structure on X. An element c of Ot(X) would 
then be a simplicial chain for some triangulation (depending on c) of X. 
Another choice would be subanalytic chains [45].) 

We define the complex of intersection chains {IG^X)} to be the sub-
complex of {Oi(X)} consisting of those chains ceO^X) satisfying the 
allowability condition ([39], [3]): 

The chain c intersects each singular stratum Sa e E in a set of (real) 
dimension less than i — ca and its boundary dc intersects each singular stratum 
Sa e E in a set of dimension less than i — ± — ca. (Note that ca, the complex 
codimension of 8a, is half the real codimension.) 

Por some purposes dimension bounds other than i — ca and i — 1 — ca 

are useful, and the chains described above are sometimes called middle-
perversity intersection chains in the literature. We will not use these other-
dimension bounds here. 

DEFINITION [39]. The ith intersection homology group of X, denoted 
IEi(X), is the ith homology group of the chain complex {IO^X)}. 

If X is nonsingular, then IEi(X) ~Ei(X). In general the groups 
IHi(X) have many attributes of more familiar topological functors. They 
depend only on the topology of 8 — in particular they are independent. 
of the stratification {8a} used in their definition [4]. If X is compact, they 
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are finitely generated. If TJ c X is open, there are relative groups lE^X, TJ) 
which fit in the usual long exact sequence and satisfy excision. Over a field 
F, they satisfy the Kunneth theorem 

IE{(XxY',F) = 0 Iff i(X;2F)®IJIÄ(r , .F). ' 

They are not homotopy invariants, but they are both covariant and 
contravariant functors on a class of maps called placid maps. 

DEFINITION. A map of a purely m-dimensional variety Ym to Xn is 
placid if X can be stratified by strata {8a} so that for each a, dimcf~

l(Sa) 
< m — ca. 

If / is placid, the homomorphisms 

/ „ : IBt{T)+IBt(X) and f:IEi(X)-^IEH2[m.ni(Y) 

are defined as usual, essentially by image cycles and transverse inverse 
image cycles. 

§ 4 . The Kahler package. The intersection homology IEt(X) of a singular 
algebraic variety X satisfies a large part of the package of special properties 
of the ordinary homology of a Kahler manifold. These results are all false 
for Ei(X). 

POINCARé DUALITY [3]. (1) If i+j = 2n, then any pair of intersection 
homology classes AelEi(X) and BelEj(X) have representatives aeA 
and b eB that intersect only in X — En and in finitely many points. 

(2) The number of these intersection points counted according to their 
multiplicities is independent of the choice of a and b, and is denoted AnB. 

(3) If X is compact, the bilinear pairing, 

Ifft(ZiQ)xISJ(Z;Q)^Q 

which sends A, B to AnB in nondegenerate. 

The corresponding pairing over the integers is not unimodular [38]. 
For general i and j , there is an intersection pairing lE^X) xIEj(X) 
-^Ei+j^2n(X) but no ring structure on IE*(X). 

LEFSCHETZ HYPERPLANE THEOREM [4], [41]. Let Xn be a closed sub-
variety of complex projective m-space CPm and let BT1"1 <= CPm be a generic 
hyperplane. Then 

j , : IHi[XnHiZ)-+IHilXiZ) 
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is an isomorphism for i < n — 1 and is surjective for i = n — 1, lohere 
j : X nEc~*X is the (placid) inclusion. 

HARD LEFSIIETZ THEOREM [27], [12]. Let X be a closed subvariety of 
CPm. Then intersecting with a generic hyperplane E c CPm induces a mapping 
f] [E]: IEi(X)->IEi-.2(X), QMÜ for all h the iterated map 

mn+h(X; Q) U Iffn_,c(X; Q) 

is an isomorphism. 

CONJECTURE [26]. If X is compact and projective, then IEJc(X; C) has 
a pure Eodge decomposition 

IEk(X) C) = © IEitj(X) 

with the following properties : 
(a)Ifl- i f i(X)=ZH^(Z); 
(b) If f: 3™->X* is placid, fJBitj(T) = IEitj{X) and flS^Z) 

(c) The usual relations with the Lefschetz map Ç\ [Jff] and the duality 
pairing AnB hold) in particular the Eodge index theorem is valid. 

§ 5. Interpretation of intersection homology. Since the thrust of the last 
section (and the next two) is that IE*(X) behaves in many circumstances 
exactly like the ordinary homology of a nonsingular variety, one might 
well ask if IE*(X) is in fact the homology of an associated non-singular 
variety. The answer is: Sometimes. 

A small resolution X->X is a resolution for which X can be stratified 
by strata {8a} such that iî p e 8a, then äimf"1(p) < Jca, where ca is the 
codimension of 8a in X. If vz: X->X is a small resolution, then % induces 
.an isomorphism E^X) ^IEi(X) (see [40]). 

This observation leads to the following fanciful question: In such 
a situation, how much of the topology of È can be read from that of JO 
More precisely, what invariants I can be defined for all singular spaces 
so that, whenever a small resolution X exists, I(X) =I (X)? The list 
includes E*(X) with its intersection bilinear form, the Wu class in E*(X) 
[38], and the Ohern numbers of X for the signature, the Euler character­
istic, and the arithmetic genus. But a bound on such speculation is pro­
vided by the fact that X may have two different small resolutions Xx 

and X2. Examples exist where the intersection ring structures of Xx and 
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X2 are not isomorphic and the Ohern classes are not correspondingly placed. 
(This shows that there can be no natural ring structure on intersection 
homology.) 

§ 6. Stratified Morse theory. We present here what appears to be the cor­
rect analogue for singular analytic varieties of Morse theory for manifolds 
[41]. Suppose X is embedded in a smooth complex analytic variety M 
and is Whitney stratified by {8a}. For each stratum 8a, define the conormal 
space G(8a) to be the closure in T*M, the cotangent bundle of M, of the 
set of cotangent vectors which lie over 8a and annihilate all tangent vectors 
in T8a, the tangent space to 8a. An X-critical point of a smooth function 
/ : M->R is a critical point p e 8a of the restriction of / to some stratum 
8a. The critical value of / at a critical point p is f(p). A smooth function 
/ : M->R is called Morse for X if 

(a) The restriction fj8a is Morse for all 8a c X. 
(b) If p e 8a is an X-critical point, df(p) $ ö(8ß) for any ß # a. 

-(c) The critical values of / are distinct. 
The set of Morse functions for X is open and dense in the 000 topology j 

Morse functions are 0° structurally stable on X [67]. For any number 
s eR we denote by X<8 the set of « e l such that f(x) < s. If p e 8 a is 
a critical point for the Morse function jf, we define the Morse index Âp 

for / at p to be ca+ (the Morse index for f\ 8a at p). 

THEOREM. There exists a unique set of abelian groups Aa one for each 
stratum 8a, such that for any proper Morse function f: M->R 

(a) if the interval [s, t) contains no critical values, then IEi(X<t, X<s\ 
Z) = 0 for all i-, 

(b) if the interval [s, t) contains the critical value v of one critical point 
p G 8a, and Xp is the Morse index of f at p, then 

{0 for i 

A. M I xp. 
There is no analogous notion of a Morse index for ordinary homology 

replacing intersection homology since Ei(X<t,X<8) may be nonzero for 
several i, even if [s, t) contains only one critical value. 

The groups Aa are very difficult to calculate, but they are important 
since they arise in a number of other contexts. If ma denotes the rank 
of the free part of Aa, the algebraic cycle in T*M 

eh(X)=]?maCi(8a) 
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is called the characteristic variety of X. It will play a role in § 7 and § 11 
below. 

§ 7. Lefschetz fixed point theorem. 10 / : X~->X is a placid self-map, for 
example a self-homeomorphisin, then the intersection homology Lefschetz 
number IL(f) = £( -If trace (f^.IE^X, Q)-+IEi(X; Q)) has an expres­
sion which is localized at the fixed point set of / . More precisely, for each 
connected component K of the fixed point set there is a Lefschetz index 
IL(f, K) determined by the local behavior of / near K, such that the sum 
of the IL(f, K) over all connected components K is IL(f). We give two 
formulas for IL(f, K), both analogues of classical formulas for manifolds. 

First we treat continuous placid self-maps / : X-^X and give a result 
in the framework of [76]. Given any non-singular point p e X, the cycle 
[pxX]eXxX satisfies the allowability conditions of §2 and therefore 
lies in the intersection homology group IE2n(XxX). 

THEOREM [42]. Let TJA and TJf be open regular neighborhoods of the 
diagonal and the graph of f respectively in XxX. Then there are unique 
intersection homology classes with compact support [Zl] eIE2n(UA; Q) and 
[f]eIE2n(TJf;Q) such that [Zl]n[pxX] = 1 and [f]n[pxX] = 1 for 
all non-singular p e X. Por these classes, we have 

IL(f) = {A-\n\Jl 

We may choose TJA and Uf so small that UA n TJf has a unique connected 
component containing each connected component AnKxK of AnX 
graph / . In this way [A] n [/] may be considered as a sum of contributions 
from each K, and we obtain a formula for IL(f, K) as well. For example, if 
p is an isolated fixed point of /, then IL(f,p) is the linking number of 
Ln[A] and Ln[f] in L = the link of pxp in XxX. (One can verify 
that Unking numbers exist for disjoint (2w — l)-dimensional intersection 
homology cycles in L.) 

Second we treat integrals of vector fields and give a generalization 
of the Hopf index formula. Suppose X is embedded in a smooth m-dimen-
sional complex variety M, and let v:X->TM be a vector field on X, 
i.e. a (possibly discontinuous) section of TM defined only over X, such 
that if p e 8a, v(p) e T8a. We suppose that v can be integrated (i.e. there 
is a one-parameter family ft:X->X of self-maps of X such that fQ is the 
identity and djdtft(p) ~v(ft(p))) and that the fixed points of ft are 
exactly the zeros of v for t e(0,1]. "Controlled vector fields" (see [62]) 
provide a rich supply of such v. Choose a continuous section si M->T*M 
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of the cotangent bundle to M with the property that if p e X and v(p) ^ 0 
then s(p)v(p) > 0 . 

The image of s is a 2m-cycle with closed supports {s(M)] in T*M. 
Another natural 2m-cycle in T*M is ch(X), defined at the end of §6. 
"Now given a connected component K of the fixed point set of f19 pick 
an open set TJ c M containing K but no other fixed points. The cycles 
[s(M)~\ and ch(X) restrict to cycles [s(TJ)] and ch(X, TJ) with closed 
support in T*(TJ). One can check that the condition s(p)v(p)>0 for 
peTJ—K guarantees that the intersection of the supports of [s(TJ)1 
and ch(X, TJ) is compact. Therefore the intersection number [s(Z7)]n 
ndh(X, TJ) is well defined. 

THEOREM. IL(f, K) = [s(TJ)] n ch(X,TJ). 

Applying this theorem to the zero vector field, we get 

COROLLARY [29]. If lx is the intersection homology Huler characteristic 
of X and Z c T*M is the zero section, I%= [Z] nch(X). 

<§ 8. Enter sheaf theory. The functor which assigns to each open set TJ in X 
the group IOf ( TJ) of intersection chains on TJ with closed support is a sheaf. 
This observation is key for axiomatic characterization of intersection 
homology as well as for most of its applications. 

Because of the numbering conventions prevalent in sheaf theory, we 
define ICf(U) to be l o g o f f ) ; if TJ' e TJ then the map ICi(U)->ICi(Uf) 
is just restriction of geometric chains. Then IC* is a sheaf because the 
allowability conditions of § 2 are local. The boundary map gives a map 
of sheaves ô : IC*->ICm such that ôoô = 0 , so we have a complex of 
sheaves IC\ As with any complex of sheaves, we can apply several cohomo-
logical functors. First is the cohomology sheaf functor H*IC =Ker(3: 
i C ^ l C ^ / l i n a . - l C - ^ I C . This is a sheaf whose stalk H*(IC% at p is 
IE2n_i(X,X—p). Secondes the hypercohomology functor El(X, IC"). 
Since IC* is soft, for all i, the group Hi(X, IC") may be computed as the 
global section cohomology keTdICi(X)->ICi+1(X)IImd:lCi~1(X)->ICi(X). 
Hence IT(X,1C') = IEfn^(X) which we also denote IEl(X). Third is 
hypercohomology with compact support IEl(X,IC) which-for the same 
reason is IE2n_i(X). 

If P' and Q" are two complexes of sheaves, a quasi-isomorphism from 

P" to Q" is a diagram of complexes P"^-R*^Q' so that p and g induce 
isomorphisms H^P'ÄffR' i f fQ' for all i, or equivalently if for all open 
sets U,p and q induce isomorphisms JET*(17, Vy*-M*(U9 R')-*.B:i'(Z7,Q"). 
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If there is a quasi-isomorphism from P" to Q", then P" and Q" are called 
quasi-isomorphic. This is an equivalence relation. Quasi-isomorphic sheaves 
are interchangeable for all calculations with cohomological functors. 

For any point p in X we choose a local analytic embedding of X near 
p in Cm and call Bp the intersection of a small open ball in Cm centered 
at p with X. I t follows from stratification theory that the topology of 
Bp depends only on p. Straight forward geometric arguments show that 
the complex IC" satisfies the following four properties: 

(0) Boundedness and construotibility : 10 = 0 if i< 0 or if i is large 
enough; and for some stratification {8a} of X, IT'IC" \8a is locally constant 
and finitely generated for all i for all a. 

(1) Support: for all i>0, 

àimc{xeX\ H*(BX; IC) ^ 0} < n-i. 

(2) Gosupport: For all i>0, 

dimc {x G X | fl*1"* (Bx ; IC) ^ 0} < n - i. 

(3) Normalization: For some stratification {8a} of X, H*IC"/(X — E) 
is zero for i ^ 0 and is the constant sheaf for i = 0. 

THEOREM [4], The sheaf IC* is uniquely characterized up to quasi-iso­
morphism by the above conditions (0), (1), (2), and (3), 

I t is useful to consider also intersection homology with twisted coeffi­
cients. The coefficients will be a local system L (i.e. a locally constant 
sheaf) on X — E. The group IE{(X, L) may be defined as in § 2 or we may 
define the sheaf IC*(j&) directly as follows. The value of IC (L) on an open 
set TJ c X is those 2n — i chains c with closed supports on Un(X-E) 
with coefficients in L satisfying the allowability condition: the closure 
in TJ of the support of c intersects each singular stratum 8a e E in a set 
of real dimension less than (2n—i) — ca and the closure in TJ of the support 
of the boundary dc intersects each singular stratum 8a e E in a set of 
real dimension less than (2n — i~l) — ca. The sheaf IC'(JL') may be char­
acterized as in the above theorem replacing the normalization condition 
(3) by 

(3') normalization: H*IC"(Z/)|X — E is zero for i ^ 0 and is L for i= 0. 
Conjecturally, if £ is a polarized variation of Hodge structure then 

JP'(IC"(jL)) = IE*(X, li) has a pure Hodge structure. This is verified for 
curves [82]. 

Sheaf theory enables one to give local expressions for some basic 



222 Plenary Addresses: E. D. MacPhersom 

properties of intersection homology. For example Poincaré duality of 
§ 2 becomes the statement that IC(Q) is quasi-isomorphic to its dual 
(see [16] or [75]). 

§ 9. Perverse sheaves. Intersection homology sheaves are objects in a beau­
tiful Abelian category called the category P(X) of perverse sheaves 
[12]. 

The category G of complexes of sheaves on X is deficient from the 
point of view of homological functors because quasi-isomorphisms 
PV-R'->Q' may not be morphisms in G, and even if they are (when 
P'-P-P'-^Q*) they may not be invertible in G. This situation may be 
remedied by introducing formal inverses of morphisms in G which are 
quasi-isomorphisms [46], [34]. The resulting category B(X) is called the 
derived category of the category of sheaves on X. The isomorphisms in 
B(X) are exactly the quasi-isomorphisms. But B(X) is not Abelian t 
instead it has the structure of a "triangulated category" which is quite 
complicated [77]. 

- The category P(X) of perverse sheaves on X is the full subcategory 
of B(X) whose objects satisfy the following slight weakening of the condi­
tions characterizing the intersection homology sheaf IC*: 

DEFINITION. A complex of sheaves K" on X is called a perverse sheaf 
if it satisfies the following three properties: 

(0) Boundedness cmd constructibility: K" = 0 if i< 0 or if i is large 
enough; and for some stratification {8a} of X, E*K'\8a is locally constant 
and finitely generated for all i and for all a. 

(1) Support: For all i, 

dimc{xeX\ H^B^IC) ^0}^n-i. 

(2) Gosupport: For all i, 

dim0{a? eX\ fl*,"*(BÄ; IC") # 0} < n-i. 

We now digress to show how intersection homology sheaves provide 
a rich supply of perverse sheaves. 

DEFINITION. An enriched subvariety of X is a pair (V, L) wherç V is 
locally closed, non-singular, equidimensional subvariety and L is a local 
system of coefficients on V. Two enriched subvarieties (V, L) and (V, L') 
are considered equal if VnV is dense in V and in V, and L\(VnV'} 
= I/\(VnV'). An irreducible enriched subvariety (V, L) is one where V 
is an irreducible variety and L is an irreducible local system on V. An 
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enriched subvariety (V, L) gives rise to a complex IC'(F, L) on X called 
the intersection homology sheaf of (V,L) by extending the complex 
IC'(Z) on F by zero in X. 

If A" is a complex of sheaves and c is an integer, we define A' [c] to 
be the same complex with the numbering shifted by c. In otheu words, 
the ith sheaf in A'[c] is AHc. 

Comparison of the definition of a perverse sheaf with the theorem 
of § 8 shows that if c is the codimension of V in X, IC" ( V, L) [ — c\ is a per­
verse sheaf on X. For example, if x e V, we have HCa(Bx-, IC"(7, X)[ — o]) 
= LX and Hl"-°«(Bx,W(V,L)l--c-]) = Lx. 

THEOREM. The category P(X) of perverse sheaves onX is an Artinicmj 
Abelian category whose simple objects are the complexes IC'(F, L)[ — c\ 
for irreducible enriched subvarieties (V, L) of X. 

The category P(X) is important because of its applications (§11, 
§13 and § 16). It would be interesting to understand its structure more 
directly (see [60] and [35]). 

Applications to analysis 

§ 10. Ij cohomology. The I? cohomology of the nonsingular part X—E 
of any compact analytic variety X, provided with an appropriate polyhedral 
metric, was found to be finite-dimensional and to satisfy Poincaré duality 
[24], [25]. This led to the question, resolved affirmatively, of whether this 
I? cohomology was in fact intersection homology with real coeficients. 
In this section we address the same question for metrics more naturally 
associated with the analytic structure of X. 

We define Q\2)(X — E) to be the space of smooth i forms co on X — 2 
fiuch that 

J a> A * co < oo, f dco A *dco < oo. 

We define the L* cohomology of X — E, E\2^(X—E), to be the ith. cohomo­
logy of the complex £ì\^(X—E). Since the operator * depends on the 
Biemannian metric chosen on X—E, the group E\2)(X — E) also depend 
on this metric. We are interested in two contexts which differ by the 
ehoice of this metric: 

Context I. The variety X is embedded analytically in a Kahler manifold 
M ; the metric chosen on X—E is induced via this embedding from the 
Kahler metric on M. / 
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Context II. The manifold X—E with its metric has finite volume and 
is obtained as the quotient space of a discrete group acting properly on 
a Hermitian symmetric domain; X is the Baily-Borel compactification 
of X-E. 

The following conjectures may be summarized by the philosophy 
that analysis on Q^2)(X—E) should be related to analysis on X where 
X->X is a small resolution (see § 5). 

CONJECTURE. E\2)(X—E)^IE2n_i(X-,R) (see [2Ç] for context I 
and [83] for context II). 

CONJECTURE. Every class in E\2)(X—E) contains a unique harmonic 
(closed and coelosed) representative. (This is well-known in context II 
because the metric is complete.) A Hodge theory can be obtained by 
splitting the L2 harmonic forms with values in C into their (p, q) pieces 
and it satisfies the properties of the conjecture of § 4. 

CONJECTURE. The index of the L2d complex is the arithmetic genus 
of Jr where n : X->X is any resolution of singularities of X. More generally, 
the K*(X) element obtained from this complex by the analytic procedure 
of [8] coincides with the % pushforward of the K orientation of X [10]. 

Work on these conjectures has been difficult for lack of adequate 
analytic methods to study £){2)(X—E) near a singularity of X and for 
lack of adequate information on the metric structure of X near a singular­
ity. Nevertheless, partial results are known. The first holds in context I 
for metrically conical singularities [25] and for some surfaces [49] and 
in context I I for the case where E is a manifold [15] and for some rauk 2 
cases [84], [23]. The third holds in context I for curves [47]. 

§ 11. Relation to algebraic analysis. Holonomic 3D-modules are an important 
and beautiful subject in their own right, but here we treat them only in 
relation to our topological constructions. Suppose Jf is a non-singular 
analytic variety. Let 2) be the sheaf of linear differential operators with 
analytic coefficients. Then Î), as a sheaf of noncommutative rings on M, 
is filtered by the order. The associated graded Gr J) is commutative; sec­
tions of it over TJ c M may be interpreted as functions on T*U. Suppose 
50Ì is a coherent sheaf of 35-modules. Sol is called holonomic r.s. (for regular 
singularities) if it has a filtration as a module over filtered 35 so that Gr 501 
has support in T*Jf which is reduced and of pure dimension m. (This 
definition provides no intuitive feeling for holonomic r.s. 3)-modules; 
for this we refer the reader to [66], [13].) We denote by ch(lf) (for 
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characteristic variety) the algebraic cycle in T*(M) determined by Gr 9ft. 
Any 35-module 9ft determines a DeEham complex DE 9ft = SDÌ ® ß* 
->• 9ft ® Ql i in the derived category B(M) (see § 8). 

THEOREM ([63], [50], [18]). The category of holonomic r.s. ^-modules 
on M is equivalent to the category P(M) of perverse sheaves onM. The equiv­
alence is given by the BeBham functor DE. 

Therefore the irreducible holonomic r.s. £>-modules correspond to 
intersection homology sheaves of subvarieties of M. If DEß =IC'(X) 
where X c M, then chß = ch(X) as defined in § 6. 

There is a filtration of the D-module £ such that DEß =IC'(X) 
which conjecturally gives rise to the Hodge filtration suggested in § 4 
on IEi(X) [18]. The Fourier transformation, taking the category of 
radially homogeneous holonomic r.s. 35-modules on Cn to itself, leads to 
a similar operation on P(Cn) with interesting applications [22], [19]. 

Applications to algebraic geometry 

§ 12. The decomposition theorem. The decomposition theorem says that 
the pushforward of an intersection homology sheaf by a proper algebraic 
map is a direct sum of intersection homology sheaves. It contains as 
special cases the deepest homological properties of algebraic maps that 
we know. It was conjectured in [36] and proved in [12]. 

THEOREM. (1) Let f: X->Y be a proper projective map of complex alge­
braic varieties. Then there exist a unique set of irreducible enriched subvar­
ieties {(Va, La)} in Y(Va smooth in Y; La a local system of Q vector spaces 
on Va) and polynomials {of = ^ + 95°̂  + ...} such that there is a quasi-iso­
morphism 

Uiv(X) « e i c - ( F a , L a ) [ - i ] ® ö " ? . (**) 

(2) The coefficients of <pa are palindromic around 1ca = dimX — dim7a. 
(i.e. tCa<pa(t~l) =<pa(t)) (md the odd and even degree terms are separately 
unimodal (i.e. if i^ \ then <p"_2 < ç>°). 

Applying hypercohomology to the above quasi-isomorphism, we get 

Px(t)=£<pa(t)Pa(t); 
a 

where Px is the Poincaré polynomial for IE*(X) and Pa is the Poincaré 
polynomial for IE*( Va,La). If X is compact, the Va will also be compact 
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so Px and Pa have the óharacter of the Poincaré polynomial of a smooth 
projective variety. Part (2) of the theorem asserts that the of also have 
this character (palindromicity m Poincaré duality and unimodality ä* 
hard Lefschetz). So the theorem asserts that IE*(X) is a sum of terms, 
each of which is like the intersection homology of the product of a ficti­
tious fiber variety (with Poincaré polynomial of), and an enriched sub-
variety (Va, La) of Y. (Conjecturally, La should be a polarized variation 
of Hodge structure.) 

The quasi-isomorphism in the decomposition formula (**) can be 
made canonical by the following procedure [28] given a factorization 
of / as Xc-> YxPm->Y. The hyperplane class [jff] in E2(Pm) induces 
a map r\: /#IC'(X)->/#IC"(JT) [2] essentially by transversally intersecting 
cycles with [JT]. If we denote by Am(i) the sum of the right-hand side 
of (*#) over a so (**) reads f^I(T(X) « © A'(i), then r\ decomposes into 

i 
pieces rjiji A'(£)->J/(£—j) [2]. Set %• = J£%. Then there is a unique 

i 
quasi-isomorphism in (**) satisfying (ad^o)*"""1 .̂ = 0 for all i (where 
adïjo! is rjoe—fyo). 

If X-> Y is a resolution of singularities of Y, then one of the enriched 
subvarieties in the decomposition will be ( Y, Q) and the corresponding 
qf will be 1. Thus ZH**( Y) sits canonically in the cohomology of X given 
a factorization of the resolution as in the last paragraph. Conjecturally, 
this embedding determines the Hodge structure on JH"*(Y) from that 
on X. 

The decomposition theorem contains, for example, the invariant cycle 
theorem and the degeneration of the spectral sequence for / in case / is 
a topological fibration. See [40] for a discussion of some of its consequences. 
It is also one of tike most powerful techniques for calculating intersection 
homology (see [5]). At the moment, the only proof of it goes through 
characteristic p algebraic geometry. (As a consequence, it is unproved 
for proper analytic maps.) It would be very interesting to find an analytic 
proof, either using 35-modules or using I? techniques. 

§13. Specialization. Suppose n:X->G is a map of an algebraic variety 
to a smooth algebraic curve, o is a point in 0, and e e 0 is a nearby general 
point (i.e. n is a topological fibration near c). There is a continuous map 
called y) from Xc, the fiber over c, to X0 the fiber over o, which roughly 
collapses points near a given stratum 8 in X0 to 8 [41]. There is also a map 
fi : XC->XC with ipofi = ip called the monodromy which represents the 
result of tracing paths over c as it moves once around o. Therefore there 
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is a complex of sheaves ?/J*IC"(X0) on X0 called the nearby cycles of IC" 
with an action of p* on it. Althouqh there is some choice in the specification 
of ip and JU, the complex y)*lC'(Xc) and the action of p* are independent 
up to quasi-isomorphism of the choice. (Moreover, they can be defined 
purely algebraically [69].) 

PROPOSITION ([41], [12]). The complex ip*lCm is a perverse sheaf. 

Therefore we dispose of the Abelian category structure of P(X0) to 
analyze the monodromy p*. There is a factorization JU,# = P-(l+N), 
where P has finite order and U is nilpotent. Then there is a unique increa­
sing filtration ~Wl on y>*IC' such that N sends W1 to TP~2 and N* takes 
Gr*IC" isomorphically to Gr~*IC, where Gr* is the associated graded to 
the filtration W. 

THEOREM ([33]). The graded pieces Gr^*IC'(Xc) are semi-simple in 
P(X0). loi other words, they are direct sums of intersection homology sheaves 
of irreducible enriched subvarieties of X0. 

The study of y>*IG° can be generalized to the case where X0 is replaced 
by an arbitrary hypersurface [78]. 

Applications to group theory 

§ 14. Weyl group representations. Here and in the succeeding sections, 
we will treat only the case of GL (7c, C). Lie theorists can imagine the 
generalization to an arbitrary reductive complex algebraic group with 
the aid of occasional parenthetical remarks. 

Consider the variety Sft of all le x 1c complex matrices all of whose eigen­
values are zero. I t is singular, and it has a stratification {Sa} indexed by 
partitions a of the number 1c. The stratum 8a consists of matrices whose 
sizes of Jordan blocks are given by a. Let ca be the codimension of 8a in 
STI. The variety Sft also has a resolution n: SR:->5Tl constructed as follows: 
Let 93 denote the manifold of complete flags O c ^ c J P 2 c . , . c J?ic-i c @k 

in Ck. Then 91 is the subvariety of SR: x 23 consisting of pairs (x, {Pj}) so 
that xPj c PJ_J . The map % is the projection to the first factor. The 
decomposition formula (§12) for A* = 7r*IC'(9t) may be computed as 
follows : 

PROPOSITION ([17]). 

A'= ©IC(5.)[-oa]®C. 
a 

19 — Proceedings... / 
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So A* is a semisimple perverse sheaf on SR. (For other reductive groups, 
enriched strata will be necessary.) 

The symmetric group on h letters, denoted W (the Weyl group of 
GL(&)), acts on A" by automorphisms in P(SR), the category of perverse 
objects on SR. This action, constructed first in [72], has several descriptions j 
we follow [71]. We map (5, the space of all Jc xlc complex matrices, to Ck 

by the coefficients of the characteristic polynomial. Then SR is the fiber 
over 0, and if e e Ch is a nearby non-singular point, it turns out that A* 
is y*IC*(©c). Just as in §13, the fundamental group of the complement 
of the discriminant in Ck acts on A' by monodromy. This fundamental 
group is the braid group on ifc strands ; its action factors through the quo­
tient map to W. 

PROPOSITION ([17]). The action of W on A* induces cm isomorphism 
from the group ring of W to the endomorphism ring of A* in P(Sft). 

I t follows that isotypical components IC"($a)[ — ca)®Qva of A" corre­
spond bijectively to irreducible representations of W. This correspondence 
between partitions a and irreducible W representations Pa is that of Young* 
•Applying hypercohomology, we obtain as another corollary the formula 
that the multiplicity of pa in the standard action of W on E€(f8) is 
dimlff- c"(£ a) ([17], [54]). 

§ 15. Representations of Hecke algebras. We sketch the contents of the 
papers [51], [52], whose historical importance in stimulating the recent 
development of the material of this'report cannot be overemphasized» 
The form of our presentation relies on these later developments. 

The variety 33 x SB, where SB is the flag manifold as in § 14, is stratified 
by orbits S of the diagonal action of GL (ft, C). The orbits are parametrized 
by elements a of the symmetric group W. A pair of flags {Pj}, {P^} e 23 x SB-
corresponds to a e W if there is a basis e19 e2,..., ek of Ck so that Pj is the 
span of ex, e21..., ej and Pj is the span of ea{1), ea{2),..., eaU). 

The Hecke algebra § is the set of formal linear combinations of inter* 
section homology sheaves J£^a,*IC'(/Sa)[f] with integral multiplicities 

mati. Addition is addition of multiplicities ; multiplication is obtained by 
regarding the intersection homology sheaves as "sheaf valued correspon­
dences" on SB XSB. That is A*-B' = #i 3*tòAB ®i?*3B') where p13, p12, and 
#23 map SBxSBxSBtoSBxSBby f orgeting the factor not named. The Hecke 
algebra is an algebra over Z [t, f 2 ] where t sends IC"(Sa) [i] to IC(Sa) li — 1]. 
(Por general reductive Lie groups, £ depends only on the Weyl group W? 
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even though SB X SB and the singularities of the strata are not determined 
by W alone.) 

There is a positive cone ftcg consisting of actual complexes of sheaves 
on SB x SB, i.e. 51 consists of formal linear combinations where all multi­
plicities mati are non-negative. Clearly 51 is closed under multiplication 
in §. This defines a partial ordering < x of the elements of TT by a ^La' 
if St'IC(Sa) contains an element where IC"(/!?a,)[i] occurs with positive 
multiplicity. A left cell in TT is a <£ equivalence class of elements of W. 
Any left cell 0 c W gives rise to a rejxresentation B(L) of the Hecke algebra 
£> with 0 as a Z\t, f"1] basis as follows B(G) is a subquotient of the regular 
representation of § ; say B(G) = S/£. Here S c g is generated over 
Zlh *_1] "by IC(Sa) where {G} ^La and X is generated by IC(8a), where 
{0}<La. 

THEOREM. The representations B(G) are irreducible. All irreducible 
representations of $ occur as B(0) for some left cell 0. 

(This theorem does not generalize easily to other reductive groups.) 
The main interest in this theorem is that the combinatorics of it can be 
explicitly spelled out. The left cells 0 arise from partitions of 1c by the 
Bobinson-Schensted algorithm. The representations^ B(C) may be written 
with respect to the basis {IC(#a), a eL} using inductively computable 
combinatorial objects called W-graphs. If t is specialized to 1, then £ 
becomes the group ring Z[TF] of W and the theorem gives the irreducible 
representations of the symmetric group W with a basis with particularly 
agreeable properties : for example, all elements are represented by matrices 
with integral entries. 

The methods of this section can be used to compute both the local 
and global intersection homology groups of the Schubert varieties Sa. 
A fascinating phenomenon is that these groups are all zero in odd degrees. 
The same holds for the computations for toric varieties [5], nilpotent 
varieties [17], and Kc orbits in SB [57]. One would like a general explanation 
for this phenomenon. 

§ 16. Lie algebra representations. In this section, we discuss the serendip­
itous entry of intersection homology into the study of infinite-dimensional 
representations of Lie algebras. 

Eecall that the TcxTc complex matrices under the bracket operation, 
denoted ©, is the Lie algebra of the group of invertible Je x Jc matrices 
under composition, denoted G. The sub-Lie algebra n+ of upper triangular 
matrices that are zero on the diagonal is the Lie algebra of the subgroup 
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jy+ of upper triangular matrices that are one on the diagonal. A (©, JV+) 
representation F is a possibly infinite-dimensional representation of (5 
such that the action of tt+ exponentiates to representation of JV+ and, 
for all vectors v eV, N+v is contained in a finite-dimensional subspace 
on which W acts algebraically. In order to focus on the part of the theory 
where the transition from algebra to topology is fully understood, we 
will consider only Gx the category of (©, N+) representations V satisfying 
the following condition: 

The space V has a finite decomposition into summands V{ on each 
of which the center Z of £7((S), acts as it does on some irreducible finite-
dimensional representation Qì of (S. 

Secali that U((&) is the universal enveloping algebra of (5. It is the 
associative algebra containing © such that the embedding induces an 
equivalence between the representation theory of ffi and that of U"((5). 
Every element of its center acts on a finite-dimensional irreducible repre­
sentation Q by a scalar. 

The passage to topology proceeds in four steps : 
Step I. The category G is the direct sum of the categories 0Q for Q a finite-

dimensional irreducible representation of (5, defined by replacing * by 
the condition that Z acts on all of Y as it does on Q. So it suffices to under­
stand &Q. __ 

Step II. The categories GQ are all equivalent to each other by an alge­
braic process called coherent continuation [14]. So it suffices to understand 
(9-L where 1 is the trivial one-dimensional representation. 

Step III [21], [11]. The category 6X is equivalent to the category of 
holonomic r.s. ID-modules on the flag manifold SB constructible with respect 
to the stratification {8a} of SB by N+ orbits. (Saying that a holonomic 
r.s. 3)-module S01 is constructible with respect to {8a} means that its char­
acteristic variety ch(Sffi) is contained in the union of the conormal bundles 
C(8a). The strata 8a are Schubert cells: they are restrictions to a slice 
point x SB of the strata of SB X SB of § 15. So the 8a are again naturally 
indexed by the symmetric group W.) The equivalence is given by asso­
ciating to a D-module M the vector space of its global sections. This 
is a representation of (5 because elements of (S give vector fields on SB 
which are global sections of 35. 

Step IVi As in § 9 the category of holonomic r.s. 35-modules on SB, 
constructible with respect to the strata 8a is equivalent to the category 
of perverse sheaves on SB constructible with respect to 8a. (A perverse 
sheaf A* eP(SB) is constructible with respect to {8a} if all of its homology 
sheaves ff(A') are locally constant on the 8a.) 
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With the transition completed, we see that irreducible representations 
in 6 correspond to intersection homology sheaves IC*($a)[ — ca]. Any 
purely category-theoretic question about (9 can be answered topologically 
using P(SB). As an example (the historically motivating one), the Kazhdan-
Lusztig conjectures [51], were proved this way [11], [21]. A Verma module 
in & is a representation that is TJ(n~) free where rt~ is the lower triangular 
matrices zero on the diagonal. I t corresponds in P(SB) to a sheaf whose 
stalk Euler characteristic is 1 on one 8ß and 0 on all the other strata. If 
L is the irreducible module in 0p corresponding to IC"(#a)[ — ca], it has 
a resolution ...V2~^V1-^Vd~>L where the Yi are direct sums of Verma 
modules". The Kazhdan-Lusztig conjectures state that JF( — 1)*% where 
m{ is the multiplicity of the Verma module in 0p corresponding to 8, is 
the Euler characteristic of the stalk homology of IC($ a ) [ — c j at a point 
in 8ß. Given all of the above facts, the proof is an exercise. 

There is an extension of the above theory to (©, K) modules whenever 
K has only finitely many orbits on SB [11], [79]. This applies to Harish-
Chandra modules. There are also two other similar but unproved conjec­
tured relations between algebra and topology: one for representations 
of ^p-adic groups [81] and one for modular representations [55]. 

§ 17. Other subjects. Only some subjects relating both to topology and to 
complex algebraic geometry have been treated. This leaves out much 
interesting work on intersection homology in the two fields separately. 

In topology, there is an L class in E*(X) which relates to the inter­
section homology signature [3], [24]. There is a singular cobordism theory 
for a class of spaces called rational Witt spaces which are the most general 
on which rational Poincaré duality holds. The cobordism groups are the 
Witt ring of Q in dimension 4w and 0 otherwise [70]. There is an integral 
version of this [65] and an application of these ideas to the proof of the 
Eauptvermutung [64]. There is a theory of intersection homology oper­
ations [38], and a theory of obstructions to immersion [44]. 

In algebraic geometry, there is a construction of IC*(X) in the Z-adic 
topology for varieties in characteristic p. If X is complete, Frobenius P 
acts on IEi(X) with eigenvalues of absolute pil2, so statements about 
the number of points defined over F(pk) analogous to those of the Weil 
conjectures are obtained [27], [12]. Por an algebraic group G defined over 
P(pk), there is a collection of intersection homology sheaves on G such 
that interesting characters of G are evaluated at p eG by taking the 
alterna.ting trace of a particular automorphism of the sheaves in the stalk 
over p [56]. 
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We close with a general remark on the enterprise of studying the global 
topology of singular spaces. Usually a given concept in the topology of 
manifolds such as homology or a characteristic class has several plausible 
extensions to singular spaces. The art is to find the most useful one. When 
this is done, it often happens that one finds new results about the non-
singular case. For example, results like those of [12] and [13] would not have 
been anticipated five years ago, even when all spaces involved are smooth. 
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