NWD 94-1

UNITED STATES NUCLEAR TESTS July 1945 to 31 December 1992

Robert Standish Norris and Thomas B. Cochran

1 February 1994

Natural Resources Defense Council 1350 New York Avenue, NW Washington, D.C. 20005 (202) 783-7800

1994 Natural Resources Defense Council 1350 New York Avenue, NW Washington, D.C. 20005 (202) 783-7800

\$5.00

Ordering information about NRDC publications can be found on page 73.

U.S. NUCLEAR TESTS: 16 JULY 1945 to 31 DECEMBER 1992

This working paper summarizes the nuclear tests conducted by the United States.¹ The total number of tests, all conducted between 16 July 1945 through 31 December 1992 are 1051.² Table 1 lists the tests chronologically and provides some basic information about each. Tables 2, 3, and 4 summarize the tests by type, location, and purpose. Table 5 summarizes the tests by year and estimated yield. Seven Figures show the test sites in the Central Pacific and in Nevada.

U.S. practice for more than three decades was not to announce all nuclear tests. On 7 December 1993, 204 previously unannounced tests were divulged. Previously 111 of those secret tests had been detected through seismic monitoring, and other means. The monitoring was the result of a close examination of the seismic record by Riley R. Geary of the California Institute of Technology Seismological Laboratory.³

Of the 1051 tests,⁴ 106 took place in the Pacific, three over the South Atlantic, 925 at the Nevada Test Site, and 17 others in various states and Alaska. Of the 215 atmospheric (including five underwater) tests conducted from 1945 through 1963, approximately 220,000 Department of Defense (DOD) participants, both military and civilian, were present in the Pacific, Atlantic, and continental tests.

³ Riley R. Geary, CIT, Seismological Laboratory 252-21, printout.

¹ Readers' additions or corrections would be appreciated. The authors would like to acknowledge the assistance of Chuck Hansen, who has been most generous in sharing documents that he has obtained and contributing his knowledge about U.S. testing. His book U.S. Nuclear Weapons: A Secret History (Arlington, Texas: Aerofax, Inc., 1988), and his "U.S. Nuclear Weapons Tests, 1945-1962," Revision N, 1 February 1993 have been especially useful. The reader should note that this Working Paper does not discuss several of the traditional issues associated with the history of nuclear testing, such as the health aspects or the arms control efforts to impose full or partial test bans. These issues are covered in an extensive literature that includes: Neal O. Hines, Proving Ground: An Account of the Radiobiological Studies in the Pacific, 1946-1961 (Seattle: University of Washington Press, 1962); Howard Bail, Justice Downwind: America's Atomic Testing Program in the 1950's (New York: Oxford University Press, 1986); Richard L. Miller, Under the Cloud: The Decades of Nuclear Testing (New York: The Free Press, 1986); Philip L. Fradkin, Fallout: An American Nuclear Tragedy (Tucson: The University of Arizona Press, 1989); A. Costandina Titus, Bombs in the Backyard: Atomic Testing and American Politics (Reno: University of Nevada Press, 1986); Robert A. Divine, Blowing on the Wind: The Nuclear Test Ban Debate, 1954-1960 (New York: Oxford University Press, 1978); Carole Gallagher, American Ground Zero: The Secret Nuclear War (Cambridge, MA: MIT Press, 1993); Glenn T. Seaborg, Kennedy, Khrushchev, and the Test Ban (Berkeley: University of California Press, 1981); Harold Karan Jacobson and Eric Stein, Diplomats, Scientist, and Politicians: The United States and the Nuclear Test Ban Negotiations (Ann Arbor: The University of Michigan Press, 1966).

 $^{^2}$ The term underground test means either a single underground nuclear explosion conducted at a test site, or two or more underground nuclear explosions conducted at a test site within an area delineated by a circle having a diameter of two kilometers and conducted within a total period of time of 0.1 second. The yield of a test is the aggregate yield of all explosions in the test. The term "explosion" means the release of nuclear energy from an explosive canister. Some tests had multiple explosives resulting in multiple nuclear detonations. Department of Energy, Openness Press Conference Facts Sheets, 7 December 1993.

⁴ The total does not include the combat uses of nuclear weapons, at Hiroshima and Nagasaki, which are not considered tests. It does include the 24 joint US/UK tests.

Tests have occurred atop towers, on barges, suspended from balloons, dropped from aircraft, lifted by rockets, on the earth's surface, underwater, and underground. There have been 836 underground tests, 116 of which were before the signing of the Limited Test Ban Treaty. The first test that was purposely designed to be contained was shot Rainier on 19 September 1957.⁵ The most tests in one year was 98 in 1962. This large number (including an additional 29 through June 1963) was in anticipation of a halt in atmospheric, underwater, and outer space testing, which occurred as a result of the Limited Test Ban Treaty (LTBT), signed on 5 August 1963. The annual average of tests in the 1950s was 19; in the 1960s, 43; in the 1970s, 23; and in the 1980s, 17. On average during the forty-eight year testing period one test was conducted every 16¹/₂ days. No tests were conducted in 1993 because of Congressional legislation that imposed a moratorium. President Bill Clinton announced on 3 July 1993 that he was extending the moratorium "at least through September" of 1994.⁶ It is quite possible that there will be no more tests conducted at the Nevada Test Site.

The largest nuclear test explosion conducted by the United States was shot Bravo, a fifteen megaton (Mt) device tested at Bikini Atoll, Marshall Islands, in the Pacific on 28 February 1954. Very low yield test explosions down to less than a ton and several failures ("fizzles") have also occurred. The U.S. government has had several different policies over the years in announcing tests and in specifying the yields or yield ranges of tests. For all tests the combined yield is estimated to be 180 Mt, the equivalent of almost 12,000 Hiroshima bombs. Approximately 141 Mt of the total was detonated in the atmosphere, almost all between 1952 and 1962. Tests are now limited to a maximum yield of 150 kilotons under terms of the Threshold Test Ban Treaty (TTBT), signed by President Nixon in Moscow on 3 July 1974. The ban did not take effect until 31 March 1976. After ratification by the U.S. Senate on 25 September 1990 the treaty entered into force on 11 December 1990. Through the 1970s and 1980s, the annual average has been 20 tests with a combined yield for the twenty year period of 21 Mt. Beginning on 9 November 1962, eleven months before the LTBT entered into force, every U.S. test has been underground,⁷ all but fourteen at the Nevada Test Site (NTS).

Trinity

At a certain point in the development of the atomic bomb at the Los Alamos laboratory in New Mexico a site was needed to test the device. In a six month search

⁵ There were previous underground tests but there were at shallow depths and not contained. The first of these was a weapons effects test on 29 November 1951, buried at only 17 feet. The second was a one kiloton atomic demolition munition emplaced at 67 feet. There were also three underground safety experiments conducted in July and August 1957 that produced very low or zero yields.

⁶ For a discussion see Christopher E. Paine, "The U.S. Debate over a CTB," NRDC Nuclear Weapons Databook Working Paper 93-5, 28 October 1993.

⁷ The last U.S. atmospheric test was shot Tightrope, held on 4 November 1962. The last atmospheric test at NTS was Little Feller I on 17 July 1962.

Same

in the spring and summer of 1944 11 sites in five states were considered.⁸ Five sites were considered in New Mexico: Cabezon Peak in Sandoval County, 50 miles northwest of Albuquerque; an abandoned logging camp near Paxton Springs, 15 miles southwest of Grants; the desert south of El Morro National Monument; the Tularosa valley southeast of Socorro, and a section of the Alamogordo Bombing Range, the eventual choice. Other sites considered were: San Nicolas Island, southwest of Los Angeles; Padre Island, off the coast of Texas; Coconino Plateau, south of the Grand Canyon in Arizona; the San Luis Valley region near Great Sand Dunes National Monument, 65 miles southwest of Pueblo, Colorado; the desert in southeastern California, north of Rice; and near Wendover, Utah.⁹

The final choice of a site was made after consultation with General Ent of the Second Air Force on 7 September 1944 who gave permission for a party to approach the Commanding Officier of the Alamogordo Bombing Range to seek an area within the base 18 miles wide by 24 miles long. After a section in the northwest corner was chosen, a base camp was constructed and completed by late December 1944. A successful 100-ton TNT calibration and rehearsal shot was conducted on 7 May 1945. The preparations for the test were greatly increased starting in March when a July 4 date was set. This date was later changed to July 13, and finally on June 30 the earliest date for the Trinity shot was changed to July 16.

The first U.S. test of a nuclear device (nicknamed "Gadget") occurred on Monday 16 July 1945, at 5:29:15 am Mountain War Time, on a 100 foot tower at the White Sands Bombing Range, 55 miles northwest of Alamogordo, New Mexico. Trinity Site is at latitude 33^0 40' 31" North, longitude 106^0 28' 29" West. The explosion was set off at an elevation of 4624 feet. The top of the mushroom cloud reached a height of 35,000 feet and the estimated 20-22 kiloton explosion produced a shallow crater 500 feet in diameter and six feet deep.¹⁰

Post-War Testing in the Pacific

In the weeks following the dropping of atomic bombs on Hiroshima and Nagasaki, American military and political leaders began planning nuclear weapon experiments to test weapon effects and new designs. On 10 November 1945, a subcommittee of the Joint Chiefs of Staff (JCS) began developing plans for a series of tests of existing and newly developed nuclear weapons. The primary purpose was

⁸ Necah Stewart Furman, Sandia National Laboratories: The Postwar Decade (Albuquerque: University of New Mexico Press, 1990), pp. 81-82.

⁹ David H. Morrissey, "Almost Ground Zero," Albuquerque Journal, 11 February 1990, p. C1.

¹⁰ Lillian Hoddeson, Paul W. Hendersen, Roger A. Meade, and Catherine Westfall, Critical Assembly: A Technical History of Los Alamos During the Oppenheimer Years, 1943-1945 (New York: Cambridge University Press, 1993), pp. 350-377: K.T. Bainbridge, Trinity, Los Alamos Scientific Laboratory, LA-6300-H, issued May 1976; Ferenc Morton Szasz, The Day the Sun Rose Twice: The Story of the Trinity Site Nuclear Explosion July 16 1945 (Albuquerque: University of New Mexico Press, 1984); Defense Nuclear Agency, Project Trinity 1945-1946, DNA 6028F; Vincent C. Jones, Manhattan: The Army and the Atomic Bomb (Washington, DC: Center of Military History, 1985), p. 479.

to explore the effects of atomic explosions on naval vessels. The subcommittee's program was accepted by the JCS on 28 December 1945 and approved by President Truman on 10 January 1946. An appropriate site was needed that met basic requirements.

a. It needed to be under control of the United States.

- b. The area needed to be uninhabited or subject to evacuation without imposition of unnecessary hardship on a large number of inhabitants.
- c. It needed to be within 1000 miles of the nearest B-29 aircraft base, as it was expected that one test nuclear device was to be delivered by air.
- d. It needed to be free from storms and extreme cold.
- e. It must have a protected harbor at least six miles in diameter thereby being large enough to accommodate both target and support vessels.
- f. It needed to be away from cities or other population concentrations.
- g. The local winds should be predictably uniform from sea level to 60,000 feet.
- h. The water currents should also be predictable and not adjacent to inhabited shorelines, shipping lanes, and fishing areas so as to avoid contaminating populace and their food supplies.

After considering locations in the Atlantic, Caribbean, and Pacific, several atolls in the Marshall Islands, which met the above requirements, were chosen as possible sites. Bikini Atoll was chosen as the site for Operation *Crossroads*. (See Figures 1-4) In early 1946, 161 Bikinians were removed from their island and transported to the uninhabited Rongerik Atoll.¹¹ Tests *Able* and *Baker* were conducted in June and July 1946 using Fat Man type warheads.¹²

Though the tests were successful, Bikini had deficiencies as a test site, including the lack of land area for a support base and the impossibility of building an airstrip due to island orientation and wind direction. Bikini would not be used again for nuclear testing until Operation *Castle* in 1954.

The Atomic Energy Commission (AEC) studied several possible locations including island sites in the Indian Ocean, Alaska, and Kwajalein Atoil, as well as the continental United States. The AEC selected Enewetak Atoll and, upon approval of the proposal by President Truman, requested that the Military Services prepare the Enewetak Proving Ground and provide logistical support. On 18 October 1947 Joint Task Force-7 was activated to prepare the proving ground and conduct Operation Sandstone. Once again the people had to be removed. On 21 December 1947 136 dri-Enewetak were transported to the deserted Ujelang Atoll 124 miles

¹¹ In 1948 the Bikinians were moved first to a U.S. naval base on Kwajalein, and eight months later to Kili island where they and their descendants remain. See William S. Ellis, "A Way of Life Lost: Bikini," *National Geographic*, June 1986, pp. 813-834; Jonathan M. Weisgall, "Micronesia and the Nuclear Pacific since Hiroshima," *SAIS Review*, Summer-Fall 1985, pp. 41-55.

¹² Jonathan M. Weisgall, Operation Crossroads: The Atomic Tests at Bikini Atoll (Annapolis, MD: Naval Institute Press, 1994): Lloyd J. Graybar and Ruth Flint Graybar, "America Faces the Atomic Age," Air Force Review, January-February 1984, pp. 68-77; Lloyd J. Graybar, "The 1946 Atomic Bomb Tests: Atomic Diplomacy or Bureaucratic Infighting?" The Journal of American History, March 1986, pp. 888-907.

southwest of Enewetak.

On 31 January 1950 President Truman announced that the decision had been made to develop thermonuclear bombs. This decision, coupled with the outbreak of the Korean War in June and an intensifying Cold War lead to decisions to test and build more nuclear weapons. To expedite testing the AEC decided to establish a continental test site and in September 1952 removed Bikini Atoll from the provisional status in which it had been held since Operation *Crossroads* making it part of the Pacific Proving Ground. From 1951 through 1962 the U.S. conducted six additional test series in the Pacific (see Table 1 for details).

Nevada Test Site

The need for a continental test site arose with plans to increase the size of the arsenal in the 1950s, though the search had begun much earlier.¹³ Continentalbased testing also reduced the expense and logistic problems of testing in the Pacific. Under "Project Nutmeg," a study prepared by the Armed Forces Special Weapons Project, a number of sites were considered on the basis of low population density, geology, favorable year-round weather conditions, safety, and security.¹⁴

On 18 December 1950 President Truman gave his approval to use a portion of the Air Force's Las Vegas Bombing and Gunnery Range in southeastern Nevada for atomic tests. Construction of the Nevada Test Site facilities began in January 1951. Operation *Ranger* was the first series for which the site was utilized. The first test occurred on 27 January 1951, when a one-kiloton device was dropped from an Air Force B-50 bomber into Frenchman Flat.

Originally 680 square miles were withdrawn. Additional land withdrawals in 1958, 1961, 1964, and 1965 lead to its present size of 1350 square miles. At Mercury (Area 23) in the southeast corner of the NTS are the centralized facilities which support most of the activities at NTS. The Frenchman Flat area was where 14 atmospheric tests were conducted between 1951 and 1962. Ten underground tests were also conducted there between 1965 and 1971, but it is no longer used. The majority of tests took place in the vicinity of Yucca Flat, a valley 10 by 20 miles extending northward from the Control Point. Rainier Mesa (Area 12) was the location for the Defense Nuclear Agency's (DNA) weapons effects tests. Pahute

¹³ Roy B. Snapp, Secretary AEC, "Location of Proving Ground for Atomic Weapons," AEC Paper 141, 15 September 1948.

¹⁴ Among the sites considered were: the Pamlico Sound area off the coast of North Carolina, along the coastal strip between Cape Hatteras and Cape Fear; Utah at the Dugway Proving Ground/Wendover Bombing Range: New Mexico at the Almogordo-White Sands Guided Missile Range, "a state conditioned to nuclear work; and with easy logistics from the center of atomic bomb storage at Sandia"; an area in Nevada from Fallon to Eureka; and the one eventually chosen, the Tonopah-Las Vegas Bombing and Gunnery Range. "If the fallout element over the eastern part of the United States cannot be accepted, sites can be chosen on the coast of Maine or the coasts of Delaware, Maryland or Virginia." Carroll L. Tyler, *Documentation of Establishment of Continental Test Site*, Division of Military Application Memorandum, 14 September 1953. See also Col. George F. Schlatter, USAF, Division of Military Application, AFSWP Briefing on Continental Sites, 17 July 1950.

Mesa, a 166 square mile area, was the location for higher yield tests (Areas 19 and 20) in the northwestern corner. On 1 November 1963 the AEC signed a Memorandum of Understanding (MOU) with the Air Force authorizing use of Pahute Mesa.

The NTS is divided into 27 numbered areas. Each of the two design laboratories tested in designated areas. Los Alamos used Areas 1, 3, 4 (east), 7, 19. Lawrence Livermore used Areas 2, 4 (west), 8, 9, 10 and $20.^{15}$ DNA weapons effects tests took place in Area 12 (See Figures 5, 6 and 7).

Two other Areas are of interest. At Area 6 is Control Point-1 (CP-1), at the crest of Yucca Pass, from which all tests were conducted. In the Operation Control Center, the Test Controller and his panel reviewed weather data prior to each test. Closed circuit TV showed the surface ground zero area at detonation time and remote telemetry equipment monitored the area for radioactivity.

Nuclear test device assembly operations, which require mating special nuclear materials (SNM) and high explosive (HE) materials to the proper configuration for testing, were performed at two locations on the NTS and at one location at Los Alamos. Due to inadequate physical security the Los Alamos National Laboratory (LANL) facility was closed in FY 1984. The LANL assembly building at NTS was in Area 11. As an interim measure towards consolidation, the LANL operation was moved to the Lawrence Livermore National Laboratory assembly area in Area 27 in Jackass Flats and began operations in 1985. The facilities assigned to LANL were formerly the backup facilities for LLNL. The Baker/Able sites within Area 27 were engaged in the assembly, disassembly, and modification of nuclear explosives, nonnuclear explosives, and assemblies containing special nuclear material.¹⁶ Lawrence Livermore performed this work in the Baker compound, and Los Alamos at the Able site. The Baker complex consists of four buildings and six storage magazines. At various times kilogram quantities of plutonium, hundred kilogram quantities of high explosives of many types, and all isotopes of uranium might have been there. Weapon or device components were brought to the test site from the respective laboratories, from other facilities in the complex (Pantex, Rocky Flats, Y-12), or their vendors. The shipments involved air, rail or truck transportation. Assembled nuclear weapons under the custody of the Department of Energy are not transported by air.¹⁷ Ross Aviation Inc., of Albuquerque, NM, under contract to the DOE since 1970, transports components by air.18

¹⁵ U.S. Congress, Office of Technology Assessment, *The Containment of Underground Nuclear Explosions*, OTA-ISC-414 (Washington, DC: U.S. Government Printing Office, October 1989), p. 17.

¹⁶ Energy Research & Development Administration, Nevada Test Site, Final Environmental Impact Statement, September 1977, p. 3-44.

¹⁷ DOE, Pantex Plant Site, Final Environmental Impact Statement, October 1983, p. 4-43.

¹⁸ HAC, FY 1985 EWDA, Part 6, p. 263.

Nuclear devices were brought to NTS either as components or fully assembled, via safe-secure trucks. On site movements were accompanied by a heavily armed protective force escort in armored vehicles and receive an aerial sweep of the route prior to departure. At the NTS Able site members of the Weapon Engineering (WX-1) and Fabrication & Assembly (WX-3) sections of the Los Alamos Design Engineering Division (WX) prepared the weapon or device for testing. At the Baker compound before the parts for an assembly were received, a detailed assembly procedure was compiled and reviewed by LLNL personnel of the Nuclear Explosives Engineering Division, the Weapons Engineering Division, the Criticality Group, and High Explosives Chemistry. This procedure listed all parts, the steps to be performed in sequence, and all special handling equipment. During an assembly operation, each step was signed off by the Device Engineer.¹⁹

Beginning on 14 July 1986 ground was broken on a new facility in Area 6, just off the Mercury Highway, which was planned to consolidate both laboratory assembly areas. Known as the combined Device Assembly Facility (DAF)²⁰ it occupies 109,000 square feet of floor space, and consists of five assembly cell "Gravel Gerties,"21 two radiography facilities, four high bays (each 1800 square feet, with 25 foot ceilings), three assembly bays (30 by 60 feet each), and one storage bay, four special nuclear material/high explosive storage bunkers, two high explosive magazines and vaults, and various support and maintenance buildings. Security arrangements are extensive within the 22-acre high exclusion area. There are two six-level, 51-foot high guard towers. The 144 square foot guard station has 6-inch thick reinforced walls, with bullet resistant metal doors and glass windows. Eight-foot high parallel fences, 30 feet apart surround the buildings. The entire area has extensive lighting, alarms, movement detection equipment and an aircraft early detection system. The facility is scheduled to be operational in 1995 at a cost of \$98.2 million. It was originally built with the idea of supporting a testing rate of some two dozen or more tests per year. The facility will also perform operations on selected significantly damaged nuclear weapons that are deemed inappropriate for processing at Pantex. Other uses may have to be found for the DAF, such as assisting in the dismantlement of U.S. nuclear weapons to supplement the Pantex Plant.

The Nevada Test Site is administered by the Nevada Operations Office (NV) of the Department of Energy (DOE). Approximately 6895 personnel work there with a budget of approximately \$450 million (FY 1993). The major operating contractors

Page 7

¹⁹ ERDA, Nevada Test Site, p. 3-45.

²⁰ HAC, FY 1985 EWDA, Part 4, pp. 144-147; HAC, FY 1986 EWDA, Part 4, pp. 217-222; DOE, Congressional Budget Request, Atomic Energy Defense Activities, FY 1988, pp. 291-297; DOE, Congressional Budget Request, Atomic Energy Defense Activities, FY 1989, pp. 231-237; Congressional Budget Request, Atomic Energy Defense Activities, FY 1990, p. 68; Congressional Budget Request, Atomic Energy Defense Activities, FY 1992, pp. 77-78.

²¹ A Gravel Gertie is where the weapons are assembled. There are many at the Pantex Plant in Texas. The ones at NTS will be 34-feet in diameter, providing 1017 square feet of work space. The circular structure has one-foot thick reinforced concrete walls and a 25 foot thick gravel roof. The entire facility will be earth-bermed and provides total containment in the event of up to a 500 pound explosion.

for DOE at NTS are Reynolds Electrical and Engineering Company (REECo), EG&G/Energy Measurements (formerly Edgerton, Germeshausen, and Grier, Inc.);²² Raytheon Services Nevada (RSN);²³ and Wackenhut Services, Inc. (WSI).²⁴ REECo is the principal support contractor. REECo operates the test site and conducted drilling for underground tests and minor construction. In late 1993 approximately 2675 personnel worked at NTS and 725 in Las Vegas. EG&G/EM employs about 1955 people; 1160 in Las Vegas, 97 at NTS, 275 in California, 355 in New Mexico, 18 in Massachusetts, and 50 in Maryland. RSN employs about 1160, 230 at NTS, 345 in Las Vegas and 585 at DOE's Pacific sites. Wackenhut Services provides security and employs about 350 people, 260 at NTS and 90 in Las Vegas.

The Nevada Operations Office was established in Las Vegas, Nevada, on 6 March 1962 to manage the Atomic Energy Commission's (later ERDA's and then DOE's) Nuclear Detonation and Test Readiness Programs at the NTS²⁵ as well as at other on- and off- continent test locations.²⁶

The Manager of the Nevada Operations Office, manages the NTS and is responsible for all operational matters. Each recent program or series of tests was conducted in accordance with the "Planning Directive for Underground Nuclear Tests at the Nevada Test Site," dated 2 April 1982 issued by the Deputy Assistant Secretary of Energy for Military Application.²⁷ The Manager is supported by three Assistant Managers and a Test Controller. The Assistant Manager for Defense developed and executed policies involving occupational safety and health issues, radiological safety, and environmental assessments. Further responsibilities included approving the weekly NV Master Test Schedule, administering air support, nuclear explosives safety and construction programs for NV programs. The Assistant Manager for Administration is responsible for providing physical security and plant protection,

²⁵ From 1951 until 1962 the Test Division of the Santa Fe Operations Office (SFO) and the Albuquerque Operations Office (ALO) operated the test site. SFO was changed to ALO on 2 April 1956.

²² Since December 1952 REECo has been a contractor with the test program. A five-year, \$2.25 billion contract became effective 1 October 1988. On 25 January 1993 the Neváda Field office announced it will extend the contract for 27 months beginning 1 October 1993, at a cost of about \$675 million. DOE News, NV-93-04, 25 January 1993.

²³ The NVO signed a five year contract with RSN on 5 November 1990 for \$625 million. The work was formerly performed by Holmes & Narver, Inc., and Fenix & Scisson of Nevada, Inc. (FSN). The work included engineering for drilling and mining operations, technical support, construction, and other services. Holmes & Narver had been a contractor to DOE and its predecessor agencies at the NTS since 13 November 1956 and in the Pacific since 1951. FSN had been a contractor since 18 March 1963.

²⁴ Wackenhut began as a security contractor on 1 February 1965. Prior to that Federal Services Inc. (from January 1952) and General Plant Protection, Los Angeles, CA were security contractors.

²⁶ One of four Safeguards recommended by the Joint Chiefs of Staff for their support of the Limited Test Ban Treaty was to maintain facilities and resources necessary to institute promptly nuclear tests in the atmosphere should they be deemed essential to U.S. national security or should the Soviet Union abrogate the Treaty. From 1963 until 1975 the United States had Thor rockets on Johnston Island for this purpose.

²⁷ In DOE/NV, Planning & Operations Directive Underground Nuclear Test Operations, NVO-176 (Rev.1), Appendix 1.

personnel clearance, and technical and communications security programs. The Assistant Manager for Energy & Conservation reviews standard operating procedures and budgetary issues. The Test Controller approved the Operations and Security Plan and conducted a containment review.

It typically took about a year to prepare a vertical shaft test. Approximately 12 months before D-Day, after the design of the device or weapon was known, the diagnostics were researched, the information for the canister (Livermore's term) or rack (Los Alamos's term)²⁸ design was generated, the geology for the test hole was examined, the test location at NTS selected, and the hole drilled. Huge drill bits were used to bore holes from 400 to 5000 feet in depth²⁹ and from three to twelve feet in diameter. Normally tests below 20 Kt were detonated in holes 600 to 1000 feet deep. Some of the smallest tests, which are among those that were originally unannounced, were conducted in shafts 400-600 feet deep, with one detonated at only 197 feet. Tests of 20 Kt to 150 Kt normally use holes 1500 to 2200 feet deep. A portable building known as a "bogey tower" was placed over the hole, from which work was done on the canister/rack before it was lowered down the shaft.

Approximately nine months before D-Day, fabrication of the canister began,³⁰ items were purchased, components assembled and the cables were laid. With three months to go the canister was put in the tower and aligned, the radiation detectors installed, the cables connected, and the diagnostic stations put in place. At five weeks to D-Day tests were conducted on the firing system, and timing signals (systems tests) sent to diagnostic stations to make sure they were operating. At three weeks the nuclear device or warhead was brought to the hole and placed at the lower end of the long (up to 250 feet long by 8 feet in diameter) cylindrical canister/rack. The canister contained the nuclear device or warhead, firing components, radiation detectors, spectroscopes, electronic instrumentation and television cameras. The diagnostic systems normally made up the greater part of the canister's length. Over the years canisters/racks increased in weight to an average of over 100,000 lbs in 1981, (up from an average of 65,000 lbs in 1978).³¹ A considerable bundle of average electrical cables (coaxial and increasingly fiber optic) connected the firing and diagnostic systems to the surface recording stations. As the complexity of tests increased so too did the number and length of cable used per event. In 1984, 115

²⁸ David Creek, "On Trial," AWE News, April 1991, p. 4.

²⁹ Excluding the nine cratering tests, the shallowest shaft test was conducted on 17 October 1963 at a depth of 197 feet. The deepest test at NTS was at 4759 feet on 3 January 1976. A deeper shaft was dug to 5875 feet in Alaska for a 5 Mt blast on 6 November 1971. The deepest explosion ever conducted, at 8443 feet, was a Plowshare experiment on 10 September 1969 in Colorado.

³⁰ On 26 March 1976 the Augmented Test Logistic Assembly System (ATLAS) complex was completed. This 20acre facility in north Las Vegas, run by EG&G, fabricates and assemblies canisters. They are delivered intact to NTS, ready for a nuclear device to be attached and emplaced in a shaft.

³¹ HASC, FY 1983 DOE, p. 109. In 1981 the cost of a canister was over \$400,000 with some costing over \$1 million.

Page 10

cables totalling over 33 miles (on average) were used per event, up from 71 cables totalling 17 miles five years earlier.³²

The canister containing the nuclear device and the diagnostic equipment was then lowered down the hole.³³ A new system was scheduled to take only two days to lower the device, instead of eight to ten days previously. With two weeks until D-Day, "stemming" or back filling the hole began. The purpose of stemming was to prevent the escape of radioactive materials into the environment. Emplacement holes were stemmed with layers of different materials. The first layer above the rack was magnetite, an iron oxide material which provided shielding for the experiment. This was followed by alternate layers of coarse gravel and fine sand. Two or more epoxy plugs about ten feet thick were placed at intervals to provide gas blocking.

After shot *Baneberry* (18 December 1970) vented an enormous amount of radioactivity into the atmosphere (6,700,000 Ci), new procedures were established in the preparation of each test. The Containment Evaluation Panel (CEP) was created to assist the Manager, NV, in reviewing each upcoming test so that it would be satisfactorily contained. The CEP was composed of representatives from Los Alamos, Lawrence Livermore and Sandia National Laboratories, Defense Nuclear Agency, U.S. Geological Survey, other scientists, and advisors from the EPA, NOAA, DOE headquarters, REECo, Holmes & Narver, Fenix & Scisson. The first CEP meeting was held at Las Vegas on 18-19 March 1971 and approximately 200 have been held since then. At each meeting, normally two or three months before the scheduled shot date, one or more tests were discussed. A representative from the sponsoring laboratory described the event and how the emplacement design and stemming was planned to contain it, based on prior tests in nearby holes and the geology of the area.³⁴

On the day before the scheduled detonation several readiness briefings took place normally at Control Point-1 (CP-1) to review the containment system, any unique technical features associated with the test, predicted weather conditions at scheduled shot time, potential fallout exposures if there is an accident, air supportmissions and other matters. Based upon these reviews a recommendation was made to proceed with or delay the test.

If the decision was made to proceed a final briefing was held at the Control Point on D-Day approximately two hours before the scheduled shot time. At that time an update on the readiness status and weather conditions was made. If the test remained on schedule the Test Controller granted the Test Group Director (TGD)

³² HASC, FY 1985 DOE, p. 338.

³³ On 23 October 1975 a test canister fell the last forty feet to the bottom of a 650 foot drilled shaft during emplacement operations. The canister contained a small nuclear device. The total weight of the pipe, canister and equipment that dropped was 175 tons. There were 11 injuries.

³⁴ The Los Alamos representative was normally from either the Geology/Geochemistry, Geophysics or Geoanalysis group of the Earth & Space Sciences Division. The Lawrence Livermore representative was normally from the Earth Sciences Department.

of the sponsoring agency permission to arm the device.

A small number of scientists accompanied by security guards drove out to a trailer known as the "Red Shack" to electronically arm the device or warhead.³² Two of the scientists carried a special briefcase and a bag of tiny cubes that had numbers painted on their sides. They alternately picked cubes out of the bag and punched the numbers into an "arm enable" device in the briefcase, generating a random code that was sent to the device/warhead on a special electrical cable. The scientists then went to the Control Point where they opened their briefcase and sent the same random code to the device/warhead, arming it. If security and the weather conditions were satisfactory the Test Controller gave the go-ahead and a secret coded signal was sent to the Red Shack starting a computer that automatically cycled through a 5-to-15-minute program that ended with the detonation. At any point the Test Controller could halt the countdown by pressing a red stop button.

The diagnostic equipment in the canister detected the explosion and information was sent uphole through the cables. Within a fraction of a millisecond following the detonation, the sensors and cables were destroyed, but by that time the data had been transmitted to the recording stations or to the Control Point. This technique of measuring whether the nuclear device performed to design specifications is known as prompt diagnostics.

When the device detonates, it creates a large underground cavity sometimes hundreds of feet in diameter, the bottom of which quickly fills with molten rock, materials and debris. As the heat and pressure subside, material begins to fall into the cavity, creating a void that progressively works its way upward. If the void reaches the surface, the overlying rock collapses under its own weight, producing a large subsidence crater. This may occur minutes, hours or days after the explosion. The size of the underground cavity and the surface crater (if it forms) is dependent on the yield of the explosion, the depth of burial, and the physical properties of the medium in which it is detonated.

A second technique used to measure whether the device/warnead performed to design specifications is nuclear chemistry diagnostics. A few days after the detonation a drill back operation was conducted to remove samples of the radioactive material from the explosion debris. This debris is concentrated in a volume of fused dirt called the puddle. The material samples are either solids or gases left in the cavity. The samples were taken as soon as possible after the detonation and returned to either LANL or LLNL for analysis. From the samples nuclear chemists can learn about fission and fusion yields and burn efficiency (how much nuclear fuel was used). New approaches were being developed which would have retrieved gases from the test hole within minutes after the detonation.

³⁵ This paragraph relies on William J. Broad, "Bomb Tests: Technology Advances Against Backdrop of Wide Debate," New York Times, 15 April 1986, p. C1.

The NTS is pockmarked with several hundred craters of various sizes from 200 to 2000 feet in diameter and up to 200 feet deep. Astronauts have used the test site for training missions prior to their journeys to the moor

Types of Tests

There are various ways to categorize the purposes of U.S. tests. One way is to use the categories in the annual NVO publication, *Announced United States Nuclear Tests*: Weapons Related; Weapons Effects; Safety Experiment; Plowshare; Vela Uniform; Storage-Transportation; and Combat. These categories, somewhat modified, are presented in Table 4, and some of them will be discussed below. The most numerous and interesting tests are "Weapons Related," for these constitute the primary purpose for which the test program has been conducted. It is necessary to further break down the Weapons Related tests into Weapon Development, Production Verification, Stockpile Confidence and Physics tests.³⁶

Weapon Development: Weapon Development tests comprised approximately 75 to 80 per cent of the nuclear tests conducted each year. These tests contributed to the engineering of a specific new warhead for a specific new weapon system; for example the W87 for the MX, the B83 Strategic Bomb, or the W84 for the Ground Launched Cruise Missile. Recent experience with modern weapons required approximately six nuclear tests to develop a new design and to certify it for introduction into the stockpile. The W87 for the MX Missile required 10 tests.³⁷ The number depended on many factors: the extent to which the design is innovative; constraints on size, shape, weight, and weight distribution; requirements for certain yields and yield options; the need for certain safety and command and control features. The early tests in the series were to verify and confirm the theoretical concepts that underlie the device's design and operation. Some low yield tests were to test the primary. Later tests in the series after the design was fixed were proof tests to verify the yield. Variable yield warheads, for example the W80-1/0 (ALCM/ACM/SLCM - 5 Kt to 150 Ks), W84 (GLCM - 0.2 Kt-to 150-Kt); or W85 (Pershing H- 0.3 Kt to 80 Kt); may we have needed several proof tests to verify each of the yields.

³⁶ For example, see the statement of Robert B. Barker in, Senate Foreign Relations Committee, Nuclear Testing Issues, S. Hrg. 99-937, May 8, June 19, and 26, 1986, pp. 126-145; also reprinted in SASC, Nuclear Testing Issues, S. Hrg. 99-984, April 29 and 30, 1986, pp. 19-24.

³⁷ It is likely that the basic nuclear design for the MX warhead (as well as the Trident II warhead and the warhead for the Minuteman III, MK12A) were developed and tested at their full yield prior to the imposition of the 150 Kt TTBT limitation, which the United States began to adhere to after March 1976. By mid-1983 nuclear testing of the W87 was essentially complete. See *Energy and Technology Review*, July 1983, p. 13. The First Production Unit W87 was produced in April 1986. It is possible that one of these first warheads was detonated in shot *Jefferson* on 22 April 1986, as a stockpile confidence test, normally done just prior to or soon after deployment. The test was sponsored by LLNL and used the CORRTEX measuring system. The CORRTEX experiment would probably be conducted with a warhead whose yield is known with some accuracy.

If the new concepts were more exotic more tests might have been needed. During the Reagan Administration there was accelerated funding to examine five Nuclear-Driven Directed Energy Weapon (NDEW) concepts. These were:

* X-ray Laser - a device for converting the output of a nuclear explosive into beams of x-rays which may be capable of producing shock damage to targets thousands of kilometers distant, which were examined for Strategic Defense Initiative application;

* Hypervelocity Pellets - use of specially designed nuclear explosive to propel particles to extremely high velocities which may be capable of producing catastrophic physical damage to targets at great distances, a "nuclear shotgun;"

* Directed Microwaves - a device for converting the output of a nuclear explosive into a beam of high-frequency electromagnetic (microwave) energy which may be capable of causing temporary or permanent internal electronic damage to a target at great distances;

* Particle Beams - use of a specially designed nuclear explosive to accelerate a beam of charged atomic particles. A high-energy particle beam may cause internal electronic damage or may cause missile propellant/high explosives to detonate; and

* Optical Laser - use of a specially designed nuclear explosive to power a laser operating at or near visible light frequencies. Such a laser may be capable of causing shock or thermal damage at great distances.³⁸

The head of Theoretical and Computational Physics at LANL estimated that it might require 100 to 200 test explosions per concept to perfect each of these new designs.³⁹ An extra 500 to 1000 tests at recent testing rates, or even accelerated ones, would have taken decades and tens of billions of dollars to accomplish. In fact, technical failures and budget constraints caused the research programs during the Bush administration to be severely cut back.⁴⁰

Production Verification tests: In recent years about one or two Production Verification or Stockpile Confidence tests had been conducted on average each year. This constituted approximately eight percent of U.S. tests. Production verification tests were underground nuclear tests of war-reserve warheads selected from the production line and were usually the first test in its actual stockpile configuration. Since 1970 20 warhead types (including significant modifications of the B61 and W70) have entered the stockpile and routinely production verification tests have been conducted to certify their yield and military characteristics. Since 1980 the number of warhead types introduced into the stockpile each year has been: 1980, 0; 1981, 3 (W80-1, W70-

³⁸ Transcript, Questions for the Record by Senator Kennedy, for DOE SASC hearing held 8 April 1986.

³⁹ William J. Broad, "U.S. Researchers Foresee Big Rise in Nuclear Tests," *New York Times*, 21 April 1986, p, A1. Not all of the concepts were pursued at the same rate of testing. HAC, FY 1987 EWDA, Part 6, p. 1506.

⁴⁰ William J. Broad, "Crown Jewel of 'Star Wars' has Lost its Luster," New York Times, 13 February 1990, p. C1; Broad, "Technical Failures Bedevil Star Wars," New York Times, 18 September 1990, p. C1.

3 ER, W79 ER); 1982, 0; 1983, 4 (W85, B83, W84, W80-0), 1984, 0; 1985, 0; 1986, 1 (W87); 1987, 0, 1988, 1 (W88); 1989-1993, 0.

Stockpile Confidence tests: A less frequent kind of test is a Stockpile Confidence test of an older warhead type already in the stockpile to see if it still performs as expected. These tests are very rare.⁴¹ Since 1970 only eight tests out of some 300 (.026%) have been conducted to correct defects in stockpiled weapons. The types involved included the B61, W68, W79, W80, and W84. A stockpile confidence test of the W56 for the Minuteman II was conducted recently.⁴² There must be a very good reason for a test to be conducted of an older warhead. There is no procedure by which warheads are randomly removed from the stockpile, transported to Nevada and exploded. There are numerous joint Service-DOE programs of non-nuclear testing (see below). In the past, problems have been identified through non-nuclear tests and inspections and explosive nuclear tests have been conducted to see if they were corrected, but even those cases have been quite rare.⁴³

Physics tests: Physics tests are conducted to improve the understanding of the fundamental phenomena of a nuclear explosion. Despite the fact that over 1000 tests have been conducted and the National laboratories possess the largest computing facilities in the country the warhead designers claim that there are still things which are not fully understood about a nuclear explosion. Therefore some two or three tests a year, (approximately five percent) were conducted for this purpose.⁴⁴ These tests are normally of a very small yield (fractions of a kiloton--down to 100 tons or below) and were normally not announced by the Department of Energy.

⁴⁴ "Since 1981, one or two LLNL tests per year have been dedicated to weapons physics research;" *Energy & Technology Review*, September 1986, p. 17. Presumably LANL conducted one or two per year as well.

⁴¹ SFRC, Nuclear Testing Issues, p. 131: HFAC, Proposals to Ban Nuclear Testing, 1985, p. 78; Farooq Hussain claims that "only a dozen or so have been conducted over the past thirty-five years." The Impact of Weapons Test Restrictions, *Adelphi Paper* No. 165 (London: IISS, 1981), p. 14.

⁴² Energy & Technology Review, July 1987, p. 15.

⁴³ The figure eight comes from SASC, Nuclear Testing Issues, S. Hrg. 99-984, April 29 and 30, 1986, p. 46. For a discussion of some of the warheads for which there have been problems see Thomas B. Cochran, William M. Arkin, Robert S. Norris and Milton M. Hoenig, *Nuclear Weapons Databook*, Volume II, U.S. Warhead Production, (Cambridge, Massachusetts, Ballinger Publishing Company, 1987), pp. 46-51; Ray E. Kidder, Evaluation of the 1983 Rosengren Report from the Standpoint of a Comprehensive Test Ban, LLNL, Report No. UCID-20804, June 1986; Jack W. Rosengren, Stockpile Reliability and Nuclear Test Bans: A Reply to a Critic's Comments, RDA Logicon, 1401 Wilson Bivd., Suite 500, Arlington VA, 22209, November 1986, prepared for DOE, No. RDA-TR-138522-001; Ray E. Kidder, Stockpile Reliability and Nuclear Test Bans: Response to J.W. Rosengren's Defense of His 1983 Report, LLNL, Report No. UCID-20990, February 1987; R.E. Kidder, Maintaining the U.S. Stockpile of Nuclear Weapons During a Low-Threshold or Comprehensive Test Ban, LLNL, Report No. UCRL-53820, October 1987; George H. Miller, et al., Report to Congress on Stockpile Reliability, Weapon Remanufacture, and the Role of Nuclear Testing, LLNL, Report No. UCRL-53822, October 1987; Letter from George H. Miller, Associate Director for Defense Systems, LLNL, to Senator Edward M. Kennedy, 27 February 1987.

Weapons Effects Tests: The purpose of a weapons effects test is to research the range of nuclear effects, these being airblast, ground and water shock, heat, electromagnetic pulce, neutrons, gamma and x-rays, and apply that knowledge to military systems, plans and policy.⁴⁵ More specifically, the weapons effects test program assessed the survivability of U.S. military systems in a nuclear environment and predicted lethality levels for destruction of enemy forces and equipment.⁴⁶ The Defense Nuclear Agency is responsible for research in this area and in recent years conducted one or two tests per year at the NTS. Overall ninety-seven weapons effects tests have been conducted accounting for 9 percent of the total.

Most modern weapons effects tests were conducted within a horizontally mined tunnel drilled into Rainier Mesa, at Area 12. These extensive engineering projects took approximately 18 months to prepare. A laboratory supplied device, of a known yield, was located in the Zero Room, which was connected to a long, horizontal line of sight (HLOS) pipe 1000 feet or more long containing several test chambers. The pipe was 800 to 1450 feet below ground and tapered. The end at the Zero Room may be only a few inches in diameter while the other end may be as much as 27 feet in diameter. Within the test chambers were placed hundreds of components and materials, from ballistic missile reentry vehicles to communications equipment. The experiments were mounted at various distances, chosen to expose the equipment to radiation between half and twice their design limits. Sometimes the HLOS pipe was vacuum pumped to less than one micron (one millionth of a meter) of pressure to simulate conditions in space. Various rapid closure mechanisms in the HLOS allowed radiation generated by the nuclear device to reach the test chambers but prevented the escape of debris and radioactive gases. In one test (Miners Iron) two huge pressure activated doors weighing three metric tons each closed in less than 30 ms after detonation. In a more recent test (Mighty Oak) the doors malfunctioned which caused contamination throughout the tunnel thus ruining much equipment and Above-ground instrumentation trailers on the mesa were many experiments. connected by cables to the hundreds of experiments within the HLOS. Following the test the military hardware was retrieved from the test chambers and the effects of the explosion were evaluated in the laboratory.

An average weapons development vertical shaft test cost approximately \$30 to \$40 million. Because of the more extensive tunnelling needed for a horizontal effects test, the cost was higher normally ranging between \$50 million and \$90 million per test.⁴⁷

⁴⁵ "Underground Testing: A Different Kind of Laboratory," *Sandia Technology*, December 1981, pp. 2-15; AEC, Nevada Operations Office, Planning Directive, DOD Nuclear Weapons Effects Test and Other Experiments, Nevada Test Site, NVO-81 (Rev. 4), January 1975;

⁴⁶ SAC, FY 1985 DOD, Part 3, p.530. Soviet and East European military equipment is also subjected to U.S. weapons effects tests.

⁴⁷ Ronald L. Soble, "Secrecy Cloaks Testing of Awesome Nuclear Arms," Los Angeles Times, 27 November 1984, p. 23; Rick Atkinson, "Underground Events' Test Mettle of U.S. Atomic Arsenal," Washington Post, 29 May 1984, p. A6.

Page 16

Non-explosive testing of nuclear warheads

Unlike the underground nuclear test program at the Nevada Test Site, which mainly dealt with warheads before they entered the stockpile, there are gumerous other programs which monitor those warheads in the stockpile on a sustained and regular basis. These programs do not require exploding the warhead.

Each year quantities of weapons are returned from the Department of Defense to the Department of Energy for evaluation testing. The weapons are selected randomly by serial number and are provided with the assistance of Field Command/Defense Nuclear Agency. These weapons are subjected to either Laboratory or Flight test programs. Laboratory testing involves the disassembly of weapons and the testing of selected components to ensure they will survive all conditions specified in the stockpile-to-target sequence, including the effects of transportation, handling, and storage.

Some components are easily removed and tested. Others may entail considerable work to remove and may end up destroying perfectly good components. Tests involve electronic, explosive, strength, and other mechanical tests. Upon completion of the tests, which may take up to six months, the weapons are reassembled using the same components or, if needed, replacement components produced and stored during the original production period. At the time of original production total lifetime quantities of components are determined and produced. If everything is in order the reassembled warhead is returned to the arsenal and redeployed. Detailed figures have been supplied by Pantex showing this activity over the period FY 1980-FY 1992.⁴⁸

Fiscal Year	Evaluation Disassembly	Evaluation Disassembly
	(Disposed of)	(Reassembled)
1980	197	150
1981	161	180
1982	175	189
1983	160	255
1984	134	217
1985	148	251
1986		291
1987	121	220
1988	71	234
1989	74	118
1990	95	185
1991	49	112
1992	29	46

⁴⁸ Information supplied to NRDC by Tom Walton, Amarillo Area Office, 19 January 1993.

A complementary program is the stockpile surveillance program whereby a certain percentage of war reserve production are not committed to the stockpile but are set aside for special examination. The key focus is on the chemical compatibility of the materials within the warhead assembly. Some of these items are stored at higher temperature to accelerate the aging process.

Computer simulation of nuclear testing

Since the Manhattan Project the designing of new nuclear weapons has been one of the most important driving forces for the development of ever more powerful computers.⁴⁹ The three National Laboratories, Los Alamos, Lawrence Livermore and Sandia, are among the first institutions to receive the most advanced computers of the day and have perhaps the most powerful computing capabilities in the world.⁵⁰ The computers allow weapon designers to simulate and model a host of problems associated with nuclear weapons. Direct measurement is impossible with temperatures of 10 million degrees, velocities of four million miles per hour, and time scales of millionths of a second. Computer simulation can partially substitute for tests that are banned, such as those in space, atmosphere, water and those above 150 kilotons. In the future under a Comprehensive Test Ban they will be used more widely.

The higher power of the more recent supercomputers⁵¹ has led to more accurate modeling thus reducing the number of tests (and the cost) necessary to design a specific warhead.⁵² For example an earlier warhead designed with the Control Data Corporation (CDC) 6600 required 23 field tests, whereas a more recent one designed with the CDC 7600 needed only six. The introduction of the Cray-1 (in 1976), the X-MP (in 1982), and the Cray-2 (in 1985) have no doubt reduced the

⁵⁰ The Los Alamos Director states, "At Los Alamos we house the world's most powerful scientific computing facility with a computing power exceeding 65 of the original Cray I supercomputers." *LANL Institutional Plan*, *FY 1991- FY 1996*, LALP-90-24, November 1990, p. 1.

⁵¹ It has been estimated that a team of scientists using the calculators of the 1940s would take five years to solve what it takes a Cray computer one second to perform; DOE, *The Need for Supercomputers*, p. 11.

⁵² "Computation has become firmly established as a third mode of scientific research complementing the traditional methodologies of theory and experiment. New and more refined mathematical and numerical approaches in areas such as hydrodynamics, turbulence, transport, chemical dynamics, and materials properties can provide insights into phenomena not directly observable through experiment. With the increasing cost of nuclear weapons tests and the possibility that further restrictions will be placed on such experiments, the role of computation is becoming increasingly important." *LANL Institutional Plan FY 1991- FY 1996*, p. 39.

⁴⁹ Francis H. Harlow and N. Metropolis, "Computing and Computers: Weapons Simulation Leads to the Computer Era," Los Alamos Science, Winter/Spring, 1983, pp. 132-141; Benjamin M. Eison, "Los Alamos Boosts Computer Capacity," Aviation Week & Space Technology, August 23, 1982, pp. 72-75; Fred W. Dorr, "The Cray-1 at Los Alamos," Datamation, October 1978, pp. 113-120: "Preparing for the Cray-2," Energy and Technology Review, September 1985, pp. 24-25; D.B. Henderson, "Computation: The Nexus of Nuclear Weapon Development," in N. Metropolis, D.H. Sharp, W.J. Worlton, and K.R. Ames, eds., Frontiers of Super-Computing (Berkeley: University of California Press, 1986), pp. 141-51; Department of Energy, The Need for Supercomputers in Nuclear Weapons Design, January 1986.

number of tests for certain warhead types still further as well as giving greater amounts of data per test. A Cray-2 is four times as powerful as a Cray-1, which in turn, is four times as powerful as the CDC 7600 and 15-20 times as powerful as the CDC 6600. The newest Cray is the Y-MP, introduced in February 1988, whose performance is two-to three times greater than the most powerful X-MP.⁵³ With a computing speed 30 times that of a Cray 1 the \$20 million Y-MP's eight processors working together are able to perform two to four billion arithmetic operations per second. Los Alamos has two Y-MPs, while Livermore and Sandia have one each.⁵⁴ A reasonable estimate of total computer time for a design is 8000 hours.⁵⁵

This trend of reduced numbers of tests per warhead type should be kept in mind as an explanation for the declining number of U.S. tests in recent years, and in refuting arguments that stressed only the number of tests, rather than qualitative factors in debates comparing U.S. and Soviet testing practices.

Secret tests

On 7 December 1993 Secretary of Energy Hazel O'Leary released a list of 204 previously unannounced underground tests. An analysis of this group of tests reveals several interesting features about U.S. testing practices, as well as pointing to several important questions about verifying a comprehensive test ban (CTB) that will need to be discussed during the Conference on Disarmament CTB negotiations that began on 25 January 1994 in Geneva, Switzerland.

All 204 tests were conducted at the Nevada Test Site. The first of these secret tests were a pair detonated on 27 September 1963, the last was conducted on 6 April 1990.⁵⁶ Twenty-one percent of the tests in the 1960s were secret, 40 percent of the 1970s were secret, and 8 percent in the 1980s. By presidential administration the Nixon administration was most secretive, with 85 of 181 tests (47 percent) during the period 1969-1974, being unannounced. After more than a four-year period in which all tests were announced (June 1979 to August 1983), the Reagan and Bush administrations reimposed a secret testing policy. From August 1983 to April 1990, there were eighteen secret tests. The reason for such secrecy is not exactly clear. If the purpose was to keep knowledge of such testing from the Soviet Union, or from the American people, it was not a great success. Thirteen of the 18 tests were detected seismically. In two other cases the test was known about through leaks in

⁵⁶ According to the DOE all tests prior to the signing of the Limited Test Ban Treaty on 5 August 1963 had been publicly announced beforehand, though many were not known to have taken place at the time.

Page 18

⁵³ Andrew Pollack, "The Next Generation at Cray," New York Times, 10 February 1991, p. D1.

⁵⁴ HAC, EWDA FY 1991, Part 6, p. 818. Other types of supercomputers at the three laboratories include Thinking Machines CM-2 at LANL, NCUBE systems at SNL and a Bolt Beranek and Newman TC200 at LLNL; Ibid, p. 819.

⁵⁵ DOE, The Need for Supercomputers, p. 17.

the newspapers.⁵⁷ This leaves three tests that were not publicly known: Navata on 29 September 1983, and Kawich A on 9 December 1988, and Wexford on 30 August 1984 that was set off simultaneously with an announced test.

As noted above 111 of the 204 unannounced tests were detected by Riley R. Geary of the California Institute of Technology before their existence was declassified in December.⁵⁸ Of the 204 unannounced tests, 19 tests were detonated simultaneously with an announced test, or another unannounced test, as follows: five secret tests that were unknown were each paired with secret tests that were known; seven secret tests that were unknown were each paired with announced tests; and two secret tests were fired simultaneously with one announced test. Of the remaining 185 unpaired secret tests, 43.7 percent (79 out of 185) were undetected and 57.3 percent (106 out of 185) were detected. Using the new information a more exacting examination of the seismic record is underway by Mr. Geary and others. Preliminary results suggest that the number of undetected tests may actually be less than fifty, although they were unidentified at the time.

It should be noted that the number of stations that were well placed to detect and locate an explosion at NTS in the 1960s was a mere handful. The number of stations that can detect and locate explosions has grown over the years to a couple of dozen today. In the 1960s, 48.8 percent (40 out of 82) of the unpaired secret tests were detected; in the 1970s, 59.3 percent (51 out of 86) were detected; in the 1980s, 87.5 percent (14 out of 16) were known; and in the 1990s the single secret test was detected. No doubt, with today's network many of the explosions in the 1960s and 1970s would have been detected. For an eventual CTB one would not only draw upon the current public network but take advantage of other seismometers. The weapon design laboratories have a local seismic network at the NTS, and when it was turned on for a test, it likely recorded even the tiniest explosions. In a CTB regime data from these seismometers should be a part of the verification network.

The Department of Energy continues to classify the precise yields of the previously unannounced tests, except to note that each are less than 20 Kt. The view yields of the undetected tests in recent years are probably in the range of 10 tons to several hundred tons. If the precise yields of the small tests were released outside experts would be able to determine the current threshold of verifiability of the existing open seismic network around NTS and work towards its improvement.

Several points need to be made about very low yield tests. First, it would be difficult even for a sophisticated nation like the U.S. to develop confidence in a new nuclear warhead design if it could only (clandestinely) test at this level. Secondly, for

⁵⁷ Michael R. Gordon, "Kremlin Reports U.S. A-Tests, Citing Ease of Detection," *New York Times*, 30 August 1986, p. 1. The article described a Soviet military official in Washington announcing three small U.S. tests to demonstrate that verification is not as difficult as Reagan Administration officials suggested.

⁵⁸ Riley R. Geary, "Nevada Test Site's Dirty Little Secrets," Bulletin of the Atomic Scientists, April 1989, pp. 35-38.

a nation that is developing its first bomb, without outside nuclear design assistance or previous test data, an attempted low yield clandestine test of a few hundred tons would pose the risk of an explosion of substantially higher yield and a failure of containment. It should also be noted that the yield-range of interest for the first time proliferator is more likely to be between 5 Kt and 25 Kt.³⁹

Would a nation that had signed a CTB engage in clandestine tests? While it is possible that they might, there would penalties for getting caught and the risks of being found out are not insignificant. To prepare a clandestine test would entail activities that might be noticed through satellite observation or other means, while complete test containment would be uncertain for a first time proliferator.

In conclusion, while it is technically possible to conduct very small nuclear explosions that remain undetected by the current public seismological network, modern, state-of-the-art seismometers at appropriate locations can improve chances to detect and locate even smaller explosions, if they should be attempted.

⁵⁹ The yields for the first fission tests of the five declared nations were: United States, 23 Kt, Soviet Union, 20 Kt, Great Britain, 25 Kt, France, 60-70 Kt, China, 20 Kt.

Fiscal Year	DOE	DOD/DNA	Total
1962	182.2	108.0	290.2
1963	133.0	111 .0	244.0
1964	206.5 (36)	44.0	250.5
1965	214.8 (37)	59.0 (6)	273.8
1966	201.6 (41)	64.0 (4)	265.6
1967	193.2 (31)	61.0 (4)	254.2
1968	242.7 (40)	60.0 (4)	302.7
1969	304.8 (40)	63.0 (5)	367.8
1970	246.5 (44)	61.0 (6)	307.5
1971	212.8 (15)	74.0 (1)	286.8
1977	229.1 (21)	38.2 (0)	267.3
1978	240.0 (20)	27.7 (2)	267.7
1979	221.0 (16)	26.6 (0)	247.6
1980	209.0 (13)	28.6 (1)	237.6
1981	329.9 (13)	30.6 (1)	360.5
1982	320.0 (18)	66.2 (2)	395.2
1983	442.6 (16)	94.2 (2)	536.8
1984	565.0 (15)	94.1 (1)	659.1
1985	613.6 (15)	105.9 (1)	719.5
1986	567.0 (13)	105.3 (3)	672.3
1987	618.7 (12)	85.9 (2)	704.6
1988	609.6 (14)	83.2 (1)	692.8
1989	585.3 (9)	90.2 (2)	675.5
1990	533.3 (8)	109.0 (1)	662.3
1991	499.5 (6)	99.0 (1)	598.5
1992	510.8 (5)	115.5 (2)	626.3
1993	419.4 (0)	104.8 (0)	524.2
1994 est.	461.8 (0)	100.2 (0)	562.0

U.S. Nuclear Testing Budgets - FY 1962-1971/1977-1994¹

(BA \$ in millions)

Page 21

¹ For FY 1962-1971, Prospects for Comprehensive Nuclear Test Ban Treaty, Hearings before the Subcommittee on Arms Control, International Law and Organization of the Committee on Foreign Relations, US Senate, 92nd Congress, 1st session, (Washington, 22 and 23 July 1971). For FY 1977-1994, transcript, Questions for the Record by Senator Kennedy, SASC, DOE Hearing, 8 April 1986; HASC, FY 1989 DOE, p. 302; HAC, FY 1990 EWDA, Part 6, pp. 470, 498; HAC FY 1991, EWDA, Part 6, p. 816; HAC (Questions for the record, FY 1992), unpublished; HAC, FY 1994 EWDA, Part 6, p. 1282. Figures in parentheses are number of U.S. tests in each Fiscal Year. Does not include 21 UK tests in this time period which are paid for by the British or the 21 Plowshares tests held in these years.

Table 1U.S. Nuclear Tests 16 July 1945-31 December 1992

Event Nar	ne"	Time(GMT) ^b	Date	Location	Lab	Туре	HOB/ DOB(ft)	• Purpose ⁴	Yield ^e
Trinity		05:29.45 local	07-16-45	Alamogordo, NM	LA	Tower	100	WR	23 Kt±3
Little Boy	,	08:15 local	08-06-45	Hiroshima, Japan	LA	B-29 Airdrop	1900±5	Warfare	15 Kt
Fat Man		11:02 local	08-09-45	Nagasaki, Japan	LA	B-29 Airdrop	1650±3	3 Warfare	21 Kt
	The totals	throughout the	paper do not i	nclude the two com	bat uses	of nuclear weapons v	which are co	nsidered te	sts.

OPERATION CROSSROADS

Operation Crossroads was at that time the largest peacetime military operation ever conducted with 240 ships, 156 aircraft, and 42,000 personnel. The two tests used Fat Man type bombs (also called Mk 3A, "Christy devices," or Model 1561 devices) similar to the one dropped on Nagasaki. The purpose of the tests was to determine the effects of nuclear detonations on naval ships, planes and on animals. The first test weapon, shot *Able*, was dropped by a B-29 ("Dave's Dream") on a fleet of more than ninety vessels in Bikini Lagoon and exploded 980 feet short and 1870 feet left of the target. The test weapon in *Baker* was encased in a watertight steel caisson suspended beneath a medium landing ship anchored in the midst of the target fleet. An additional deep (1000 ft) underwater detonation, *Charlie*, was planned but was not conducted.

Able	22:00	06-30-46	Bikini (1st)	LA/DOD B-29 Airdrop	520	WE	23 Ki
Baker	21:35	07-24-46	Bikini	LA/DOD Underwater	-90	WE	23 Kt

OPERATION SANDSTONE

The three tests of Operation Sandstone were the first proof tests since Trinity. Second generation warhead design principles were tested, using composite cores and levitation principles in the X-Ray and Yoke tests, and an all U-235 levitated core in the Zebra test. The devices were 10,500 lb Mk-3Bs. Proof tested Type B pit. Led to stockpiling Mk 4 bomb. Ten thousand two hundred personnel participated. A fourth shot was cancelled.

X-Ray	18:17	04-14-48	1st Enewetak/Janet	LA	Tower	200	WR	37 Kt
Yoke	18:09	04-30-48	Enewetak/Sally	LA	Tower	200	WR	49 Kt
Zebra	18:04	05-14-48	Enewetak/Yvonne	LA	Tower	200	ŴR	18 Kı

OPERATION RANGER

Operation Ranger was the first series of atmospheric tests held at the Nevada Proving Ground (now NTS) and were the first devices tested in the United States since Trinity. In November 1950 scientists at Los Alamos decided that a series of small nuclear teste were needed in preparation for the upcoming Greenhouse series to establish satisfactory design criteria related to the variation of yield with compression of the fissile material. Ranger was a series of experiments involving devices using a fraction of a critical mass ("fractional crit"). The concept of a "fractional crit" originated in 1944 during the Manhattan Project. The White House approved the tests on 11 January 1951 accelerating the establishment of the Nevada Proving Ground. The original name was Faust scheduled for the fall of 1951. During the eleven days a total of five devices were dropped from a B-50 bomber. All of the devices detonated approximately 1100 to 1400 feet over Frenchman Flat.

Able	13:45	01-27-51 NTS (FF)	LA	B-50 Airdrop	1060	WR	1 Kı	
	Compression vs. critical	mass test; MK 4 device weigh	t, 10,800 lbs	•				
Baker	13:52	01-28-51 NTS (FF)	LA	B-50 Airdrop	1080	WR	8 Kt	
	"Fractional crit" test; Mi	κ 4		-				
Easy	13:47	02-01-51 NTS (FF)	LA	B-50 Airdrop	1080	WR	1 Kt	
-	Compression vs. critical	mass test; Mk 4		•				
Baker-2	13:49	02-02-51 NTS (FF)	LA	B-50 Airdrop	1100	WR	8 Kt	
Fox	13:47	02-06-51 NTS (FF)	LA	B-50 Airdrop	1435	WR	22 Kt	
	Proof-test of new type p	it (Type D) and the 92-point H	IE assembly for	use on the Mk 5 (E	asy) test in	Greenhou	se. Predicted vie	:ìd
	was 34 Kt		•	•	••			

OPERATION GREENHOUSE

Two of the Greenhouse tests were thermonuclear experiments. Shot George produced the first significant U.S. thermonuclear reaction. George was a two-stage device, using a large cylindrical primary and a small D-T secondary. Its objective was to determine experimentally one aspect of the feasibility of a thermonuclear weapon, namely initiation, and not whether a thermonuclear reaction, once initiated, would continue to propagate itself. The deuterium and tritium contributed only a small amount to the yield. Shot Item was a major contribution to the development of thermonuclear weapons. It was the first test of a boosted fission device using deuterium and tritium. Shot Dog was probably a test of the B6. Fifteen thousand mice, swine, and dogs were used during Greenhouse to test the lethality range of blast, heat and radioactivity.

Dog	18:34	04-07-51 Enew	etak/Yvonne LA	Tower	300	WR	81 Kt	
	MK 6 proof test; total dev	rice weight 10,000 lbs						
Easy	18:27	04-20-51 Enew	etak/Janet LA	Tower	300	WR	47 Kt	
-	TX-5 proof test; total dev	ice weight 2,700 lbs						
George	21:30	05-08-51 Enew	ctak/Ruby LA	Tower	200	WR	225 Kt	
•	First thermonuclear exper	iment	•					
Item	18:17	05-24-51 Enew	etak/Janet LA	Tower	200	WR	45.5 Kt	
	Tested principle of tritium	boosting to enhance	fission. Believed to b	e an orallov desig	n which did not	rely on c	ompression of th	he D-T.

OPERATION BUSTER-JANGLE

The five Los Alamos weapon development tests constituted the *Buster* phase held in October and November 1951, the second series held at NTS. The objective of these tests was to evaluate new devices for possible inclusion in the stockpile. The two weapons effects tests of the *Jangle* phase were meant to help determine the military utility of surface and underground nuclear detonations. The first three of eight Desert Rock troop exercises were held during *Buster-Jangle*. These exercises were designed to explore the conditions and tactics of the atomic battlefield. A prototype of the B8 was tested during *Buster*.

Able	14:00	10-22-51	NTS (Area 7)	LA	Tower	100	WR	<0.1 Kt
	Fizzle, predicted yield 12-	15 Kt	• •					
Baker	15:20	10-28-51	NTS (Area 7)	LA	B-50 Airdrop	1118	WR	3.5 Kt
Charlie	15:00	10-30-51	NTS (Area 7)	LA	B-50 Airdrop	1132	WR	14 Kı
Dog	15:30	11-01-51	NTS (Area 7)	LA	B-50 Airdrop	1417	WR	21 Kt
Easy	16:30	11-05-51	NTS (Area 7)	LA	B-45 Airdrop	1314	WR	31 Kı
•	Easy was a proof test of the	he MK 7, a wea	pon one-sixth the	weight (1,80	0 lbs), one-half th	e diameter,	and almos	t one and one-half
	times the yield of the Fat	Man bomb.	•					
Sugar	17:00	11-19-51	NTS (Area 9)	DOD	Surface	3.5	WE	1.2 Kt
Uncle	19:59.59.7	11-29-51	NTS (Area 10)	LA/DOD	Crater	-17	WE	1.2 Kt

OPERATION TUMBLER-SNAPPER

Operation Tumbler-Snapper was a series of eight atmospheric tests at NTS. The purpose of the first phase; Tumbler, was to collect information on the effect of the height of burst on overpressure. The peak blast overpressure of the devices used during Greenhouse/Buster-Jangle were lower than predicted and Tumbler was designed to investigate the reasons. The accuracy of the Greenhouse/Buster-Jangle data was affirmed, and in general the Tumbler shots gave a more comprehensive description of blast phenomena than had been previously known. A further objective was to learn more about the dust "sponge" effect and the relationship of dust to radiation. The purpose of the Snapper phase was to test potential warhead designs for inclusion in the stockpile and to study techniques to be used during Operation Ivy. Dog tested the TX-7 and Fox and George the Mark 5. In Easy and How tested the feasibility of a 22-inch implosion system which lead to stockpiling the B12 and efficiency of external initiation. Shot Easy was the first test using beryllium as a tamper material. Ten thousand six hundred DOD personnel participated in Desert Rock IV.

Able	17:00	04-01-52	NTS (Area 5)	LA/DOD	B-50 Airdrop	793	WE	1 Kt
Baker	17:30	04-15-52	NTS (Area 7)	LA/DOD	B-50 Airdrop	1109	WE	1 Kt
Charlie	17:30	04-22-52	NTS (Area 7)	LA/DOD	B-50 Airdrop	3447	WR	31 Kt
	Broadcast live on national	television			-			
Dog	16:30	05-01-52	NTS (Area 7)	LA/DOD	B-45 Airdrop	1040	WR	19 Kt
Easy	12:15	05-07-52	NTS (Area 1)	LA	Tower	300	WR	12 Kt
Fox	12:00	05-25-52	NTS (Area 4)	LA	Tower	300	WR	11 Kt
George	11:55	06-01-52	NTS (Area 3)	LA	Tower	300	WR	15 Kt
How	11:55	06-05-52	NTS (Area 2)	LA	Tower	300	WR	14 Kt

Event Mike was the first test of an experimental thermonuclear device in which a substantial portion of the energy was generated by the fusion of hydrogen isotopes. It used liquid deuterium. Event King was the largest fission weapon ever detonated, presumed to be a prototype of the B18 Super Oralloy bomb, weighed 8600 lbs.

Mike 19:14.59.4 10-31-52 Enewetak/Flora LA Surface WR 10.4 Mt Experimental thermonuclear device; produced a crater 6240 feet in diameter and 164 feet deep. Total device weight 164,000 lbs. Used TX-5 primary. The total fission yield was 8 Mt or 77 percent of the total yield. King 23:30 local 11-15-52 Enewetak B-36H Airdrop LA 1480 WR 500 Kt Reef near Yvonne

OPERATION UPSHOT-KNOTHOLE

The major purposes of Operation Upshot-Knothole were to test devices for possible inclusion in the stockpile; to improve military tactics, equipment, and training for the atomic battlefield; and to enhance civil defense requirements by measuring and assessing blast effects upon dwellings, shelters, automobiles, etcetera. Some objectives were to improve the nuclear weapons used for strategic bomber delivery and those used for tactical battlefield situations, and to establish military doctrine for the tactical use of nuclear weapons. Experimental external neutron generators were tested. It also established that hollow-core nuclear systems can greatly increase the efficiency of implosion weapons and provided tests of radiation implosion mock-ups and primaries as preliminaries to design of the *Castle* devices, and produced information regarding boosting with deuterium gas. The yields ranged from 1 Kt to 61 Kt and included three airdrops, seven tower shots, and an artillery firing using a 280 mm cannon. Approximately 21,000 DOD personnel from the four armed services participated in Desert Rock V. The third and fifth tests of the series were LLNL's first tests since being established as the second design laboratory the year before. These two tests were fizzles.

Annic	13:20	03-17-53	NTS (Area 3)	LA	Tower	300	WR	16 Kt
	More than 600 civil defen	se and news me	dia observers witnes	sed the de	lonation.			
Nancy	13:10	03-24-53	NTS (Area 4)	LA	Tower	300	WR	24 Kt
	Test of primary for TX-14	thermonuclear	bomb, similar to Si	imon device	2.	-		
Ruth	13:00	03-31-53	NTS (Area 7)	LL	Tower	304	WR	0.2 Kt
	First LLNL test, fizzle of	uranium hydrid	e core					
Dixie	15:30	04-06-53	NTS (Area 7)	LA	B-50 Airdrop	6022	WR	11 Kt
Ray	12:45	04-11-53	NTS (Area 4)	LL	Tower	100	WR	0.2 Kt
	Second LLNL test, fizzle	of uranium hyd	ride core					
Badger	12:35	04-18-53	NTS (Area 2)	LA	Tower	300	WR	23 Kt
	Test of primary for TX-16	ó thermonuclear	bomb. Was expected	d to yield	40 Kt			
Simon	12:30	04-25-53	NTS (Area 1)	LA	Tower	300	WR	43 Kt
	Test of primary for TX17,	/24 thermonucle	ar bomb. Predicted	yield was 3	5 Kt			
Encore	15:30	05-08-53	NTS (Area 5)	DOD/LA	B-50 Airdrop	2423	WE	27 Kt
	Used Mark 6	•	、 ,		•			
Harry	12:05	05-19-53	NTS (Area 3)	LA	Tome	300	WR	32 XI
Grable	15:30	05-25-53	NTS (Area 5)	DOD/LA	Airburst	524	WR	15 Kt
	A 280 mm 85-ton cannon f	fired an atomic a	artillery projectile us	ing the Mk-	9 warhead that was	detonated a	t a height	of 524 feet above
	Frenchman Flat, NTS. Th	ne top of the ma	ushroom cloud react	ned an altit	ude of 35,000 feet.		•	
Climax	11:15	06-04-53	NTS (Area 7)	LA	B-36 Airdrop	1334	WR	61 Kt
	High yield proof test of th	e B7						

OPERATION CASTLE

Operation *Castle* was the culmination in the development of the "super," or hydrogen, bomb that began in 1950. The objectives were threefold: first, to fire six or seven experimental thermonuclear devices, including proof tests of three emergency capability weapons (EC14, EC16 and EC17)--the test firing of one of these, presumably the EC16, was contingent upon the results of the other six tests; second, to obtain diagnostic information on these tests necessary to evaluate their performance; and third, to obtain effects information on devices in the megaton range. The first two shots fired, *Bravo* and *Romeo*, gave yields considerably above those expected just prior to actual detonation and led to the conclusion that a lithium deuteride "dry bomb" was practical for stockpiling purposes. Since this type of device was appreciably simpler to use than a liquid deuterium bomb, the Los Alamos test of the EC16 (called *Jughead*) was cancelled and an alternative device inserted in its place (probably shot *Nectar*). The seventh shot of the *Castle* series, *Echo*, (device named "Ramrod") a LLNL design, was withdrawn following the failure of *Koon*. The design principles for the B15 and the B21 were also established. The total fission yield for the *Ivy* and *Castle* tests was 39 Mt.

Page 24

Bravo	18:45.00.0	02-28-54 Bikini	LA Surface	7 WR	15 Mt
	Experimental thermonucl	ear device (named "Shrimp,"	weight 23,500 lbs, 179.5 in h	ength 53.9 in diameter usir	g lithium deuteride.
	Produced a crater with a	diameter of 6000 feet and a c	lepth of 240 feet. Expected y	ield 6 Mt (presumed range	4 to 8 Mt). Cloud
	top 114,000 feet. Used li	ithium enriched to 40 percent.	. The fission yield was 10 M	L Contraction of the second	
Romeo	18:30.00.4	03-26-54 Bikini	LA Barge (1st) WR	11 Mt
	Test of EC-17. Expected	vield 8 Mt (range 1.5 to 15	Mt). Device named "Runt	I," weight 39.600 lbs. 224	9 in length. 61.4 in
	diameter. Cloud top 110.	000 feet. Used natural lithium	enriched to 7.5 percent Li-	. The fission vield was 7 l	Vit.
Koon	18:20.00.4	04-06-54 Bikini/Tare	LL Surface	13.6 WR	110 Kt
	Lawrence Livermore fizzl	e. Device weight 23.000 lbs. 1	15.9 in length, 56.4 in diamet	er. Expected vield 1.5 Mt (range 0.33 to 4 Mt).
	Device named "Morgenste	ern." Cloud top 53.000 feet. k	foon may have been a test of	Ulam's two-stage thermonu	clear proposal based
	on using mechanical shoc	k from the primary to compre	ess the secondary. The fission	n vicid was 100 Kt.	····· · · · · · · · · · · · · · · · ·
Union	18:10.00.7	04-25-54 Bikini	LA Barge	WR	6.9 Mt
	Test of EC-14. Expected	vield 5 to 10 Mt (range 1 to 1	8 Mt). Device named "Alar	n Clock." weight 27,700 lb	s. 151 in length, 61.4
	in diameter. Cloud top 9	4.000 feet. Used lithium enri	ched to 95 percent Li-6. Th	e fission vield was 5 Mt.	, ··· ··· ··· ··· ··· ··· ··· ··· ··
Yankee	18:10.00.1	05-04-54 Bikini	LA Barge	WR	13.5 Mt
	Test of EC-24. Expected	vield 9.5 Mt (range 7.5 to 15 N	(t), Device named "Runt II."	weight 39,600 lbs, 225 in le	ngth, 61 in diameter.
	Cloud top 110.000 feet.	The fission yield was 7 Mt.			
Nectar	18:20.00.4	05-13-54 Enewetak (10	th) LA Barge	WR	1.69 Mt
	Expected vield 2 to 3 Mt	(range 1 to 5 Mt). Device na	med "Zombic." weight 6520	lbs, 110 in length, 34.5 in o	liameter. Prototype
	of B-15. Cloud top 71.00	0 feet. The fission vield was	1.35 Mt.		7F-

OPERATION TEAPOT

÷......

Operation *Teapot*, a series of fourteen tests held at NTS, was authorized by President Eisenhower on 30 August 1954. Some of the tests were for the purpose of expanding the variety of tactical weapons, including those primarily designed for defensive purposes. The series established the feasibility of 16-inch diameter implosion systems and proved the effectiveness of tritium gas boosting of hollow-pit systems, thus establishing the design principles for the XW-25 for the GENIE, the XW-30 for the Talos, the XW-31 and XW-37 for the Nike Hercules missile, the XW-34 for the Lulu, Hotpoint and ASTOR, and the boosted primaries for the TX-15-X4, TX-39-X1, TX-21-X2, TX-27 and TX-28. Approximately 8000 DOD personnel took part in Desert Rock VI. According to a joint AEC-DOD press release, "the mission of Exercise Desert Rock VI [is] to teach its soldiers to view nuclear weapons in their proper perspective. . . . that powerful though these weapons are, they can be controlled and harnessed . . . and that despite the weapons' destructiveness there are defenses against them on the atomic battlefield." The tests confirmed the practicality of small boosted implosion warhead designs. The third shot of the series, *Tesla*, was LLNL's first successful test, two-and-one-half years after the establishment of the laboratory. The LLNL tests had to do with linear (versus spherical) implosion techniques. Devices using external neutron sources were tested during the *Moth*, *Tesla* and *Post* shots. *Turk*, *Apple-1*, *Apple-2*, and *Zucchini* were tests of small high-yield boosted primaries suitable for use in a Class D weapon. LANL test names were flying insects, fruits and vegetables. LLNL test names were early inventors and San Francisco street names.

	· _				- .				
Wasp	2	0:00	02-18-55	NIS (Area 7)	LA	B-36 Airdrop	762	WE	-1 Ki
Moth	1:	3:45	02-22-55	NTS (Area 3)	LA	Tower	300	WR	2 Kt
Tesla	1 .	3:30	03-01-55	NTS (Area 9b)		Tower	300	WR	7 K:
	Predicted yi	eld 2 Kt. First suc	cessful Lav	wrence Livermore ter	st				. :
Turk	1	3:20	03-07-55	NTS (Area 2)	LL	Tower	500	WR	43 Kt
	Test of prim	hary for XW-27.							
Hornet	- 13	3:20	03-12-55	NTS (Area 3a)	LA	Tower	300	WR	4 Kt
	Test of prot	otype air defense	warhead, s	ealed pit, D-T gas bo	costed sphe	rical design	·		
Bee	- 13	3:05	03-22-55	NTS (Area 7)	LA	Tower	500	WR	8 Kt
	Test of air-o	lefense warhead, p	ossibly XV	N-25					
Ess	2	0:30	03-23-55	NTS (Area 10)	DOD	Crater	-67	WE	1 Kt
	Purpose was	to prepare a sub	surface em	placement site for an	n atomic de	molition munition t	est, empla	ce the mu	inition, backfill the
	shaft, and fi	re the munition. 1	t made a c	rater 290 feet in dian	neter and 9	6 feet deep. It used	the Range	er Able co	re in a Mark 6 HE
	assembly, w	eighing 8000 lbs.				•	•		
Apple-1	12	2:55	03-29-55	NTS (Area 4)	LA	Tower	500	WR	14 Kt
Wasp Pri	me 18	B:00	03-29-55	NTS (Area 7)	LA	B-36 Airdrop	737	WR	3 Kt
HA (High	h Altitude) 18	B:00	04-06-55	NTS (Area 1)	DOD	B-36H Airdrop	36,620	WE	3 Kt
Post	12	2:30	04-09-55	NTS (Area 9c)	LLNL	Tower	300	WR	2 Kt
MET	19	9:15	04-15-55	NTS (FF)	LA/DOD	Tower	400	WE	22 Kt
	Military Eff	ects <u>T</u> est)							
Apple-2	. 12	2:10	05-05-55	NTS (Area 1)	LA	Tower	500	WR	29 Kt

More than 500 civil defense specialists took part in extensive exercises in mass feeding, communications, police, fire, sanitation, medical, welfare and other public services. A small group of the participants, including women, experienced the detonation in a trench in the forward position.

Zucchini	12:00	05-15-55	NTS (Area 7)	LA -	Tower		500	WR	28 Kt
----------	-------	----------	--------------	------	-------	--	-----	----	-------

OPERATION WIGWAM

Operation *Wigwam* was a single test conducted approximately 400 miles southwest of San Diego, California at 29 degrees North, 126 degrees West. One of only five underwater tests ever conducted, the *Wigwam* device was suspended by cable from a towed unmanned barge to a depth of 2000 feet in water that was approximately 16,000 feet deep. The major purpose of *Wigwam* was to determine the fatal range a deeply detonated nuclear weapon would have on a submarine and on surface ships. The weapon used was the B7, "Betty" nuclear depth charge.

Wigwam	21:00 local	05-14-55	Pacific	DOD	Underwater	-2000	WE	30 Kt
PROJECT 56			•		1		-	•
Project 56 No. 1	22:10	11-01-55	NTS (Area 11a)	LA	Surface		SE	Zero
Project 56 No. 2	21:15	11-03-55	NTS (Area 11b)	LA	Surface		SE	Zero
One-poi	nt safety test of W-25		```					
Project 56 No. 3	19:55	11-05-55	NTS (Area 11c)	LA	Surface	5	SE	No Yield
Project 56 No. 4	21:30	01-18-56	NTS (Area 11d)	LA	Surface	5	SE	Very Slight
Tests 3	and A were one-point	cofetu teste	of amilanma TV/	112 20 and	TV 20 milmonias			···· /

Tests 3 and 4 were one-point safety tests of prototype TX/XW-28 and TX-39 primaries.

OPERATION REDWING

The objectives of Redwing were to proof test certain weapons in stockpile or to be stockpiled in the near future, to continue developmental research on promising weapons, to continue long range research on new techniques, ideas and designs. More specifically objectives were to establish the feasibility of 12-inch diameter implosions systems, obtain design information on 8-inch implosion systems, and on two-stage systems of 13-15-inch diameter. The seventeen shots in the Redwing series of mid-1956 were primarily to test high-yield thermonuclear devices that could not be tested in Nevada. All Redwing shots except CHEROKEE tested new weapon developments. Cherokee was less a scientific experiment and more a demonstration to the world of U.S. ability to drop a hydrogen bomb from a bomber. The AEC reported that Operation Redwing, "gave important information relating to developing means of reducing fall-out from weapon firing, weapons for defensive purposes, and new design principles." Of the new weapon types, nine tests were sponsored by LANL and seven by LLNL. The test shots fired at Enewetak had smaller yields than those fired at Bikini. High-yield warheads likely tested at Redwing were LANL's B/W28 (bomb/Hound Dog), B/W39 3.75 Mt (bomb/Snark, Redstone), and W49 1.4 Mt (Thor, Atlas D, Jupiter) and LLNL's B/W27 (bomb/Regulus II). Lower yield warheads probably included the W40 (Bomarc, Lacrosse), W44 (ASROC), and W45 (MADM, Terrier, Little John). The total yield for the Redwing series was 20.820 Mt with the fission portion approximately nine Megatons. The U.S. Air sorce sent manned planes through radiation clouds to measure doses in the clouds and to the crews. The planes, five different B-57s, made 27 passes through clouds from six different nuclear explosions, at times from 20 to 78 minutes after detonation. Maximum radiation doses in the cloud were 800 roentgens per hour. Total radiation doses to crew members were as high as 15 roentgens by film badge. Shot names are North and South American Indian tribes.

Lacrosse	18:25	05-04-56	Enewetak/Yvonne	LA	Surface	17	WR	40 Ki
	Test of prototype TX-39 prim	ary, 34.5 ir	diameter, 100 in le	ngth, 8386	lbs device weight			
Cherokee	17:51	05-20-56	Bikini	LA	B-52 Airdrop	4350±150	WR	3.8 Mt
	First air drop by U.S. of a ther top 94,000 feet	monuclear	weaponused the B-	15 bomb. 3	4.5 in diameter, 136 in	length, 68	67 lbs devi	ce weight. Cloud
Zuni	17:56.00.3	05-27-56	Bikini	LL	Surface	9	WR	3.5 Mt
	Three-stage, "clean," (85 perc length, 12,158 lbs device ^w weigh	ent fusion) ht	, high-yield device (I	BASSOON) which eventually led	to the B-4	1, 39 in di	ameter, 135.5 in
Yuma	19:56	05-27-56	Enewetak	LL	Tower	205	WR	.19 Kt
	Boosted asymmetric Swift dev	ice, 5 in di	ameter, 24.5 in lengt	h, did not l	boost			
Erie	18:15	05-30-56	Enewetak	LA	Tower	300	WR	14.9 Kt
	TX-28 primary, low yield boost	sted device,	20 in diameter, 55 i	in length, 2	106 lbs device weight			
Seminole	00:55	06-06-56	Enewetak	LA	Surface		WR	13.7 Kt
	Detonated within in a chambe	r within a (ank of water, 20 in	diameter, 5	5 in length, 1832 lbs	device weig	zht	
Flathcad	18:26	06-11-56	Bikini (10th)	LA	Barge	15	WR	365 Kt

Page 27

	Test of '	'dirty" intermedi	iate yield (c. 350	Kt) version of the B	-28, 20 in	diameter, ~55	in length		· · · · ·
Blackfoot		18:26	06-11-56	Enewetak	LA	Tower	200	WR	8 Kt
	Low yiel	d air defense pro	ototype boosted	device, first use of PI	3X high e	xplosive, 11.5 in	n diameter, 23 in	length,	130 lbs device weight
Kickapoo		23:26	GS-13-55	Engwetak	LL	Tower	300	WR	1.49 Kt
	Asymme	tric device (Swal	llow), for air-to-a	air missile, 8 in diame	ter, 28 in	length			
Osage	-	01:14	06-16-56	Enewetak	LA	B-36 Airdrop	670 <u>+</u> 35	WR	1.7 Kt
	Test of Y	W-25 in instrum	ented drop case,	17.4 in diameter, 25.4	7 in lengtl	h, 3150 lbs devi	ce weight		
Inca		21:26	06-21-56	Enewetak	LL	Tower	200	WR	15.2 Kt
	Low-yiel	d boosted Swan	device, progenite	or of XW-45, 11.6 in	diameter,	22.8 in length			
Dakota		18:06	06-25-56	Bikini	LA	Barge		WR	1.1 Mt
	TX-28, 2	20 in diameter, 5	8 in length	and the second second			•		
Mohawk		18:06	07-02-56	Enewetak	LL	Tower	300	WR	360 Kt
	Boosted	Swan primary w	ith Flute second	ary, 15 in diameter, 4	6.2 in len	gth			
Apache		18:06.00.2	07-08-56	Enewetak (20th)	LL	Barge		WR	1.85 Mt
	Test of 2	XW-27 in Regula	us nose cone, 30	.2 in diameter, 69.8 ir	i length				
Navajo .		17:56.00.3	07-10-56	Bikini	LA	Barge		WR	4.5 Mt
	Test of '	'clean" 95 perce	nt fusion TX-21	C, 56.2 in diameter, 1	49.6 in le	ngth			
Tewa		17:46.00.0	07-20-56	Bikini	LLNL	Barge		WR	5 Mt
	Test of " of 4000	'dirty" 87 percen feet diameter an	t fission Bassoon d 129 feet depth	Prime 3-stage device	, 39 in dia	meter, 135.5 in	length, 15,735 lb	s weight	. Produced a crater
Huron		18:12	07-21-56	Enewetak	LANL	Barge		WR	250 Kt
	15.3 in d	liameter, 43.1 in	length						
					A				
PROJEC	т 57								
Project 57	7 No. 1	14:27	04-24-57	Bombing Range, NV	AEC	Surface		SE	Zero

OPERATION PLUMBOB

Test to determine extent of plutonium contamination of W-25

Operation *Plumbob* (originally called *Pilgrim*), the sixth series held at NTS, included twenty-four detonations and six safety experiments. The series was approved by President Eisenhower on 28 December 1956. The purposes of *Plumbob* were to proof test certain air defense and anti-submarine warheads scheduled for early production; to conduct development tests of components and mockups that provided design information for thermonuclear devices to be fired in Operation *Hardtack I*, including devices having higher yield-to-weight ratios; to conduct exploratory and development tests directed toward achieving more efficient use of nuclear material and warheads of smaller size and weight; and to conduct a deep underground test to explore that mode of testing. Sixteen thousand DOD personnel participated in Desert Rock VII and VIII. The prototype for the W30 warhead for the Talos missile was tested and the W34 warhead for the Lulu, ASTOR, and Hotpoint anti-submarine weapons may have been tested during *Plumbob*. LANL shot names are deceased scientists and engineers. LLNL shot names are North American mountains.

Boltzman	n 11:55	05-28-57	NTS (Area 7c)	LÀ	Tower	500	WR	12 Kt
	XW-40 warhead,	device weight 295 lbs.	````					
Franklin	11:55	. 06-02-57	NTS (Area 3)	LA	Tower	300	WR	140 Tons
	Possible XW-30,	device weight 448 lbs. f	izzle, design yield 2 k	t, boosted	single stage of	device.		
Lassen	11:45	06-05-57	NTS (Area 9a)	LL	Balloon	500	WR	0.5 Tons
	Fizzle, similar to	Wheeler device, unboos	ted all U-235 core.					
Wilson	11:45	06-18-57	NTS (Area 9a)	LL .	Balloon	500	WR	10 Kt
	XW-45-X1 test, (as boosted single stage,	follow-up to Redwin	ig Inca.				
Priscilla	13:30	06-24-57	NTS (Area 5)	LA/DOD	Balloon	700	WR	37 Kt
	Purpose was to st	udy the effects of a nuc	lear weapon with a k	nown yield	. The weapon	n was drawn from	the ste	ockpile, weight 581.4
	lbs, probable TX	-15/39 primary.	•	•				••••
Coulomb-	A 17:30	07-01-57	NTS (Area 3h)	LA	Surface		SE	Zero
	One-point safety	test of XW-31, device w	weight 782.6 lbs.					
Hood	11:40.0	0.4 07-05-57	NTS (Area 9a)	LL	Balloon	1500	WR	74 Kt
	Largest atmosphe	eric test at NTS, device	weight 393 lbs, first	two-stage	test at NTS.	Involved 124 air	craft, t	roop maneuvers by some 2500
	Marines.	•		•				
Diablo	11:30.0	0.1 07-15-57	NTS (Area 2b)	LL	Tower	500	WR	17 Ki
	Similar to Shasta	device, weight 1352 lbs.				,		
John	14:00	07-19-57	NTS (Area 10)	DOD	Rocket	18,500	ŴE	~2 Kt

	A F-89J fired a GENIE	(AIR-2A) air	-to- air rocket with	a W25 w	arbead. The moke	t traveled 474		in 45 anonda	
	release, before detonating						o meters,	m 4.5 seconds	arict
Kepler	11:50	07-24-5	7 NTS (Area 4)	LA	Tower	500	WD	10 24	
	Diagnostic shot directed t	loward ICBM	warhead design, de	vice weig	hi 1517 lbs.	500	***	IV KI	
Owens	13:30	07-25-5	7 NTS (Area 9b)	LL	Balloon	500	WP	07 Kt	
	Possible XW-51 shot, dev	rice weight 85	lbs.			500	wix.	3.7 KI	
Pascal-A	08:00	07-26-5	7 NTS (Area 3i)	LA	Shaft	-500	er.	Slicht	
Stokes	12:25	08-07-5	7 NTS (Area 7b)	LA	Balloon	1500	WD	10 Kr	
	XW-30 test, device weight	t 448 lbs, all (orallov gas boosted.		Dunoou	1500	WK	19 KI	
Saturn	01:00	08-10-5	7 NTS (Area 12c)	LL ·	Tunnel	-100	8E	7	
	One-point safety test of X	W-45-X1, or	alloy-plutonium com	nosite co	re. unboosted	-100	36	ZEIU	
Shasta	12:00	08-18-5	7 NTS (Area 2a)		Tower	500	WD	17 V.	
	Similar to Diablo device,	weight 1435 I	bs			500	** 1/	17 Ki	
Doppler	12:30	08-23-5	7 NTS (Area 7)	LA	Balloon	1500	WD	11 V·	
	Possible test of XW-34, to	otal device we	ight 275 lbs, gas boo	sted imp	losion	1500	WK	11 Ki	
Pascal-B	22:35	08-27-5	7 NTS (Area 3c)	LA	Shaft	-500	SE	0.2 24	
Franklin	Prime 12:40	08-30-5	7 NTS (Area 7b)	LA	Balloon	-500	JE WD	0.3 KI	
	Possibly XW-30, repeat of	Plumbob Fr	anklin shot, all oralle	w. implo	sion	750	WK	4./ KI	
Smoky	12:30.00.1	08-31-5	NTS (Area 8)	LI.	Tower	700	11/12	44 10	
	Test of TX-41 primary, de	vice weight 9	408 lbs.		1000	/00	WK	44 KI	
Galileo	12:40	09-02-57	NTS (Area 1)	LA	Tower	500	NI/D	11 24	
	Diagnostic shot, device we	ight 848 lbs.	boosted, single-stage		1000	500	WK		
Wheeler	12:45	09-06-57	NTS (Area 9a)	 	Balloon	500	WD	107	
	Similar to Lassen device, v	weight 158 lbs	possibly XW-51. a		small diameter (1)	2 inch) imple	wĸ	19/ Ions	
Coulomb	-B 20:50	09-06-57	NTS (Area 3g)	LA	Surface		er er	02 V.	
	Defined one-point safety li	imits of XW3	1. device weight 738	lbs.	Surface		36	0.5 KI	
Laplace	13:00	09-08-57	NTS (Area 7b)	LA	Balloon	750	W/D	1	
	Proof test of gun-type wear	pon, device w	cight 503 lbs.		Suncon	/50	WA	I KI	
Fizeau	16:45	09-14-57	NTS (Area 3b)	I.A	Tower	500	N/D	11 K.	
	Possible XW-34 test, devic	e weight 131.	3 lbs, boosted, single	e-stage.	1040	500	WK	11 N	
Newton	12:50	09-16-57	NTS (Area 7b)	LA	Balloon	1500	11/10	12 24	
	XW-31 test, device weight	1346 lbs.	~~~~~~		Danood	1500	WK	12 KI	
Rainier	16:59.59.5	09-19-57	NTS (Area 12)	IJ.	Tunnel	800	337D	17 24	
	First detonation contained	underground	. Seismic waves dete	cted 230	0 miles away in Al	-077 Iaeka Probabi	WA Wheel W/	1./ NI 25	
Whitney	12:30	09-23-57	NTS (Area 2)	11.		500	y uscu w-	43. 10 V	
	Possible alternate W-27 pri	imary, device	weight 7059 lbs.	20	10401	500	WK	19 KI	
Charleston	n 13:00	09-28-57	NTS (Area 9)	LI.	Balloon	1600	11/12	10 10	
	Small "clean" thermonucle	ar device, we	ght 1225 lbs, second	larv failer	to fire emected	1300 Vield \$0,100 K	WK 1	12 KI	
Morgan	13:00	10-07-57	NTS (Area 9)	II.	Balloon	SOU 20-100 M	4. 11/D	0 12	
	XW-45-X1 test				Dancou	300	WK	8 KI	
·. ·			1 e 1						
PROJECT	r 58		•						. :
Pascal-C	20:15	12-06-57	NTS (Area 3-)	LA	Shaft	250	0E	01-1-	
Coulomb-	C 20:00	12-09-57	NTS (Area 3i)	T A	Surface	~230	SE	Slight	
	Pascal-C and Coulomb-C w	ere safety te	ts of two decience ha	ing firme	in their first	U 	2E	0.5 Kt	
			or two utergils UC	ing meu	In their linat versio	m at HARD'I	ACK		

PROJECT 58 A

Venus 01:00 02-22-58 N Uranus 22:00 03-14-58 N	NTS (Area 12) LL NTS (Area 12) LL	Tunnel -	100 114	SE SE	<1 Ton <1 Ton
--	--------------------------------------	----------	------------	----------	------------------

OPERATION HARDTACK I

Operation Hardtack I included thirty-five tests, all but three of which were at Enewetak and Bikini. Planned at a time when pressures were building for a test moratorium, scientists tried to include tests for as many weapon types as possible. Originally each lab had requested twenty shots and DOD ten shots for a total of fifty. HARDTACK was divided into three parts. The first was development tests of warhead types of which Los Alamos sponsored fifteen and Livermore sponsored fifteen. These tests probably included the W38 (Atlas E/F, Titan I), B41, B43, the W47 (Polaris), the B/W53 (bomb/Titan II), and B/W46 (bomb/Titan II-cancelled), and prototypes for

the W56 and W59 warheads for the Minuteman ballistic missiles. The second part was two shots sponsored by DOD to improve the understanding of the effects of underwater explosions on Navy ships. The third part, also sponsored by DOD, included three high-altitude shots to study ballistic missile defense possibilities. The tests also provided information on the electromagnetic pulse effect from low yield-bursts on electronic components. The total yield is estimated at 35.628 Mt. Shot names are trees, shrubs and plants native to North America and Pacific islands.

Yucca		02:40	04-28-58	Pacific	DOD	Balloon	86.000	WE	1.7 Kt
	The test w	vas conducted 85 nm	northeast o	of Enewetak at 12 ⁰ 37	North. Ea	st 163° 01' East. Th	e device wa	s attached	to an unterbered
	helium ba	lloon and was explore	ded at high	altitude for ABM d	evelopment	used a W-25 warhe	ad total n	avload we	ight 762 lbe
Cactus		18:15	05-05-58	Enewetak	LA	Surface	2	MD MC	10 10
	Test of pr	imary for Mark 43	device weig	the similar	Las Elder de		3	WI	10 MI .
Fir		17.50 00 1	05.11.59	Divini		Deser	10	11/07	1 0 0 1 0
	"Smaller	leas" buo stoce deri				Darge	10	WK	1.30 MI
Butternu		10.16	Of 11 50	E A W-36 prototype	• •	-			
Dutternu	L 73		05-11-58	Enewetak	LA	Barge	10	WR	81 Kt
¥	Probably	1X-40, similar to Ua	ak and Yell	owwood, total device	e weight 61	85 lbs			
Koa		18:30.00.1	05-12-58	Enewetak	LA	Surface	3	WR	1.37 Mt
	Produced	a crater 4000 feet in	diameter	and 171 feet deep, p	ossible XW	7-35, similar to Plum	bob Keplei	device	
Wahoo		01:30	05-16-58	Enewetak	DOD/LA	Underwater	-500	WE	9 Kt
	Mark 7 in	WIGWAM type pre	essure vess	el; fired in 3200 feet	of water				
Holly		18:30	05-20-58	Encwetak	LA	Barge	13	WR	5.9 Kt
	Proof test	of W31Y3, device w	veight 945	lbs -		-			
Nutmeg		21:20	05-21-58	Bikini	LL	Barge	12	WR	25.1 Kt
	Possible X	(W-47				•			
Yellowwo	od	02:00	05-26-58	Enewetak	LANL	Barge	11	WR	330 Kt
	TX-46 pro	ototype "fizzle," simi	lar to Butt	ernut and Oak, cond	ucted to de	velop "clean" version	device w	wight SRRS	lhe
Magnolia	. •	18:00	05-26-58	Enewetak	LA	Rarge	14	WD	57 ¥ 1
Tobacco		02:15	05-30-58	Enewetak		Barge	17	WD	11 6 V
	Similar to	Pistonia device, weight	pht 346 lbs	XW-50 prototype	Lat	Darge		MIC .	11.0 M
Sycamore		03-00	05-31-58	Bikini		Banna	10	11/02	00 W.
оу оцшог с	Fizzle TY	Al prototype simila	UJ-J1-J8	Dikilli Tond Dine designed as	LL 	Barge	12	WK	92 Ki
Rose	1 1446, 17	10.15	a io ropia	Fand Fine devices, w	eignt 9/23	ios, predicted yield	5 MI		
IVODC	Possible V	10.4J W 40 militaria dania	00-02-38	Enewetak (30th)	LA	Barge	15	WR	15 Kt
Timbualla	POSSIDIE A	w-49 primary, devic	æ weight 1	4/0 105					
Maria		43:15 17:20	06-08-58	Enewetak	DOD	Underwater	-150	WE	8 Kt
маріе		17:30	06-10-58	Bikini	LL.	Barge	12	WR	213 Ki
	Total devie	ce weight 380 lbs, tw	o-stage de	vice, possibly XW-55	predecess	OF			
Aspen		17:30	06-14-58	Bikini	ц.	Barge	11	WR	319 Kt
	Possible X	W-47 prototype, two	o-stage dev	ice, similar to Nutme	eg, Redwoo	d and Dogwood dev	ices		
Walnut		18:30	06-14-58	Enewetak	LA	Barge	7	WR	1.45 Kt
	XW-49 pr	ototype, total device	weight 168	3 lbs		-			
Linden		03:00	06-18-58	Enewetak	LA	Barge	8	WR	11 Kı
14	Possible X	W-50 test, similar to	Hardtack	II Ousy device			- 		· · · ·
Redwood		17:30	06-27-58	Bikini	LL	Barge	11	WR	412 Ki
	Possible X	W-47 prototype, sim	ilar to Ast	en. Nutmeg and Do	 wood devi	ces two-stage device	weight 65	A lbs	716 /24
Elder		18:30	06-27-58	Enewetak		Rame	o weight up		990 V.
	Possible X	W-43 prototype sim	ilar to Car	tus device total devi	La L	Large	3	WK	000 M
Oak		10-30	06.28.58	Enquetak		Danaa	-	1100	00.14
	TY-46 pm	totune similar to But	00-23-38	Vellowers of designs		Darge	·	WK	8.9 MI
	and 183 fe	et deen predicted si		I CHOWWOOD DEVICES	, total devic	æweignt 6113 los, pr	oduced a c	rater 4400	feet in diameter
History	aud 105 le	er deep, predicted yr	CIU 7.5 MIL			_			
піскогу	Bessible M	24:00 W 47 automatus 4	06-29-58	Bikini (20th)	ц	Barge	12	WR	14 Kt
C	Possible A	w-4/ primary test, s	imilar to H	ardtack II Neptune	and Titania	devices			
ochnora		18:30	07-01-58	Enewetak	LA	Barge	7	WR	5.2 Kt
- .	Probable to	est of Pisonia device	primary						
Cedar		17:30	07-02-58	Bikini	LL	Barge	11	WR	220 Kt
	Total devic	æ weight 2470 lbs, tv	vo-stage de	vice					
Dogwood	1	18:30	07-05-58	Enewetak	LL	Barge	12	WR	397 Kt
	Possible X	W-47 prototype, two	-stage devi	ce, similar to Redwo	od. Aspen.	Nutmeg devices			
Poplar	(03:30	07-12-58	Bikini	L	Barge	12	WR	93 Mt
-	Possible T2	X-41, total device we	ight 9316	bs, similar to Pine a	nd Sycamor	»" re devices, two-stage	device	***	
Scaevola	()4:00	07-14-58	Enewetak	1.A	Rame	20	82	٥
	XW-34 one	e-noint safety test						36	v
Pisonia		23:00	07.17.59	Enewetak	1.4	Dama		wn	SEE VA
	4		V/~I/~JO /	LINCWCLER	L-A		0.7	WV HC	233 KI

Page 29

Page 30

	Modified Tobacco device, yie	ld higher th	an expected, probability	le XW-50	Drototype			
Juniper	04:20	07-22-58	Bikini	LL	Barge	12	WR	65 KI
	Last of twenty-three tests held	d at Bikini .	Atoll, "most radical l	JCRL sho	t," test of "entirely n		" nossible	- XW-47 primary candidate
Olive	20:30	07-22-58	Enewciak	LL	Barge	8	WP	202 V+
	Two-stage device, established	capability (for high yield with ve	ry light we	ight	•	WIX .	202 Ki
Pine	20:30	07-26-58	Enewetak	ίL –	Barge	8	WR	2 Mr
	TX-41 prototype, total device	weight 875	2 lbs, similar to Syca	more and	Poplar devices	•	** 1	2 ML
Teak	10:50	08-01-58	Over Johnston Islan	d DOD	Redstone Rocket	252.000	WE	2934
	DOD ABM effects test, used	W-39 warh	cad, total device wei	eht 6230 IF	s. flash of light was s	zicible from		
Quince	02:15	08-06-58	Enewetak		Surface	2	WD	/00 miles away.
	Possible XW-51 test, "fizzle"				Sature	5	WK	0
Orange	10:30	08-12-58	Johnston Island	מסת	Redetone mokat	1 41 000	11/17	0.0.14
-	Detonated 41.6 km south of J	ohnston Isl	and DOD ABM effe	vis test m	red W-20 method to	141,000	WE	3.8 MI
Fig	04:00	08-18-58	Enewetak		Surface	Mai device	weight 62	30 156
-	Possible XW-51 test, similar		denice last of form			. .	WR	0.02
	announced a one-year morato	rium to bee	vin October 21	unree tests	new at Enewetak.	Un August	22 Presid	lent Eisenhower

OPERATION ARGUS

Operation Argus was a series of three very-high-altitude tests carried out shortly after the conclusion of Hardtack I in the South Atlantic about 1100 miles southwest of Capetown, South Africa. It was the only clandestine test series conducted in the seventeen-year period of atmospheric testing. Specially modified Lockheed X-17a three-stage ballistic missiles were fired from the USS Norton Sound (AVM 1) carrying low-yield W-25 warheads. The Argus operation was not intended as a test of nuclear weapons or their destructive effects. It was an experiment designed to provide information on the trapping of electrically charged particles in the earth's magnetic field with the objective of assessing how very high-altitude nuclear detonations might interfere with communications equipment and ballistic missile

Argus I	02:28	08-27-58 South Atlantic	DOD	Rocket	WF	1781
	About 300 miles altitude.	38.5 ⁰ South, 11.5 ⁰ West			WE	1.7 14
Argus II	03:18 About 300 miles altitude.	08-30-58 South Atlantic 49.5 ⁰ South, 8.2 ⁰ West	DOD	Rocket	WE	1.7 Kt
Argus III	22:13 About 300 miles altitude.	09-06-58 South Atlantic 48.5 ⁰ South, 9.7 ⁰ West	DOD	Rocket	WE	1.7 Kt

OPERATION HARDTACK II

Operation Hardtack II was a series of thirty-seven tests, the last the United States conducted before adopting a test moratorium. Nineteen of the tests were conducted to evaluate the yield and efficiency of newly developed nuclear devices. The other eighteen were safety experiments designed to determine the stability of nuclear devices during transportation and storage. A 20th nuclear test (Adams) had been planned on October 30 but unfavorable weather conditions caused a delay and it was never fired. After a flurry of thirtcep tests in seven days at the end of October, the United States did not test again for more than thirty-four months. The original name of the series was *Millrace*, which encompassed 11 tests (four underground and seven one-point safety). Twenty six were added in a very short period of time. LANL shot names are New Mexico counties. LLNL shot names are North American mountains, Roman gods, goddesses and medieval fairies.

Otero	20:00	09-12-58	NTS (Area 30)	LA	Shaft	490	CT:	20 77
	One-point safety test, failed	l, similar to F	lardtack I Sequoia d	levice. XW		-400	36	.38 1 ODS
Bernalillo	19:30	09-17-58	NTS (Area 3h)	LA	Shaft	-456	SF	15 Tone
	Repeat of Otero shot, devi	∝ still unsafc	XW-44 prototype				012	15 1046
Eddy	14:00	09-19-58	NTS (Area 7b)	LA	Balloon	500	WD	02 Tains
	Possible W47 warhead			· · ·	Danoon	500	WK	65 10 <u>0</u> 5
Luna	19:00	09-21-58	NTS (Area 3m)	LANL	Shaft	.494	er -	16 7
	Repeat of Otero/Bernalillo	device, still u	nsafe			-101	3E	1.5 TOUR
Mercury	22:00	09-23-58	NTS (Area 12f)	LL	Tunnel	-193	۹E	Flicks
	Possible XW-47 primary sa	fety test, simi	lar to Hardtack I Ju	niner devid		-105	GL	Sign
Valencia	20:00	09-26-58	NTS (Area 3r)	LA	Shaft	.484	88	2 Tana
	Device judged one-point sa	fe in spite of	vield, similar to Proj	iect 58 Pas	cal-C device and n	elated to Li	unden als TT	
Mars	00:00	09-28-58	NTS (Area 126)	11	Turnel		ITULACK II	San Juan Oevice
	XW-48 one-point safety tes	t, similar to T	amalpais and Ceres	devices	1 unnei	-140	SE	13 Tons
Mora	14:05	09-29-58	NTS (Area 7b)	LA	Balloon	1500	WP	2 81

a starte

	Test of de	vice used in Otero/B	ernalillo/L	una shots					
Hidalgo		14:10	10-05-58	NTS (Area 7b)	LA	Balloon	377	SE	77 Tons
	One-point	safety test of Mocca	sin device.	failed, similar to pro	piect 58 Co	ulomb-C device	-		
Colfax		16:11	10-05-58	NTS (Area 3k)	LA	Shaft	-350	SE	5.5 Tons
	One-noint	safety test of Otero	/Bernalillo/	Luna/Mora device, fa	ailed				
Tamalnais	ene peini	22:00.00.1	10-08-58	NTS (Area 12b)	IL.	Tunnet	-407	WR	72 Tons
1 mmmbon	XW-48 te	st similar to Mars a	nd Ceres d	evices expected vield	100 tons	+ 			
Ouav	7111-10-10	14·30	10-10-58	NTS (Area 7c)	LA	Tower	100	WR	79 Tons
Quay	Similar to	Handtack I Linden (levice pos	sible XW-50 primary					
1.00	Simmar to	13.20	10.13.58	NTS (Area 7h)	LA	Balloon	1500	WR	1.4 Kt
LAG	Similar to	Otero/Remalillo/Lu	na Mora da	Nices		Duncon	1000		
Mantuna	Similar to	19.00	10 14 59	NTS (Ame 170)	11	Tunnet	-110	SE	115 Tone
Neptune	0	10:00	7	failed design similar	un Undin	ak I Uiskow and Us	-110 ediack II T	'itonia davi	
Tlanditan	One-point	salety icst of A w-4	10 15 50	ialico, design similar		Town		Maina ucvi	12 Tone
Hamilton	B	10:00	10-13-38	NIS (Area 5)	DOD/LL	TOWEL	20	WK	1.2 1005
•	Predicted	yield 20-50 tons	10 1/ 60	NTTO (A 10-)		70	000	1100	e V.
Logan		06:00.00.1	10-10-58	NIS (Area 12e)	LL	1 unnei	-932	WK	5 K I
	Similar to	Juno device, predict	ed yield 3-	7 KI					AF F
Dona Ana	3	14:20	10-16-58	N'IS (Area 7b)	LA	Balloon	450	WK	37 1 ONS
	Similar to	Otero/Bernalillo/Mo	ra/Luna/C	olfax and Hardtack I	Sequoia d	evices, predicted yiel	d 50-80 tor	15	
Vesta		23:00	10-17-58	NTS (Area 9e)	LLNL	Surface	0	SE	24 Tons
	One-point	safety test of XW-4	7 primary	candidate, similar to	Wrangell,	Oberon, Sanford dev	ices, failed		
Rio Arrib	a	14:25	10-18-58	NTS (Area 3s)	LA .	Tower	72.5	WR	90 Tons
	Low yield	Mk 7	•						
San Juan		14:30	10-20-58	NTS (Area 3p)	LA	Shaft	-234	SE	Zero
	Successful	one-point safety tes	t of device	related to Valencia	device				
Socorro		13:30	10-22-58	NTS (Area 7b)	LA	Balloon	1450	WR	6 Kt
	Similar to	Plumbob Pascal-A a	nd -B and	Hardtack II Lea dev	ice, possibi	le XW-54 test			
Wrangell		16:50	10-22-58	NTS (Area 5)	LL	Balloon	1500	WR	115 Tons
	Possible >	(W-47 primary candi	date, simil:	ar to Vesta. Oberon.	Sanford de	evices, vield below pr	ediction		
Oberon		20:30	10-22-58	NTS (Area 8a)	LL	Tower	25	SE	Zero
	One-point	safety test of device	similar to	Project 58A #1. Ha	rdtack II V	esta, Wrangell, Sanf	ord devices	, possible	XW-47 primary.
	successful			,		, ···, ····			
Rushmon	p.	23.40	10-22-58	NTS (Area 9a)	П.	Balloon	500	WR	188 Tons
	Possible 3	W-47 primary test	imilar to l	Ventune Titania devi	ions vield l	velow prediction	200		
Catron		15-00	10.24.58	NTS (Area 3t)	ΤΔ	Tower	725	SE	21 Tons
Canon	One-point	sofety test of device	eimilar to	Mora device failed	La	TOWCI			
Tuno	опе-рош		10 24 59	NTS (Area 00)	11	Surface	0	SE.	17 Tone .
JUNO		cofety test to determ	10-24-30	limite of degion simi	LL Instalaes		v	36	1.7 1010
Carres	One-point	04.00	10 24 59	MINIS OF GEVICE MIN	ar to Loga		75	CC.	07 Tone
Ceres		of the last of VIV 4	10-20-38 9. similar (NIS (Area ou)		TOWEL	.	36	0.7 10445
o	One-point	salcty icsi ol AW-4	o, similar i	o ramaipais and Ma		D.N	1 600	11.071	10 V.
Sanicij		19:20 19:20	10-20-28	NIS (Area 5)		Balloon	1200	WR	4.9 KI
	POSSIDIC 2	W-4/ primary candi	date, simil	ar to Oberon, vesta,	wrangeu	Devices, succession			0 0 Y
De Baca		16:00	10-26-58	NIS (Area 7b)	LA	Balloon	1500	WK	2.2 Ki
-	Similar to	Catron and Mora de	evices, yield	lower than expected	1				
Chavez		14:30	10-27-58	NIS (Area 3u)	LA	Tower	52.5	SE	0.6 Tons
	One-point	safety test of design	similar to	De Baca device, fail	ed				
Evans		00:00.00.2	10-29-58	NTS (Area 12b)	LL	Tunnel	-852	WR	55 Tons
	Probable .	XW-47 primary test,	similar to	Blanca device, fizzle,	predicted	yield 2-8 Kt			
Mazama		11:20	10-29-58	NTS (Area 9)	LL	Tower	50	WR	Zero
	Fizzle								
Humbold	L	14:45	10-29-58	NTS (Area 3v)	DOD/LL	Tower	25	WR	7.8 Tons
	Repeat of	Hamilton shot							
Santa Fe	-	03:00	10-30-58	NTS (Area 7b)	LA	Balloon	1500	WR	1.3 Kt
Ganymed	e	11:00	10-30-58	NTS (Area 9g)	LL	Surface	0	SE	Zero
	One-point	safety test of W45 v	ariant, suc	cessful	•	•			
Blanca	· · · · F - · ····	15:00.00.0	10-30-58	NTS (Area 12e)	LL	Tunnel	-987	WR	22 Kt
	Test of all	crnate W47 primary	similar to	Evans device, predic	ted vield v	vas 20 Kt	÷		
Titania		20:34	10-30-58	NTS (Area 8c)	Ц	Tower	25	SE	0.2 Tons
		and any such as and distant	1 11/47	many similar to Ular	heak I Llia	kont and Uandtock I	Nentrine	devices	1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 -
	One-point		91 W4/ DO	mary, similar to riard					

A series called Operation Trumpet had been scheduled at NTS for the spring of 1959 and a series called Operation Willow was scheduled for Enewetak for 1960.

OPERATION NOUGAT

Hereafter, with the exceptions of Dominic I and Dominic II, operations are by Fiscal Year. FY 1962-FY 1976 (1 July 1961-30 September 1976) and FY 1977-FY 1992 (1 October 1976-30 September 1992). LLNL shot names are North American rivers. LANL shot names are North American rivers.

Antler	17:00.00.12	09-15-61	NTS (Area 12c)	LL	Tunnel	-1318	WR	2.6 Kt
	Possible W45 test							
Shrew	19:45.00.12	09-16-61	NTS (Area 3ac)	LA	Shaft	-322	WR	Low
	Possible XW54 test							
Boomer	22:00	10-01-61	NTS (Area 3aa)	LA	Shaft	-330	WR	Low
-	Possible XW54 test		•					
Chena	18:00.00.12	10-10-61	NTS (Area 12b)	LL	Tunnel	-838	WR	Low
	Possible W44 prototype, simi	lar to Don	ninic I Swordfish dev	ice				
Mink	18:30.00.13	10-29-61	NTS (Area 3ae)	LA	Shaft	-630	WR	Low
	Similar to Hardtack II Quay	and Hardta	ack I Linden devices					
Fisher	23:04.59.63	12-03-61	NTS (Area 3ah)	LA	Shaft	-1191	WR	13.4 Kt
	Repeat of Mink shot, possible	e XW50 pr	imary test. Crater fo	ormed 27 n	ninutes after detonat	ion. 50 dee	p and 585	feet in diameter
Gnome	19:00.00.00	12-10-61	Carlsbad, NM	LL	Shaft	-1184	1st PS	31 Kt
Mad	18:00.00.16	12-13-61	NTS (Area 9a)	LL	Shaft	-594	WR	0.50 Kt
	Similar to Stillwater device, y	ield below	prediction					
Ringtail	16:35.00.13	12-17-61	NTS (Area 3ak)	LA	Shaft	-1192	WR	Low
	Possible XW-54 test, similar	to Shrew a	nd Boomer devices					2011
Feather	16:30.00.13	12-22-61	NTS (Area 12b)	LL	Tunnel	-812	WR	T ow
	Possible test of corroded W4	7 warhcad	· · ·					2011
		1962	*****	**********				
Stoat	16:30.00.14	01-09-62	NTS (Area 3ap)	LA	Shaft	-992	WR	51 Kt
	First in a series of developme	ental tests o	of new multipoint de	tonation sy	stem			J.I M.
Agouti	18:00.00.13	01-18-62	NTS (Area 3ao)	LA	Shaft	-856	WP	6 A Kt
	One of a group of tests design	ned to deve	clop a small 10 inch	diameter i	nplosion system		****	0.4 121
Dormouse	e 18:00.00.13	01-30-62	NTS (Area 3ag)	LA	Shaft	-1101	WD	1 our
	Similar to Mink, Fisher, racco	on. Dormo	ouse Prime, and Paci	krat device	5	-1171	** 1/	LOW
Stillwater	18:00.00.16	02-08-62	NTS (Area 9c)	LI.	Shaft	.505	WD	2 07 V.
	Similar to Mad device				Olimit.	-393	WI	3.07 KI
Armadillo	16:30.00.13	02-09-62	NTS (Area 3ar)	LA	Shaft	.786	WD	71 84
	Similar to Ermine, Chinchilla	I/II devices	5		CINET	-730	WK	/.1 Ki
Hard Hat	18:00.00.10	02-15-62	NTS (Area 15a)	DOD	Shaft	.042	33/12	67 V.
	Purpose was to test the capal	bility of un	derground structure	s to withet	and strong motions	-943		J./ N
	detonation in hard rock. The	explosion	formed a cavity about	at 126 feet	in dismater	generateu	by an uno	erground nuclear
Chinchilla	16:30.00.13	02-19-62	NTS (Area 3ag)		Shaft	402	1173	10.12
·	Similar to Eraines Chiachilla	ll devicea-		 ,	Shart	-4742	A W	1.9 Ki
Codsaw	17:50.00.16	02.19.62	NTS (Area Oa)	11	Shaft	60 7	1100	•
	Similar to Hoosic, Hudson, an	d Arikaree	devices possible W	AS test	Shan	-090	WK	Low
Cimarron	18:00.00.16	07.73.67	NTS (Area Ob)	7 J ICSI J I	ShaA	1000		
Platypus	16:30.00.13	62.24.62	NTS (Area 2nd)		Shaft	-1000	WR	11.90 Ki
	Similar to Shrew Boomer and	l Rinetail d		LA	Snatt	-190	WR	Low
Pampas	19:10.00.09	03.01.67	NTS (Area 2al)	1 4 6 112	6h-6			_
Danny Bo	v 18:15:00:12	03-01-02	NTS (Area 18)		Shart	-1191	1st UK	Low
, 20,	Atomic Demolition Munition	wordsering to	NIS (Alta 16)		Crater	-110	WE	0.43 Kt
Ermine	16:30 00 13	03 04 47	NTS (Area 2.b)		diameter, 84 leet de	æp, in basa	lt	_
	Similar to Armadillo and Chin	03-00-02	NIS (Alea Sab)	LA	Snart	-240	WR	Low
Brazos	18-00 00 21	02 00 47				.		
	Swiem proof test possible VN	U3-U8-02	N15 (Area 90)	LL	Shaft	-841	WR	8.4 Kt
Homore	16.20 00 12		ry lesi				• •	· · · · · · · · · · · · · · · · · · ·
i iognose	10.50.00.15 Similar to Mandtack VI Manua	03-13-62	NIS (Area 3ai)	LA	Shaft	-784	WR	Low
Hoosie	19.00 00 14	y and Ober	ton devices					
LICOSIC	18:00.00.16	03-28-62	NIS (Area 9j)	LL	Shaft	-614	WR	3.40 Kt
Chine have	Similar to Hudson and Arikare	e devices,	possible W45 test					
		03-31-62	NTS (Area 3as)	LA	Shaft	-448	WR	Low
N	Similar to Ermine, Armadillo a	and Chinch	illa I devices					
Dormouse	11 18:00.00.13	04-05-62	NTS (Area 3az)	LA	Shaft	-856	WR	10.6 Kt
	Similar to Dormouse, Mink, Fi	sher. Raco	oon, Packrat, Hardta	ock I Linde	n and Hardtack II (Juan device	-	

Passaic Hudson	18:00.00.16 04-06-62 NT 18:00.00.16 04-12-62 NT Similar to Arikaree, Hoosic, and Codsaw dev	'S (Area 9i) LL 'S (Area 9h) LL vices, possible W45 tes	Shaft Shaft	-766 -495	WR WR	Low Low
Platte	18:00.00.13 04-14-62 NT Vield reproducebility test foiled retented in 1	S (Area 12k) LL	Tunnel	-628	WR	1.85 Kt
Dead	18:40.00.16 04-21-62 NT	S (Area 9k) LL	Shaft	-634	WR	Low

OPERATION DOMINIC I

The 1962 tests in the Christmas and Johnston Island areas and elsewhere in the Pacific constituted Operation Dominic I. These tests were also part of either Operation Nougat or Operation Storax depending on whether they occurred in FY 1962 or FY 1963, respectively. Operation Dominic I was a series of thirty-six atmospheric nuclear detonations held at several Pacific Ocean locations from April to November 1962. With the four continental tests of Dominic II these were the last atmospheric tests conducted by the United States. No longer able to use the atolls of Enewetak and Bikini, the United States entered into an agreement with the United Kingdom near the end of February 1962 to use Christmas Island for twenty-five of the tests. In return the British were allowed to participate in the nuclear test program at NTS and made diagnostic measurements of the Christmas Island shots. Another ten tests took place in the Johnston Island area. Four types of tests were carried out: (1) About twenty devices were detonated for weapons development purposes. In these tests, progress was made in nuclear technology that resulted in significant increases in the yield-to-weight ratios, more efficient use of nuclear materials, reduction of the fission component of total yield, and increased safety and reliability of stockpiled weapons. Among the Dominic development tests were some failures occurring in cases where designs involved a substantial extension of known technology; (2) Several stockpiled bombs and warheads were proof tested. These weapons had been designed after Hardtack and manufactured during the moratorium. The designs had extrapolated to the maximum extent practicable the nuclear weapons technology developed during Hardtack and previous tests. Each of the nuclear weapons proof tested functioned satisfactorily; (3) A third group were five high altitude effects tests from the kiloton to megaton range. The Fishbowl portion of the Dominic tests (sponsored by DOD) investigated the ability of the intercontinental missiles systems, the early warning systems, and the command and control systems to operate in a nuclear environment. Some failures occurred. Three Thor rockets malfunctioned in flight (Bluegill, 2 June; Starfish, 19 June; Bluegill Double Prime, 15 October) and had to be destroyed, with their warheads. On 25 July (Bluefish Prime) a Thor missile blew up on the launch pad on Johnston Island, causing extensive damage. The nuclear warhead was destroyed by radio command causing extensive alpha contamination of the launch pad; (4) Proof tests of two complete nuclear weapons systems were carried out. The entire Polaris and ASROC system including the delivery vehicles, missiles, and nuclear warheads were tested under realistic conditions. An Atlas ICBM was planned to be fired from Vandenberg AFB, California to a target north of Johnston Island. The test was canceled in late May. On March 2 President Kennedy publicly announced his decision to resume atmospheric testing, giving the date as 23 April. Los Alamos shot names are New Mexico towns and pueblos. Livermore shot names are North American rivers.

Adobe	15:45	04-25-62	Christmas Is	LA	B-52 Airdron	2900	WR	Intermediate
	W50 development and ve	rification test, s	imilar to Aztec, Ki	ngfish Trip	e Prime devices			
Aztec	16:01	04-27-62	Christmas Is	LA	B-52 Airdron	2610	WR	Intermediate
	W50 test similar to Adob	e, Kingfish and	Bluegill Triple Prin	ne device	-			
Black	18:00.00.16	04-27-62	NTS (Area 9p)	LL	Shaft	-714	WD	Low
Traces	Possible XW-55 test in m	ockup	· · · · · · · · · · · · · · · · · · ·	 			***	
Arkansas	18:01	05-02-62	Christmas Is	LL	B-52 Airdron	5030	WD	Low Mt
	Mk 56 test				2.22.110100	5050	WIX .	
Questa	19:04	05-04-62	Christmas Is	LA	B-52 Airdron	5730	WD	Intormediate
	Mk 59 test, similar to Alm	na, Rinconada.	and Sunset devices		20212.0.00	5250		menmediate
Frigate Bi	ird 23:30	05-06-62	Pacific	Π.	Polaris A2	10-15 000	WD	600 12+

The submarine USS Ethan Allen (SSBN-608), launched a Polaris missile while submerged about 155 nautical miles east northeast of Christmas Island in the Pacific Ocean (North 4 degrees 50 minutes, West 149 degrees 25 minutes). The re-entry vehicle/warhead traveled about 1020 nm toward the island, detonating as an airburst at an altitude of about 8300 feet, 125 miles from the nominal aim point. The yield of the W47Y1 warhead on the Polaris A2 SLBM was not announced but is estimated to be 600 Kt. Shot Frigate Bird was the first and only operational test of a U.S. SSBN/SLBM weapon system.

Paca	19:33.00.0 0	5-07-62	NTS (Area 3ax)	LA	Shaft	-848	WR	Low
	Test of "100 lb/100 Kt" class dev	ice	. ,					2.50
Yukon	18:01 0	5-08-62	Christmas Is	L	B-52 Airdron	2880	WR	Intermediate
	Similar to Nougat Arikaree, Huds to-weight ratios of ICBM warhes	ion, Codi ads	saw and Hoosic device	es and Don	ninic I Muskegon and	Chetco de	vices, test	to increase yield-
Mesilla	17:01 0	5-09-62	Christmas Is	LA	B-52 Airdron	2450	WD	Intermediate
	Similar to Duke device				2 22 1 arei op	2450	WK	micimculate
Arikaree	15:00 0;	5-10-62	NTS	?	Shaft	2	WD	Low
	Similar to Hudson, Hoosic, and	Codsaw o	levices, possile W45	•		•	WIX	

Page 34

Muskego	on Similar (15:37 to Chetco and Yuko	05-11-6; n devices	2 Christmas Is	LL	B-52 Airdrop	2995	WR	Intermediate
Swordfist	h The USS minutes, warhead was mea last of or	20:02 S Agerholm (DD-826 west 124 degrees 13 detonated underwate at to determine the only five underwater t	05-11-62) steaming minutes, f er, about 3 effect of th ests.	2 Pacific g in an area about 3 Gred an anti-submari 50 yards beyond the nuclear explosion	DOD 70 nm we ne rocket nominal ai on the son	Underwater st-southwest of San I (ASROC) at a targe im point, producing a ar gear of destroyers	-650 Diego, Cal t raft abou low yield. and subm	WE ifornia, No it 4000 yard Among of arines. Sh	Low orth 31 degrees 14 is away. The W44 ther things the test ot <i>Swordfish</i> is the
Encino	Test of I	17:02 VK 43 homb inside 1	05-12-62	Christmas Is	LA	B-52 Airdrop	5510	WR	Intermediate
Aardvark	Test of i	19:00.00.10 mproved TX-33Y2 A	05-12-62	NTS (Area 3)	sc ?.	Shaft	-1424	WR	40 Kt
Swanee	Test of "	15:21 cican" ABM warhcad	05-14-62 , similar to	Christmas Is Bluestone device. r	LL possible W	B-52 Airdrop	2940	WR	Intermediate
Eel Chetco		15:00.00.16 15:36	05-19-62 05-19-62	NTS (Area 9m) Christmas Is	? LL	Shaft B-52 Airdrop	-714	WR	Low
White	Similar to	Muskegon and Yul 15:00.00.15	on devices O5-25-62	NTS (Area 9b)	ш	Shaft	.632	WR	Intermediate
Tanana	Probable	XW-58 primary test 16:08	; similar to 05-25-62	Sacromento device Christmas Is	LL	B-52 Airdrop	9030	WR	Low
Nambe Raccoon	r 1221 C *	17:02	05-27-62	Christmas Is	LA	B-52 Airdrop	7140	WR	Intermediate
Packrat	Similar to	Dormouse, Dormoi	use Prime,	NIS (Area 3a) Mink, Fisher, Packra	? at; <i>Hardıa</i> c	Shaft * I Linden and Hard	-539 <i>ltack II</i> Qu	WR ay devices	Low
Aima	Mk 59. si	17:02 milar to Questa Rip	06-06-62 06-08-62	NIS (Area 3aw) Christmas Is	7 LA	Shaft B-52 Airdrop	-860 8865	WR WR	Low Intermediate
Truckee	XW-58 de	15:37	06-09-62	Christmas Is	LL	B-52 Airdrop	6970	WR	Intermediate
Yeso	Fourth la	16:01	06-10-62 similar to	Christmaš Is Hardtack I Kon da	LA	B-52 Airdrop	8325	WR	Low Mt
Harlem	W47Y2 te	15:37 st	06-12-62	Christmas Is	LL	B-52 Airdrop	13,645	WR	Intermediate
Des Moine	z Similar to	21:00.00.12 Platte device	06-13-62	NTS (Area 12j)	?	Tunnel	-660	WR	Low
Rinconada I	Possible V	16:00 V59 test, similar to Q	06-15-62 ucsta, Aln	Christmas Is na, and Sunset device	LA	B-52 Airdrop	9105	WR	Intermediate
	Similar to	16:00 Mesilla device	96-17-62	Christmas Is	LA	B-52 Airdrop	9090	WR	Intermediate
Petit	Second La	15:01 wrence Livermore "f	06 19-62 izzle" in <i>D</i> e	Christmas Is ominic I	LL '	B-52 Airdrop	14, 995	WR	Low
Daman I Otowi		17:00.00.13 16:00	06-21-62 06-22-62	NTS (Area 3be) Christmas Is	? LA	Shaft B-52 Airdron	? 9010	WR	Low
P Bighorn	ossible W	/50 primary in mock 15:19	ир 06-27-62	Christmas Is	LL	B-52 Airdron	11 810	WD	
Haymaker Marshmailo	W :	18:00.00.12 17:00	06-27-62 06-28-62	NTS (Area 3aus) NTS (Area 16a)	? DOD-LL	Shaft Tunnel	-1340	WR	67 Kt
F Bluestone	irst name	d Jericho. Purpose w 15:21	as to study 06-30-62	cffects on equipme	nt and mai	terials at a simulated	high altite	ide	LOW
X Sacramento	(W-56X2	device 21:30.00.16	06-30-62	NTS (Area 9v)	9 9	D-J2 ALUTOP	4980	WR	Low Mt
Si	imilar to `	White device			•	Judil	-489	WK	Low

OPERATION STORAX

Sedan

17:00 07-06-62 NTS (Area 10h) LL Crater An excavation experiment to study the effects and phenomenology of cratering detonation in alluvium. Some 12 million tons of rock and earth were lifted by the explosion with over eight million falling outside the crater. The crater produced was 1280 feet in diameter and 320 feet deep. 2nd PS 104 Kt -635 The thermonuclear device was similar to the Dominic I Swance and Bluestone devices.
OPERATION	DOMINIC II							
Th	e four weapons effec	ts tests at NTS	in July of 1962 co	nstituted C	Operation DOMINIC	II and wer	e also par	t of Operation STOR
Little Felier i	i 19:00	07-07-6	2 NTS (Area 18)	DOD	Surface	3	WE	22 seed
Us Starfish D-1	ed a Davy Crockett \	W54 stockpiled	warhead.			5	W.L.	22 tong
Startish Prime	e 09:00	07-09-6	2 Johnston Is	DOD	Thor Rocket	248 m		1 /6 3/6
Hig	gh altitude, 400 km, u	ised a W49 wa	rhead with a Mk4 r	reentry veh	icle	6 40 10	u we	1.45 MI
Sunset	16:33	07-10-6	2 Christmas Is	i ía	B-52 Airdron	5000	WD	Internet at a
Pos	sible W59 test, simila	ar to Questa, A	Uma, and Rinconad	da devices	=		WK	intermediate
ramiico	15:37	07-11-6	2 Christmas Is	LL	B-52 Airdron	14 330	11/2	Leve Ma
Adv Tabaut D	vanced principles test	for high-effici	ency thermonuclea	r burn, las	Christmas Island air	17,550 Mmn	WK	LOW ML
Jounnie Boy	16:45	07-11-6	2 NTS (Area 18)	DOD	Crater	.2	WE	500 Annu
W3	0 TADM test, similar	r to <i>Plumbob</i> S	tokes device			-2-	WE	SUU tons
Merrimac Small Days	16:00.00.15	07-13-6	2 NTS (Area 3bd) LL	Shaft	.1356	11/10	Inc
Small Boy	18:30	07-14-63	2 NTS (Area 5)	DOD	Tower	10	WA	Intermediate
Sim Little Teller I	ilar to Nougat Ermin	e, Chinchilla I	Il and Armadillo d	evices, test	of missile silo harde	nine princi	nlee	1.03
Little relier I	17:00	07-17-62	NTS (Area 18)	DOD	Surface		we	18 ****
Wai	rhead was a stockpiled	i W54 (Davy C	rockett). Robert F	. Kennedy	and General Marwell	D Taylor	observad s	18 LODS
Was	the last atmospheric	test at NTS.		·J		1 ayi0[JUSCI VOU I	ne octonation. This
	21:00.00.16	07-27-62	NTS (Area 9v)	LL	Shaft	_402	WD	
I OFK	15:00.00.15	08-24-62	NTS (Area 9z)	LL	Shaft	-755	NWK .	LOW
Bobac	17:00.00.13	08-24-62	NTS (Area 3b)	LA	Shaft	-/44		LOW
Ranian Viteren	?	09-06-62	NTS (Area 9u)	LL ·	Shaft	-070	WK.	LOW
Hyrax	17:10.00.12	09-14-62	NTS (Area 3bh)	LA	Shaft	-520	WD	Low
reba	17:00.00.12	09-20-62	NTS (Area 3bb)	LA	Shaft	-711	WK	LOW
Allegheny	17:00.00.15	09-29-62	NTS (Area 9x)	LL	Shaft	-/32	WIX NUT	Low
Androscoggin	16:17	10-02-62	Johnston Is	ū	B-52 Airdron	-092	WK	Low
Thir	d Lawrence Livermon	re "fizzle," retes	sted in Housatonic	shot	D-22 Midiop	10,200	WK	Intermediate
Mississippi	17:00.00.16	10-05-62	NTS (Area 9ad)	LL	Shaft	1600	11/0	
Bumping	16:02	10-06-62	Johnston Is	. 11.	B-57 Airdron	-1022	WK	115 Ki
Test	to improve yield-to-v	veight ratio			D-22 Midiop	10,000	WK	Low
Roanoke	15:00.00.16	10-12-62	NTS (Area 90)	LI.	Shaft	510		· _
Wolverine	?	10-12-62	NTS (Area 3av)	LA	Shaft	-510	WK	Low
Chama	16:01	10-18-62	Johnston Is	п.	B-52 Aindron	-200	WR	Low
"Thu	mbelina" device, ligh	tweight, small	diameter		a a Miciop	11,970	WK	Low Mt
Tioga	?	10-18-62	NTS (Area 9f)	LL.	Shaft	200	37.05	_
Bandicoot	18:00.00.08	10-19-62	NTS (Area 3bi)	I.A	Shaft	-200	WR	Low
Checkmate	08:30	10-20-62	Johnston Island an		STRVPI Poster (•/9 <u>2</u> VN 222 01	WR	Low
High	altitude effects test u	ising XW-50X	l warhcad		SIN III NOCKEI (AM-33) 91	.5 mi V	E Low
Bluegill Triple I	Prime 09:59	10-26-62	Johnston Is	DOD	Ther Desket	.		
High	altitude, 30 miles, us	ed W50 warhe	ad in MK 4 reentry	vehicle	TROI NOCKEL	30 mi	WE	Submegaton
Santee	15:00.00.i4	10-27-02	NTS (Area 10) .		ChaSt	* 6 43		
Calamity	15:46	10-27-62	Johnston Island an	nes II	D 52 Aindree	-1048	WR	Low
Housatonic	16:01	10-30-62	Johnston Is		B-52 Aliadop	11,780	WR	Intermediate
Repea	art of Androscoggin				B-32 Autorop	12,130	WR	Mt Range
Singfish	12:10	11-01-62	Johnston			<i></i>		
High	altitude, 60 miles, W3	50 warhcad wit	h MK 4 mentry ve	hicle simil	TRUT ROCKEL	60 mi	WE	Submegaton
lightrope	07:30	11-04-62	Johnston		Nika Liant	nd Bluegill	Triple Pr	ime devices
High a	altitude, 13 miles, use	d W31 warhes	d. last U.S. stmoor	heric tor	TAIKE LICLCRICS	13 mi	WE	Low
it. Lawrence	?	11-09-62	NTS (Area 2h)	T T	Shaft			
Jundi	16:30	11-15-62	NTS (Area 3hm)		Sheft	-550	WR	Low
Test fo	or guntype 175 mm p	rojectile	(ласа 50ш)	LA	JIBBC	-800	WR	Low
nacostia	18:00.00.14	11-27-62	NTS (Area Gi)	7.1	Ch.o	.	_	
aunton	?	12-04-62	NTS (Area Ona)		Shafe	-747	3rd PS	Low
cndrac	19:00.00.10	12-07-62	NTS (Area 2ha)		Shar	-750	WR	Low
ladison	17:25.00.12	12-12-62	NTS (Area 10-1	LA/UK	Shaft	-993	2nd UK	Low
umbat	18:45.00.12	17,17,47	NTS (And 12g)		Tunnel	-1320	WR	Low
fanatee	13:10	17-14-06	ATTS (ATCA 300)	LA	Shaft	-761	WR	Low
		12-14-02	vis (Area 9af)	LL	Shaft	-200	WR	Low

		- [4] -	**********************	•••••••••••••••••••••••••••••••••••••••	***********************	*******		
asselman	16:00.00 16	02 00 22			•			
		V4-05-03	NIS (Area 10g)	LL	Shaft	-994	WR	Low

a an assassing

Pade 36	;
---------	---

Acushi	19.20.00.14	02.00						
Ferret	10.50.00.14 ?	02-08-	63 NIS (Area 3bg	s) LA	Shaft	-856	WR	Low
Hatchie	, ,	02-00-	Area 301) LA.	Shaft	?	WR	Low
Chipmuck	· •	02-00-	3 NTS (Area 9e)		Shaft	?	WR	Low
Kawcah	19:47:00:14	02-13-	Area Say) LA:	Shart	2	WR	Low
Carmel	19:47 08 63	02-21-	3 NTS (Area 920		Shaft	· -745	4th PS	Low
Jerboa	10.00	02-21-	3 NTS (Area 2a)		Shaft	-536	WR	Low
Toyah	16.22.07	03-01-	S NIS (Area 3al)	LA	Shaft	?	WR	Low
Gerbil	15.40.00.12	03-13-0	DS NIS (Area 9ac)		Shaft	?	WR	Low
Ferret Prime	13:49.00.12	03-29-0	3 NIS (Area 3bp) LA	Shaft	-917	WR	Low
Сомон	17.52.00.15	04-05-0	NIS (Area 3by) LA	Shaft	-793	WR	Low
Cumberland	16.02	04-10-0	3 NIS (Area 3af)	LA	Shaft	?	WR	Low
Kootanai	10:05	04-11-6	3 NIS (Area 2e)	LL	Shaft	?	WR	Low
Paisano	10:09.30	04-24-6	3 NTS (Area 9w)	LL	Shaft	2 ?	WR	Low
Gundi Drime	19:10 20	04-24-6	3 NIS (Area 9wi)	LL	Shaft	?	WR	Low
Double Tracks	18:19.30	05-09-6	3 NTS (Area 3db)) LA	Shaft	?	WR	Low
Louble Tracks ((Pu dispersal)	05-15-6	3 Bombing Rnge,	NV 7	Surface	0	ST	Zero
	14:55	05-17-6	3 NTS (Area 3bv)	LA	Shaft	. ?	WR	Low
i ejon Storor	7	05-17-6	3 NTS (Area 3cg)	LA	Shaft	?	WR	Low
	15:40.00.14	05-22-6	3 NTS (Area 9ac)		Shaft	-1289	WR	Intermediate
	u dispersal)	05-25-6	3 Bombing Rnge,	NV ?	Surface	0	ST	Zero
	15:03.30	05-29-6	3 NTS (Area 9ah)	LL	Shaft	?	WR	Low
Lican State II (I	ru dispersal)	05-31-6	3 Bombing Range,	NV ?	Surface	Ó	ST	Zem
IUDA	17:00.00.12	06-05-6	3 NTS (Area 12b)	LL	Tunnel	-796	WR	Low
	14:00.00.13	06-06-6	3 NTS (Area 3bc)	LA	Shaft	-442	WR	Low
Apshapa	14:12	06-06-6	3 NTS (Area 9ai)	LL	Shaft	2	WR	Low
Clean Slate III (Pu dispersai)	06-09-6	Bombing Range,	NV ?	Surface	Ô	ST	Zem
Mataco	14:10.00.13	06-14-6	3 NTS (Area 3bk)	LA	Shaft	-642	WR	Low
Cennebec	23:00.00.15	06-25-63	8 NTS (Area 2af)	LL	Shaft	-740	WR	Low
ekan	23:45.00.13	08-12-63	NTS (Area 3bw)	?	Shaft	-992	WD	Low
atsop	13:00.00.15	08-15-63	NTS	?	Shaft	-738	WR	Low
Cohocton	13:20.00.14	08-23-63	NTS	?	Shaft	-835	WR	Low
	13:53.00.15	09-13-63	NTS	?	Shaft	-740	WR	Low
SHOY	17:00.00.13	09-13-63	NTS	?	Shaft	-2344	WR	249 Kt
First u	nderground test rep	ported felt in l	Las Vegas					
r Carp (No.1)	14:20	09-27-63	NTS (Area 3)	LA	Shaft	-1079	WR	low Mh30
Narraguagus	17:30	09-27-63	NTS (Area 2)	LL	Shaft	-492	WR	Low Mb 30
runion	14:00.00.11	10-11-63	NTS	?	Shaft	-857	WE	Low, MD 3.0
CTRNIO-	14:00.00.16	10-11-63	NTS-	Protect	Shaft	420	Sth PC	
acarwater	17:00.00.14	10-16-63	NTS	?	Shaft	-1785	WP	Intermediate
Mullet	16:00	10-17-63	NTS (Area 2)	LL	Shaft	-197	WP	
hoal	17:00.00.1	10-26-63	Fallon, NV	?	Shaft	-1205	let VIT	12 Ki
лсвоуу	16:00.00.12	11-14-63	NTS (Area 3bg)	LA	Shaft	-854	WP	I OW
lustang	15:00.00.15	11-15-63	NTS (Area 9at)	LL	Shaft	-544	WP	Low
reys	17:30.00.14	11-22-63	NTS (Area 9ax)	LL	Shaft	-987	WP	Intermediate
ardine	16:38.30.12	12-04-63	NTS (Area 3ch)	LA	Shaft	-860	WP	Low
agic	16:02.00.15	12-12-63	NTS (Area 9av)	LL	Shaft	-540	WP	Low
Tuna	15:24	12-20-63	NTS (Area 3)	LA	Shaft	-1352	WD	< 20 K.
		1964 [17	· · ·	-		1000	***	- <i>w</i> N
)ne	16:00.00.15	01.16.64				*****		
conto	16.00.00.15	01-10-04	NIS (Area 9ao)	LL	Shaft	-1610	WR	20-200 Kt(19)
Club	16:00	01-23-04	NIS (Area 9ay)	LL	Shaft	-868	WR	<20 Kt
Solendor	15.20	VI-50-64	NIS (Area 2)	LL	Shaft	-590	WR	<20 Kt. Mb 4.1
Bunker	15.20	UZ-12-64	N15 (Area 3)	LA	Shaft	-492	WR	<20 Kt
Bonefish	15.27 20	UZ-13-64	NIS (Area 9)	LL	Shaft	-745	WR	<20 Kt. Mb 4.0
	15.27	UZ-18-64	N15 (Area 9)	LA	Shaft	-984	WR	<20 Kt. Mb 4.4
ickitat	12:2/	02-18-64	NIS (Area 4)	LA	Shaft	-1092	WR	<20 Kt
N-AILEL	15:50.00.14	02-20-64	NIS (Area 10)	?	Shaft	-1616	6th PS	20-200 Kt (24)

Objec	tive was to develop "	'clean" nuclear explosive for ex-	cavation an	nlications			
# Handicap	15:00	03-12-64 NTS (Area 9)	LL.	Shaft	-460	WD	
Pike	16:02.00.12	03-13-64 NTS	2	Shaft	276	WIX NUT	<20 KI MD 3.3
Hook	14:40.00.12	04-14-64 NTS	?	Shafe	-370	WR	<20 Ki
Sturgeon	14:30.00.12	04-15-64 NTS (Area 3ho		Shink -	000	WR	<20 Kt
* Bogey	14:29	04-17-64 NTS (Area 9)) LA.	Shaft	-491	WR	<20 Kt
Turf	20:10:00:16	04-24-64 NTS (Ama 10-		Shall	-390	WR	<20 Kt
Pinefish	20.47 00 12	04-24-04 NIS (Area 100)) 7	Shatt	1663	WR	20-200 Kt (100)
* Driver	12.00	04-29-04 N15	7	Shaft	-859	WR	<20 Kt (15)
Backmuine	13:00	05-07-64 NIS (Area 9)	LL	Shaft	-492	WR	<20 Kt
Minner	14:40.00.15	05-14-64 N1S	?	Shaft	-536	WR	<20 Kt
Minnow	16:15.00.12	05-15-64 NTS	?	Shaft	-792	WR	<20 Kt
Ace	16:45.00.15	06-11-64 NTS (Area 2n)	LL	Shaft	-862	7th PS	<20 Kt
Object	live was to develop "	clean" nuclear explosive for exc	avation ap	plications.			
# Bitterling	14:01	06-12-64 NTS (Area 3)	'' LA ''	Shaft	-630	WR	< 20 H Mb 2.4
# Duffer	13:30	06-18-64 NTS (Area 10)	LL	Shaft	-1463	WD	<20 Kt MIU 3.0
Fade	13:30.00.14	06-25-64 NTS (Area 9be)	<u> </u>	Shaft	-1405	WA	<20 Ki M0 3.2
Dub	13:33.00.14	06-30-64 NTS (Area 10a)	ū.	Shaft	-9/3	WA DC	<20 NI (20 K) (2)
TT				CHOIL	-047	oui r3	520 KI (9)

First hole drilled in Area 10, no diagnostic canister, purpose to see if the major fraction of the fission product will actually be pushed away from the explosion source, hole depth 1295 feet.

OPERATION WHETSTONE (Fiscal Year 1965, 48 tests: 35 announced, 13 secret)

Bye	13:15.00.15	07-16-64	NTS (Area 10i)	11	Shaft			· · · ·
Cormorant	17:18.30.03	07-17-64	NTS (Area 3df)		Shaft	-1277	WR	20-200 Kt
 Links 	13:30	07-23-64	NTS (Area 9)		Shaft	-891	3rd UK	<20 Kt
* Trogon	17:30	07-24-64	NTS (Area 3)		Shaft	-394	WR	<20 Kt
Alva	16:00.00.14	08-19-64	NTS (Area 2df)		Shaft	-633	WR	<20 Ki
Canvasback	22:17.00.06	08-22-64	NTS (Area 3cn)		Shaft	-545	WR	<20 Ki
* Player	14:30	08-27-64	NTS (Area 0)		Shaft	-1469	WR	<20 Kt (18)
Haddock	17:06.00.04	08-28-64	NTS (Area 3dl)		Shaft	-295	WR	<20 Kt
Guanay	18:15.00.08	09-04-64	NTS (Area 3di)		Shaft	-1193	WR	<20 Kt
# Spoon	14:00	09-11-64	NTS (Area 9)		Shaft	-820	WR	<20 Kt (12)
* Courser	17:02	09-25-64	NTS (Area 3)		Shaft	-38/	WR	<20 Kt Mb 3.3
Auk	20:03.00.04	10-02-64	NTS (Area 3do)		Shaft	-1178	4th UK	<20 Kt
Par	14:00.00.12	10-09-64	NTS (Area 2n)		Shaft	-1484	WK	<20 Kt (12)
Barbel	15:59.30.04	10-16-64	NTS (Area 3by)		Shaft	-1325	9th PS	38 Kt
Salmon	16:00.00.00	10-22-64	Hattieshure MS	2	Shaft	-849	WK	<20 Ki
* Garden (No. 20)	15:00	10-23-64	NTS (Area 9)	11	Shaft	-2/17	2nd VU	5.3 Kt
Forest	17:04.58.61	10-31-64	NTS (Area 9al)		Shaft	-489	WK	<20 Kt
Handcar	15:00.00.11	11-05-64	NTS (Area 10b)	11	Shaft	-1249	WK	<20 Kt
Objectiv	e to study effects	of nuclear conk	Osives in carbonate			•1319	Ioth PS	12 Kt
useful fo	r recovery of dee	Div buried mine	rais Campate mo	Fit the max	io assist in oc dusting is such at	termining if nucle	ar explosio	ns are potentially
Crepe	21:15.00.10	12-05-64	NTS (Area Qhe)		Sheep	runneral deposits	trequently	are found.
Drill	21:15 (?)	12-05-64	NTS (Area 2a1)		Shaft	-1323	WR	20-200 (18 Kt)
Parrot	20:00.00.04	12-16-64	NTS (Area 2dk)	2	Shaft	7	WR	3.4 Kt
* Cassowary	20:00	12-16-64	NTS (Area 3)	I A	Shaft	-392	WR	1.3 Kt
Mudpack	20:10.00.10	12-16-64	NTS (Area 10m)		Shaft	-492	WR	<20 Kt
Purpose	was to obtain info	mation conce	mine eround shock		Snall	-498	WE	2.7 Kt
Sulky	19:35.00.09	12-18-64	NTS (Area 18d)	TT	Sh-6	•••		
Objective	e to explore crateri	ing mechanics in	hard, dry rock and	LL Study disper	Snan	-90	11th PS	0.092 Kt
•	•		mare, ory rock and	study disper	sion pattern c	airporne radionu	iclides relea	under these conditions.
		1965 [10]						
Wool	16:00.00.14	01-14-65	NTS (Area 9bh)	11	Shaft	707	1177	
# Tern	18:22	01-29-65	NTS (Area 3)		Shaft	-/00	WK	<20 Kt
Cashmere	15:30.00.11	02-04-65	NTS (Area 2ad)		Shaft	-089	WR	<20 Kt Mb 3.6
Alpaca	15:10.29.49	02-12-65	NTS (Area 2a)		Shaft	-/62	WK	<20 Kt
Merlin	17:30.00.04	02-16-65	NTS (Arres 3ct)		Shaft	-/3/	WR	<20 Kt
Wishbone	16:18.47.15	02-18-65	NTS (Area Sa)	יועסס	Shaft	-9/2	WK	10.1 Kt
Purpose v	was to study effect	ls on equipmen	t and materiale fire	t undersees	Judit	886-	WE	<20 Kt
* Seersucker	15:28	02-19-65	NTS (Area 0)		shoe	nt in Area 5.		
Wagtail	19:13.00.03	03-03-65	NTS (Area 3an)	т	Shafe	-472	WR	<20 Kt
-			(mea sail)		JIBUC	-2459	WR	20-200 Kt (65)

Page	38
------	----

# Sucde	15:23.50	03-20-65	NTS (South Vu		0 1 6				
Cup	15:34.08.16	03-26-65	NTS (Area Oab)		Shaft	-469	WR	<20 Kt Mb 3.3	
Kestrel	21:00.00.04	02 20-05	NTS (Area 2dd)		Shaft	-1761	WR	20-200 Kt (35)	
Palanguin	13:14.00.11	04-05-05	MIS (Area 201)		Shaft	-1466	WR	<20 Kt	
Th	C Objective was to ex		NIS (Area 20k)		Crater	-280	12th P	S 4.3 Kt	
บก	der these conditions	prote cratering n	echanics in hard,	dry rock	and study disper	rsion pattern of a	irborne rad	lionuclides released	
Gum Drop	22.00 00 03	produced crater	240 leet diameter	and 70 f	eet deep.				
Pu	Encise was to study of	V4-21-03	N15 (Area 16a)		OOD Tunnel	-834	WE	<20 Kt (21)	
# Chenille	12.20		ent and materials.	Confirme	ed prediction of	damage to reentr	y vehicle o	omposites.	
# Muscow	21.44	• 04-22-65	NIS (Area 9)	LL	Shaft	-459	WR	<20 Kt Mb 3.9	
Tee	41.44 15.47 11 18	04-23-65	NIS (Area 3)	LA	Shaft	-590	WR	<20 Kt Mb 3.7	
Buteo	13:47.11.13	05-07-65	NTS (Area 2ab)	LL	Shaft	-624	WE	<20 Kt	
Scaup	10:13:00.10	05-12-65	NTS (Area 20a)	LA	Shaft	-2282	WR	<20 Kt	
Cambric	1/:54.30.43	05-14-65	NTS (Area 3da)	LA	Shaft	-1401	WR	<20 Kt	
Tunet	14:57.52	05-14-65	NTS (Area 9al)	LL	Shaft	?	WR	0.75 Kt	
Petrol	13:08.52.11	05-21-65	NTS (Area 9bg)	LL	Shaft	-922	WR	< 20 Kt	
# Onesa to	19:45.00.04	06-11-65	NTS (Area 3dy)	LA	Shaft	-593	WR	13 Kr	
# Organoy	20:27:38	06-11-65	NTS (Area 9)	LL	Shaft	-551	WR	<20 Kt Mb 2 4	
Diluted wate	rs 16:30.00.15	06-16-65	NTS (Area 5e)	DOD	LL Shaft	-640	WF	< 20 KI MD 3.0	
rur Tieu Tea	pose was to study eff	fects on equipme	nt and materials			•••		20 M	
	17:00.00.09	06-17-65	NTS (Area 15e)	DOD	/LL Tunnel	-364	WE	<20 Kr	
Pur	pose was to obtain inf	formation on grou	und shock. First k	nown nuc	lear detonation	conducted on a m	vitiona All surfaces		
							WE BUILLACC	within an undergroup	d cavity
OPERATION	FLINTLOCK (Fiscal	Year 1966, 48 to	ests: 41 announced	i, 7 secre	()				
• X					·				
- IZZET	13:04	07-16-65	NTS (Area 9)	LL	Shaft	-535	WD	- 20 K	
rongee	13:21	07-22-65	NTS (Area 2)	LL	Shaft	-440	WD	<20 M	
Bronze	17:00.00.04	07-23-65	NTS (Area 7f)	LA	Shaft	-1741	WIX W/D	20 NI 20 200 Kr. ((0)	
Mauve	17:23.30.04	08-06-65	NTS (Area 3dp)	LA	Shaft	-1/71	WA M/D	20-200 KI (60)	
# Ticking	13:43.09	08-21-65	NTS (Area 9)	LL	Shaft	-1033	WA	<20 KI (18)	
Centaur	13:51.13.11	08-27-65	NTS (Area 2ak)	LL	Shaft	-004	WK WD	<20 KI Mb 3.4	
Screamer	20:08.00.04	09-01-65	NTS (Area 3dg)	LA	Shaft	-304	WK	<20 Ki	
Charcoal	17:12.00.03	09-10-65	NTS (Area 7g)	LA	Shaft	-770	WK Cab. LTC	<20 Kt (12)	
Elkhart	15:08.23.10	09-17-65	NTS (Area 9bs)	11.	Shaft	-1474		20-200 Ki	
Long Shot	21:00.00.08	10-29-65	Amchitka, AK	DOD	Shaft	-720	WK	<20 Ki	
Sepia	18:00.00.05	11-12-65	NTS (Area 3en)	LA	Sheft	-2300		~80 Kt	
# Kermet	18:17.33	11-23-65	NTS (Area 2)	Π.	Shaft	-/91	WK	<20 Kt	
Corduroy	15:13.02.10	12-03-65	NTS (Area 10k)	11	Shaft -	-043	WR	<20 Kt Mb 3.6	
Emerson	15:39.18.15	12-16-65	NTS (Area 2al)		Shaft	-2236	WR	20-200 Kt (100)	
Buff	19:15.00.04	12-16-65	VIS (Area 3dh)	I A	Shaft	-853	WR	<20 Kt	
			(LA	Suatt	-1642	WR	20-200 Kt (36)	
		1966 [7]							
			· · ·		-		********		
Maxwell	15:37.43.10	01-13-66 N	TS (Area Obr)	11	66-6	508484		. *	
Lampblack	18:35.00.04	01-18-66 N	ITS (Area 7i)		Shart	-601	WR	<20 Kt	
* Sienna	18:35	01-18-66 N	ITS (Area 2)		Shart	-1842	WR	20-200 Kt (32)	
Dovekie	18:28.00.04	01-21-66 N	TS (Area 3)		Shall	-902	WR	<20 Kt	
# Reo	15:17.20	01-22-66 N	TTS (Amen 10)		Shart	-1093	WR	<20 Kt	
Plaid II	18:17.37.10	02-03-66 N			Shaft	-682	WR	<20 K: Mb 3.2	
Rex	15:55.07.04	02-03-00 N	TS (Area 201)		Shaft	-886	WR	<20 Kt	
Red Hot	18:15.00.10	03-05-66 N	TS (Ama 12-)		Shaft	-2204	WR	19 Kt	
Purpo	Dec was to study grou	nd shock	13 (Alter 12g)	DOD	Shaft	-1330	WR	<20 Kt	
Finfoot	18:41.00.07	03.07.66 N	TR (Amer 2d.)	• •	.				
Clymer	18:04.13.11	02 12 66 1	TS (Area Solu)	LA	Shaft	-642	WR	<20 Kt	
Purple	19:00 00 04	02 19 66 N	IS (Area 96u)	LL	Shaft	-1303	WR	<20 Kt	
Templar	14.55 28 14	03-18-00 N	15 (Area 3ds)	LA	Shaft	-1092	WR	<20 Kt	
Devio	e similar to Cabricles	03-24-00 N	15 (Area 9bt)	LL	Shaft	-495	13th PS	<20 Kt	
Lime	18.40 00 04	A COJECTIVE was t	o develop "clean"	nuclear e	xplosive for exca	avation applicatio	ns.		
Stutz	13.57 17 1A	04-01-66 N	15 (Area 7j)	LA	Shaft	-1842	WR	<20 Kt	
Tomato	13.37.17.1U	04-06-66 N	15 (Area 2ca)	LL	Shaft	-739	WR	<20 Kt (5)	
Durves	44:47.30.04 14:12 42 10	04-07-66 N	IS (Area 3ck)	LA	Shaft	-742	WR	<20 Kt	
Fenton	14:13:43.10	04-14-66 N	IS (Area 20a)	LL	Shaft	-1786	WR	70 Kt	
- VIIUI	14:33.28	04-23-66 N	IS (Yucca?)	?	Shaft	?	WR	<20 K+A/h 2.2	
rorme	any an unannounced	lest	-					-20 101010	

Pin Stripe	18:38.00.14	04-25-66 NTS (Area 1	11b) DO	D/LL Shaft	-970	WE	~ 70 V. (14 V.)
Purpo	se was to study eff	fects on equipment and materi	ial		-970	WE	<20 NI (14 NI)
 Ochre 	13:33	04-29-66 NTS (Area 3	3) LA	Shaft	412	11/17	-00 77
Traveiler	13:32.17.09	05-04-66 NTS (Area 2	2cd) LL	Shaft	-413	WR	<20 Ki
Cyclamen	14:00.00.04	05-05-66 NTS (Area 3	3dn) LA	Shaft	-040	W.C.	<20 Kt
Chartreuse	15:00.00.08	05-06-66 NTS (Area 1	10-1) TA	Shaft	-1001	WR	12 Ki
Tapestry	19:37.26.20	05-12-66 NTS (Area 2		Shaft	-2183	WR	73 Kt
Piranha	13:30.00.04	05.13.66 NTS (Ama 2		Shart	-810	WR	<20 Kt (10)
Dumont	13:56.28 14	05-10-66 NTS (Area 7		Shart	-1800	WR	20-200 Kt (100)
Discus Thrower	20:00 00 04	05-13-00 NIS (Area 2		Shaft	-2200	WR	20-200 Kt (190)
Purpo		UJ-27-00 NIS (Area 8	a) DOI	D/LA Shaft	-1105	WE	22 Kt
Pile Driver	15.20 00 00	ound snock transmissions on u	inderground	structures.			
Dumo.	15:30.00.09	06-02-66 NTS (Area 1	5) DOI	D/LA Tunnel	-1518	WE	62 Kt
Ton	se was to study nu	clear detonation effects on une	derground st	ructures.			
Dues	14:00.00.04	06-03-66 NTS (Area 7	'k) LA	Shaft	-1839	WR	20-200 Kt (140)
Puce	14:30.00.04	06-10-66 NTS (Area 3	bs) LA	Shaft	-1592	WR	<20 Kt
Double Play	17:00.00.04	06-15-66 NTS (Area 1	6a) DOI	VLL Tunnel	-1075	WE	<20 Ki
Purpos	e was to study effe	ects on equipment and materia	als		-10/5	WE	N20 NI
Kankakee	18:02.47.13	06-15-66 NTS (Area 10	00) LL	Shaft	1404	WD	-
Vulcan	17:13.00.07	06-25-66 NTS (Area 2)	bd) LL	Shaft	-1474	WK	20-200 KI
Halfbeak	22:15.00.07	06-30-66 NTS (Area 1	95) IA	Shaft	-1057	14th PS	25 Kt
			<i>i</i> ,	Suatt	-2688	WR	365 Ki
OPERATION LA	TCHKEY (Fiscal Y	(car 1967, 38 tests: 27 announ	ced 11 same	~ \			
	(iceu, 11 secre	a)			
Saxon	15:33.30.13	07-28-66 NTTS (Ama 2)					
Objecti	ive was to develop	V/-20-00 NIS (Area 20	∞) LL	Shaft	-500	15th PS	<20 Kt
Rovena	13.16 00 07	clean nuclear explosive for e	excavation ap	plications.			
* Tangerine	15.24	08-10-06 N1S (Area 10	us) LL	Shaft	-635	ŴR	<20 Kt
Derringer	15:30	08-12-66 NTS (Area 3)) LA	Shaft	-285	WR	<20 Kt
Deieniei	15:50.00.54	09-12-66 NTS (Area 5i) 7	Shaft	-835	WE	<20 Kt (12)
Daiquin	18:00.00.04	09-23-66 NTS (Area 7	i) LA	Shaft	-1841	WR	< 20 Kt
NCWARK	14:45.30.09	09-29-66 NTS (Area 10	u) LL	Shaft	-750	WR	< 20 Kt (A)
• Khaki	19:00	10-15-66 NTS (Area 3)		Shaft	-761	WA	< 20 M (4)
Simms	14:45.00.00	11-05-66 NTS (Area 10	W) LL	Shaft	-701	TAL DO	< 20 Ki
Objecti	ve was to develop '	"clean" nuclear explosive for e	xcavation and	dications	-0.00	Tota 12	< AU KI
Ajax	12:00.00.14	11-11-66 NTS (Area 9a	D LL	Shaft	700	1100	
Cerise	15:02.00.04	11-18-66 NTS (Area 3e		Sheft	-/82	WK	<20 Ki
 Vigil 	15:00	11-22-66 NTS (Area 10		Shall	-693	WR	<20 Kt
Sterling	12:15.00.05	12-03-66 Hattigshum h		Shan	-298	WR	<20 Kt
# Sidecar	17:50	12-13-66 NTS (Ama 2)		Snan	-2717	4th VU	380 Tons
New Point	21:00.00 08	12-13-00 MIS (Area 3)	LA	Shaft	-787	WR	<20 Kt Mb 3.9
Ригрове	Wat to study effect	12-13-00 N15 (Area 11)	c) DOD/	LL Shaft	-825	WE	<20 Kt (12)
Greelev	15.20 00 00	as on equipment and material	3				
	13:30:00.08	12-20-66 NTS (Area 20)	g) <u>L</u>	Shaft	-3985	WR	870 Kt
							with the Contract of Contract of Contract
********		1967 [14]			*************		
# Dines F							
# KIVEL I	14:55	01-18-67 NTS (Area 10)) LL	Shaft	-405	WR	<20 K+ M+ 22
Nash	16:45.00.14	01-19-67 NTS (Area 200		Shaft	-1104	WIN	~20 NI MD 3.2
Bourbon	17:40.03.41	01-20-67 NTS (Area 7n)	I.A	Shaft	-1194	WK	20-200 KI (28)
# Rivet II (No.40)	16:30	01-26-67 NTS (Area 10)		Shaft	-1530	WK	20-200 Kt (29)
Ward	15:15.00.13	02-08-67 NTS (Area 10-		Shaft	-040	WK	<20 Kt Mb 3.8
Persimmon	18:34.00.04	02-23-67 NTS (Ama 2-		Shaft	-844	WR	<20 Kt (11)
Agile	18:50.00.0	02-23-67 NTS (ALLS OF	9 LA	Shall	-981	WR	<20 Kt (4)
Rivet III	15:00.00.0	13.02.67 NTTO (ASICE 2)	s 7	Shaft	-2400	WR	20-200 Kt (90)
# Mushmom	15.10	02 02 07 NIS (Area 10v	y LL	Shaft	-890	WR	<20 Ki
* Fizz	17-00	02 10 (7 NIS (Area 3)	LA	Shaft	-587	WR	<20 Kt Mb 3.7
• Oskiend	14.00	03-10-67 NTS (Area 3)	LA	Shaft	-384	WR	<20 Kt
	14:20	04-04-67 NTS (Area 2)	LL	Shaft	-541	WR	<20 Kt
· richmañ Famm	15:00	04-06-67 NTS (Area 2)	LL	Shaft	-490	WP	< 20 Kt
rawn	15:00.00.04	04-07-67 NTS (Area 3co) LA	Shaft		WD	~ 40 NI ~ 20 V.
Chocolate	15:09.00.04	04-21-67 NTS (Area 3es)	Í LA	Shaft	-790	WD	N20 NI
Effendi	14:45.00.0	04-27-67 NTS (Area 200)		Shaft	-/89	WK	<20 Kt (7)
Mickey	13:40.00.04	05-10-67 NTS (Ares 7-1)		Chatt	-/19	WK	<20 Kt
Commodore	15:00.00.0	05-20-67 NTS (Ama 2	· LAS	Shan	-1639	WR	20-200 Kt (24)
Scotch	14:00.00 04	05-22.67 NTD (And 28m		Shan	-2449	WR	250 Ki
		INIS (Area 19as	5) LA	Shaft	-3207	WR	155 84

• Absinthe	12:30	05-26-67 N	IS (Area 3)	LA	Shaft	-397	WD	- 20 K
Knickerbocker	15:00.01.50	05-26-67 N	TS (Area 20d)	LL	Shaft	-2069	WR	< 20 NI 76 V •
Switch	13:10.00.00	06-22-67 N	IS (Area 9bv)	LL	Shaft	-990	17th D	70 NL
Obj	ective was to develop	"clean" nuclear ex	plosive for exc	avation an	oplications.		1/11 -	
Midi Mist	16:00.00.00	06-26-67 N	IS (Area 12n)	DOD	/LL Tunnel	-1230	WE	- 20 K. (20)
Рид	pose was to study eff	ects on equipment a	and materials				VV 13	~20 M (30)
Umber	11:25.00.04	06-29-67 N	IS (Area 3em)) LA	Shaft	-1018	WE	<20 Ki (11)
OPERATION	CROSSTIE (Fiscal Y	ear 1968, 48 tests:	30 announced,	18 secret)			
* Vito	12.20	0.0	, 		-	•		· · · · ·
Stanley	13:50	07-14-67 N	S (Area 10)	LL	Shaft	-315	WR	<20 Kt
# Gibson	13:00.00.00	07-27-67 N1	S (Area 10q)	LL	Shaft	-1587	WR	20-200 Kt (23)
Washer	14:00	08-04-67 N	S (Area 3)	LA	Shaft	-787	WR	<20 Kt Mb 4.0
Romeaux	14:10.00.00	08-10-67 NT	S (Area 9az)		Shaft	-1525	WR	<20 Kt
# Levington	20:12:30.04	08-18-67 NT	S (Area 3dr)	LA	Shaft	-1089	WR	<20 Kt (18)
Door Mist	13.30	08-24-67 N1	S (Area 2)	LL	Shaft	-741	WR	<20 Kt Mb 3.8
Vard	10:30.00.04	08-31-67 NT	S (Area 12g)	DOD	Tunnel	-1463	WE	<20 Kt (21)
* Gilmar	13:45.00.00	09-07-67 NT	S (Area 10af)	?	Shaft	-1700	WR	20-200 Kt
Martial	17:30	09-15-67 NT	S (Area 3)	LA	Shaft	-787	WR	<20 Kt
	20:45.00.00	09-21-67 NT	S (Area 10ds)	LL	Śhaft	-572	18th PS	2.2 Kt
7.20	cive was to develop	special emplacement	it techniques t	o reduce a	amount of radioa	ctivity released	to atmosph	
Laux	17:00.00.04	09-27-67 NT	S (Area 4c)	LA	Shaft	-2188	WR	20-200 Kt (120)
Lanpner	14:30.00.00	10-18-67 NT	S (Area 2x)	L	Shaft	-2343	WR	20-200 Kt (140)
Sazerac * Compac	14:30.00.06	10-25-67 NT	S (Area 3fa)	LA	Shaft	-992	WR	<20 Kr
* Worth	14:50	10-25-67 NT	S (Area 3)	LA	Shaft	-787	WR	<20 Kr
Cabbles	14:45	10-25-67 NT	S (Area 10)	LL	Shaft	-613	WR	<20 Kt
# Doller	15:00.00.04	11-08-67 NT	S (Area 7u)	LA	Shaft	-2200	WR	<20 Kt (25)
# FOIKa	13:00	12-06-67 NT	S (Area 10)	LL	Shaft	-623	WR	< 20 Kt M 2 2
Gasbuggy	19:30.00.14	12-10-67 Fan	mington, NM	LL	Shaft	-4240	10th PS	70 Ki MU 3.3
Stilt	15:00.00.04	12-15-67 NTS	(Area 3fh)	LA	Shaft	-1092	WR	<20 Kt (2)
		1968 [22]		******				
Hupmobile	16:30.00.00	01-18-68 NTS	(Anea 2v)	11	Shaft	010		
Estab	lished many of the cr	iteria for undergrou	and diagnostic	یاب امورد (till s	Jaan	-810	WE	7.4 Kt
Staccato	5:00.00.00	01-19-68 NTS	(Area 10t)		Shee			
Faulti css	18:15.00.08	01-19-68 Hot	Creck Valley	NV 2	Shaft	-1455	WR	20-200 Kt
Purpo	se was to examine th	c suitability of the t	his part of Ne	un a loc i	Sund International States	-3200	WR	200-1000 Kt (1200)
Brusn	15:00**	01-24-68 "NTS	(Area 3)	J A IOL D	Carring mgp (yield)	nuclear devices	h .	
Cabriolet	16:00.00.11	01-26-68 NTS	(Arres 201)		Silati	-387	WR	<20 Kf ***
Object	tive to study effects a	nd phenomenology	of cratering de	LL	in bond mat (-t	-170	20th PS	23 Kt
and 12	0 feet deep.			.conaciona	in naro rock (my	onte), produce	d crater 360	fect in diameter
# Mallet	15:30	01-31-68 NTS	(Area 3)	TA.	Shaft	808		
' Torch	15:00	02-21-68 NTS	(Area 3)		Shaft	-/8/	WR	<20 Kt
Linox	15:30.00.00	02-21-68 NTS	(Arrea 2da)	2 2		-787	WR	<20 Kt
Jorsal Fin	17:08.30.04	02-29-68 NTS	(Area 12a)	000	Junaci	-2116	WR	20-200 Kt (130)
Russet	15:30	03-05-68 NTS	(Area 6)		Lunnci	-1345	WE	<20 Kt (20)
Buggy I	17:04.00.11	03-12-68 NTS	(Area 30)	11	Shart	-390	WR	<20 Kt
Five 1.	1 Kt charges spaced	150 feet anart, simil	ltaneouch det	ulu Operad to .		-135	21st PS	5.4 Kt
crateri	ng, produced crater 8	50 feet long, 250 w	ide and 65 fee		study the effects	and phenomen	ology of nu	clear row-charge
ommard	15:19.00.06	03-14-68 NTS		t ucep, co	Shate			
tinger	15:00.00.04	03-22-68 NTS	(Area 101)			-686	WR	1.5 Ki
filk Shake	18:44.27.04	03-25-68 NTS	(Anes 41-)		Shaft	-2191	WR	20-200 Kt (120)
Bevel	15:02	04-04-68 NTC	(Anes 2)		Shafe	-868	WE	<20 Kt (10)
oor	14:00.00.0	04-10-68 NTS	Anes 2hal		Shaft	-787	WR	<20 Kt
huffle	14:05.00.0	04-18-68 NTC	Area 1041		Shan	-1250	WR	20-200 Kt (20)
roli	17:01.30.00	04-23-68 NTS	Area 10-1		Shan	-1615	WR	20-200 Kt (25)
OXCR	15:00.00.00	04-26-68 NTC	Amen 2011	يليد 11	Shafe	-735	5th VU	<20 Kt (6)
Largest	nuclear test conduct	ed in the continent	1110	باملا	SUBIL	-3832	WR	1.3 Mt
		COLIMICIE	a U.S.					

16:00

14:10

14:45

15:30

15:30

14:21.30

13:00.00.00

21:30.00.00

13:59.59.97

12:22.00.00

Hatchet

Clarksmobile

Wembley

Tub

Rickey

* Funnel

* Scvilla

Chateaugay

* Adze (No.60)

Crock

05-03-68 NTS (Area 3) 05-08-68 NTS (Area 10) 05-17-68 NTS (Area 2)	LA LL	Shaft Shaft	-787 -594	WR WR	<20 Kt Mb 4.1 <20 Kt Mb 3.9
05-28-68 NTS (Ana 3)		Shall	-1550	WR	20-200 Kt (15)
06-05-68 NTS (Area 3)	Lare. LA	Shaft	-787	WR	<20 Kt
06-06-68 NTS (Area 10a)		Shaft	-781	WR	<20 Kt Mb 4.0
06-15-68 NTS (Area 19c)		SAALL	-620	WR	<20 Ki
06-25-68 NTS (Area 3)	T A	SDALL	-2242	WR	20-200 Kt (300)
		Snan	-387	WR -	<20 Kt

-1174

-1992

WR

WR

OPERATION BOWLINE (Fiscal Year 1969, 47 tests: 26 announced, 21 secret)

06-25-68 NTS (Area 3)

06-28-68 NTS (Area 20t)

				,				
# Spud	14:00	07-17-68	NTS (Area 3)	T A	Shaft			
Tanya	13:00.00.00	07-30-68	NTS (Area 2dt)	11	Shaft	-787	WR	<20 Kt Mb 4.0
# Imp	13:00	08-09-68	NTS (Area 201)		Shan	-1250	WR	20-200 Kt (10)
# Rack	17:00	08.15.69	NTS (Area 0)		Shart	-597	WR	<20 Kt Mb 3.5
Diana Moon	16:30.00.04	08.27.68	NTS (Area 11-)		Shaft	-653	WR	<20 K1 Mb 3.9
Sled	22:45.00.04	09-27-00 1	TO (ALCA IIC)	DOD	Shaft	-794	WE	<20 Kt
Noggin	14:00.00 13	00.06.69		?	Shaft	-2393	WR	20-200 Kt (200)
Knife A	14.00.00.04	00 10 (0)	NIS (Area 90X)		Shaft	-1909	WR	20-200 Kt (110)
Stoddard	14.00.00.04	09-12-08 [NIS (Area 3fb)	LA	Shaft	-1089	WR	<20 Ki
Ohier	tive to develop llala	09-17-08	NIS (Area 2cm)	LL	Shaft	-1535	22nd PS	20-200 Kt (28)
Hudson Seat	17:05 00 00	in" nuclear exploi	sive for excavatio	n applicatio	ons.			
• Welder	14.00	09-24-68 N	VTS (Area 12n)	DOD	Tunnel	-1092	WE	<20 Kt (21)
Knife C	14:00	10-03-68 N	TS (Area 3)	LA	Shaft	-384	WR	<20 Ki
	14:29.00.04	10-03-68 N	VTS (Area 3er)	LA	Shaft	-989	WR	<20 Kt (3)
# Vat	14.30	10.10.70						
# Hula	16.26	10-10-08 N	15 (Area 9)	LL	Shaft	-630	WR	<20 Kt Mb 3.9
# Bit	10.30	10-29-68 N	(IS (Area 9)	LL	Shaft	-656	WR	<20 Kt Mb 3.4
* File	10.30	10-31-68 N	TIS (Area 3)	LA	Shaft	-485	WR	<20 Kt Mb 3.9
Crew	16:30	10-31-68 N	TS (Area 3)	LA	Shaft	-751	WR	<20 Kt
# Auger	15:15.00.09	11-04-68 N	TS (Area 2db)	LL	Shaft	-1980	WR	20-200 Kt (22)
White D	15:30	11-15-68 N	TS (Area 3)	LA	Shaft	-787	WR	<20 Kt Mb 2.0
Mine Veen	15:45.00.04	11-15-68 N	TS (Area 3dz)	LA	Shaft	-1191	WR	<20 Kt (9)
Tindent and	18:00.00.03	11-20-68 N	TS (Area 16a)	DOD	Tunnel	-1010	WE	
TINGETDOX	16:19.00.04	11-22-68 N	TS (Area 9az)	LL	Shaft	-1442	WD	<20 KI (10)
SCROONET	16:00.00.14	12-08-68 N	TS (Area 20u)	LL	Crater	250	22_1 D0	<20 NI (3)
Object	ive to study the effect	and phenomen	ology of cratering	detonatio	ns in hard mok (tuff) neoduced a	23IU F3	JUKI
Bay Leaf	15:00	12-12-68 N	TS (Area 3)	LA	Shaft	426		cel diameter, 270 feet deep
Tyg	15:10.00.08	12-12-68 N	TS (Area 2dc)	LL.	Shaft		WK	<20 Ki
* Sciasors	15:20	12-12-68 N	TS (Area 3)	LA	Shaft	-0/0	WK	<20 Ki (20)
Benham	16:30.00.04	12-19-68 N	TS (Area 20c)	11	Shaft	-18.	WR	<20 K Mb 3.9
Less th	an full yield test of	the XW71 warhe	ad for the Sparts		JIMEL	-4600	WR	1.15 Mt
	-		or me oparta					•

LA

LL

Shaft

Shaft

		1969 [17]	********				
Packard Wineskin # Shave Vise • Biggin # Nipper • Winch Cypress • Valise # Chatty (No. 80) Barsac Coffer # Gourd Thistle Blenton Purse	19:00.00,07 19:30,00,04 15:00 15:00,00,04 15:17 15:00 15:00 16:18.20.88 14:30 14:40 18:12.00,04 14:40 18:12.00,04 13:04 17:00.00,04 13:45.00,04	01-15-69 NTS (Area 2u) 01-15-69 NTS (Area 12r) 01-22-69 NTS (Area 3) 01-30-69 NTS (Area 3ei) 01-30-69 NTS (Area 3ei) 01-30-69 NTS (Area 9) 02-04-69 NTS (Area 3) 02-04-69 NTS (Area 3) 02-12-69 NTS (Area 12g) 03-18-69 NTS (Area 9) 03-18-69 NTS (Area 2) 03-20-69 NTS (Area 2c) 03-21-69 NTS (Area 2c) 04-24-69 NTS (Area 7c) 04-30-69 NTS (Area 7c) 04-30-69 NTS (Area 7c) 05-07-69 NTS (Area 20c)		Shaft Shaft Shaft Shaft Shaft Shaft Tunnel Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft	-810 -1700 -787 -1490 -797 -787 -1350 -298 -640 -998 -1525 -594 -1838 -1829 -1964	WE WR WR WR WR WR WR WR WR WR WR WR WR	10.0 Kt 20-200 Kt (40) <20 Kt Mb 4.1 20-200 Kt (28) <20 Kt <20 Kt (28) <20 Kt (15) <20 Kt (15) <20 Kt (15) <20 Kt (10) <100 Kt (26) <20 Kt Mb 3.8 20-200 Kt (20)
# Chatty (No. 80) Barsac Coffer # Gourd Thistle Blenton Purse	14:40 18:12.00.04 14:30.00.00 13:04 17:00.00.04 17:00.00.04 13:45.00.04	03-18-69 NTS (Area 2) 03-20-69 NTS (Area 3gc) 03-21-69 NTS (Area 3gc) 04-24-69 NTS (Area 2dc) 04-30-69 NTS (Area 7t) 04-30-69 NTS (Area 7p) 05-07-69 NTS (Area 20v)	LL ? LL LA LA LL	Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft	-298 -640 -998 -1525 -594 -1838 -1829 -1964	WR WR WR WR WR WR WR	<20 Kt <20 Kt Mb 3 <20 Kt (10) <100 Kt (26) <20 Kt Mb 3 20-200 Kt 20-200 Kt 20-200 Kt (90

Page 41

<20 Kt

<20 Kt

20-200 Kt (58)

# Aliment	18:00	05-15-69 NTS /	Anna 2)				
Torrido	14:15.00.04	05-27-69 NTS (LA Shaft	-787	WR	<20 Kt Mb 4.1
* Ipecac	17:00	05-27-60 NTS (Allea /w)	LA Shaft	-1689	WR	20-200 Kt (35)
Tapper	14.00 00 04	05-27-09 NIS (Area 3)	LA Shaft	-407	WR	<20 Kt
# Bowl	16.00	00-12-09 NIS (Arca 3go)	LA Shaft	-994	WR	<20 Kt (10)
. 2011	10.00	06-26-69 NIS (Area 2)]	LL Shaft	-649	WR	<20 Kt Mh 4 1
OPERATION A	MANDREL (Firme V	(aba 1070 62 4	· · · ·	1	•		4.40 141 1410 4.1
		car 1970, 52 tests: 42 a	nnounced, 10 s	ecret)			•
Ildrim	13-02 30 04	07.14 40 1000 4					
Hutch	14.55 00.04	07-16-69 NIS (Area 2au) I	L Shaft	-1346	WR	20-200 Kt (18)
Spider	14.20.00.04	07-16-69 NTS (A	Area 20f) 🛛 I	L Shaft	-1800	WR	20-200 Kt (200)
Pliere	14:30.00.04	08-14-69 NTS (4	Area 2bp) I	L Shaft	-784	WD	<20 Ki (500)
* Llenshaund	13:45.00.04	08-27-69 NTS (A	Area 3gn) I	A Shaft	-784	WD	<20 KL
Profenound Builteen	16:45	08-27-69 NTS (/	Arca 3) 1	A Shaft	-1086	U/D	<20 Ki
KUIISON	21:00.00.01	09-10-69 Grand	Valley, CO 1	A Shaft	-1000	2445	
Objec	ctive to investigate th	e feasibility of using nu	clear explosives	to stimulate a lo	C+++0 Iside and unique and iside	24ta 1	rs 4/ Ki
Geon	uclear Corporation,	Department of Interior	participated.	Deepest nuclear	w producing gas nel	O. AUSITA	Oil Company, CER
Minute Steak	18:02.20.42	09-12-69 NTS (/	nea 116 F		expression ever cond	ucted in t	J.S.
Jorum	14:30.00.04	09-16-69 NTS (/	(nea 20e) T		-867	WE	<20 Kt (10)
# Kyack	14:30	09-20-69 NTS (4	1001200) <u>[</u>		-3800	WR	<1 Mt (800 Kt)
 Scawcod 	14:30	10-01-69 NTS (A			-607	WR	<20 Kt Mb 3.8
Milrow	22:06.00.04	10-02-69 Amelia		a Shaft	-407	WR	<20 Kt
Pipkin	14:30.00.14	10-08-60 NTC /A		n Shaft	-3992	WR	~1 Mt
 Scawced B 	14:00	10.16.40 NTE /4	uca 2000) Li	L Shaft	-2025	WR	200-1000 Kt (120
Cruet	19:30.00 04	10.20.40 NIS (A	rca:3) L	A Shaft	-387	WR	<20 Ki
Pođ	20-00.00.04	10-23-09 NIS (A	rea 2cn) L	L Shaft	-855	WR	11 Kt
Calabash	22:00:00.04	10-29-69 NIS (A	rea 2ch) Li	L Shaft	-1025	WR	20-200 Kt
Scuttle	15.16	10-29-69 NIS (A	rea 2av) 🛛 🗋	L Shaft	-2050	WR	110 Kr
Planer	13:13	11-13-69 NTS (A	rea 2bh) 🛛 🖾	L Shaft	?	WR	<20 Kr
Piccalilli	13:32	11-21-69 NTS (A	rea 3) L/	A Shaft	-1237	WR	<20 M
	14:52.00.04	11-21-69 NTS (A	rca 3fc) 🛛 🗠	A Shaft	-1202	WD	20 200 V. (00)
	17:00.00.04	12-05-69 NTS (A	rea 12e) D(OD Tunnel	-1275		20-200 KI (20)
"Culantro	15:00	12-10-69 NTS (A	rea 3) 🕹 🔟	A Shaft	-1373	WB	<20 KI (20)
	15:30	12-10-69 NTS (A	rea 10) LI	- Shaft		WR	<20 Ki
Grape A	15:00.00.04	12-17-69 NTS (A	(ea 7a) 1.4	Shaft	-033	WR	<20 Kt Mb 4.2
Lovage	15:15.00.04	12-17-69 NTS (A)	ca 3fe) LA	- Shall	-1806	WR	20-200 Kt (60)
Terrine	19:00.00.04	12-18-69 NTS (A	rea 9hi) II	s Shall	-1240	WR	<20 Kt (15)
		- • •			-1500	WR	20-200 Kt (50)
********	*********************	1970 [8]					
ĩah						**=*=***	
Vio.	10:30.00.21	01-23-70 NTS	LL	Shaft	_975	WD	~ 70 K
yo Dalaa	17:00.00.04	01-30-70 NTS (Ar	ca 3gd) LA	Shaft	-009	WR NZD	<20 Ki
BCICD	17:00	02-04-70 NTS (Ar	ea 3) J.A	Shaft	-770	WK	<20 Kt (20)
nape B	17:00.00.04	02-04-70-NTS (Ar	ca 7v) ⊡ ⊺∡	Sharts	-13/8	WR	20-200 Kt
abis	15:00.00.04	02-05-70 NTS (An	na 10an) II	Chef	-1819	WR	20-200 Ki (110)
iana Mist	19:15.00.04	02-11-70 NTS (An	(12n)	Snan	-1450	WR	25 Kt
umarin	14:28.38.04	02-25-70 NTS (A-		D/LA Tunnel	-1310	WE	<20 Kt (12)
			36 34971 1.6	Shaft		A	20-200 10 (30)
annigan	15:30.00.04	07-26-70 NTE		Ghait	-1340	WR	
annigan Yathus	15:30.00.04	02-26-70 NTS (Are	⊨a 2ay) LL	Shaft	-1340 -1287	WR WR	20-200 Kt (70)
annigan Yathus rabis	15:30.00.04 14:24.00.94 15:00.00 21	02-26-70 NTS (Art 03-06-70 NTS (Art 03.06-70 NTS (Art	a 2ay) ∐. a 8b) ∐.	Shaft Shaft Shaft	-1340 -1287 -950	WR WR WR	20-200 Kt (70) 8.7 Kt
annigan Yathus Fabis I	15:30.00.04 14:24.00.94 15:00.00.21 14:03 30.04	02-26-70 NTS (Arr 03-06-70 NTS (Arr 03-06-70 NTS (Arr	**************************************	Shaft Shaft Shaft	-1340 -1287 -950 -820	WR WR WR WR	20-200 Kt (70) 8.7 Kt <20 Kt
annigan yathus rabis I Japer	15:30.00.04 14:24.00.94 15:00.00.21 14:03.30.04 23:05:00.04	02-26-70 NTS (An 03-06-70 NTS (Ar 03-06-70 NTS (Ar 03-19-70 NTS (Ar	xa 2ay) LL xa 8b) LL xa 9) LL xa 3hh) LA	Shaft Shaft Shaft Shaft Shaft	-1340 -1287 -950 -820 -988	WR WR WR WR WR	20-200 Kt (70) 8.7 Kt <20 Kt <20 Kt
annigan yathus rabis ll laper andlev	15:30.00.04 14:24.00.94 15:00.00.21 14:03.30.04 23:05.00.04 19:00.02	02-26-70 NTS (An 03-06-70 NTS (An 03-06-70 NTS (An 03-06-70 NTS (An 03-19-70 NTS (An 03-23-70 NTS (An	a 2ay) LL a 2b) LL a 3b) LL a 3hh) LA a 7r) LA	Shaft Shaft Shaft Shaft Shaft Shaft	-1340 -1287 -950 -820 -988 -1839	WR WR WR WR WR	20-200 Kt (70) 8.7 Kt <20 Kt <20 Kt (6) 20-200 Kt (70)
annigan yathus rabis I aper andley	15:30.00.04 14:24.00.94 15:00.00.21 14:03.30.04 23:05.00.04 19:00.00.20	02-26-70 NTS (An 03-06-70 NTS (Ar 03-06-70 NTS (Ar 03-19-70 NTS (Ar 03-23-70 NTS (Ar 03-26-70 NTS (Ar	a 2ay) LL a 2ay) LL a 8b) LL a 9) LL a 3hh) LA a 7r) LA a 20m) LL	Shaft Shaft Shaft Shaft Shaft Shaft	-1340 -1287 -950 -820 -988 -1839 -3957	WR WR WR WR WR WR	20-200 Kt (70) 8.7 Kt <20 Kt <20 Kt (6) 20-200 Kt (70)
annigan yathus rabis l laper andley Less tha	15:30.00.04 14:24.00.94 15:00.00.21 14:03.30.04 23:05.00.04 19:00.00.20 in full yield test of th	02-26-70 NTS (An 03-06-70 NTS (Ar 03-06-70 NTS (Ar 03-19-70 NTS (Ar 03-23-70 NTS (Ar 03-26-70 NTS (Ar 03-26-70 NTS (Ar 03-26-70 NTS (Ar	a 2ay) LL a 2b) LL a 9) LL a 3h) LA a 7r) LA a 20m) LL he Spartan AB	Shaft Shaft Shaft Shaft Shaft Shaft Shaft M	-1340 -1287 -950 -820 -988 -1839 -3957	WR WR WR WR WR WR	20-200 Kt (70) 8.7 Kt <20 Kt <20 Kt (6) 20-200 Kt (70) >1 Mt (1900 Kt)
annigan yathus rabis l aper andley Less tha ubber	15:30.00.04 14:24.00.94 15:00.00.21 14:03.30.04 23:05.00.04 19:00.00.20 in full yield test of th 14:30.00.04	02-26-70 NTS (An 03-06-70 NTS (Ar 03-06-70 NTS (Ar 03-19-70 NTS (Ar 03-23-70 NTS (Are 03-26-70 NTS (Are 03-26-70 NTS (Are 03-26-70 NTS (Are 04-21-70 NTS (Are	a 2ay) LL as 8b) LL as 9) LL a 3hh) LA a 7r) LA a 20m) LL he Spartan AB a Sev) LA	Shaft Shaft Shaft Shaft Shaft Shaft M Shaft	-1340 -1287 -950 -820 -988 -1839 -3957	WR WR WR WR WR WR	20-200 Kt (70) 8.7 Kt <20 Kt <20 Kt (6) 20-200 Kt (70) >1 Mt (1900 Kt)
annigan yathus rabis I uaper andley Less tha uubber an	15:30.00.04 14:24.00.94 15:00.00.21 14:03.30.04 23:05.00.04 19:00.00.20 in full yield test of th 14:30.00.04 15:00.00.04	02-26-70 NTS (An 03-06-70 NTS (Ar 03-06-70 NTS (Ar 03-19-70 NTS (Ar 03-23-70 NTS (Ar 03-23-70 NTS (Ar 03-26-70 NTS (Ar 03-26-70 NTS (Ar 04-21-70 NTS (Ar 04-21-70 NTS (Ar	a 2sy) LL as 2sy) LL as 8b) LL a 9) LL a 3hh) LA a 3hh) LA a 7r) LA a 20m) LL he Spartan AB a 3ev) LA a 2dd) LI	Shaft Shaft Shaft Shaft Shaft Shaft M Shaft Shaft	-1340 -1287 -950 -820 -968 -1839 -3957 -1125 1310	WR WR WR WR WR WR WR	20-200 Kt (70) 8.7 Kt <20 Kt <20 Kt (6) 20-200 Kt (70) >1 Mt (1900 Kt)
annigan yathus rabis li haper andley Less tha hubber an eebalm	15:30.00.04 14:24.00.94 15:00.00.21 14:03.30.04 23:05.00.04 19:00.00.20 in full yield test of th 14:30.00.04 15:00.00.04 14:13.00.04	02-26-70 NTS (An 03-06-70 NTS (Ar 03-06-70 NTS (Ar 03-19-70 NTS (Ar 03-23-70 NTS (Ar 03-23-70 NTS (Ar 03-26-70 NTS (Ar 03-26-70 NTS (Ar 04-21-70 NTS (Ar 04-21-70 NTS (Ar 05-01-70 NTS (Ar	a 2sy) LL as 2sy) LL a 8b) LL a 9) LL a 3hh) LA a 7r) LA a 20m) LL be Spartan AB a 3cv) LA a 2cd) LL a 3fn) LA	Shaft Shaft Shaft Shaft Shaft Shaft M Shaft Shaft	-1340 -1287 -950 -820 -988 -1839 -3957 -1125 -1310	WR WR WR WR WR WR WR	20-200 Kt (70) 8.7 Kt <20 Kt <20 Kt (6) 20-200 Kt (70) >1 Mt (1900 Kt) <20 Kt (9) 20-200 Kt (15)
annigan yathus rabis li laper andley Less tha ubber in sebalm xd	15:30.00.04 14:24.00.94 15:00.00.21 14:03.30.04 23:05.00.04 19:00.00.20 in full yield test of th 14:30.00.04 15:00.00.04 14:13.00.04 14:40.00.17	02-26-70 NTS (An 03-06-70 NTS (Ar 03-06-70 NTS (Ar 03-19-70 NTS (Ar 03-23-70 NTS (Ar 03-23-70 NTS (Ar 03-26-70 NTS (Ar 03-26-70 NTS (Ar 04-21-70 NTS (Ar 04-21-70 NTS (Ar 05-01-70 NTS (Ar	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft	-1340 -1287 -950 -820 -988 -1839 -3957 -1125 -1310 -1280	WR WR WR WR WR WR WR WR	20-200 Kt (70) 8.7 Kt <20 Kt <20 Kt (6) 20-200 Kt (70) >1 Mt (1900 Kt) <20 Kt (9) 20-200 Kt (15) <20 Kt (1)
annigan yathus rabis al aper andley Less tha ubber an eebalm od int Leaf	15:30.00.04 14:24.00.94 15:00.00.21 14:03.30.04 23:05.00.04 19:00.00.20 in full yield test of th 14:30.00.04 15:00.00.04 14:13.00.04 14:13.00.04 14:40.00.17 15:30.00.17	02-26-70 NTS (An 03-06-70 NTS (Ar 03-06-70 NTS (Ar 03-19-70 NTS (Ar 03-23-70 NTS (Ar 03-26-70 NTS (Ar 03-26-70 NTS (Ar 03-26-70 NTS (Ar 04-21-70 NTS (Ar 05-01-70 NTS (Ar 05-01-70 NTS (Ar	a 2ay) LL as 2ay) LL as 8b) LL as 9) LL a 3hh) LA a 7r) LA a 20m) LL be Spartan ABI a 3ev) LA a 2dd) LL a 3fn) LA a 121) Door	Shaft Shaft Shaft Shaft Shaft Shaft M Shaft Shaft Shaft Shaft	-1340 -1287 -950 -820 -988 -1839 -3957 -1125 -1310 -1280 -870	WR WR WR WR WR WR WR WR WR	20-200 Kt (30) 8.7 Kt <20 Kt <20 Kt (6) 20-200 Kt (6) >1 Mt (1900 Kt) <20 Kt (9) 20-200 Kt (15) <20 Kt (1) <20 Kt (9)
annigan yathus rabis laper andley Less tha ubber an eebalm od int Leaf Tenth D	15:30.00.04 14:24.00.94 15:00.00.21 14:03.30.04 23:05.00.04 19:00.00.20 in full yield test of th 14:30.00.04 15:00.00.04 14:13.00.04 14:13.00.04 14:40.00.17 15:30.00.17 OD sponsored event	02-26-70 NTS (An 03-06-70 NTS (Ar 03-06-70 NTS (Ar 03-19-70 NTS (Ar 03-23-70 NTS (Ar 03-26-70 NTS (Ar 03-26-70 NTS (Ar 03-26-70 NTS (Ar 04-21-70 NTS (Ar 04-21-70 NTS (Ar 05-01-70 NTS (Ar 05-01-70 NTS (Ar 05-05-70 NTS (Ar 05-05-70 NTS (Ar 05-05-70 NTS (Ar	a 2gy) LL as 2sy) LL as 8b) LL as 9) LL a 3hh) LA a 20m) LL be Spartan ABi a 3ev) LA a 2dd) LL a 3fn) LA a 12t) DOI ice 12t)	Shaft Shaft Shaft Shaft Shaft Shaft M Shaft Shaft Shaft Shaft D/LL Tunnel	-1340 -1287 -950 -820 -968 -1839 -3957 -1125 -1310 -1280 -870 -1330	WR WR WR WR WR WR WR WR WR WR WR WR WR	20-200 Kt (70) 8.7 Kt <20 Kt (6) 20-200 Kt (6) 20-200 Kt (70) >1 Mt (1900 Kt) <20 Kt (9) 20-200 Kt (15) <20 Kt (1) <20 Kt (9) <20 Kt (21)
annigan yathus rabis al aper andley Less tha uubber an eebalm od int Leaf Tenth Do amond Dust	15:30.00.04 14:24.00.94 15:00.00.21 14:03.30.04 23:05.00.04 19:00.00.20 in full yield test of th 14:30.00.04 15:00.00.04 14:13.00.04 14:40.00.17 15:30.00.17 OD sponsored event 14:00.00.04	02-26-70 NTS (Art 03-06-70 NTS (Art 03-06-70 NTS (Art 03-06-70 NTS (Art 03-23-70 NTS (Art 03-26-70 NTS (Art 03-26-70 NTS (Art 03-26-70 NTS (Art 04-21-70 NTS (Art 04-21-70 NTS (Art 05-01-70 NTS (Art 05-05-70 NTS	a 200) LL as 2sy) LL as 8b) LL as 9) LL a 3hh) LA a 20m) LL he Spartan AB; a 3ev) LA a 2dd) LL a 3fn) LA a 12t) DOI ics. 12t)	Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft D/LL Tunnel	-1340 -1287 -950 -820 -988 -1839 -3957 -1125 -1310 -1280 -870 -1330	WR WR WR WR WR WR WR WR WR WR WR WR WR	20-200 Kt (70) 8.7 Kt <20 Kt (6) 20-200 Kt (70) >1 Mt (1900 Kt) <20 Kt (9) 20-200 Kt (15) <20 Kt (1) <20 Kt (9) <20 Kt (21)
annigan yathus rabis anaper andley Less tha uubber an eebalm od int Leaf Tenth Do amond Dust vrnice	15:30.00.04 14:24.00.94 15:00.00.21 14:03.30.04 23:05.00.04 19:00.00.20 in full yield test of th 14:30.00.04 15:00.00.04 14:13.00.04 14:13.00.017 OD sponsored event 14:00.00.04 13:30.00.02	02-26-70 NTS (An 03-06-70 NTS (An 03-06-70 NTS (Ar 03-06-70 NTS (Are 03-19-70 NTS (Are 03-23-70 NTS (Are 03-26-70 NTS (Are 03-26-70 NTS (Are 04-21-70 NTS (Are 04-21-70 NTS (Are 05-01-70 NTS (Are 05-05-70 NTS (Are 05-12-70 NTS (Are 05-12-70 NTS (Are	a 200) LL as 2sy) LL as 8b) LL as 9) LL a 3hh) LA a 20m) LL a 20m) LL be Spartan AB a 3ev) LA a 2dd) LL a 3fn) LA a 9) LL a 12t) DOI ics. 10a) 10a) DOI	Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft D/LL Tunnel	-1340 -1287 -950 -820 -988 -1839 -3957 -1125 -1310 -1280 -870 -1330 -830	WR WR WR WR WR WR WR WR WR WR WR WR WE 6th VU	20-200 Kt (70) 8.7 Kt <20 Kt <20 Kt (6) 20-200 Kt (70) >1 Mt (1900 Kt) <20 Kt (9) 20-200 Kt (15) <20 Kt (1) <20 Kt (21) <20 Kt
annigan yathus rabis la haper andley Less tha nubber an seebalm od int Leaf Tenth Do amond Dust wrnice anzanas	15:30.00.04 14:24.00.94 15:00.00.21 14:03.30.04 23:05.00.04 19:00.00.20 in full yield test of th 14:30.00.04 15:00.00.04 14:13.00.04 14:13.00.04 14:40.00.17 0D sponsored event 14:00.00.04 13:30.00.02 14:00.00.04	02-26-70 NTS (An 03-06-70 NTS (Ar 03-06-70 NTS (Ar 03-19-70 NTS (Ar 03-23-70 NTS (Ar 03-23-70 NTS (Ar 03-26-70 NTS (Ar 03-26-70 NTS (Ar 04-21-70 NTS (Ar 04-21-70 NTS (Ar 05-01-70 NTS (Ar 05-01-70 NTS (Ar 05-01-70 NTS (Ar 05-12-70 NTS (Ar 05-12-70 NTS (Ar 05-15-70 NTS (Ar 05-15-70 NTS (Ar	a 2b) LL a 2sy) LL a 8b) LL a 9) LL a 3hh) LA a 20m) LL a 20m) LL a 20m) LL a 3cv) LA a 2dd) LL a 3fn) LA a 9) LL a 12t) DOI ices. 16a) DOI a 20p) LL	Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft D/LL Tunnel D Tunnel Shaft	-1340 -1287 -950 -820 -988 -1839 -3957 -1125 -1310 -1280 -870 -1330 -830 -1455	WR WR WR WR WR WR WR WR WR WR WE 6th VU WR	20-200 Kt (70) 8.7 Kt <20 Kt (70) 8.7 Kt <20 Kt (6) 20-200 Kt (70) >1 Mt (1900 Kt) <20 Kt (9) 20-200 Kt (15) <20 Kt (9) <20 Kt (21) <20 Kt 20-200 Kt (45)
(annigan Jyathus Jyathus Jyathus Jandiey Less tha nubber an eebalm od init Leaf Tenth Do iamond Dust ornice anzanas orrones	15:30.00.04 14:24.00.94 15:00.00.21 14:03.30.04 23:05.00.04 19:00.00.20 in full yield test of th 14:30.00.04 15:00.00.04 14:13.00.04 14:40.00.17 15:30.00.07 0D sponsored event 14:00.00.04 13:30.00.02 14:00.00.04	02-26-70 NTS (An 03-06-70 NTS (Ar 03-06-70 NTS (Ar 03-06-70 NTS (Ar 03-19-70 NTS (Ar 03-23-70 NTS (Ar 03-26-70 NTS (Ar 03-26-70 NTS (Ar 04-21-70 NTS (Ar 04-21-70 NTS (Ar 05-01-70 NTS (Ar 05-01-70 NTS (Ar 05-05-70 NTS (Ar 05-12-70 NT) (A)	a 2ay) LL as 2ay) LL as 8b) IL as 8b) IL a 3h) LA a 3h) LA a 20m) LL a 20m) LL a 20m) LL a 3cv) LA a 2dd) LL a 3fn) LA a 9) LL a 12t) DOI ics. 16a) DOI i 3gr) LA	Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft D/LL Tunnel D Tunnel Shaft Shaft Shaft	-1340 -1287 -950 -820 -988 -1839 -3957 -1125 -1310 -1280 -870 -1330 -830 -1455 -789	WR WR WR WR WR WR WR WR WR WR WR WR WR W	20-200 Kt (70) 8.7 Kt <20 Kt <20 Kt (6) 20-200 Kt (70) >1 Mt (1900 Kt) <20 Kt (9) 20-200 Kt (15) <20 Kt (1) <20 Kt (21) <20 Kt 20-200 Kt (45) <20 Kt (1)

de	ne objeci stonated	ive # to give a (lirect measure	of the decoupling	effect of t	he carbon heatsi	nk used in the	Diamond D	ust test. Device
Diamond M	ine ha abiaa	14:00.00.14	07-01-71	NTS (Area 16a)	DOD	Tunnel	-873	7th VU	<20 Kt
OPERATIO	n grom	IMET (Fiscal Ye	ar 1972, 34 tes	ts: 12 announced, 2	2 secret)				
camphor		7	06-29-71	NTS (Area 12g)	DOD	Tunnel	?	WE	<20 Ki
Complete		14:00.00.16	06-24-71	NTS (Area 2br)	Ц	Shaft	-1702	WR	20.200 80 (22)
Laguna		15:30.00.04	06-23-71	NTS	LA	Shaft	-1493	WR	20-200 Kt (14)
Dener (N	100)	14:00	06-23-71	NTS (Area 3)	LA	Shaft	-390	WR	<20 Kt
Embudo	la 100	14:50.00.04	06-16-71	NTS (Area 3hd)	LA	Shaft	-994	WR	<20 Kt (18)
			19/1 [12]			*****		
			1031				-710	****	10 AI (28)
Baneberry		15:30.00.20	12-18-70	NTS (Area 8d)	Ш	Shaft	-910	WD	10 V. (70)
Carpetbag		16:05.00.16	12-17-70	NTS (Area 2dg)	ш	Shaft	-2171	WD	~~~ MI
 Canjilon 		16:00	12-16-70	NTS (Area 3)	LA	Shaft	-900	WA WD	~ 40 NI
Cream		16:00.00.17	12-16-70	NTS	?	Shaft	-1.536	WD	20-200 KI
Artesia		16:00.00.09	12-16-70	NTS	?	Shaft	-1507	WD	< 20 NI MD 3.1
# Corazon		15:07	12-03-70	NTS (Area 3)	LA	Shaft	.790	WA	<20 KI MD 4:1
# Penasco		15:00	11-19-70	NTS (Area 3)	LA	Shaft	-1251	WA	40-400 KI (24)
Abcytas		15:00.00.04	11-05-70	NTS (Area 3ex)	LA	Shaft	-1201	WD	
# Truchas		14:30	10-28-70	NTS (Area 3)	LA	Shaft	-872	ŴR ·	~20 X 10 20
Tijeras		14:30.00.04	10-14-70	NTS (Area 7y)	LA	Shaft	-1830	WR	20.200 Kt (04)
# Scree		15:05	10-13-70	NTS (Area 9)	ш	Shaft	-817	WR	~20 ¥1 \A. 20
OPERATI	on <i>eme</i>	RY (Fiscal Year	1971, 16 tests	: 10 announced, 6 a	ccret)				
Anaka		13:00.00.04	06-26-70	NTS	· 7	Shaft	-1015	WR	20-200 Kt
		12:00	05-28-70	NTS (Area 9)	ш	Shaft	-774	WR	<20 Kt Mb 3.8
T Piton A		11:45	05-28-70	NTS (Area 9)	LL	Shaft	-328	WR	<20 Ki
Plask		15:00.00.05	05-26-70	NTS (Area 2az)	LL	Shaft	-1743	25th PS	105 Kt
Hudson M		14:16.00.17	05-26-70	NTS (Area 12c)	DOD	Tunnel	-1386	WF	~ 20 ¥ (0)

deton	ated in a spherical c	avity 4.9 meter in radius.	•				Dust test. Device
Miniata	14:00.00.08	07-08-71 NTS (Area 2)	LL	Shaft	-1735	2645 80	62 X.
# Bracken	14:00	07-09-71 NTS (Area 10	$\sqrt{11}$	Ch-A	-1755	20th F5	83 KI
# Apodaca	13:33	07-21-71 NTS (Ame 2)		Shatt	-997	WR	<20 Ki Mb 3.4
* Barranca	12.20	00 04 71 NTS (ALCE 3)	LA	Shaft	-790	WR	<20 Ki Mb 3.4
* Nama	19.07	08-04-71 NIS (Area 3)	LA	Shaft	-886	WR	<20 Kt
A Dalata	18:07	08-05-71 NTS (Area 9)	LL	Shaft	-892	WR	<20 Kr
Ballic	14:31	08-06-71 NTS (Area 9)	Ц	Shaft	1348	WD	<00 M
Algodones	14:00.00.03	08-18-71 NTS	LA	Sheft	1991	WA .	<20 KI
# Frijoles	14:00	09-22-71 NTS (Arms 3)	1.4	Ch-6	-1/31	WK	20-200 Kt (66)
Podemal	14:00.00.04	09.29.71 NTC		Shan	-843	WR	<20 Kt Mb 3.6
Chantiliv	14.30	00 20 71 1113		Shart	-1242	WR	<20 Kt
Cathey	14-20.00 04	09-29-71 NIS (Area 2)	Ц	Shaft	-1082	WR	<20 Kt
# I amon	14:30.00.04	10-08-71 NTS	Ц	Shaft	-1240	WR	<20 Kt (7)
# Lagoon	14:30	10-14-71 NTS (Area 10)	L	Shaft	_007	WD	<00 K 10 00
Cannikin	22:00.00.06	11-06-71 Amchitka AK	LL.	Shaft	5076	WA	420 N. MD 3.9
Proof	est of W71 warhead	for Spartan ABM missile		COMMEN	-3675	WK	<5 Mi
Diagonal Line	20:15.00.17	11-24-71 NTS (Ama 11-	N DODAL				
# Parnassia	15-45 03 4	11 20 71 NTS (Alea 11)		Shart	-867	WE	<20 Kt
Chacnactia	21.00 50 14	11-30-71 NIS (Area 2)	LL	Shaft	-1082	WR	<20 Kt Mb 4.4
• Vanha	21.07.37.10	12-14-71 NTS	LL	Shaft	-1085	WR	20-200 Kt (24)
	21:10	12-14-71 NTS (Area 1)	LA	Shaft	-1099	WD	<20 %
- Hosbay	21:10	12-14-71 NTS (Area 3)	LA	Shaft	-1005		CAU NI
		······································		CILICITY .	-991	WK	<20 Kt

De	•		
		-	

Event Name	Time	Date	Location	Lab	Туре	DOB	Purpor	* Yield
**************************************		1	972 [18]					
• Mescalero	15:10	01-05-7						
# Cowles	21:45	02-03-72	NTS (Area 3)	1.A	Shaft	-394	WR	<20 Ki
# Dianthus	19:02	02-17-72	NTS (Area 10)		Shaft	-987	WR	<20 Ki Md 4
* Sappho	18:50	03-23-77	NTS (Area 7)		Shaft	-997	WR	<20 Kt Mb 4
# Onaja	21:00.01	03-30-72	NTS (Area 2)		Shaft	-646	WR	<20 Kt
 Jicarilla 	15:42	04-19-72	NTS (Area 2)		Shart	-915	WR	<20 Kt Mb 4
Longchamps	16:32.00.16	04-19-72	NTS (ALCE 5)		Shaft	-485	WR	<20 Kt
Misty North	19:15.00.04	05.02.72	NTS		Shart	1071	WR	<20 Kt
# Kara	14:00	05-11-72	NTE (Ame 2)		Tunnel	-1238	WE	<20 Kt (19)
Zinnia	14:10.00.16	05-17-72	NTS (ALCE 2)		Shart	-850	WR	<20 Kt Mb 3.
Monero	17:00.00.05	05-19-72	NTS		Shaft	-1059	WR	<20 Kt (8)
# Merida	15:20	06-07-72	MIS (Arra 2)		Shaft	-1763	WR	<20 Ki (7)
Capitan (No.12	0) 14:41	06.28.72	NIS (Area 2)	11	Shaft	-669	WR	<20 Ki Mb 3.
* Haplopappus	16:30	06.28.72	NIS (Area 5)	LA	Shaft	-440	WR	<20 Kt Mb 3.1
# Tajique	16:30	06-28-72	NTS (Area 7)		Shaft Shaft	-604	WR	<20 Kt
OPERATION TO	GGLE (Fiscal Ye	ar 1973, 27 test	K 11 approvneed	 16 secret)		-1069	WK	<20 Ki
Diamond Sculls	17:16.00.16	07-20-72	NTS		m			
Used fi	ili scale missile			000	T ADUCI	-1391	WE	<20 K1 (21)
Atarque	13:30.03	07-25-72	NTS (Area 3)	LA	Shaft	6 44	22 m-	
Cuchillo	13:31	08-09-72	NTS (Area 3)	ĨĂ	Sheft	-304	WR	<20 Ki Mb 3.6
Decuro	15:30.00.19	09-21-72	NTS	1.A	Sheft	-430	WR	<20 Ki
Delphinium	14:30.00.16	09-26-72	NTS	п.	Shaft	-1838	WR	20-200 Kt (100
Akbar	15:15	11-09-72	NTS (Area 10)	и.	Shaft	-970	WK	15 Ki
Arsenate	18:15	11-09-72	NTS (Area 9)	п.	Shaft	-8/2	WR	<20 Kt Mb 3.7
Canna	18:00	11-17-72	NTS (Area 9)	II.	Sheft	-620	WK	<20 Kt Mb 3.7
	16:30	12-12-72	NTS (Area 3)	LĂ	Shaft	-055	WK	<20 Ki
Solanum	15:30	12-14-72	NTS (Area 9)	ш	Shaft	-007	WK	<20 KI Mb 3.3
	20:15.00.24	12-21-72	NTS	LL	Shaft	-2258	WR	<20 Kt 20-200 Kt (27)
			3 (15)					
Alumroot	15:30	02-14-73	NTS (Ame O)	••	-			
liera	16:10.00.19	02-14-73	NTO (AIGE Y)	Ц	Shaft	-597	WR	<20 Kt
Gazook	20:15	03-00-73		LA	Shaft	-1866	WR	20-200 Kt (70)
Natoma	14:50	04.05.72	NIS (Area 2)		Shaft	-1069	WR	<20 Kt Mb 3.3
2213	22:25:00.03	04-25 72	113 (AICE 10)	ц.	Shaft	-797	Wr	<20 Kt.
Colmor	15:15	04 26 72		- 1.	Shaft	-1475	WR	20-200 Kt (23)
arwort	17:15:00:16	04-20-73	NIS (Area 3)	LA	Shaft	-787	WR	<20 Kt Mb 3.6
Mesita	13:30	05 00 72 1	N12	7	Shaft	-1850	WR	90 Kt
io Blanco	16:00:00 12	05-09-73	NIS (Area 3)	LA	Shaft	-489	WR	<20 Kt
Three de	vices fired at -584	03-17-73 1 1062306690	fant	Ц	Shaft	. 7	27th PS	Three 33 Kt
Kashan	13:30.00.7	05-24-73	NTS (Area 10)	11	Sh-A			
Cabresto	13:30	05-24-73	TS (Area 7)		Shaft	-869	WR	<20 Kt Mb 4.1
do Queen	17:00.00.17	06-05-73 N	TS (ALCA /)		Shart	-646	WR	<20 Kt
mendro	13:00.00.08	06-06-73 N	ITS .		Junnei	-1280	WE	<20 Kt (18)
Potrillo	14:44.59.6	06-21-73 N	TS (Ares 7)		Shaft	-3475	WR	200-1000 Ki (25
rtulaca	19:15.12.40	06-28-73 N		11		-1863	WR	20-200 Kt Mb 5.
Silene	19:45	06-28-73 N	TTS (Area 9)		Shaft Shaft	-1540	WR	20-200 Kt (24)
ERATION AREC	R (Fiscal Year 19	774, 19 testa: 5 =	nnounced 14 and	met')		-047	WK	<20 Ki Mb <2?
obecome	14.20			~~;				
Waller (Ma. 146)	19150	10-02-73 N	TS (Area 2)	LL	Shaft	-690	WP	< 30 K-
	13:13	10-02-73 N	TS (Area 2)	Ц	Shaft	-1017	W/D	~20 N.
	1/:00.00.05	10-12-73 N	TS	DOD	Tunnel	.1345	WE	~20 K. MD 3.9
	7	11.00 00 N		_		2040	VT 65	×44 NI (δ)
	•	11-40-12 N	12 .	LA	Shaft	9 .	WD	-20 20

							P8
• Scafoam	15:17	12.12.72 NTC /	n ••	.			
* Spar	17:30	12-19-73 NTS (Area 2	6) LL	Shaft	-649	WR	<20 Kt
• Elida	19:16	12-19-73 NTE (Ama 2		Shaft	-489	WR	<20 Ki
	17.10	12-13-75 N15 (Area 3) LA	Shaft	-1250	WR	<20 Kt
····	·····						
Pinedrons	16-38		· •				
Latir	17:00	01-10-74 NIS (AREA I	9 IL	Shaft	-1122	WR	<20 Kt
Huisea	18-00	02-27-74 NIS	LA	Shaft	?	WR	20-200 Kt (150)
Sancilo	16.15	04.12 74 NIS (Area 2		Shaft	-640	WR	<20 Kt
# Portrem	16.12	04-12-74 NIS (Area 3) LA	Shaft	-590	WR	<20 Ki
Plomo	12:12	04-23-74 NTS (Area 2)) LL	Shaft	-689	ŴR	<20 Kt Mh 3.6
Tik	14:02	05-01-74 NTS (Area 3)) LA	Shaft	-489	WR	<20 Kt
t Group	10:33	05-08-74 NTS (Area 3)) LA	Shaft	-587	WR	<20 Kt
	14:15.00.5	05-22-74 NTS (Area 2)) LL	Shaft	-1027	WR	<20 Kt Mh 4 4
	13:38.30.2	05-23-74 NTS	Ц	Shaft	?	6th UIK	20.200 Kt
v Jasa Jina Diada	14:40.00.0	06-06-74 NTS (Area 3)) LA	Shaft	-1240	WR	< 20 Kt Mb 4 2
And Blade	15:59.59.9	06-19-74 NTS	DOD	Tunnel	?	WE	<20 Kt (20)
PERATION B	EDROCK (Fiscal) Ban Treaty signed	car 1975, 27 tests: 15 announce 3 July 1974; submitted to Unite	ed, 12 secret) Nate for milionid			
scahose	16.00 00 0				m ou 27 July IS	7/0	
Crestlaba	10:00.00.0	07-10-74 NTS	LA	Shaft	?	WR	20-200 Kt (170)
	14:00.01.3	07-18-74 NTS (Area 2)	LL	Shaft	-1223	WR	< 20 Kt Mb 3.0
	14:00.00.0	08-14-74 NTS	LA	Shaft	?	WR	<20 Kt (40)
Dent	15:00.00.0	08-30-74 NTS	LL	Shaft	7	WR	20-200 Kt (200)
Transie II	14:00.00.3	09-25-74 NTS (Area 3)	LA	Shaft	-1027	WP	<20 K. M. 42
Trumbull	14:30	09-26-74 NTS (Area 4)	LL	Shaft	_859	WA	<20 NI MD 4.3
anyan Fataa	15:05.00.0	09-26-74 NTS	ัน	Shaft	201	WD	20 NI MO 3.3
CSISC2	17:13	10-17-74 NTS (ARea 3)	LA	Shaft	.1050	WD	20-200 KI (100)
yola Fair	7	10-28-74 NTS	DOD/	LL Tunnel	7	WR	< 20 N
	ne reasibility of using 15-20	ng a very low yield nuclear device	се аз а Х-гау	y source	•	~~~	~20 AI
Puddle	15:30	11-02-74 NTS (Area 4)	LL	Shaft	-859	WR	<20 Kr
Keel	15:00	11-26-74 NTS (Area 3)	LA	Shaft	-600	WR	<20 Kt
NGCI	17:30.00.5	12-16-74 NTS (Area 3)	LA	Shaft	-1148	WR	<20 Ki Mb 4.2 (4)
		1975 [6]					
Portola (No.16	i0) 15:30	02-06-75 NTS (Area 10)	11	Sheft	<i>c</i> 10		
Teleme	16:13	02-06-75 NTS (Area 9)	ĨĨ	Shaft	-049	WR	<20 K1 Mb 3.5
Bilge	20:10	02-19-75 NTS (Area 3)	I A	Shaft	-997	WR	<20 K1 Mb 4.5
Pgallan?	10.15	02-29-75 NTS		Shan	-1046	WR	<20 Ki
brillo ·	15:00	03-07-75 NTS	2	Sheltanda i i i	7	WR.	20-200 K: (125)
ning Car	19:45	04-05-75 NTS	, DOD	Shart	?	WR	20-200 Kt (120)
Cost \$2	20,2 million	000075 MIS	DOD	Tunnel	7	WE	<20 Kt (20)
am	14:10	04-24-75 NTS	7 .	Shaft	•		
er	15:00	04-30-75 NTS	2	Shaft	2	WR	20-200 Kt (9)
00	14:00	05-14-75 NTS	i.	Shaft	7	WR	20-200 Kt (41)
ton	14:20.00.2	06-03-75 NTS		Shaft	7	WR	200-1000 Kt (380)
zen	14:40	06-03-75 NTS	2	Shaft	-2398	WR	20-200 Kt (275)
lviso	13:00	06-11-75 NTS (Area 2)	, 11	Sheft	-1516	WR	20-200 Kt (160)
uttock	11:49	06-18-75 NTS (Area 3)		Shaft	-600	WR	<20 Kt
st	13:00	06-19-75 NTS		Shafe	-607	WR	<20 Ki
nembert	12:30	06-26-75 NTS	11	Shall Shaft	-2992	WR	200-1000 Kt (520)
FRATION AND	/		<u>ياما</u>	Snan	-4300	WR	200-1000 Kt (750)
	a (rnal icar 19	vo and quarter, 21 tests: 18 ann	nounced, 3 se	ecret)			•
rsh	17:00	09-06-75 NTS					
ky Pup	17:11.26	10-24-75 NTC	LA	Shaft	-1400	WR	<20 Kt (15)
Cost \$2	5 million	****** (J IN19	DOD	Tunnel	?	WE	<20 Kt (15)
cri	14:30	10.28.75 NTTO		- ·-		•••	
eck	15:30.00.3	11-18-75 NTC / A 21	اسال ۲	Shaft	. ?	WR	200-1000 Kt (1200)
•			LA	Shaft	-1069	WR	<20 KI Mb 4.3

Pa	ae	46
	_	

- - -

÷.,

U.S. Nuclear Tests, NWD 94-1

Inlet							
111101	15:00	11-20-75 NTS	1.4	Sh-A			
Leyden	15:30	11-26-75 NTS		Shaft	-2680	WR	200-1000 Kt (500)
Chiberta	20:00	12-20-75 NTS		Shaft	-1050	WR	<20 Ki (5)
			للهيل	Suati	-2348	WR	20-200 Kt (160)
, <u></u>	896° 14 8 - 147 - 147 - 149 -	1976 [5]					
Mucaster	19:15.00.2	01-03-76 NTS	LL	Shaft	.4750	3370	000 1000 17. 1000
Keeison	14:20.00.1	02-04-76 NTS	LA	Shaft		WR	200-1000 Ki (800)
Esrom	14:40	02-04-76 NTS	11.	Shaft	-2077	WR	20-200 KI (200)
Fontina	14:45.00.2	02-12-76 NTS	Π.·	Shaft	-2140	WR	20-200 Kt (150)
Cheshire	11:30.00.2	02-14-76 NTS	11	Sheft	-3998	WR	200-1000 Kt (900)
# Shallows	14:50	02-26-76 NTS (Area 3)	LLL. T.A.	Shah	-3828	WR	200-500 Kt (350)
Estuary	14:00.00.0	03-09-76 NTS		SDart	-797	WR .	<20 Ki Mb 4.1
Colby	12:30.00.2	03-14-76 NTTS		Shari	-2850	WR	200-500 Kt (350)
Pool	14:15:00 1	03-17-70 NTS	بلبا	Shaft	-4175	WR	500-1000Kt (800)
Strait	14:45 00 1	03-17-76 NIS	LA	Shaft	-2883	WR	200-500 Kt (500)
I set	high sold test	03-17-76 N1S	?	Shaft	-2558	WR	200-500 Kt (200)
Mighty Enic	10.50.00.2						
agaiy cpic	17:30.00.2 624	05-12-76 NTS	DOD	Tunnel	?	WE	<20 Kt
E Dinali	320.4 million						
	UC:/1	05-20-76 NTS (Area 2)	LL	Shaft	-656	WR	<20 Kt Mh 2.7
	20:30.00,079	07-27-76 NTS	?	Shaft	7	WR	20.150 K.
anon	14:30.00.168	08-26-76 NTS	7	Shaft	?	716 112	20-150 NI 20 160 Ki
PERATION F	III CRIM (Eisen) No				•	/10 UK	20-150 KI
	OLCAUM (FISCAL IC	ar 1977, 21 tests: 11 announced	l, 10 secret)				
Gouda	14:30	10-06-76 NTS (Area 2)	11	Shad			
Sprit	14:58	11-10-76 NTS (Apra 3)		Shaft	-020	WR	<20 Ki Mb 3.7
hevre	15:15	11-23-76 NTS		Suati	-597	WR	<20 Kt
edmud	14:49.30.083	12-08-76 NTS		Snan	7	WR	<20 Ki
siago	15:09.00.166	12-21-76 NTS	LA	Shall	-1401	WR	<20 Kt
Sutter	15:58	12-21-76 NTS (Ama 2)	<i>r</i>	Shatt	-1086	WR	<20 Kt
udder	18:00.00.076	12-21-76 NIS (ARE 2)	LL.	Shaft	-656	WR	<20 Kt
		12-20-70 NIS	LA	Shaft	-4205	WR	20-150 Kt
		1977 [8]	·				
Oarlock	17:53	02-16-77 NTS (Area 3)	LA	Shaft	1050		
Dofino	14:24	03-08-77 NTS (Area 10)	ū.	Shaft	-1020	WR	<20 Ki Mb 4.3
arsilly	15:00.00.167	04-05-77 NTS	11	Sheft	• • • • • • • • • • • •	WR	<20 Kt Mb 3.8
likhead	15:00.00.084	04-27-77 NTS	T A	Shell	-2203	WR	20-150 Kt
exline				SIBILI		11/10	AA 4 PA 32.
	17:00.00.076	05-25-77 NTS	T A	61 - A	-1948	WK	20-150 KI
Forefoot	17:00.00.076 17:15	05-25-77 NTS	LA	Shaft	-1948 -1850	WR	20-150 Kt 20-150 Kt
Forefoot	17:00.00.076 17:15 14:07	05-25-77 NTS 06-22-77 NTS (Area 3) 07-28-77 NTS (Area 6)		Shaft Shaft	-1948 -1850 -633	WR WR	20-150 Kt 20-150 Kt <20 Kt
Forefoot Carosling ake	17:00.00.076 17:15 14:07	05-25-77 NTS 06-22-77 NTS (Area 3) 07-28-77 NTS (Area 3)		Shaft Shaft Shaft	-1948 -1850 -633 -682	WR WR	20-150 Ki 20-150 Ki <20 Ki <20 Ki
Forefoot Carbolisie ake Gruvere	17:00.00.076 17:15 14:07 16:40.00.074	05-25-77 NTS 06-22-77 NTS (Area 3) 07-28-77 NTS (Asea 6) 08-04-77 NTS	LA LA LL LA	Shaft Shaft Shaft Shaft	-1948 -1850 -633 -682 -1699	WR WR WR WR	20-150 Kt 20-150 Kt <20 Kt <20 Kt 20-150 Kt
Forefoot Carbolisie ake Gruyere Flotost	17:00.00.076 17:15 14:07 16:40.00.074 14:41 15:40	05-25-77 NTS 06-22-77 NTS (Area 3) 07-28-77 NTS (Area 3) 08-04-77 NTS 08-16-77 NTS (Area 9)	LA LA LA LA	Shaft Shaft Shaft Shaft Shaft	-1948 -1850 -633 -682 -1699 -679	WR WR WR WR WR	20-150 Kt 20-150 Kt <20 Kt <20 Kt 20-150 Kt <20 Kt Mb 3.7
Forefoot Carbolism ake Gruyere Flotost Sounser	17:00.00.076 17:15 14:07 16:40.00.074 14:41 15:49 17:22	05-25-77 NTS 06-22-77 NTS (Area 3) 07-28-774 NTS (Area 4) 08-04-77 NTS 08-16-77 NTS (Area 9) 08-16-77 NTS (Area 2)		Shaft Shaft Shaft Shaft Shaft Shaft	-1948 -1850 -633 -682 -1699 -679 -902	WR WR WR WR WR WR	20-150 Ki 20-150 Ki <20 Ki <20 Ki 20-150 Ki <20 Ki Mb 3.7 <20 Ki Mb 4.0
Forefoot Carosting ake Gruyere Flotost Scupper	17:00.00.076 17:15 14:07 16:40.00.074 14:41 15:49 17:32	05-25-77 NTS 06-22-77 NTS (Area 3) 07-28-77 NTS (Area 3) 08-04-77 NTS 08-16-77 NTS (Area 9) 08-16-77 NTS (Area 2) 08-19-77 NTS (Area 3)	LA LA LA LL LL LA	Shaft Shaft Shaft Shaft Shaft Shaft Shaft	-1948 -1850 -633 -682 -1699 -679 -902 -1473	WR WR WR WR WR WR	20-150 Ki 20-150 Ki <20 Ki <20 Ki Mb 2.7 20-150 Ki <20 Ki Mb 3.7 <20 Ki Mb 3.7 <20 Ki Mb 3.2
Forefoot Carbolisa ake Gruyere Flotost Scupper ntling	17:00.00.076 17:15 14:07 16:40.00.074 14:41 15:49 17:32 17:55.00.075	05-25-77 NTS 06-22-77 NTS (Area 3) 07-28-77* NTS (Area 3) 08-04-77 NTS 08-16-77 NTS (Area 9) 08-16-77 NTS (Area 2) 08-19-77 NTS (Area 3) 08-19-77 NTS	LA LA LA LL LA LA LA	Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft	-1948 -1850 -633 -682 -1699 -679 -902 -1473 -7299	WR WR WR WR WR WR WR	20-150 Ki 20-150 Ki <20 Ki <20 Ki Mb 2.7 20-150 Ki <20 Ki Mb 3.7 <20 Ki Mb 3.3 20 160 Vi
Forefoot Carbolisa ake Gruyere Flotost Scupper ntling btide	17:00.00.076 17:15 14:07 16:40.00.074 14:41 15:49 17:32 17:55.00.075 14:36.30.077	05-25-77 NTS 06-22-77 NTS (Area 3) 07-28-77* NTS (Area 3) 08-04-77 NTS 08-16-77 NTS (Area 9) 08-16-77 NTS (Area 2) 08-19-77 NTS (Area 3) 08-19-77 NTS 09-15-77 NTS		Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft	-1948 -1850 -633 -682 -1699 -679 -902 -1473 -2299 -1250	WR WR WR WR WR WR WR	20-150 Ki 20-150 Ki <20 Ki <20 Ki Mb 2.7 20-150 Ki <20 Ki Mb 3.7 <20 Ki Mb 3.7 <20 Ki Mb 3.3 20-150 Ki
Forefoot Carborling ake Gruyere Flotost Scupper untling btide ulommiers	17:00.00.076 17:15 14:07 16:40.00.074 14:41 15:49 17:32 17:55.00.075 14:36.30.077 14:00.00.161	05-25-77 NTS 06-22-77 NTS (Area 3) 07-28-77, NTS (Area 3) 08-04-77 NTS 08-16-77 NTS (Area 9) 08-16-77 NTS (Area 2) 08-19-77 NTS (Area 3) 08-19-77 NTS 09-15-77 NTS 09-27-77 NTS		Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft	-1948 -1850 -633 -682 -1699 -679 -902 -1473 -2299 -1250 -1738	WR WR WR WR WR WR WR WR WR WR WR	20-150 Ki 20-150 Ki <20 Ki <20 Ki Mb 2.7 20-150 Ki <20 Ki Mb 3.7 <20 Ki Mb 3.7 <20 Ki Mb 3.3 20-150 Ki <20 Ki 20-150 Ki
Forefoot Carbolian ake Gruyere Flotost Scupper untling btide ulommiers ERATION CR	17:00.00.076 17:15 14:07 16:40.00.074 14:41 15:49 17:32 17:55.00.075 14:36.30.077 14:00.00.161 ESSET (Fiscal Year	05-25-77 NTS 06-22-77 NTS (Area 3) 07-28-77* NTS (Area 3) 08-04-77 NTS 08-16-77 NTS (Area 9) 08-16-77 NTS (Area 2) 08-19-77 NTS (Area 3) 08-19-77 NTS 09-15-77 NTS 09-27-77 NTS 1978, 23 tests: 16 announced, 7	LA LA LL LA LL LA LA LA LA LA LL Secret)	Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft	-1948 -1850 -633 -682 -1699 -679 -902 -1473 -2299 -1250 -1738	WR WR WR WR WR WR WR WR WR WR WR	20-150 Ki 20-150 Ki <20 Ki Mb 2.7 20-150 Ki <20 Ki Mb 3.7 <20 Ki Mb 3.7 <20 Ki Mb 3.3 20-150 Ki <20 Ki 20-150 Ki
Forefoot Carbotina rake Gruyere Flotost Scupper antling btide ulommiers ERATION CR	17:00.00.076 17:15 14:07 16:40.00.074 14:41 15:49 17:32 17:55.00.075 14:36.30.077 14:00.00.161 ESSET (Fiscal Year 14:15.00.076	05-25-77 NTS 06-22-77 NTS (Area 3) 07-28-77* NTS (Area 3) 08-04-77 NTS 08-16-77 NTS (Area 9) 08-16-77 NTS (Area 2) 08-19-77 NTS (Area 3) 08-19-77 NTS 09-15-77 NTS 09-15-77 NTS 1978, 23 tests: 16 announced, 7	LA LA LA LL LA LL LA LA LA LA LA LA LA	Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft	-1948 -1850 -633 -682 -1699 -679 -902 -1473 -2299 -1250 -1738	WR WR WR WR WR WR WR WR WR	20-150 Ki 20-150 Ki <20 Ki <20 Ki Mb 2.7 20-150 Ki <20 Ki Mb 3.7 <20 Ki Mb 3.7 <20 Ki Mb 3.3 20-150 Ki <20 Ki 20-150 Ki
Florefoot Carbothin ake Gruyere Flotost Scupper antling btide ulommiers ERATION CR bstay bla Gold	17:00.00.076 17:15 14:07 16:40.00.074 14:41 15:49 17:32 17:55.00.075 14:36.30.077 14:00.00.161 ESSET (Fiscal Year 14:15.00.076 18:06 00.074	05-25-77 NTS 06-22-77 NTS (Area 3) 07-28-77* NTS (Area 3) 08-04-77 NTS 08-16-77 NTS (Area 9) 08-16-77 NTS (Area 2) 08-19-77 NTS (Area 3) 08-19-77 NTS 09-15-77 NTS 09-27-77 NTS 1978, 23 tests: 16 announced, 7 10-26-77 NTS 11 01 77 NTS	LA LA LA LL LA LA LA LA LA LA LA	Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft	-1948 -1850 -633 -682 -1699 -679 -902 -1473 -2299 -1250 -1738	WR WR WR WR WR WR WR WR WR WR WR	20-150 Ki 20-150 Ki <20 Ki <20 Ki Mb 2.7 20-150 Ki <20 Ki Mb 3.7 <20 Ki Mb 3.3 20-150 Ki <20 Ki 20-150 Ki
Flotost Gruyere Flotost Scupper untling btide ulommicrs ERATION CR bia Gold	17:00.00.076 17:15 14:07 16:40.00.074 14:41 15:49 17:32 17:55.00.075 14:36.30.077 14:00.00.161 ESSET (Fiscal Year 14:15.00.076 18:06.00.074	05-25-77 NTS 06-22-77 NTS (Area 3) 07-28-77* NTS (Area 3) 08-04-77 NTS 08-16-77 NTS (Area 9) 08-16-77 NTS (Area 2) 08-19-77 NTS (Area 3) 08-19-77 NTS 09-15-77 NTS 09-27-77 NTS 1978, 23 tests: 16 announced, 7 10-26-77 NTS 11-01-77 NTS	LA LA LA LL LA LA LA LA LA LA LL Secret) LA DOD	Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft	-1948 -1850 -633 -682 -1699 -679 -902 -1473 -2299 -1250 -1738	WR WR WR WR WR WR WR WR WR WR WR WR	20-150 Ki 20-150 Ki <20 Ki Mb 2.7 20-150 Ki <20 Ki Mb 3.7 <20 Ki Mb 3.3 20-150 Ki <20 Ki 20-150 Ki <20 Ki <20 Ki
Carbolian Carbolian ake Gruyere Flotost Scupper intling btide ulommiers ERATION CR bitay bla Gold Cost \$8 dosef	17:00.00.076 17:15 14:07 16:40.00.074 14:41 15:49 17:32 17:55.00.075 14:36.30.077 14:00.00.161 ESSET (Fiscal Year 14:15.00.076 18:06.00.074 3.6 million 22:00.00.077	05-25-77 NTS 06-22-77 NTS (Area 3) 07-28-77* NTS (Area 3) 08-04-77 NTS 08-16-77 NTS (Area 9) 08-16-77 NTS (Area 2) 08-19-77 NTS (Area 3) 08-19-77 NTS 09-15-77 NTS 09-27-77 NTS 1978, 23 tests: 16 announced, 7 10-26-77 NTS 11-01-77 NTS	LA LA LA LL LA LA LA LA LA LL Secret) LA DOD	Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft	-1948 -1850 -633 -682 -1699 -679 -902 -1473 -2299 -1250 -1738	WR WR WR WR WR WR WR WR WR WR WR WR	20-150 Ki 20-150 Ki 200 Ki 200 Ki Mb 2.7 20-150 Ki 20-150 Ki 200 Ki Mb 3.3 20-150 Ki 20-150 Ki 20-150 Ki 20-150 Ki
Flotost Garostian ake Gruyere Flotost Scupper untling btide ulommiers ERATION CR sitay sha Gold Cost \$8 dreef	17:00.00.076 17:15 14:07 16:40.00.074 14:41 15:49 17:32 17:55.00.075 14:36.30.077 14:36.30.077 14:36.30.077 14:15.00.076 18:06.00.074 36 million 22:00.00.075 10:20.00.075	05-25-77 NTS 06-22-77 NTS (Area 3) 07-28-774 NTS (Area 3) 08-04-77 NTS 08-16-77 NTS (Area 9) 08-16-77 NTS (Area 2) 08-19-77 NTS (Area 3) 08-19-77 NTS 09-15-77 NTS 09-27-77 NTS 1978, 23 tests: 16 announced, 7 10-26-77 NTS 11-01-77 NTS	LA LA LL LA LL LA LA LA LA LA DOD LA	Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft	-1948 -1850 -633 -682 -1699 -679 -902 -1473 -2299 -1250 -1738	WR WR WR WR WR WR WR WR WR WR WR WR WR	20-150 Ki 20-150 Ki <20 Ki 20-150 Ki <20 Ki Mb 2.7 20-150 Ki <20 Ki Mb 3.7 <20 Ki Mb 3.7 <20 Ki Mb 3.3 20-150 Ki <20 Ki 20-150 Ki <20 Ki
Flotost Garboot Carbootina ake Gruyere Flotost Scupper ntling btide ulommiers ERATION CR stay ka Gold Cost \$8 ireef nount	17:00.00.076 17:15 14:07 16:40.00.074 14:41 15:49 17:32 17:55.00.075 14:36.30.077 14:36.30.077 14:00.00.161 ESSET (Fiscal Year 14:15.00.076 18:06.00.074 16:06 19:30.00.077 19:30.00.077	05-25-77 NTS 06-22-77 NTS (Area 3) 07-28-774 NTS (Area 3) 08-04-77 NTS 08-16-77 NTS (Area 9) 08-16-77 NTS (Area 2) 08-19-77 NTS (Area 3) 08-19-77 NTS 09-15-77 NTS 09-27-77 NTS 1978, 23 tests: 16 announced, 7 10-26-77 NTS 11-01-77 NTS 11-09-77 NTS 11-17-77 NTS	LA LA LA LL LA LL LA LA LA DOD LA LA	Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft Tunnel Shaft	-1948 -1850 -633 -682 -1699 -679 -902 -1473 -2299 -1250 -1738 -1250 -1263 -1263 -2299 -1220	WR WR WR WR WR WR WR WR WR WR WR WR WR	20-150 Ki 20-150 Ki <20 Ki <20 Ki <20 Ki <20 Ki <20 Ki <20 Ki Mb 3.7 <20 Ki <20 Ki Mb 3.7 <20 Ki Mb 3.7 <20 Ki <20 Ki
Forefoot Carbotian ake Gruyere Flotost Scupper Initing bide Wommiers ERATION CR Distay Dia Gold Cost \$8 dreef mount Lib	17:00.00.076 17:15 14:07 16:40.00.074 14:41 15:49 17:32 17:55.00.075 14:36.30.077 14:00.00.161 ESSET (Fiscal Year 14:15.00.076 18:06.00.074 3.6 million 22:00.00.075 19:30.00.077 15:00	05-25-77 NTS 06-22-77 NTS (Area 3) 07-28-77, NTS (Area 3) 08-04-77 NTS 08-16-77 NTS (Area 9) 08-16-77 NTS (Area 2) 08-19-77 NTS (Area 3) 08-19-77 NTS 09-15-77 NTS 09-27-77 NTS 1978, 23 tests: 16 announced, 7 10-26-77 NTS 11-01-77 NTS 11-09-77 NTS 11-17-77 NTS 12-14-77 NTS (Area 3)	LA LA LA LL LA LA LA LA LA LA LA LA LA	Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft Tunnel Shaft Shaft Shaft	-1948 -1850 -633 -682 -1699 -679 -902 -1473 -2299 -1250 -1738 -1250 -1738 -1250 -1263 -2299 -1220 -699	WR WR WR WR WR WR WR WR WR WR WR WR WR W	20-150 Ki 20-150 Ki <20 Ki <20 Ki Mb 2.7 20-150 Ki <20 Ki Mb 3.7 <20 Ki Mb 3.7 <20 Ki Mb 3.3 20-150 Ki <20 Ki 20-150 Ki <20 Ki <20 Ki <20 Ki
Florefoot Carbolism rake Gruyere Flotost Scupper untling btide ulommiers ERATION CR httay bla Gold Cost \$8 dreef mount lib sliones	17:00.00.076 17:15 14:07 16:40.00.074 14:41 15:49 17:32 17:55.00.075 14:36.30.077 14:00.00.161 ESSET (Fiscal Year 14:15.00.076 18:06.00.074 3.6 million 22:00.00.075 19:30.00.077 15:00 15:30.00.169	05-25-77 NTS 06-22-77 NTS (Area 3) 07-28-77, NTS (Area 3) 08-04-77 NTS 08-16-77 NTS (Area 9) 08-16-77 NTS (Area 2) 08-19-77 NTS (Area 3) 08-19-77 NTS 09-15-77 NTS 1978, 23 tests: 16 announced, 7 10-26-77 NTS 11-01-77 NTS 11-09-77 NTS 11-17-77 NTS 12-14-77 NTS (Area 3) 12-14-77 NTS	LA LA LA LL LA LL LA LA LA LA LA LA LA L	Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft Shaft	-1948 -1850 -633 -682 -1699 -679 -902 -1473 -2299 -1250 -1738 -1250 -1738 -1250 -1263 -2299 -1220 -699 -1210	WR WR WR WR WR WR WR WR WR WR WR WR WR W	20-150 Ki 20-150 Ki <20 Ki <20 Ki Mb 2.7 20-150 Ki <20 Ki Mb 3.3 20-150 Ki <20 Ki 20-150 Ki <20 Ki <20 Ki <20 Ki <20 Ki <20 Ki

	**********************	******		1978 [7]					
	Campos	21:52.59.6	02-13-	78 NTS	П.	Sheft	•	11 70	
	Replecter	17:00.00.164	02-23-	78 NTS	ц.	Shaft	2160	WK	<20 Ki
	• On 21 F	coruary a worke	r fell down th	e shaft and died			-2128	WX	20-150 K
	# Karab	14:59.59.6	03-16-	78 NTS (Area 4	D 11	Sheft			
	loeberg	16:30.00.20	03-23-2	78 NTS		Sheft	-1086	WR	<20 Ki Mb 4
	 Topmast(No.180) 16:30	03-23-2	78 NTS (Area 7		Shaft	-2099	WR	20-150 Kt
	Fondutta	15:30.00.161	04-11-3	78 NTS	11	Shaft	-1499	WR	<20 Kt
	Backbeach	17:45.00.073	04-11-7	8 NTS		Shaft	-2076	8th UK	20-150 Kt
	* Asco	14:35	04-25-7	8 NTS (Area 1		Shall	-2004	WR	20-150 Kr
	Transom	?	05-10-7	R NTC		Shall	-600	WR	<20 Ki
	No nucle	ar vield: device	was destroyed	bu Lleans data	LA nation on 60.6	Snan	• 7	WR	Zero
	# Jackpots	17:00.00.0	06-01-7	P NTS (Area 2		10-79			
	# Satz	13:59.59 3	07-07-7	O NIS (ALLES		Shaft	-997	WR	<20 Kt Mb 3.
	Lowball	17:00 00 075	07-07-7	O NIS (Area 2) []	Shaft	-1033	WR	<20 Kt Mb 4.
	Panir	14.00.00.164	09 21 7	0 N13	LA	Shaft	-1850	WR	20-150 Kt
	Diablo Hawk	15.15 00 141	00.10.0	8 NIS	LL	Shaft	-2234	WR	20-150 Kt
	First kno		09-13-7	B NIS	DOD	Tunnel	-1373	WE	<20 Kt
	# Cremino	16.20	car, abbauatus	Talls, cost \$35.9	million				
	Draughte	10.00	09-27-7	S NIS (Area 8)) LL	Shaft	-689	WR	<20 Kt Mb 3.
	Rummy	17.00.00.071	09-27-7	S NIS	LA ·	Shaft	-1450	WR	20-150 Kt
		17:20.00.076	09-27-7	8 NIS	LA	Shaft	-2099	WR	20-150 Kt
	OPERATION QUIC	CKSILVER (Fisca	l Year 1979,	18 tests: 16 anno	ounced 2 secre	1)			
	Emmenthal	15:25.00.169	11-02-78	8 NTS	TT	Shafe			
	Quargel	19:00.00.166	11-18-79	NTS		Shaft	-1889	WR	<20 Ki
	# Concentration	17:07.29.8	12-01-7	NTS (Arms 2)		SDAT	-1778	9th UK	20-150 Ki
	Farm	15:30.00.158	12-16-79	NTE		Shart	-797	WR	<20 Ki Mb 3.7
			44-10-76	N13		Shaft	-2260	WR	20-150 Kt
			19	779 [1]					
	Baccarat	18:00.00.099	01-24-79	NTS	T 🛦	Sheft	10/0		
	Quinclla	20:00.00.089	02-08-79	NTS	2	Shee	-1009	WR	<20 Kt
	Kloster	18:05,00.164	02-15-79	NTS		Sheft	-1999	WR	20-150 Ki
	Memory	18:30.00.095	03-14-79	NTS	2	Shaft	-1758	WR	20-150 Kt
	# Freezeout	15:59.59.7	05-11-79	NTS (Area 3)	í T A	Shaft	-1200	WR	<20 Kt
	Pepato	14:00.00.170	06-11-79	NTS		Shaft	-1099	WR	<20 Kt Mb 4.4
	Chess	15:00.13.542	06-20-79	NTS		Shaft	-2234	WR	20-150 Kt
· .	Fajy	14:44.00.168	06-28-79	NTS		Shan	-1099	WR	<20 Ki
1	Burzet	15:07.30.163	08-03-79	NTS	- 11	Shan	-1761	WR	20-150 Kt
1.500-54	Offshore	15:00.00.112	38-08-79	NTE	للل ا ت ۲ ۸ ۲۰۰۰	Snan	-1476	WIL	20-150 Kt
	Nessel	15:08.00.171	08.29.70	NTS	1.1	Shen of Allo	-1292	- V/Re	-20-150 Ki
]	Hearts	15:00.00.089	09-06-79	NTS		Snart	-1522	10th UK	20-150 Kt
	Detonation	destroyed Tran	eom device th	IT IS	LA	Shaft	-2099	WR	20-150 Kt
Ţ	Pera	17:02.00.090	00_02_70		are on 02-10-	78. Exact yield	given to Soviets :	as part of J	oint Verification
1	Sheepshead	15:00.00.091	00 26 70	NTO -		Shaft	-656	WR	<20 Kt
			03-20-79	N15	ш.	Shaft	-2099	WR	20-150 Ki
•	OPERATION TINDE	RBOX (Fiscal Yo	ar 1980, 15 ı	esis, all annound	æd)				
I	Backgammon	15:00.00.096	11-29-79	NTS	LA	Shaft	721		
1	Azul 1	18:00.00.091	12-14-79	NTS	Ū	Shaft	-/31	WK	<20 Ki
	Detonation	destroyed Penin	sula device th	at was damaged	during empla	Cement on 10-2	-0/2 21.75 The Persia	WK mula daidar	<20 Ki
-			198				S-75. The Femi		was not tested.
			-130	- [v]					
т	Parko -	6.00 00 000		·		-			
1	larko 1	5:00.00.093	02-28-80	NTS	LL	Shaft	-1210	WR	<20 Kt
7 N 1	Tarko 1 Norbo 1	5:00.00.093 5:35.00.090	02-28-80 03-08-80	NTS NTS		Shaft Shaft	-1210 -889	WR WR	<20 Kt <20 Kt
7 N L	Parko 1 Norbo 1 Liptauer 1	5:00.00.093 5:35.00.090 4:00.00.090	02-28-80 03-08-80 04-03-80	NTS NTS NTS	L L L	Shaft Shaft Shaft	-1210 -889 -1368	WR WR WR	<20 Ki <20 Ki 20-150 Ki
1 N L P	Parko 1 Norbo 1 Liptauer 1 Tyramid 2	5:00.00.093 5:35.00.090 4:00.00.090 0:00.00.089	02-28-80 03-08-80 04-03-80 04-16-80	NIS NIS NIS NIS		Shaft Shaft Shaft Shaft	-1210 -889 -1368 -1899	WR WR WR WR	<20 Kt <20 Kt 20-150 Kt 20-150 Kt
	Tarko 1 Norbo 1 Liptauer 1 Tyramid 2 Zolwick 1	5:00.00.093 5:35.00.090 4:00.00.090 0:00.00.089 7:00.00.083	02-28-80 03-08-80 04-03-80 04-16-80 04-26-80	NTS NTS NTS NTS NTS		Shaft Shaft Shaft Shaft Shaft	-1210 -889 -1368 -1899 -2076	WR WR WR	<20 Kt <20 Kt 20-150 Kt 20-150 Kt 20-150 Kt

U.S. Nuclear Tests, NWD 94-1

Flora	13.00 00 000	05 00							
Kash	17.15 00.005	05-22-	50 NTS	LA	Shaft	-1099	WR	<20 Kt	
De	17.13.00.000	00-12-	50 NIS	Ц	Shaft	-2116	WR	20-150 84	
Uuma Viaa	ASIDIY CILIER KASE OF	Tati was a test	of a W68	warhead randomly	selected from	the production lin	e after hav	ing its high and	
	15:10.00.074	06-24-6	30 NTS	DOD	Shaft	.1050		mă na mâu crb	losive change
	et of an Air Force an	id National Sc	curity Age	ncy program to imp	nove the datab	-1000		<20 KI	·
581	tellites. A vertical line	e of sight test	using a sm	all DSCS III protot	vne Cost \$10.5	and on muclear ha	ruening de	≈ign techniques	fora
Tafi	19:05.00.082	07-25-8	NTS	II	Sheft				
Verdello	18:19.00.092	07-31-8	0 NTS	· IA	Shaft	-2230	WR	20-150 Kt	
Bonarda	14:45.00.094	09-25-8	ONTS		Shall	-1200.	WR	<20 Ki	
Riola	15:26.30.084	09.25-8			Spart	-1250	WR	20-150 Kt	
		07-20-0	o 1419 -		Shaft	-1 391	WR	<20 Kt	
OPERATION	GUARDIAN (Firm)	Ven- 1001 16		.	•		· ·	•	
	Condition (Lincal	rear 1981, 16	tests, all a	nnounced)					
Dutchese	10.16.00.11.6								
Miner I	19:15.00.116	10-24-8	0 NTS	LA	Shaft	-1401	12th TT	K ~ 20 V.	
MINICIS IFON	18:00.00.090	10-31-8	0 NTS	DOD	Tunnei	.1279	NVE		
- A t	est to evaluate the nu	clear hardness	of candida	ate materials for M		-12/7		< 20 Ki	
and	i external booster part	ts. The test us	ed 2000 d	annels of data Co	wt \$26.2 million			e nozzie, propeli	ant
Dauphin	16:50.00.084	11-14-8) NTS	1 T		n .			
Sec	ond known X-ray lase	tr lest		-1-1	SHALL	-1050	WR	<20 Kt	
Serpa	15:10.00.086	12,17,90	NTC		•				
-			112	ᇿ	Shaft	-1879	13th UI	K 20-150 Kr	
			01.001				•		
		19	wr [0]						
Baschall	20.25 00 00	a	. —						
Clainette	40:40.90	01-15-81	NTS	LA	Shaft	-1850	WP	20.140 %	
Callelle	18:00.00.117	02-05-81	NTS	LA	Shaft	-1161	WA	20-130 KI	
3600	15:00.00.8	02-25-81	NTS	Ц	Shaft	-1101	WA	<20 Ki	
Vide	14:35.00.0	04-30-81	NTS	Ū.	Shaft	-/31	WR	<20 Ki	
Aligote	16:00.00.0	05-29-81	NTS	I A	Shaft	-1059	WR	<20 Ki	
Harzer	18:00.00.0	06-06-81	NTS		Shall	-1050	WR	<20 Ki	
Niza	14:00.00.096	07-10-81	NTS		Shari	-2089	WR	20-150 Kt	
Pincau	15:00.00.096	07-16-01	NEDO	بليل	Shaft	-1118	WR	<20 Ki	
Havarti	13:41.00.086	00 06 01	N12	LA	Shaft	-669	WR	<20 Kt	
Islav	14-31 00 000	00-00-01	N15	Ц	Shaft	-656	WR	<20 Kt	
Trebbiano	15.00.00.100	08-27-81	NIS	Ц	Shaft	-964	WR	<20 Kt	
Cernada	15:00.00,103	09-04-81	NTS	LA	Shaft	-1000	WR	~20 14	
	12:00:00:089	09-24-81	NTS	LA	Shaft	-600	WD	<20 Ki	
OPERATION						-077	WK	<20 AI	
OPERATION I	PRAETORIAN (Fiscal	Year 1982, 22	tests, all a	innounced)					
				·····,					
Paliza	19:00.00.103	10-01-81	NTS	· •	Shað				
Tilci	20:00.00.036	11-11-81	NTS	, 2	Shan	-1548	WR	20-150 Kt	
Rousanne	15:00.00.0	11.12.91	NTS	,	SDALL	-1460	WR	20-150 Ki	
Abari	15:00.00.09R	12.02.91	NTC	1	Shaft	-1699	14th UK	20-150 Kt	
Caboc	21-05 00 002	12 16 01	NID .	1 7 1 1 1	Shatt	-1620	WR	20-150 %	
	21.03.00.033	14-10-81	N15	· ?	Shaft	-1099	WR	<20.14	
				•					• • •
		198	2 [0]						
Iomada	1/ 00 00 000			• .					
	10:00.00.104	01-28-82	NTS	7	Shaft		WD	20 1 60	
Exact	yield given to Soviets	as part of Joi	nt Verifica	tion Experiment	Any have ment	W20 weet and	WK	20-150 Kt	
MOIDO	14:55.00.083	02-12-82	NTS	?	Shaft	WOV WAI'NCAG.			
Hosta	15:25.00.089	02-12-82	NTS	· ?	Shaft	-2135	WR	20-150 Kt	
Tenaja	18:00.00.088	04-17-82	NTS	ĩ	Shah	-2099	WR	20-150 Ki	
Gibne	18:05.00.084	04-25-82	NTS	1 9	Share	-1171	WR	<20 Ki	
Kryddost	20:00.00.083	05.04.92	NTS	7	Shaft	-1870	15th UK	20-150 Kt	
Bouschet	18:17.00 110	05 07 00	1313 1713	7	Shaft	-1099	WR	<20 Kt	
Kesti	14.00 00 040	05-07-82	N15	?	Shaft	-1850	WR	20-150 %	
Vebbiolo	14:00.00.849	06-16-82	NTS	?	Shaft	-948	WD	~20 K	
Acotones	14:15.00.090	06-24-82	NTS	?	Shaft	,2000	WD	>20 N	
nonicrey	20:05.00.083	07-29-82	NTS	?	Shaft	-2077		20-150 Kt	
	14:00.00.090	08-05-82	TS	,	Sheft	-1314	WK	20-150 Kt	
Exact	yield given to Soviets	as part of Join	t Verificat	ion Experiment		-2099	WK	20-1 50 Kı	
Jucso	15:00.00.000	08-11-82	NTS		Ch.e				
сто	14:00.00.090	09.02.82	JTC	<i>!</i>	SUBUC	-708	WR	<20 Kt	
		v/~v2*04 [-19	7	Shaft	-751	WR	<20 Kt	

Huron I	Landing	16:00.00.091	09-23-8	2 NTS	חסם	Tunnet	•		
	Simulta	neous with Diamo	nd Acc. A h	orizontal line of si	obt test on		7	WE	<20 Kt
	DNA e	ver conducted, using	ag 3000 chan	nels of data to as		MA COMPONENTS.	It was one of	the largest	, most complex tests
Diamon	d Ace	16:00.00.091	09-23-8	2 NTS		arate experiments	COSI 348.1 E	nillion	·
	Simulta	neous with Huron	Landing. Th	e first event in th	A DISTAN		7	WE	<20 Kt
	diagnos	tic data of the radi	ation output	of a low-vield nu		ARBOR SCIES.	A joint DNA	DOE tes	to provide detailed
Frisco	•	17:00.00.082	09.23_R	2 NTTS			L		
Borrego		13:30.00.096	09.29.8	2 NTS	2	SDAIL	-1479	· WR	20-150 Ki
•			07-27-0.	2 113	, r ,	Shan	-1850	WR	<150 Kt
OPERA	TION PH.	ALANX (Fiscal Yea	ur 1983, 19 te	sts, 16 announced	l, 3 secret)			•	· .
Scyval		19:17.00.103	11-12-8	2 NTS	,	Shaft		• ,	
Manteca	1	15:20.00.090	12-10-8	NTS	-	Shaft	-1200	WR	<20 Ki
					4	Suatt	-1355	WR	20-150 Ki
•••••••	*****		19	983 [4]					
Coalora		16:00.00.096	07-11-92	L MPTN	•	.			
Cheedan	D	17:00.00.087	02-11-02	NTS		Shaft	- 9 97	WR	<20 Kt
	Possibly	either Cheedam o			7	Shaft	-1125	WR	<20 Kt
Cabra		20:20.00 088		IN A SUCCESSIUI LESI	or the W7	7.			
	Third ky	OWD X-TRV lacer to	25-0%-CV	1419	7	Shaft	-1778	WR	20-150 Kt
Turnunis	AL	19-05 00 0		LI NETT	-			•	
Armada	-	13.53.00.0	04-14-63	214	7	Shaft	-1748	WR	<150 Ki
Crowdie		15.20.00.095	09-44-83	NIS	7	Shaft	-869	16th U	K <20 Ki
Mini Inde	•	14.20.00.005	05-05-83	NIS	7	Shaft	-1279	WR	<20 Kt
		14:30.00.0	US-26-83	NIS	DOD	Tunnel	-1245	WE	<20 Kt
		o meter melium Co	clict ground	motion and crater	ring predicti	ion. The test was	conducted in a	hemisph	crical cavity having
Fahada	WII CICACI		st \$10.5 mill	ion.				•	······································
Deneble		15:00.00.090	05-26-83	NTS	?	Shaft	-1260	WR	<20 Kt
		17:10.00.088	06-09-83	NTS	?	Shaft	-1050	WR	<20 Kt
LYCHU	_	13:33.00.0	08-03-83	NTS	?	Shaft	-1069	WR	< 20 Ki
Cabada	rinst test	to use laser optica	d line of sigh	t (LOLOS) system	n, designed	for precisely mean	suring downho	le alignme	The discretion entity
008086		14:00.00.0	08-11-83	NTS	7	Shaft	-1050	WR	
# Jansbe	rg	13:59.59.9	08-27-83	NTS (Area 10)	L	Shaft	-656	WP	<20 K. M. 41
Chancello	x	14:00.00.0	09-01-83	NTS	?	Shaft	-1691	WD	20 KI MO 4.1
	Exact yie	ld given to Soviets	as part of Jo	int Verification E	xperiment			****	20-130 NI
lomme/M	lidnight Z	ephyr 15:00.00.0	09-21-83	NTS	DOD	Tunnel		WE	-20 %
	The second	nd event in the Dis	tant Arbor s	eries. A joint DN	A/DOE tes	L to provide data	for a low vield	WEi Inst had	
# Branco	•	16:24.59.7	09-21-83	NTS (Area 2)	LL	Shaft		NUTD	
Techado		15:00.00.0	09-22-83	NTS	7	Sheft	-701	WK	<20 KI Mb 3.7
* Navata		16: 00	09-29-83	NTS (Area 3)	LA	Shaft	-1/48	WK	<150 Kt
••••••••••••••••••••••••••••••••••••				· · · · · · · · ·	··	Cubit	-000	WK	<20 Ki
-7-1411	ion Pust	LEEK (Fiscal Year	1984, 17 tot	ts 12 accounced,	S-socret).	and the second second	1. sec.	•	· · · · · · · · · · · · · · · · · · ·
# Muggin	\$	15:59.59.2	12-09-83	NTS (Area 3)	LA	Shaft	800	11.05	
Romano		18:30.00.0	12-16-83	NTS	2	Shaft	-500	WR	<20 Kt Mb 4.0
	Fourth kn	iown X-ray laser te	st, first hard	X-ray laser evider	nce	Saan	-4310	WR	20-150 Kt
			198	4 [6]					
Gorbea		15:30.00.0	01-21-94	NTC					
Midas Mvi	h/Milagro	17:00 00 105	07.15 04	NTR	7	Shaft	?	WR	20-150 Kt
	The first t	est in a series of th			DOD	Tunnei	?	WE	<20 Kt
	provided o	ists on the nucleon		c naruness specifi	ications for	major elements of	f the triad. Th	is 800 foo	l line of sight test
1	notice cahi	as which amounts -		suralegic reentry	systems, sp	ecifically the MX's	Mark 21. Fi	rst use of	giass strand fiber
	million	when browne c	rearer recept	ion of data and an	e secure fro	m "tapping," thus i	mproving the l	evel of sec	aurity. Cost \$46.1
		17.45 00 004	M A1 A4				-		· · · · · · · · · · ·
vi iugas arini		14.20.00.094	U3-01-84	N13	LA	Shaft	-2096	WR	20-150 Kt
giuu lunde		14:30.00.084	03-31-84	NTS	Ц	Shaft	-1050	WR	<20 Kt
		17:05.00.093	05-01-84	NTS	LA	Shaft	-1860	17th 1 11	
Unkney		13:49.59.6	05-02-84	NTS (Area 10)	Ц	Shaft	-690	WD	47-13V NI
Bellow	:	15:59.59.3	05-16-84	NTS (Area 4)	LL	Shaft	470	WD	~40 KI MD 3.4
aprock	:	13:04.00.102	05-31-84 1	VTS	LA	Shaft	-9/7		< 20 KI MD 3.8
uoro	· 1	15:15.00.089	06-20-84 1	VTS	LA	Shaft	-1705	WK	20-150 Kt
				-		~	-1430	WK	7L150 Kt

-1250

WR

20-150 Kr

Page 49

U.S. Nuclear Tests, NWD 94-1

# Norm	nanna	13:59.59,9	07-12-8	4 NTS (Area 10)		Shaft			
Kappeli		15:30	07-25-8	4 NTS	μ.	Shaft	-020	WR	<20 Ki Mb 3.9
Correo		15:00.00.094	08-02-84	4 NTS	Π.	Shaft	-2099	WR	20-150 Ki
	Fifth k	nown test of X-ray	laser, laser fa	uils			-1099	WR	<20 Ki∼
Doloctic	0	14:45.00.102	08-30-84	NTS /	LA	Shaft	1200	NDD	-616 99
• Wexfo	ord	14:45	08-30-84	NTS (Area 2)	ū.	Shaft	-1200	WR	<20 %
Breton		14:00.00.0	09-13-84	NTS	ũ.	Sheft	-1030	WR	<20 Kt
		•		,		Create	-1384	WR	20-150 Kt
OPERA	TION GR	ENADIER (Fiscal)	(ear 1985, 17	tests: 14 annound	ed, 3 secret)			
# Verm	ejo	18:13.59.3	10-02-84	NTS (Area 4)	TÀ	Sheft			· · ·
Villita		16:40.00.0	11-10-84	NTS		Shaft	-1148	WR	<20 Ki Mb 4.1
Egmont		19:40.00.089	12-09-84	NTS	11	Sheft	. 7	WR	<20 Kt
Тіегта		14:45.00.0	12-15-84	NTS	11	Shaft	-1807	18th UK	20-150 Kt
	Test of	B83 bomb			a.	Small	-2099	SC	20-150 Kt
# Miner	o	16:19:59.7	12-20-84	NTS (Area 3)	LA	Shaft	-797	WD	-20 V. M. 10
********			19	85 [2]	*******			WK	~20 KI MD 4.0
Vaughn		16:31.00.004	02 18 05						
Cottage		18-30 00 022	03 23 25	N12	LA	Shaft	-1400	WR	20-150 Kt
	Sixth kn	10	03-23-85	N12	LL -	Shaft	-1689	WR	20-150 Kt
Hermose	Consti All	20:00 00 000	LITSU LOCUSI	ng attempt					
	Used CC	DRRTEX	04-02-85	N12	LA	Shaft	-2099	WR	20-150 Kt
Misty Rai	in	23:15.00.092	04-06-85	NTS		D 70	-		
	The acco	nd in a scrics to va	lidate hardne	s and the second second	(1777)، المالية 14 محمدة 1000 &		7	WE	<20 Kt
	Mk 21 re	entry vehicle. Also	included was	a satellite vulners	bility amon	ne of signi test in s	upport of th	e MX systen	a, specifically the
	X-ray las	er lethality testing	Was also con	fucted Cost 54.4		ment to test its clea	ctronics in a l	radiation env	ironment. Some
Towanda	-	15:20.00.083	05-02-85	NTS	нин сл , Т А	61 - 4			
Salut		15:15.00.082	06-12-85	NTS		Shaft	-2168	WR	20-150 Kt
Ville		17:30.00.088	06.12-00	NTE	باما ۲۳	Shaft	?	WR	20-150 Kt
Maribo		18:03.00.084	06.76.95	NTC	<u>ليا</u>	Shaft	-961	WR	<20 Kt
Serena		14:00.00.088	07.25.85	NTO		Shaft	-1 250	WR	<20 Kt
	Possibly a	tither Screns or Re	vi-20-00	NIS		Shaft	-1958	WR	20-150 Kt
# Cebrero	5	13:00	02.14.05	NTS (Amage O)	ype Earth P	cnetrating Weapor	n (EPW). M	lore EPW te	sts are planned.
	Identified	by Soviet official at	Co-p1-00	NIS (Area y)		Shaft	-600	WR	<20 Ki
	as "verv s		CUICARSY IN	wasnington to sho	w case of de	tection, see New Yo	rk Times, 30	August 1986	p. 1. Described
Chamita	,.	16.25 00 097	00 17 07		· _			-	
	Test asso	risted with humans	C8-11-80	N15	LA	Shaft	-1089	WR	<20 Kt
Ponil		14.15 00 001	locity pellet (NDEW) experime	ent. A 1 kg	ungsten/molybden	um plate was	accelerated	to 70 km/sec.
		14.13.00.001	09-27-85	NIS	LA	Shaft	-1200	WR	<20 Kt
OPERATI	<u>ON CHAR</u>	IOTEER (Fiscal Y		etter 15 ennovem					
				Gerer. 1-1. Eachdraith.	21, 3 800003)		· · · · · · · · · · · · · · · · · · ·		+
Mill Yard		21:40	10-09-85	NTS		Tunnel	•	****	
4	A second	cavity experiment.	similar to M	lini Jade, to obtai	in date on		7	WE	<20 Kt
8	addressed	issues on superhar	dening silos	and the basine of	the gmoll 1	CRM The show	enology and	airburst phe	nomena. Also
. 1	ground lev	el in a 22 meter di	ameter hemis	pherical cavity V	ield range -	Come List shot u	sed a very lo	w yield devi	ce detonated at
Diamond B	Beech	23:20.00.086	10-09-85	NTS		Tunnel	COST \$	15.4 million.	
្រា	Third and	final proof test for	low yield tes	t bed. Cost \$155	million	¥ gitiči	7. ,	WE	<20 Kt
# Abo		16:00	10-30-85	VTS (Area 3)		Shaft	<i></i>		
Ŀ	dentified	by Soviet official	It cmbany in	Washington to	those and a		-649	WR 4	<20 Kt
•	one-hundi	eth of a kiloton."	CE. New York	Times 30 August		a detection. Amo	rican officia	al described	yicld as "tiny,"
Rocquefort		21:35.00.086	10-16-85 N	and the second s	1700, p. l.	6h - A			• •
Kinibito		15:00.00.067	12_05_25	-15 . FTC	باملا م	Snaft	-1361	WR 2	0-150 Kt
			12-03-03 [19	LA	Shaft	-1968	19th UK 2	0-150 Kt
Goldstone	1	9:01.00.089	12-29-06	FIRE		••• •			
S	eventh X.	DIV LOST. first anod	1 CO-02-24		LL.	Shaft	-1640	WR 2	0-150 Kt
-			measure of 0	rignunces shows b	asic laser is	dimmer than previ	iously believe	ed.	
		*******	1986	[2]				·	
Glencoe		6.15 00 074	· · · · · · · · · · · · · · · · · · ·						
	ر 1	wit2.00.0/0	U3-22-86 N	15	LA	Shaft	-1969	WR 2	0-150 Kr
10	CHI ASSOCI	ned with candidate	warhcad for	SICBM.					VILU NI

Mighty Oak	14:08.30.095	04-10-6	K NTS (Area 17						
The	final test to validate l	ardness sner	v AIS (Alta 12		VLL Tunnel	-1300	WE	1.3 Kt	
the	Trident II (D-5) reent	IV system. X	-ray laser lethaling	Mark-21 TO	entry vehicle for th	e MX missile	and the fin	st validation te	st for
# Mogollon	23:12.29.9	04-20-9	A NTS (Area 2)	coperiment	is were also conduc	ted. Test mal	functioned.	Cost \$74.4 m	uillion
Iden	tified by Soviet offic	ial at embas	w in Washington	LA	Shaft	-850	WR	<20 Ki M	Ъ 3.8
Des	cribed as "larger" [that		Abol	to show e	ase of detection, s	ee New York	Times, 30	August 1986,	p. 1.
Jefferson	14:30.00.086	04-22-8	A NTS (Area 20)		61 •				•
Use	CORRTEX. Possibl			Judian uni	Shari	-1969	WR	20-150 Kt	
Panamint	13:59.00.083	05-21-8	6 NTS (Area 4)		n or the W87.				
Tajo	15:04.00.064	06-05-8	6 NTS (Area 7)	11	Shart	-1640	WR	<20 Kt	
Darwin	20:27.45.1	06-25-8	6 NTS (Arm 20)	11	Shart	-1640	WR	20-150 Kt	• •
Devi	ce emplaced 05-07. T	rident related	1 113 (Alea 20)	لمل	Shatt	-1640	20th U	K 20-150 Kr	· ·
Cybar	21.00.00.055	07-17-8	NTS (Ame 10)		a		• •		
Exac	t yield given to Soviet	as part of 1	oint Verification	LA Èmerican	Shall	-2100	WR	20-150 Kt	
Cornucopia	15:05.00.086	07.24.94		cxperiment	•				
# Galveston (N	io.200) 16:09.00.1	09-04-84	NTS (Area 2)		Shaft	-1300	WR	<20 Ki	
Aleman	14:57.00.107	09-11-94	NTS (Area 19)	LA	Shaft	-1597	WR	<20 Ki Mi	> 3.5
Labquark	22:30.00.102	09-30-94	NTS (Area 20)		Shaft	-1640	WR	<20 Kt	
- Eight	h X-ray laser test, for	USing tests	MIS (ARE 20)	LL	Shaft	-1969	WR	20-150 Ki	
		asing resis							
OPERATION A	USKETEER (Fiscal)	(ear 1987 15	tests of annual						
				xea)			•		
Belmont	19:25.00.089	10-16-96	NTS (Ame '00)	••	• •••••				
Gascon	16:00.00.066	11-14-86	NTS (AICA 20)	14	Shaft	-1969	WR	20-150 Kt	
Bodie	17:50.05.093	12-12-96	NTS (Ame 20)	للل ا	Shaft	-1969	WR	20-150 Kt	
		12-15-00	MIS (Alta 20)	L	Shaft	?	WR	20-150 Kt	
			87 (0)						
			6/ [0]		******				
Hazebrook	15:00.00.082	02-03-87	NTS		0				
Yield	on order of 10 to 30	lons	1419		Shaft	-984	WR	<20 Ki	
Tornero	16:45.00.065	02-11-87	NTS		• •••••				
Middle Note	18:28.00.085	03-18-87	NTS (Area 17)		Shaft	-984	WR	<20 Kt	
The te	st was the second in a	series of four	tin support of the	DNA	Tunnel	-1312	WE	<20 Ki	
body a	ystem. It also include	d testine of V			and included testin	g of W88 com	ponents of	the Mk-5 reer	ntry
were a	ilso conducted in supr	ort of the St	rategic Defense I	I MA MK-2	I reentry body syste	em. Lethality:	and surviva	bility experime	ints
Delamar	13:40.00.600	04-18-87	NTS		ganization. Cost \$	55.2 million.		-	
Ninth	known X-ray laser tes	4	1410	للمل	Shall	-1640	WR	20-150 Kt	
Presidio	22:00.00.088	04-22-87	NTS	1.4	51- A				
Hardin	13:30.00.089	04-30-87	NTS	1.4%	Shaft	-984	WR	<20 Kt	
Brie	15:20.00.002	06-18-87	NTS	11	Shall	-1969	WR	20-150 Kt	
Mission Ghost	16:00.00.1	06-20-87	NTS (Area 17)		Snan	-650	WR	<20 Kt	
The te	et was a hearispherica	CONTRACTOR	in the main the m		lunnel	-1000	WE	<20 Kt	
plan th	e Misty Echo test so	heduled for	August 1088		and instrumentatio	Tr technology	and provid	c data nooded	to is
shieldi	ng/design against elect	romagnetic p	Disc effects The s	nese incluo	e the type and ext	cat of grouting	ng and the	instrumentati	ion (
Cost \$	11.7 million.		une cheers. The l		evice with output c	haracteristics	similar to a	modern weapo	00.
Panchuela	16:05.00.096	06-30-87	NTS		61 6	*		-	
Midland	19:00.00.077	07-16-87	NTS		Shan	-985	WR	<20 Kt	÷.,
Tahoka	14:00.00.088	08-13-87	NTC	LA	Shaft	-1604	21th UK	20-150 Kt	
Lockney	15:00.00.055	09-24-87	NTS	LA	Shaft	-1920	WR	20-150 Kt	
			1110	LA	Shaft	-1920	WR	20-150 Kt	
OPERATION TO	UCHSTONE (Fiscal Y	Car 1988 14	tester 13 annor-						
		1700, 14	LO ANDOUNC	ed, 1 secre	り				· .
Borate	16:00.00.087	10.23.97	אידיג						
Waco	16:30.00.090	12-01-27	113		Shaft	-1600	WR	20-150 Ki	
Mission Cyber	16:30.00.084	12_02_27	110 (Am- 17)		Shaft	-640	WR .	<20 Kt	
The test	was the third in a series	ies of four in	TIO (ALCE 12)		Tunnel	-960	WE	<20 Kt	
survivab	ility assessment for the	e Mk-S martin	support of the Th	aent 11 proj	gram. It included te	sts for the fina	al hard ness	verification an	d
body ele	CITONIC Dackages and	the Mir.4	y system. Experin	acaus were a	also conducted to an	isess the vulne	rabilities of	the D-5 missi	le
FRIS	HEDI ballistic missio	WIN O BU	unice electronics.	SDIO adv	anced development	experiments	associated v	with the Army	

ile defense programs, and SDIO lethality and survivability experiments were also conducted. Cost \$64.5 million.

-1988 [3]

.

Page 51

.: **

in Sec.

U.S. Nuclear Tests, NWD 94-1

Kernville	18:10.00.089	02-15-	88 NTS (Area 20)) TT	Shaft			
Tenth	known X-ray laser	test, first his	th-quality data on I	hasic leter	Statt	-1800	WR	20-150 Ki
Abilene	17:15	04-07-	38 NTS (Area 2)	T A	Shaft			
Shellbourne	15:35:05	05-13-	R NTS (Area 4)	11	Shall	-800	WR	<20 Kt
Laredo	22:30	05-21-1	R NTS		SARE	-1500	WR	<150 Ki
Comstock	13:00:02	06.02.9	D NTE (Anno 20)	ا خسا	Shaft	-1200	WR	20-150 Ki
Rhyolite	14:00	06 72 6	20 NTG (AUGL 20)		Shaft	-2000	WR	20-150 Ki
Nightingale	14:00	06 22 6	0 NTO		Shaft	-640	WR	<20 Ki
Alamo	15-05-20	00-22-0	8 N15		Shaft	-640	WR	<20 Kt
Kearsaree	17:00	0/-0/-8	8 NIS (Area 19)	LA	Shaft	-1920	WR	?
# Harlingen	19:00	08-17-8	8 NTS (Area 19)	LA	Shaft	-2020	WR/T	VE <150 Kr
Bullfrom	16:30	08-23-8	8 NTS (Area 6)	LA	Shaft	-948	WR	~20 1/
Dannok	18:30	08-30-8	8 NTS	7	Shaft	-1600	WR	<150 Kt
OPERATION CO	RNERSTONE (Fis	cal Year 1989), 12 tests: 10 anno	unced, 2 sea	cret)			
Dalbert	14.00		· .				•	
	14:00	10-13-8	B NTS	LA	Shaft	-2100	UVD	~160 V.
* Monanans	20:15	11-09-8	8 NTS (Area 3)	LA	Shaft	-049	WA	<150 Ki
Kawich A	15:15	12-09-8	8 NTS (Area 8)	LL	Shaft	-746	WA	<20 Ki
Misty Echo	20:30:01	12-10-8	8 NTS Ó	DODA	A Tunnel	-1200	WK	<20 Ki
A crate	ring and ground sh	ock event to	develop energy cou	pling and cr	atering prediction (WE	<20 Ki
of strat	egic structures to a	nucicar attaci	, and to ensure th	e most effe	clive allocation of a		IOF ASSESS	ng the vulnerability
includir	ng future weapon s	vstems such a	s the earth penetra	tor warhead	i. Cost \$43.8 millio	ualegic wai	meads lor	targeting purposes,
		10						
Terretone	20-04-04		····· [0]				*****	· · · · ·
A whole Maine Kannich	20:00:04	02-10-89	NTS (Area 6)	?	Shaft	-1650	WP	20 160 24 18 4 5 4 5
Incot	10:15	02-24-89	NTS	?	Shaft	. 7	WA	20-130 KI (3.4 Mb)
Ingol Dell's d	14:00	03-09-89	NTS	LL	Shaft	1400	WA	<20 KI (4.4 Mb)
railsade	13:10	05-15-89	NTS	?	Shaft	*1000	WK	20-150 Kt (5.1 Mb)
	18:07	05-26-89	NTS	I.A	Shaft	ŕ	WR	<20 Ki (4.6)
Contact	21:15	06-22-89	NTS (Area 20)	E.	Shaft	7	WR	<20 Ki
Amarillo	15:31	06-27-89	NTS (Area 19)	IA	Shaft	-1800	WR	20-150 Kt (5.4 Mb)
Disko Elm	15:00	09-14-89	NTS			-2100	WR	20-150 Kt (5.3 Mb)
The fou	rth and final test ir	support of t	be Trident II Son			7	WE	<20 Kt
boost ph	ase flight profile.	Cost \$60.2 m	illion.	Ser to dem	ometrate systems sui	www.w	hile operat	ing in a simulated
OPERATION AQU	EDUCT (Fiscal Ye	ar 1990, 11 u	ests, 10 announced	, 1 secret)			i	• .
Hornitos	15:30	10 21 00				•		
Muleshoe	20-20	11 16 00	NIS (Area 20)	L	Shaft	-1850	WR	20-150 Kt (5.6 Mb)
Barmwell	15.00	11-15-89	NIS	?	Shaft	?	WR	< 20 Kt
Whiston	15:00	12-08-89	NTS (Area 20)	Ц.	Shaft	-2000	22et 1 116	20 160 Ve /6 7 1/1
	Contraction of the second	12-20-59	NTS	LL	Shaft	-550	NUR.	20-130 M (3.7 MD)
	• •		•			an an 1998.	1. 34 W.	
Metropolis	16:00	19	90 [1]		*********			
# Bowie (No. 204)	17.00	03-10-90	NTS	?	Shaft	-1500	WR	20.150 V+ /8 1 MA
Bullion	16:00	04-06-90	NTS	LA .	Shaft	-699	WD	20-130 NI (3.1 MD)
Anatin	10:00	06-13-90	NTS (Area 20)	LL .	Shaft	-2000	WD	~40 NI (3.1 MD)
Mineral Our	18:15	06-21-90	NTS	LA	Shaft	2000	WA	20-150 KI (5.8 Mb)
Mineral Quarty	15:00	07-25-90	NTS	DOD/LA	Timpel		WK	<20 KI (4.5 Mb)
in suppor	t of the Small ICB	M program. O	ther experiments in	nclude seeke	T COMPONENTS for m	i Interials from	WE	<20 KI (4.8 Mb)
from DN	Coys and advanced : A. Cost \$74.6 mill	re-entry body ion.	components from (the Air Ford	z Baliistic Missile C	flice and tu	anci harde	ning experiments
Sundown	17:15		NTS		6 1 6			
Ledoux	18:02	09-27-90	NTS	LA 2	Shaft .	?	WR	<20 Kt
OPERATION SCIII	PIN (Finan) Manual			1	Snart	?	WR	<20 Kt
	ana (ruscai Year]	991, 8 tests, a	all announced)		· · · · ·			
Tenabo	17:30	10-12-90	NTS (Area 20)	IJ	Sheft	•		
Houston	19:17:7	11-14-90	NTS	1.4	Shaft	7	WR	20-150 Ki (5.6 Mb)
					oudii	7	23d UK	20-150 Kt (5.7 Mb)
*********		1991	[0]					·

.

Coso Bexar	21:02:45 19:00	03-08-91 04-04-91	NTS NTS (Area 19)		Shaft	-1100	WR	<20 Kt (4.4 Mb)
Montello	15:30	04-16-91	NTS (Area 20)	11	Chaft	-2000	WR	20-150 Kt (5.6 Mb
Floydada	16: 00	08-15-91	NTS		Shall	?	WR	20-150 Kt (5.4 Mb
Hoya	19:00	09-14-91	NTS	1	Shart	-1600	WR	<20 Kt (4.2 Mb)
Treaty v	erification test	• • • • • •	1113	7	Shaft	-2200	WR	20-150 Ki (5.5 Mb
Distant Zenith	16:30	00-10-01	APTX					、
Cost \$70).6 million.	03-13-31	M12	DOD/LA	Tunnel	7	WE	<20 Kt (4.0 Mb)
OPERATION JUL	IN (Fiscal Year 1	992, 8 tests, all	announced)			•		
Lubbock	19:12	10-18-91	NTS	LA	Shaft	-1500	 WD	20 160 16 (20 20 20)
BURION	18:35:04	11-26-91	NTS	?	Shaft	?	24d UK	20-150 Kt (5.2 Mb) <20 Kt (4.7 Mb)
		199	2 [0]					. ,
unction	16:30	03.26.02	NTTE	• •				
Diamond Fortune	17:30	04.20.02	NTO	LA	Shaft	-2100	WR	20-150 Kt (5.6 Mb)
A test cor	ducted in a could		N13	DOD/LA	Tunnel	?	WE	<20 Kt
prediction	ordes to server	the minembili	nergy coupling and	cratering eff	ects of a shall	w carth penetra	ting weapon	. Helps develop
victoria	16.45		ly of strategic struc	tures to nucl	ear attack. Co	st \$27 million.		
Vield lass	then 01 Kt	00-19-92	NIS	LA	Shaft	-880	WR	<20 Kt (3.0 Mb)
ialena	14.50-50 C							(30 M (30 MO)
lunters Toophy	14:37:37.0	06-23-92	NTS (Area 7)	LL :	Shaft	-950	WR	<20 Kt
A harden	17:00:00.0	09-18-92	NTS	DNALL '	Tunnei	-1264	WE	~20 K. (A A M.)
A BORIZOR	une of sight t	est in support of	of SDIO advanced	development		seciated with t	ha Armul- 1	-20 NI (4.4 MD)
Dallistic m	ussue defense pi	rograms, SDIO	survivability expen	iments (space	COMDORCOT) and decore a	nd admess	AND AND HEDI
componen	its from the Air	Force Ballistic	Missile Office. Co	st \$85.9 milli		, ucuys x		u re-entry body
'IVIDET	15:04:00.0	09-23-92	NTS (Area 3)	LA	Shaft	-1150	WR	<20 Kt (4.4 Mb)

.

.

Page 53

.

Sources for Table 1:

DOE, Announced United States Nuclear Tests, July 1945 through December 1992, NVO-209 (Rev. 13), Nevada Operations Office, January 1993; DOE, Openness Press Conference Fact Sheets, 7 December 1993; U.S. Department of Energy Nevada Operations Office, "Data on 204 Underground Tests at DOE's Nevada Test Site" (declassified in December 1993); "Nuclear Explosions 1945-November 29, 1985;" Swedish National Defense Research Institute, computer printout; U.S. Department of Interior/Geological Survey, "Preliminary Determination of Epicenters," monthly; Riley Geary, Seismological Laboratory 252-21, California Institute of Technology, printout; Ola Dahlman and Hans Israelson, Monitoring Underground Nuclear Explosions (Amsterdam: Elsevier Scientific Publishing Company, 1977), pp. 383-399; Stockholm International Peace Research Institute, Yearbooks 1968-69 through 1993; Bruce A. Bolt, Nuclear Explosions and Earthquakes (San Francisco: W.H. Freeman and Company, 1976); Defense Nuclear Agency volumes supporting Nuclear Test Personnel Review program: Project Trinity 1945-1946 (DNA 6028F); Operation Crossroads 1946 (DNA 6032F); Operation Sandstone 1948 (DNA 6033F); Operation Ranger 1951 (DNA 6022F); Operation Greenhouse 1951 (DNA 6034F); Operation Buster-Jangle 1951 (DNA 6023F); Shots Able to Easy (DNA 6024F); Shots Sugar and Uncle (DNA 6025F); Operation Tumbler-Snapper 1952 (DNA 6019F); Shots Able, Baker, Charlie, and Dog (DNA 6020); Shots Easy, Fox, George, and How (DNA 6021F); Operation Ivy 1952 (DNA 6036F); Operation Upshot-Knothole 1953 (DNA 6041F); Shots Annie to Ray (DNA 6017F); Shot Badger (DNA 6015F); Shot Simon (DNA 6016F); Shots Encore to Climax (DNA 6018F); Operation Castle 1954 (DNA 6035F); Operation Teapot 1955 (DNA 6009F); Shots Wasp to Hornet (DNA 6010F); Shot Bee (DNA 6011F); Shots Ess through Met and Shot Zucchini (DNA 6013F); Shot Apple 2 (DNA 6012F); Operation Wigwam (DNA 6000F); Operation Redwing 1956 (DNA 6037F); Plumbob Series 1957 (DNA 6005F); Shots Boltzmann to Wilson (DNA 6008F); Shot Priscilla (DNA 6003F); Shot Hood (DNA 6002F); Shots Diablo to Franklin Prime (DNA 6006F); Shot Smoky (DNA 6004F); Shot Galileo (DNA 6001F); Shots Wheeler to Morgan (DNA 6007F); Operation Hardtack I 1958 (DNA 6038F); Operation Hardtack II 1958 (DNA 6026F); Operation Dominic I 1962 (DNA 6040F); Operation Dominic II (DNA 6027F); Safety Experiments November 1955-March 1958 (DNA 6030F); Projects Gnome and Sedan (DNA 6029F); Operations Nougat and Whetstone (DNA 6320F); Operations Flintlock and Latchkey (DNA 6321F); Operation Castle, Report of the Manager, Santa Fe Operations, Pacific Proving Ground Spring of 1954, Contract No. DNA 001-79-C-0455; DNA, Compilation of Local Fallout Data, from Test Detonations 1945-1962 Extracted from DASA 1251, Volume I - Continental U.S. Tests, Volume II - Oceanic U.S. Tests, Contract No. DNA 001-79-C-0081, 1 May 1979; Defense Atomic Support Agency, Nuclear Test Summary Trinity-Hardtack, DASA 1220, 15 August 1962; Defense Atomic Support Agency, Nuclear Test Summary Nougart-Dominic, DASA-1211, 15 August 1963; DOD-DOE, The Effects of Nuclear Weapons, compiled and edited by Samuel Glasstone and Philip J. Dolan, Third Edition, 1977; History of the Air Force Atomic Energy Program, 1943-1953 (Washington, DC: U.S. Air Force Historical Division) Volumes I-V; Chuck Hansen, U.S. Nuclear Weapons: The Secret History (Arlington, Texas: Aerofax, Inc., 1988); Chuck Hansen, "U.S. Nuclear Weapons Tests, 1945-1962," Appendix 1, Revision N, 1 February 1993.

Notes for Table 1:

a. The symbol "#" before the name of a event denotes an unannounced test. 111 of these secret tests were known to have occurred through detection of a seismic signature, or by other means. The original research was conducted by Riley R. Geary (see Sources). The symbol "*" before the name of ninety three events denotes an unannounced test that remained secret until DOE's release on 7 December 1993.

b. Greenwich Mean Time unless otherwise noted.

c. Height of Burst/Depth of Burial

d. Purpose abbreviated:

WR = Weapons Related WE = Weapons Effects SE = Safety Experiment ST = Storage-Transport VU = Vela Uniform SC = Stockpile Confidence UK = Joint US/UK Test PS = Plowshare

e. The nomenclature for test yields varied according to information policy governing specific years. In some cases, no yield information has been released; in a few cases, the terms "very slight" and "slight" were used without amplification. Except for tests where specific yields or relative specific yields such as "about 2 Kt," "several Mt," "less than 0.1 Kt," etcetera, were announced, test yields are given in these terms:

1945 through 1963:

- Low (less than 20 Kt)

- Intermediate (20 to 200 Kt) - all tests except Operation Dominic I

- Intermediate (20 to 1000 Kt) - Operation Dominic I

- Submegaton (less than one Mt, but more than 200 Kt)

- Megaton Range (range of yield unknown)

- Low Megaton (from one to several Mt)

1964 through February 1976:

- Less than 20 Kt

- 20 to 200 Kt

- 200 to 1000 Kt

March 1976: During a series of high-yield tests conducted during this month, two ranges were added to the above, and the 200 to 1000 Kt range was dropped.

- 200 to 500 Kt

- 500 to 1000 Kt

Since March 1976: On 31 March 1976 the Soviet Union and the United States agreed to limit the maximum yield of underground tests to 150 Kt. The yield ranges now reported are:

- Less than 20 Kt

- Less than 150 Kt

- 20 to 150 Kt

Most of the figures in parentheses are from Dahlman and Israelson, Monitoring Underground Nuclear Explosions and may carry a high degree of uncertainty.

. 75

 $s_i \in$

Table 2 U.S. NUCLEAR TESTS BY TYPE (to 31 December 1992) TESTS Underground Shaft* 760^b Tunnel^c 67 Crater^d _9 Subtotal - 836 Atmospheric Tower^e 56 Airdropf 52 Barge^s 36 Surface^b 28 Balloonⁱ 25 Rocket 12 Artilleryk _1 Subtotal 210 . Underwater 5 TOTAL 1051

Notes for Table 2:

- a. A nuclear device exploded at the bottom of a drilled or mined vertical hole.
- b. Includes twenty-four joint US/UK tests.
- c. A nuclear device exploded at the end of a long horizontal drift mined into a mountain or mesa.
- d. A nuclear device placed shallow enough underground to produce a throw-out of earth when exploded. NVO categorizes four weapons effects tests (11-29-51, 3-23-55, 3-5-62, 7-11-62) and five Plowshares tests (7-6-62, 4-14-65, 1-26-68, 3-12-68, 12-8-68) as crater tests which are included as underground tests.
- e. A nuclear device mounted at the top of a steel or wooden tower and exploded in the atmosphere. Towers ranged in height from 100 feet to 700 feet.
- f. A nuclear device dropped from an aircraft. Five types of aircraft have been used: B-29 (1), B-50 (13), B-45 (2), B-36 (6) and B-52 (30).
- g. A nuclear device exploded from a barge moored in the lagoon at Enewetak or Bikini. This technique, first used in 1954, was to compensate for the lack of land at the Pacific Proving Ground.
- h. A nuclear device placed on or close to the Earth's surface.
- i. A nuclear device suspended from a balloon and exploded in the atmosphere. Only conducted in 1957 and 1958. The height of burst for fixed balloon shots was between about 400 feet and 1500 feet. In one test a device carried by an unthethered balloon detonated at 86,000 feet.
- j. A nuclear device launched by rocket and exploded in the atmosphere. Seven types were used: Thor (3), X-17a (3), Redstone (1), Polaris (1), Strypi (1), Nike Hercules (1), Genie (1).
- k. This category is identified by DOE as "airburst," referring to an explosion of a nuclear weapon at such a height that the expanding fireball does not touch the Earth's surface prior to the time the fireball reaches its maximum luminosity. The only airburst event reported by DOE, however, is Event Grable (25 May 1953), an atomic artillery shell fired form a 280mm cannon.
- 1. The five underwater tests (and depths) were: 24 July 1946 (-90 feet), 14 May 1955 (-2000 feet), 16 May 1958 (-500 feet), 8 June 1958 (-150 feet), 11 May 1962 (-550 feet).

100

Table 3

U.S. NUCLEAR TESTS BY LOCATION (to 31 December 1992)

Pacific"	4	
Johnston Island Area ^b	12	
Enewetake	43	
Bikini ^d	23	
Christmas Island Area*	<u>24</u> 106	Total Pacific
Nevada Test Site (underground)	825	·
Nevada Test Site (atmospheric) ^r	<u>100</u> 925	Total Nevada Test Site
Alamagordo, New Mexico	1 -	(16 July 1945) Trinity
Carlsbad, New Mexico	1	(10 December 1961) 1st Piowshare
Hattiesburg, Mississippi	2	(22 October 1964, 3 December 1966) 2nd, 4th VU
Grand Valley, Colorado	1	(10 September 1969) 24th Plowshare
Rifle, Colorado	1	(17 May 1973) 27th Plowshare
Farmington, New Mexico	1	(10 December 1967) 19th Plowshare
Central Nevada (Hot Creek Valley)	1	(19 January 1968)
Fallon, Nevada	1	(25 October 1963) 1st VU
Bombing Range, Nevada	5	(24 April 1957, 15, 25, 31 May 1963, 9 June 1963)
Amchitka, Alaska	<u>3</u> 17	(29 October 1965, 2 October 1969, 6 November 1971) Total Other
South Atlantic	<u>_3</u>	(27 August 1958, 30 August 1958, 6 September 1958)
	1051	GRAND TOTAL

Notes for Table 3:

- a. The four tests were: Wigwam (14 May 1955), Yucca (28 April 1958), Frigate Bird (6 May 1962), and Swordfish (11 May 1962).
- b. Johnston Island, a possession of the United States since the acquisition of Hawaii in the nineteenth century, is about 780 nautical miles west-southwest of Hawaii. Two tests were held in 1958 and 10 in 1962.
- c. Enewetak Atoll, part of the Marshall Islands, is approximately 2380 nautical miles southwest of Honolulu. The major part of the atoll is a small ring of 40 named islands at 11.35 North 162.35 East. The atoll is approximately 23 miles by 17 miles enclosing a lagoon of 388 square miles. Its depth averages 160 feet with a maximum of approximately 200 feet. The total land area of the atoll is 2.75 square miles (1761 acres) with three islands, Enewetak, Enjebi and Medren, comprising almost half the area. Of the 43 tests held at Enewetak Atoll, 25 were held on eight of the islands (10 at Runit) with the other 18 held in the waters or reef nearby. The 43 tests were held between 14 April 1948 and 18 August 1958.
- d. Bikini is 189 nautical miles east of Enewetak. Its islands consist of about 2.7 square miles of surface area and encircles a lagoon that is 25 miles long and 15 miles wide, with a maximum depth of about 200 feet. The twentythree tests were held in four years, 1946, 1954, 1956 and 1958. Bikini was selected as the site of Operation *Crossroads* on 21 December 1945. Bikini was discovered in 1825 by Lieutenant Otto von Kotzebue of the Russian Navy.
- e. Christmas Island is an atoll lying 2 degrees north of the equator, approximately 1200 nautical miles south and slightly east of Hawaii. While a British possession, it was used to test UK nuclear devices during Operation Grapple X, Y, and Z from May 1957 to September 1958. Twenty four U.S. tests were held there from 25 April 1962 to 11 July 1962. In 1979, Christmas Island ceased to be part of the British Crown Colony of the Gilbert and Ellice Islands and became part of the Republic of Kiribati, whose capital is Tarawa and which comprises the Gilbert Islands, the Phoenix Islands (round Canton) and the Line islands (Christmas, Fanning, Palmyra, Jarvis, Washington, Starbuck and Malden). The former Christmas Island is now called Kiritimati and has a permanent population of 1200, mainly of Gilbertese origin.

f. One hundred atmospheric tests were held at the Nevada Test Site from 27 January 1951 to 17 July 1962.

CH.

Table 4 **U.S. NUCLEAR TESTS BY PURPOSE** (to 31 December 1992) Weapons Related* 857 Weapons Effects **98** Safety Experiment^b 34 **Plowshare**^c 27 Vela Uniform^d 7 Storage-Transportation* Joint US/UK <u>24</u> 1051 TOTAL

a. The twenty-four joint US/UK tests between 1 March 1962 and 31 December 1992 are also weapon related.

- b. An experiment designed to confirm a nuclear explosion will not occur in case of an accidental detonation of the explosive associated with the device.
- c. Application of nuclear explosives to develop peaceful uses for atomic energy between 10 December 1961 and 17 May 1973.
- d. Vela tests are nuclear explosions designed to provide information so as to improve the capability of detecting, identifying, and locating underground nuclear explosions. The seven were conducted on 10/26/63, 10/22/64, 10/29/65, 12/3/66, 4/23/68, 5/12/70, 7/1/71.
- e. Detonation of combinations of high explosives and nuclear materials designed to study distribution of nuclear materials during accidents in several transportation and storage configurations. The four were conducted on 5/15/63, 5/25/63, 5/31/63, 6/9/63 at the Bombing Range, Neveda.

Table 5 U.S. NUCLEAR TESTS BY YEAR WITH ESTIMATED YIELDS

Notes to Table 5:

a. The nomenclature for test yields varied according to information policy governing specific years. In some cases the exact yield or a yield range was given. In the latter case three formats have been used (see below). The yields following the equal (=) signs are the authors estimates of the average yield in each range, which were used to compute the total annual and cumulative yields.

1945 through 1963:

- Low (less than 20 Kt) = 6 Kt
- Intermediate (20 to 200 Kt) all tests = 50 Kt except Operation Dominic I
- Intermediate (20 to 1000 Kt) = 200 Kt, used for Operation Dominic I only
- Submegaton (less than one Mt, but more than 200 Kt) = 300 Kt
- Megaton Range = 5.0 Mt
- Low Megaton (from one to several Mt) = 1.4 Mt

1964 through February 1976:

- Less than 20 Kt = 6 Kt
- 20 to 200 Kt = 50 Kt
- 200 to 1000 Kt = 300 Kt

During a series of high-yield tests conducted during March 1976, two ranges were added, and the 200 to 1000 Kt range was dropped.

- 200 to 500 Kt = 300 Kt

- 500 to 1000 Kt = 750 Kt

Since March 1976:

On 31 March 1976, the Soviet Union and the United States agreed to limit the maximum yield of underground tests to 150 Kt. The yield ranges now reported are:

1998-1750-1-1-1

- Less than 20 Kt = 6 Kt
- 20 to 150 Kt = 50 Kt
- Less than 150 Kt = 20 Kt

b. Includes twenty-four joint U.S./UK tests.

c. The 204 unannounced tests are included in the number column.

d. Number pre-treaty 333; post-treaty 718.

By decade:

194 0s	6
195 0s	188
196 0s	432
1970s	235
1980s	167
1990s	23
TOTAL	1051

120

Figure 2 Bikini Atoll, 1958, showing pre-Hardtack Detonation Sites

Figure 3 Nuclear Detonation Sites on Enewetak Atoll

U.S. Nuclear Tests, NWD 94-1

Figure 5 Nevada Test Site

Figure 6 Nevada Test Site with Shaded Areas Indicating Principal Areas Used for Underground Testing

About the Authors

Dr. Robert Standish Norris

Dr. Stan Norris is Senior Staff Analyst with the Natural Resources Defense Council and Director of the Nuclear Weapons Databook Project. His principal areas of expertise include writing and research in the areas of nuclear weapons research and production, arms control, and nuclear weapons testing. He is co-editor of NRDC's *Nuclear Weapons Databook* series and is a co-author of U.S. Nuclear Warhead Production, Vol. II (1987); U.S. Nuclear Warhead Facility Profiles, Vol. III (1987); Soviet Nuclear Weapons, Vol. IV (1989); and British, French and Chinese Nuclear Weapons, Vol. V (1994). He has co-authored the chapter on nuclear weapons in the 1985, 1986, 1987, 1988, 1989, 1990, 1991 and 1992 editions of the SIPRI Yearbook. Dr. Norris is an author of six recent NRDC Working Papers. He has written articles for Arms Control Today, and contributes a monthly column for the Bulletin of the Atomic Scientists. He has co-authored the article on "Nuclear Weapons" in the 1990 printing of The New Encyclopedia Britannica (15th edition, Volume 29, pp. 575-580).

Dr. Norris received his Ph.D. in Political Science from New York University in 1976, and taught at New York University, Miami University in Ohio, Miami University, Luxembourg, and American University. He was a senior research analyst for the Center for Defense Information before coming to the Natural Resources Defense Council in September 1984.
Dr. Thomas B. Cochran

F

+

Dr. Thomas B. Cochran is Senior Staff Scientist with the Natural Resources Defense Council, and Director of NRDC's Nuclear Program. He initiated the Nuclear Weapons Databook Project. He has initiated a series of joint nuclear weapons verification projects with the Soviet Academy of Sciences. These include the Nuclear Test Ban Verification Project, which demonstrated the feasibility of utilizing seismic monitoring to verify a lowthreshold test ban, and the Black Sea Experiment, which examined the utility of passive radiation detectors for verifying limits on sea-launched cruise missiles. He has served as a consultant to numerous government and non-government agencies on energy, nuclear nonproliferation and nuclear reactor matters. As a member of the Energy Department's Energy Research Advisory Board he provided advisory services to the Secretary of Energy. Dr. Cochran was also appointed to the Nuclear Regulatory Commission's Advisory Committee on the Clean Up of Three Mile Island. Currently, he is a member of the TMI Public Health Advisory Board.

Dr. Cochran is the author of The Liquid Metal Fast Breeder Reactor: An Environmental and Economic Critique (Washington, DC: Resources for the Future, 1974); and co-editor/author of the Nuclear Weapons Databook, Volume I: U.S. Nuclear Forces and Capabilities (Cambridge, MA: Ballinger Press, 1984); Volume II: U.S. Nuclear Warhead Production (1987); Volume III: U.S. Nuclear Warhead Facility Profiles (1987); and Volume IV: Soviet Nuclear Weapons (1989). In addition, he has published numerous articles and working papers, including those in SIPRI Yearbook chapters, Arms Control Today, and the Bulletin of the Atomic Scientists. He has co-authored the article on "Nuclear Weapons" in the 1990 printing of The New Encyclopedia Britannica (15th edition). Dr. Cochran's areas of special focus include nuclear weapons research and production, arms control, nuclear weapons proliferation, safeguards, seismic verification, national energy R&D policy, and radiation exposure standards.

Dr. Cochran received his Ph.D. in Physics from Vanderbilt University in 1967. He was assistant Professor of Physics at the Naval Postgraduate School, Monterey, California, from 1969 to 1971, and from 1971 to 1973, he was a Senior Research Associate at Resources for the Future. Dr. Cochran has been with NRDC since 1973. He is the recipient of the American Physical Society's Szilard Award and the Federation of American Scientists' Public Service Award, both in 1987. As a consequence of his work, NRDC received the 1989 Scientific Freedom and Responsibility Award by the American Association for the Advancement of Science.

Page 72

The NRDC Nuclear Weapons Data Center

Since 1980 the Natural Resources Defense Council has sponsored the Nuclear Weapons Data Center. The purpose of the Center is to compile and disseminate accurate information on the world's nuclear forces in order to promote a more informed debate on nuclear weapons and arms control issues. The Center has published five volumes of its *Databook* series describing the U.S. and Soviet nuclear arsenals, and the U.S. nuclear weapons production complex. Currently in press is Volume V, entitled, *British, French and Chinese Nuclear Weapons* (Westview). Since May 1987, the Center staff has contributed a monthly column to *The Bulletin of the Atomic Scientists*, entitled Nuclear Notebook.

The Center also publishes other occasional materials, including Working Papers. The Working Paper series is intended to present preliminary research findings for comment and review for eventual publication in forthcoming *Databook* volumes.

Generous funding to support the Nuclear Weapons Data Center has come from: The William Bingham Foundation, The Bydale Foundation, The Carnegie Corporation of New York, the Columbia Foundation, The Field Foundation, The Ford Foundation, the W. Alton Jones Foundation, the Ploughshares Fund, the Charles Revson Foundation, the Rockefeller Family Fund, the Role Foundation, The Samuel Rubin Foundation, the Wallace Genetic Foundation, Davis B. Arnold, Jr., Charles Merrill, Mr. & Mrs. Julius Rosenwald II, Francess Tyson, Mrs. Philip S. Weld, and three anonymous donors.