Efficient Learning of Sparse Representations
with an Energy-Based Model

Marc’Aurelio Ranzato, Christopher Poultney, Sumit Chopra, and Yann LeCun

Courant Institute of Mathematical Sciences
New York University, New York, NY 10003
{ranzat o, cri spy, sunm t, yann}@s. nyu. edu

Abstract

We describe a novel unsupervised method for learning spavsecomplete fea-
tures. The model uses a linear encoder, and a linear deccet®ded by a spar-
sifying non-linearity that turns a code vector into a quaisiary sparse code vec-
tor. Given an input, the optimal code minimizes the distapesveen the output
of the decoder and the input patch while being as similar asipte to the en-
coder output. Learning proceeds in a two-phase EM-likeifash(1) compute
the minimum-energy code vector, (2) adjust the paramefateencoder and de-
coder so as to decrease the energy. The model producese'stedéctors” when
trained on handwritten numerals, and Gabor-like filters mvtrained on natural
image patches. Inference and learning are very fast, rieguio preprocessing,
and no expensive sampling. Using the proposed unsupenvistitbd to initialize
the first layer of a convolutional network, we achieved awerate slightly lower
than the best reported result on the MNIST dataset. Finaflyextension of the
method is described to learn topographical filter maps.

1 Introduction

Unsupervised learning methods are often used to produeprpoessors and feature extractors for
image analysis systems. Popular methods such as Wavetghgesition, PCA, Kernel-PCA, Non-
Negative Matrix Factorization [1], and ICA produce compagiresentations with somewhat uncor-
related (or independent) components. Most methods prodipresentations that either preserve
or reduce the dimensionality of the input. However, severaént works have advocated the use
of sparse-overcomplete representations for images, ishwiiie dimension of the feature vector is
larger than the dimension of the input, but only a small number of gonents are non-zero for
any one image [2, 3]. Sparse-overcomplete representaticasent several potential advantages.
Using high-dimensional representations increases tkeéHiod that image categories will be easily
(possibly linearly) separable. Sparse representatiompavide a simple interpretation of the input
data in terms of a small number of “parts” by extracting theaure hidden in the data. Further-
more, there is considerable evidence that biological wisiges sparse representations in early visual
areas [4, 5].

It seems reasonable to consider a representation “comiflétes possible to reconstruct the input
from it, because the information contained in the input wiauted to be preserved in the represen-
tation itself. Most unsupervised learning methods fordeaextraction are based on this principle,
and can be understood in terms ofentoder module followed by alecoder module. The encoder
takes the input and computes a code vector, for example aespad overcomplete representation.
The decoder takes the code vector given by the encoder addiges a reconstruction of the in-
put. Encoder and decoder are trained in such a way that reaotisns provided by the decoder
are as similar as possible to the actual input data, where timsit data have the same statistics
as the training samples. Methods such as Vector QuantizaCA, auto-encoders [6], Restricted
Boltzmann Machines [7], and others [8] have exactly thihiaecture but with different constraints
on the code and learning algorithms, and different kindsnaioeler and decoder architectures. In

other approaches, the encoding module is missing but itsisalaken by a minimization in code
space which retrieves the representation [2]. Likewiseyan-causal models the decoding module
is missing and sampling techniques must be used to recaehftriinput from a code [3]. In sec. 2,
we describe aenergy-based model which has both an encoding and a decoding part. Aarihg,
the encoder allows very fast inference because finding &septation does not require solving an
optimization problem. The decoder provides an easy waydonstruct input vectors, thus allowing
the trainer to assess directly whether the representakitacts most of the information from the
input.

Most methods find representations by minimizing an appeadetioss function during training. In
order to learn sparse representations, a term enforcingigpes added to the loss. This term usually
penalizes those code units that are active, aiming to makdigtribution of their activities highly
peaked at zero with heavy tails [9] [3]. A drawback for theppraaches is that some action might
need to be taken in order to prevent the system from alwaygatiog the same few units and
collapsing all the others to zero [2]. An alternative apmgtoas to embed a sparsifying module, e.g.
a non-linearity, in the system [10]. This in general forcghee units to have the same degree of
sparsity, but it also makes a theoretical analysis of theralym more complicated. In this paper, we
present a system which achieves sparsity by placing a memdlity between encoder and decoder.
Sec. 2.1 describes this module, dubbed tgmt'sifying Logistic”, which is a logistic function with
an adaptive bias that tracks the mean of its input. This mogatity is parameterized in a simple
way which allows us to control the degree of sparsity of thesentation as well as the entropy of
each code unit.

Unfortunately, learning the parameters in encoder anddierazan not be achieved by simple back-
propagation of the gradients of the reconstruction ertw:Sparsifying Logistic is highly non-linear
and resets most of the gradients coming from the decoderrto Zderefore, in sec. 3 we propose
to augment the loss function by considering not only the ipatars of the system but also the
code vectors as variables over which the optimization ifopered. Exploiting the fact that 1) it is
fairly easy to determine the weights in encoder and decotienwgood” codes are given, and 2)
it is straightforward to compute the optimal codes when themeters in encoder and decoder are
fixed, we describe a simple iterative coordinate desceritnigdtion to learn the parameters of the
system. The procedure can be seen as a salgtefministic version of the EM algorithmin which

the code vectors play the role of hidden variables. The lagralgorithm described turns out to be
particularly simple, fast and robust. No pre-processingauired for the input images, beyond a
simple centering and scaling of the data. In sec. 4 we repger@ments of feature extraction on
handwritten numerals and natural image patches. When #terayhas a linear encoder and decoder
(remember that the Sparsifying Logistic is a separate nma&dthe filters resemble “object parts” for
the numerals, and localized, oriented features for therabitnage patches. Applying these features
for the classification of the digits in the MNIST dataset, vavd achieved by a small margin the
best accuracy ever reported in the literature. We conclyddhbwing a hierarchical extension which
suggests the form of simple and complex cell receptive fiedd leads to a topographic layout of
the filters which is reminiscent of the topographic maps fbumarea V1 of the visual cortex.

2 The Model

The proposed model is based on three main components, as éhnfig. 1:

e Theencoder: A set of feed-forward filters parameterized by the rows otnwrdi, that
computes a code vector from an image paXth

e The Sarsifying Logistic: A non-linear module that transforms the code vectointo a
sparse code vectdf with components in the rande, 1].

e Thedecoder: A set of reverse filters parameterized by the columns of imatrp, that
computes a reconstruction of the input image patch fromplese code vector.

Theenergy of the system is the sum of two terms:
E(X,Z,Wc,Wp) = Ec(X,Z,Wc) + Ep(X,Z,Wp) 1)

The first term is thecode prediction energy which measures the discrepancy between the output of
the encoder and the code vectorIn our experiments, it is defined as:

1 1
Eo(X,2,We) = §||Z—EDC(XJ/VC)||2 =35l1Z - WeX|[? @)

<——— 1X-Dec(ZW)IP DECODER W | Sparsifying Z Code
E (X,Z,W) Sparse Logistic
D D “
Code

E(X.ZW,)
Tnput X »| ENCODER W_ »| I1Z - Enc(X.W I |——

Figure 1: Architecture of the energy-based model for leagriparse-overcomplete representations.
The input image patctk is processed by thencoder to produce an initial estimate of the code
vector. Theencoding prediction energy F.c measures the squared distance between the code vector
Z and its estimate. The code vectois passed through ttgparsifying Logistic non-linearity which
produces a sparsified code vecthrThedecoder reconstructs the input image patch from the sparse
code. Thaeconstruction energy Ep measures the squared distance between the reconstrustion a
the input image patch. The optimal code vectdrfor a given patch minimizes the sum of the two
energies. The learning process finds the encoder and depadeneters that minimize the energy
for the optimal code vectors averaged over a set of trairamges.

70.01 B30 0.1 £330 70.1 yes

Cun Db it

Figure 2: Toy example of sparsifying rectification produbgdhe Sparsifying Logistic for different
choices of the parametersand 3. The input is a sequence of Gaussian random variables. The
output, computed by using eq. 4, is a sequence of spikes whtssand amplitude depend on the
parameters) and 3. In particular, increasing has the effect of making the output approximately
binary, while increasing increases the firing rate of the output signal.

\‘\ 1L, ‘ L

The second term is theconstruction energy which measures the discrepancy between the recon-
structed image patch produced by the decoder and the in@gamatchX . In our experiments, it
is defined as:

1 - 1 -
Ep(X,Z,Wp) = 5|IX — Dec(Z, Wp)||* = SlIX - WpZ|[? ®)
whereZ is computed by applying the Sparsifying Logistic non-lirigeto .

2.1 The Sparsifying Logistic

The Sparsifying Logistic module is a non-linear front-end to the decoder that tramséahe code
vector into a sparse vector with positive components. Letarsider how it transforms thie-th
training sample. Let;(k) be thei-th component of the code vector aBdk) be its corresponding
output, with: € [1..m] wherem is the number of components in the code vector. The relation
between these variables is given by:

Bzi(k)
Zi k)= he

Gi(k)

where it is assumed that € [0,1]. ¢;(k) is the weighted sum of values ef* (™) corresponding

to previous training samples, with n < k. The weights in this sum are exponentially decaying as
can be seen by unrolling the recursive equation in 4. Thislim@arity can be easily understood as

a weighted softmax function applied over consecutive sampl the same code unit. This produces

a sequence of positive values which, for large values ahd small values of;, is characterized

by brief and punctuate activities in time. This behaviorémimiscent of the spiking behavior of
neuronss controls the sparseness of the code by determining the Hvaftthe time window over
which samples are summed yp controls the degree of “softness” of the function. Lafyealues
yield quasi-binary outputs, while smatlvalues produce more graded responses; fig. 2 shows how
these parameters affect the output when the input is a Gaussidom variable.

ie[Lom] with G(k) =ne”™® + (1 —n)¢i(k —1) 4)

Another view of the Sparsifying Logistic is as a logistic @tion with an adaptive bias that tracks
the average input; by dividing the right hand side of eq. 4b%(*) we have:

1—n -1
zi(k) = |14 e PGilk) =5 log(n’@-(k—l»q , i€ [l.m] (5)

Notice how directly controls the gain of the logistic. Large valuesuitparameter will turn the
non-linearity into a step function and will mak& k) a binary code vector.

In our experimentsg; is treated as trainable parameter and kept fixed after thaifepphase. In
this case, the Sparsifying Logistic reduces to a logistitcfion with a fixed gain and a learned bias.
For larges in the continuous-time limit, the spikes can be shown tamfela homogeneous Poisson
process. In this framework, sparsity is a “temporal” prapeharacterizing each single unit in the
code, rather than a “spatial” property shared among all thitsun a code. Spatial sparsity usually
requires some sort of ad-hoc normalization to ensure tleatdmponents of the code that are “on”
are not always the same ones. Our solution tackles thisg@modifferently: each unit must be sparse
when encoding different samples, independently from thigides of the other components in the
code vector. Unlike other methods [9], no ad-hoc rescalitb@weights or code units is necessary.

3 Learning

Learning is accomplished by minimizing the energy in eqntlid¢ating with superscripts the indices
referring to the training samples and making explicit thpetedencies on the code vectors, we can
rewrite the energy of the system as:

P
E(W07WD7 Zla ey ZP) = Z[ED(Xia Zia WD) + EC(Xia Zi7WC)] (6)
i=1
This is also the loss function we propose to minimize duria@ing. The parameters of the system,
We andWp, are found by solving the following minimization problem:

{We&, Wh} = argmingw, w,yming . zr E(W,, Wa, zZ', ..., Z%) @)

Itis easy to minimize this loss with respectiia- andWp when theZ* are known and, particularly
for our experiments where encoder and decoder are a seteairlfitters, this is a convex quadratic
optimization problem. Likewise, when the parameters insystem are fixed it is straightforward to
minimize with respect to the codé8. These observations suggest a coordinate descent ogtiioniza
procedure. First, we find the optimat for a given set of filters in encoder and decoder. Then, we
update the weights in the system fixigg to the value found at the previous step. We iterate these
two steps in alternation until convergence. In our expentaeve used aon-line version of this
algorithm which can be summarized as follows:

1. propagate the inpuf through the encoder to get a codewdfd ;;

2. minimize the loss in eq. 6, sum of reconstruction and caddiption energy, with respect
to Z by gradient descent usirg;,,;; as the initial value

3. compute the gradient of the loss with respedite andW, and perform a gradient step

where the superscripts have been dropped because we amingefe a generic training sample.
Since the code vecta¥ minimizes both energy terms, it not only minimizes the restarction
energy, but is also as similar as possible to the code pestimt the encoder. After training the de-
coder settles on filters that produce low reconstructioarsrirom minimum-energy, sparsified code
vectorsZ*, while the encoder simultaneously learns filters that mtettie corresponding minimum-
energy codes*. In other words, the system converges to a state where mimienergy code
vectors not only reconstruct the image patch but can als@abiéyeredicted by the encoder filters.
Moreover, starting the minimization overfrom the prediction given by the encoder allows conver-
gence in very few iterations. After the first few thousandhtirag samples, the minimization over
requires just 4 iterations on average. When training is detepa simple pass through the encoder
will produce an accurate prediction of the minimum-energgie vector. In the experiments, two
regularization terms are added to the loss in eq. 6: a “lag3oi equal to thd,; norm of W and
Wp, and a “ridge” term equal to theit, norm. These have been added to encourage the filters to
localize and to suppress noise.

Notice that we could differently weight the encoding and teeonstruction energies in the loss
function. In particular, assigning a very large weight te #ncoding energy corresponds to turning

RTENIMEFRSHEXNESHEEE EEICEETSH S MRINSSESREEE
EAED PNNOE SO B RSN R e SN0 A RS TR
i 1 O 5 7 o 0 1050 5 50 0 0 S g AR L NI 0 S T
I 5 0 Y5 D 0 N R LB RS
*E EHCTHIAES SRS 100 = IRV = AR NE AT =R e

Figure 3: Results of feature extraction from 12x12 patchksr from the Berkeley dataset, showing
the 200 filters learned by the decoder.

the penalty on the encoding prediction intbaxd constraint. The code vector would be assigned the
value predicted by the encoder, and the minimization woediice to a mean square error minimiza-
tion through back-propagation as in a standard autoencaddigiortunately, this autoencoder-like
learning fails because Sparsifying Logistic is almost gisvhighly saturated (otherwise the repre-
sentation would not be sparse). Hence, the gradients bagagated to the encoder are likely to be
very small. This causes the direct minimization over encgadeameters to fail, but does not seem
to adversely affect the minimization over code vectors. Wasse that the large number of degrees
of freedom in code vectors (relative to the number of encpdeameters) makes the minimization
problem considerably better conditioned. In other worlds,dlternated descent algorithm performs
a minimization over a much larger set of variables than regohck-prop, and hence is less likely to
fall victim to local minima. The alternated descent overeathd parameters can be seen as a kind
of deterministic EM. It is related to gradient-descent over parameters (stdnack-prop) in the
same way that the EM algorithm is related to gradient asagnmhiximum likelihood estimation.

This learning algorithm is not only simple but also very faBbr example, in the experiments of
sec. 4.1 ittakes less than 30 minutes to learn 200 filters #0000 patches of size 12x12, and after
just a few minutes the filters are already very similar to thalfones. This is much more efficientand
robust than what can be achieved using other methods. Far@gain Olshausen and Field’s [9]
linear generative model, inference is expensive becausamzation in code space is necessary
during testing as well as training. In Teh et al. [3], leais very expensive because the decoder
is missing, and sampling techniques [7] must be used to gecireconstruction. Moreover, most
methods rely on pre-processing of the input patches suchasning, PCA and low-pass filtering
in order to improve results and speed up convergence. Inxqperanents, we need only center the
data by subtracting a global mean and scale by a constant.

4 Experiments

In this section we present some applications of the propesedgy-based model. Two standard
data sets were used: natural image patches and handwrigiés. dAs described in sec. 2, the
encoder and decoder learn linear filters. As mentioned inEehe input images were only trivially

pre-processed.

4.1 Feature Extraction from Natural Image Patches

In the first experiment, the system was trained on 100,008 Igrgel patches of size 12x12 extracted
from the Berkeley segmentation data set [11]. Pre-proogssi images consists of subtracting
the global mean pixel value (which is about 100), and divgdine result by 125. We chose an
overcomplete factor approximately equal to 2 by represerttie input with 200 code units The
Sparsifying Logistic parametersand 5 were equal to 0.02 and 1, respectively. The learning rate
for updatinglW was set to 0.005 and fé# to 0.001. These are decreased progressively during
training. The coefficients of thé; and L, regularization terms were about 0.001. The learning rate
for the minimization in code space was set to 0.1, and wasiplietf by 0.8 every 10 iterations, for

at most 100 iterations. Some components of the sparse cogehawllowed to take continuous
values to account for the average value of a patch. For thisore during training we saturated
the running sumg to allow some units to be always active. ValuesCofvere saturated ta0°.

We verified empirically that subtracting the local mean freath patch eliminates the need for this
saturation. However, saturation during training makesirigdess expensive. Training on this data
set takes less than half an hour on a 2GHz processor.

10overcompleteness must be evaluated by considering theenwhbode units and the effective dimension-
ality of the input as given by PCA.

EARAES 0 5 e 2 I SN Y
FERE e R eGSR A AR EE
=4 et et et e b [eps [vos | o |

Figure 4: Top: A randomly selected subset of encoder filteasred by our energy-based model
when trained on the MNIST handwritten digit dataset. Bott@émn example of reconstruction of a
digit randomly extracted from the test data set. The recaoon is made by adding “parts”: it is
theadditive linear combination of few basis functions of the decodehwibsitive coefficients.

Examples of learned encoder and decoder filters are showguirefB. They are spatially localized,
and have different orientations, frequencies and scaldgy Bre somewhat similar to, but more
localized than, Gabor wavelets and are reminiscent of tbeptd/e fields of V1 neurons. Interest-
ingly, the encoder and decoder filter values are nearly idaihap to a scale factor. After training,

inference is extremely fast, requiring only a simple matréctor multiplication.

4.2 Feature Extraction from Handwritten Numerals

The energy-based model was trained on 60,000 handwritggts diom the MNIST data set [12],
which contains quasi-binary images of size 28x28 (784 p)xeThe model is the same as in the
previous experiment. The number of components in the cod®reas 196. While 196 is less than
the 784 inputs, the representation is still overcompleteaise the effective dimension of the digit
dataset is considerably less than 784. Pre-processingstethsf dividing each pixel value by 255.
Parameterg and in the temporal softmax were 0.01 and 1, respectively. Thergparameters
of the system have been set to values similar to those of thaqus experiment on natural image
patches. Each one of the filters, shown in the top part of figo#tains an elementary “part” of a
digit. Straight stroke detectors are present, as in theipus\experiment, but curly strokes can also
be found. Reconstruction of most single digits can be aelidy a linear additive combination of
a small number of filters since the output of the Sparsifyingiktic is sparse and positive. The
bottom part of fig. 4 illustrates this reconstruction by “{zér

4.3 Learning Local Features for the MNIST dataset

Deep convolutional networks trained with backpropagatiofd the current record for accuracy
on the MNIST dataset [13, 14]. While back-propagation pasdugood low-level features, it is
well known that deep networks are particularly challendioggradient-descent learning. Hinton
et al. [15] have recently shown that initializing the weiglff a deep network using unsupervised
learning before performing supervised learning with bacpagation can significantly improve the
performance of a deep network. This section describes dagimiperiment in which we used the
proposed method to initialize the first layer of a large cdational network. We used an architecture
essentially identical theNet-5 as described in [14]. However, because our model produa@sep
features, our network had a considerably larger numberaiiife maps: 50 for layer 1 and 2, 50
for layer 3 and 4, 200 for layer 5, and 10 for the output laydre iumbers for LeNet-5 were 6, 16,
100, and 10 respectively. We refer to our larger network ass-50-200-10 network. We trained
this networks on 55,000 samples from MNIST, keeping the irim@ 5,000 training samples as a
validation set. When the error on the validation set readtsasinimum, an additional five sweeps
were performed on the training set augmented with the vididaset (unless this increased the
training loss). Then the learning was stopped, and the fimat eate on the test set was measured.
When the weights are initialized randomly, the 50-50-20(thieves a test error rate of 0.7%, to
be compared with the 0.95% obtained by [14] with the 6-16-10®etwork.

In the next experiment, the proposed sparse feature legamethod was trained on 5x5 image
patches extracted from the MNIST training set. The modeld&@-dimensional code. The encoder
filters were used to initialize the first layer of the 50-500200 net. The network was then trained in
the usual way, except that the first layer was kept fixed fofitee10 epochs through the training set.
The 50 filters after training are shown in fig. 5. The test erate was 0.6%. To our knowledge, this
is the best results ever reported with a method trained oarigaal MNIST set, without deskewing
nor augmenting the training set with distorted samples.

The training set was then augmented with samples obtainesldsyically distorting the original
training samples, using a method similar to [13]. The erate of the 50-50-200-10 net with random
initialization was 0.49% (to be compared to 0.40% reporteflB]). By initializing the first layer
with the filters obtained with the proposed method, the testreate dropped to 0.39%. While this
is the best numerical result ever reported on MNIST, it isstatistically different from [13].

RN RO IS NS NG e NI RN E NN S NS
dFfF=EFENl Er SRS IO CnrECrRAS= I NEASFrFCEEAN= S =00

Figure 5: Filters in the first convolutional layer after tiaig when the network is randomly initial-
ized (top row) and when the first layer of the network is ifitied with the features learned by the
unsupervised energy-based model (bottom row).

Architecture Training Set Size

20K 60K 60K + Distortions
6-16-100-10[14 - - 10.95 -1 0.60 -
5-50-100-10113 - - - -10.40 -
50-50-200-1 1.01 0.89|0.70 0.60] 0.49 0.39

Table 1: Comparison of test error rates on MNIST dataset using comiemial network architectures with
various training set size: 30,000, 60,000, and 60,000 ghsO®O elastic distortions. For each size, results are
reported with randomly initialized filters, and with firstyler filters initialized using the proposed algorithm
(bold face).

4.4 Hierarchical Extension: Learning Topographic Maps

It has already been observed that features extracted freumah@amage patches resemble Gabor-like
filters, see fig. 3. It has been recently pointed out [5] thaséffilters produce codes with somewhat
uncorrelated but not independent components. In ordemdtucahigher order dependencies among
code units, we propose to extend the encoder architectuadding to the linear filter bank a second
layer of units. In this hierarchical model of the encodeg thnits produced by the filter bank are
now laid out on a two dimensional grid and filtered accordimg fixed weighted mean kernel. This
assigns a larger weight to the central unit and a smaller ki the units in the periphery. In
order to activate a unit at the output of the Sparsifying Istigj all the afferent unrectified units in
the first layer must agree in giving a strong positive respdonghe input patch. As a consequence
neighboring filters will exhibit similar features. Also,dftop level units will encode features that
are more translation and rotation invariaai,facto modeling complex cells. Using a neighborhood
of size 3x3, toroidal boundary conditions, and computindeceectors with 400 units from 12x12
input patches from the Berkeley dataset, we have obtainedojographic map shown in fig. 6.
Filters exhibit features that are locally similar in oriatibn, position, and phase. There are two
low frequency clusters and pinwheel regions similar to wisagxperimentally found in cortical

topography.

5 Conclusions

An energy-based model was proposed for unsupervised tepofisparse overcomplete representa-
tions. Learning to extract sparse features from data hakicafipns in classification, compression,
denoising, inpainting, segmentation, and super-resoidtiterpolation. The model has none of the
inefficiencies and idiosyncrasies of previously propogmdse-overcomplete feature learning meth-
ods. The decoder produces accurate reconstructions ofaticegs, while the encoder provides a
fast prediction of the code without the need for any particpkeprocessing of the input images.

It seems that a non-linearity that directly sparsifies theéecis considerably simpler to control than
adding a sparsity term in the loss function, which genenadlyuires ad-hoc normalization proce-
dures [2]

In the current work, we used linear encoders and decodessrfgplicity, but the model authorizes
non-linear modules, as long as gradients can be computebakdpropagated through them. As
briefly presented in sec. 4.4, it is straightforward to egtéime original framework to hierarchical
architectures in encoder, and the same is possible in theldecAnother possible extension would
stack multiple instances of the system described in therpapth each system as a module in a

INPUT X

Ed

0.08| 0.17 0.08
K=10.12(0.23 0.12
0.08| 0.12 0.08

CODE LEVEL 2

Eucl. Dist.
CODE Z

Ec

Figure 6: Example of filter maps learned by the topographécehchical extension of the model.
The outline of the model is shown on the right.

multi-layer structure where the sparse code produced byeatare extractor is fed to the input of a
higher-level feature extractor.

Future work will include the application of the model to vars tasks, including facial feature extrac-
tion, image denoising, image compression, inpaintingsifecation, and invariant feature extraction
for robotics applications.

References

(1]
(2]
(3]
(4]
(5]
(6]
(7]
(8]
(9]
[10]

[11]
[12]
[13]

[14]

(18]

Lee, D.D. and Seung, H.S. (1999) Learning the parts oéatsj by non-negative matrix factorization.
Nature, 401:788-791.

Olshausen, B.A. (2002) Sparse codes and spikes. R.Rbl. RA. Olshausen and M.S. Lewicki Eds. -
MIT press:257-272.

Teh, Y.W. and Welling, M. and Osindero, S. and Hinton, G(Z003) Energy-based models for sparse
overcomplete representations. Journal of Machine LegrRiesearch, 4:1235-1260.

Lennie, P. (2003) The cost of cortical computation. @utrbiology, 13:493-497
Simoncelli, E.P. (2005) Statistical modeling of phatayghic images. Academic Press 2nd ed.

Hinton, G.E. and Zemel, R.S. (1994) Autoencoders, MimmDescription Length, and Helmholtz Free
Energy. Advances in Neural Information Processing Sys#@&nmsD. Cowan, G. Tesauro and J. Alspector
(Eds.), Morgan Kaufmann: San Mateo, CA.

Hinton, G.E. (2002) Training products of experts by miiging contrastive divergence. Neural Compu-
tation, 14:1771-1800.

Doi E., Balcan, D.C. and Lewicki, M.S. (2006) A TheoreticdAnalysis of Robust Coding over Noisy
Overcomplete Channels. Advances in Neural Informatiorc&ssing Systems 18, MIT Press.

Olshausen, B.A. and Field, D.J. (1997) Sparse Codindy &it Overcomplete Basis Set: A Strategy
Employed by V1? Vision Research, 37:3311-3325.

Foldiak, P. (1990) Forming Sparse Representationsdmal Anti-Hebbian Learning. Biological Cyber-
netics, 64:165-170.

The Berkeley Segmentation Dataset http://www.c&éley.edu/projects/vision/grouping/segbench/
The MNIST Database of Handwritten Digits http://ydeoun.com/exdb/mnist/

Simard, P.Y. Steinkraus, D. and Platt, J.C. (2003) Basictices for Convolutional Neural Networks.
ICDAR

LeCun, Y. Bottou, L. Bengio, Y. and Haffner, P. (1998)a@ient-based Learning Applied to Document
Recognition. Proceedings of the IEEE, 86(11):2278-2324.

Hinton, G. E., Osindero, S. and Teh, Y. (2006) A fast h#ag algorithm for deep belief nets. Neural
Computation 18, pp 1527-1554.

