
Efficient Learning of Sparse Representations
with an Energy-Based Model

Marc’Aurelio Ranzato, Christopher Poultney, Sumit Chopra, and Yann LeCun

Courant Institute of Mathematical Sciences
New York University, New York, NY 10003

{ranzato,crispy,sumit,yann}@cs.nyu.edu

Abstract

We describe a novel unsupervised method for learning sparse, overcomplete fea-
tures. The model uses a linear encoder, and a linear decoder preceded by a spar-
sifying non-linearity that turns a code vector into a quasi-binary sparse code vec-
tor. Given an input, the optimal code minimizes the distancebetween the output
of the decoder and the input patch while being as similar as possible to the en-
coder output. Learning proceeds in a two-phase EM-like fashion: (1) compute
the minimum-energy code vector, (2) adjust the parameters of the encoder and de-
coder so as to decrease the energy. The model produces “stroke detectors” when
trained on handwritten numerals, and Gabor-like filters when trained on natural
image patches. Inference and learning are very fast, requiring no preprocessing,
and no expensive sampling. Using the proposed unsupervisedmethod to initialize
the first layer of a convolutional network, we achieved an error rate slightly lower
than the best reported result on the MNIST dataset. Finally,an extension of the
method is described to learn topographical filter maps.

1 Introduction

Unsupervised learning methods are often used to produce pre-processors and feature extractors for
image analysis systems. Popular methods such as Wavelet decomposition, PCA, Kernel-PCA, Non-
Negative Matrix Factorization [1], and ICA produce compactrepresentations with somewhat uncor-
related (or independent) components. Most methods producerepresentations that either preserve
or reduce the dimensionality of the input. However, severalrecent works have advocated the use
of sparse-overcomplete representations for images, in which the dimension of the feature vector is
larger than the dimension of the input, but only a small number of components are non-zero for
any one image [2, 3]. Sparse-overcomplete representationspresent several potential advantages.
Using high-dimensional representations increases the likelihood that image categories will be easily
(possibly linearly) separable. Sparse representations can provide a simple interpretation of the input
data in terms of a small number of “parts” by extracting the structure hidden in the data. Further-
more, there is considerable evidence that biological vision uses sparse representations in early visual
areas [4, 5].

It seems reasonable to consider a representation “complete” if it is possible to reconstruct the input
from it, because the information contained in the input would need to be preserved in the represen-
tation itself. Most unsupervised learning methods for feature extraction are based on this principle,
and can be understood in terms of anencoder module followed by adecoder module. The encoder
takes the input and computes a code vector, for example a sparse and overcomplete representation.
The decoder takes the code vector given by the encoder and produces a reconstruction of the in-
put. Encoder and decoder are trained in such a way that reconstructions provided by the decoder
are as similar as possible to the actual input data, when these input data have the same statistics
as the training samples. Methods such as Vector Quantization, PCA, auto-encoders [6], Restricted
Boltzmann Machines [7], and others [8] have exactly this architecture but with different constraints
on the code and learning algorithms, and different kinds of encoder and decoder architectures. In

other approaches, the encoding module is missing but its role is taken by a minimization in code
space which retrieves the representation [2]. Likewise, innon-causal models the decoding module
is missing and sampling techniques must be used to reconstruct the input from a code [3]. In sec. 2,
we describe anenergy-based model which has both an encoding and a decoding part. After training,
the encoder allows very fast inference because finding a representation does not require solving an
optimization problem. The decoder provides an easy way to reconstruct input vectors, thus allowing
the trainer to assess directly whether the representation extracts most of the information from the
input.

Most methods find representations by minimizing an appropriate loss function during training. In
order to learn sparse representations, a term enforcing sparsity is added to the loss. This term usually
penalizes those code units that are active, aiming to make the distribution of their activities highly
peaked at zero with heavy tails [9] [3]. A drawback for these approaches is that some action might
need to be taken in order to prevent the system from always activating the same few units and
collapsing all the others to zero [2]. An alternative approach is to embed a sparsifying module, e.g.
a non-linearity, in the system [10]. This in general forces all the units to have the same degree of
sparsity, but it also makes a theoretical analysis of the algorithm more complicated. In this paper, we
present a system which achieves sparsity by placing a non-linearity between encoder and decoder.
Sec. 2.1 describes this module, dubbed the “Sparsifying Logistic”, which is a logistic function with
an adaptive bias that tracks the mean of its input. This non-linearity is parameterized in a simple
way which allows us to control the degree of sparsity of the representation as well as the entropy of
each code unit.

Unfortunately, learning the parameters in encoder and decoder can not be achieved by simple back-
propagation of the gradients of the reconstruction error: the Sparsifying Logistic is highly non-linear
and resets most of the gradients coming from the decoder to zero. Therefore, in sec. 3 we propose
to augment the loss function by considering not only the parameters of the system but also the
code vectors as variables over which the optimization is performed. Exploiting the fact that 1) it is
fairly easy to determine the weights in encoder and decoder when “good” codes are given, and 2)
it is straightforward to compute the optimal codes when the parameters in encoder and decoder are
fixed, we describe a simple iterative coordinate descent optimization to learn the parameters of the
system. The procedure can be seen as a sort ofdeterministic version of the EM algorithm in which
the code vectors play the role of hidden variables. The learning algorithm described turns out to be
particularly simple, fast and robust. No pre-processing isrequired for the input images, beyond a
simple centering and scaling of the data. In sec. 4 we report experiments of feature extraction on
handwritten numerals and natural image patches. When the system has a linear encoder and decoder
(remember that the Sparsifying Logistic is a separate module), the filters resemble “object parts” for
the numerals, and localized, oriented features for the natural image patches. Applying these features
for the classification of the digits in the MNIST dataset, we have achieved by a small margin the
best accuracy ever reported in the literature. We conclude by showing a hierarchical extension which
suggests the form of simple and complex cell receptive fields, and leads to a topographic layout of
the filters which is reminiscent of the topographic maps found in area V1 of the visual cortex.

2 The Model

The proposed model is based on three main components, as shown in fig. 1:

• Theencoder: A set of feed-forward filters parameterized by the rows of matrix WC , that
computes a code vector from an image patchX .

• The Sparsifying Logistic: A non-linear module that transforms the code vectorZ into a
sparse code vector̄Z with components in the range[0, 1].

• The decoder: A set of reverse filters parameterized by the columns of matrix WD, that
computes a reconstruction of the input image patch from the sparse code vector̄Z.

Theenergy of the system is the sum of two terms:

E(X, Z, WC , WD) = EC(X, Z, WC) + ED(X, Z, WD) (1)

The first term is thecode prediction energy which measures the discrepancy between the output of
the encoder and the code vectorZ. In our experiments, it is defined as:

EC(X, Z, WC) =
1

2
||Z − Enc(X, WC)||2 =

1

2
||Z − WCX ||2 (2)

Figure 1: Architecture of the energy-based model for learning sparse-overcomplete representations.
The input image patchX is processed by theencoder to produce an initial estimate of the code
vector. Theencoding prediction energy EC measures the squared distance between the code vector
Z and its estimate. The code vectorZ is passed through theSparsifying Logistic non-linearity which
produces a sparsified code vectorZ̄. Thedecoder reconstructs the input image patch from the sparse
code. Thereconstruction energy ED measures the squared distance between the reconstruction and
the input image patch. The optimal code vectorZ∗ for a given patch minimizes the sum of the two
energies. The learning process finds the encoder and decoderparameters that minimize the energy
for the optimal code vectors averaged over a set of training samples.�0:01 �30�30 �0:1 �0:1 �10
Figure 2: Toy example of sparsifying rectification producedby theSparsifying Logistic for different
choices of the parametersη andβ. The input is a sequence of Gaussian random variables. The
output, computed by using eq. 4, is a sequence of spikes whoserate and amplitude depend on the
parametersη andβ. In particular, increasingβ has the effect of making the output approximately
binary, while increasingη increases the firing rate of the output signal.

The second term is thereconstruction energy which measures the discrepancy between the recon-
structed image patch produced by the decoder and the input image patchX . In our experiments, it
is defined as:

ED(X, Z, WD) =
1

2
||X − Dec(Z̄, WD)||2 =

1

2
||X − WDZ̄||2 (3)

whereZ̄ is computed by applying the Sparsifying Logistic non-linearity to Z.

2.1 The Sparsifying Logistic

The Sparsifying Logistic module is a non-linear front-end to the decoder that transforms the code
vector into a sparse vector with positive components. Let usconsider how it transforms thek-th
training sample. Letzi(k) be thei-th component of the code vector andz̄i(k) be its corresponding
output, withi ∈ [1..m] wherem is the number of components in the code vector. The relation
between these variables is given by:

z̄i(k) =
ηeβzi(k)

ζi(k)
, i ∈ [1..m] with ζi(k) = ηeβzi(k) + (1 − η)ζi(k − 1) (4)

where it is assumed thatη ∈ [0, 1]. ζi(k) is the weighted sum of values ofeβzi(n) corresponding
to previous training samplesn, with n ≤ k. The weights in this sum are exponentially decaying as
can be seen by unrolling the recursive equation in 4. This non-linearity can be easily understood as
a weighted softmax function applied over consecutive samples of the same code unit. This produces
a sequence of positive values which, for large values ofβ and small values ofη, is characterized
by brief and punctuate activities in time. This behavior is reminiscent of the spiking behavior of
neurons.η controls the sparseness of the code by determining the “width” of the time window over
which samples are summed up.β controls the degree of “softness” of the function. Largeβ values
yield quasi-binary outputs, while smallβ values produce more graded responses; fig. 2 shows how
these parameters affect the output when the input is a Gaussian random variable.

Another view of the Sparsifying Logistic is as a logistic function with an adaptive bias that tracks
the average input; by dividing the right hand side of eq. 4 byηeβzi(k) we have:

z̄i(k) =
[

1 + e−β(zi(k)− 1

β
log(1−η

η
ζi(k−1)))

]−1

, i ∈ [1..m] (5)

Notice howβ directly controls the gain of the logistic. Large values of this parameter will turn the
non-linearity into a step function and will makēZ(k) a binary code vector.

In our experiments,ζi is treated as trainable parameter and kept fixed after the learning phase. In
this case, the Sparsifying Logistic reduces to a logistic function with a fixed gain and a learned bias.
For largeβ in the continuous-time limit, the spikes can be shown to follow a homogeneous Poisson
process. In this framework, sparsity is a “temporal” property characterizing each single unit in the
code, rather than a “spatial” property shared among all the units in a code. Spatial sparsity usually
requires some sort of ad-hoc normalization to ensure that the components of the code that are “on”
are not always the same ones. Our solution tackles this problem differently: each unit must be sparse
when encoding different samples, independently from the activities of the other components in the
code vector. Unlike other methods [9], no ad-hoc rescaling of the weights or code units is necessary.

3 Learning

Learning is accomplished by minimizing the energy in eq. 1. Indicating with superscripts the indices
referring to the training samples and making explicit the dependencies on the code vectors, we can
rewrite the energy of the system as:

E(WC , WD, Z1, . . . , ZP) =

P
∑

i=1

[ED(X i, Zi, WD) + EC(X i, Zi, WC)] (6)

This is also the loss function we propose to minimize during training. The parameters of the system,
WC andWD, are found by solving the following minimization problem:

{W ∗
C , W ∗

D} = argmin{Wc,Wd}minZ1,...,ZP E(Wc, Wd, Z
1, . . . , ZP) (7)

It is easy to minimize this loss with respect toWC andWD when theZi are known and, particularly
for our experiments where encoder and decoder are a set of linear filters, this is a convex quadratic
optimization problem. Likewise, when the parameters in thesystem are fixed it is straightforward to
minimize with respect to the codesZi. These observations suggest a coordinate descent optimization
procedure. First, we find the optimalZi for a given set of filters in encoder and decoder. Then, we
update the weights in the system fixingZi to the value found at the previous step. We iterate these
two steps in alternation until convergence. In our experiments we used anon-line version of this
algorithm which can be summarized as follows:

1. propagate the inputX through the encoder to get a codewordZinit

2. minimize the loss in eq. 6, sum of reconstruction and code prediction energy, with respect
to Z by gradient descent usingZinit as the initial value

3. compute the gradient of the loss with respect toWC andWD, and perform a gradient step

where the superscripts have been dropped because we are referring to a generic training sample.
Since the code vectorZ minimizes both energy terms, it not only minimizes the reconstruction
energy, but is also as similar as possible to the code predicted by the encoder. After training the de-
coder settles on filters that produce low reconstruction errors from minimum-energy, sparsified code
vectorsZ̄∗, while the encoder simultaneously learns filters that predict the corresponding minimum-
energy codesZ∗. In other words, the system converges to a state where minimum-energy code
vectors not only reconstruct the image patch but can also be easily predicted by the encoder filters.
Moreover, starting the minimization overZ from the prediction given by the encoder allows conver-
gence in very few iterations. After the first few thousand training samples, the minimization overZ
requires just 4 iterations on average. When training is complete, a simple pass through the encoder
will produce an accurate prediction of the minimum-energy code vector. In the experiments, two
regularization terms are added to the loss in eq. 6: a “lasso”term equal to theL1 norm ofWC and
WD, and a “ridge” term equal to theirL2 norm. These have been added to encourage the filters to
localize and to suppress noise.

Notice that we could differently weight the encoding and thereconstruction energies in the loss
function. In particular, assigning a very large weight to the encoding energy corresponds to turning

Figure 3: Results of feature extraction from 12x12 patches taken from the Berkeley dataset, showing
the 200 filters learned by the decoder.

the penalty on the encoding prediction into ahard constraint. The code vector would be assigned the
value predicted by the encoder, and the minimization would reduce to a mean square error minimiza-
tion through back-propagation as in a standard autoencoder. Unfortunately, this autoencoder-like
learning fails because Sparsifying Logistic is almost always highly saturated (otherwise the repre-
sentation would not be sparse). Hence, the gradients back-propagated to the encoder are likely to be
very small. This causes the direct minimization over encoder parameters to fail, but does not seem
to adversely affect the minimization over code vectors. We surmise that the large number of degrees
of freedom in code vectors (relative to the number of encoderparameters) makes the minimization
problem considerably better conditioned. In other words, the alternated descent algorithm performs
a minimization over a much larger set of variables than regular back-prop, and hence is less likely to
fall victim to local minima. The alternated descent over code and parameters can be seen as a kind
of deterministic EM. It is related to gradient-descent over parameters (standard back-prop) in the
same way that the EM algorithm is related to gradient ascent for maximum likelihood estimation.

This learning algorithm is not only simple but also very fast. For example, in the experiments of
sec. 4.1 it takes less than 30 minutes to learn 200 filters from100,000 patches of size 12x12, and after
just a few minutes the filters are already very similar to the final ones. This is much more efficient and
robust than what can be achieved using other methods. For example, in Olshausen and Field’s [9]
linear generative model, inference is expensive because minimization in code space is necessary
during testing as well as training. In Teh et al. [3], learning is very expensive because the decoder
is missing, and sampling techniques [7] must be used to provide a reconstruction. Moreover, most
methods rely on pre-processing of the input patches such as whitening, PCA and low-pass filtering
in order to improve results and speed up convergence. In our experiments, we need only center the
data by subtracting a global mean and scale by a constant.

4 Experiments

In this section we present some applications of the proposedenergy-based model. Two standard
data sets were used: natural image patches and handwritten digits. As described in sec. 2, the
encoder and decoder learn linear filters. As mentioned in sec. 3, the input images were only trivially
pre-processed.

4.1 Feature Extraction from Natural Image Patches

In the first experiment, the system was trained on 100,000 gray-level patches of size 12x12 extracted
from the Berkeley segmentation data set [11]. Pre-processing of images consists of subtracting
the global mean pixel value (which is about 100), and dividing the result by 125. We chose an
overcomplete factor approximately equal to 2 by representing the input with 200 code units1. The
Sparsifying Logistic parametersη andβ were equal to 0.02 and 1, respectively. The learning rate
for updatingWC was set to 0.005 and forWD to 0.001. These are decreased progressively during
training. The coefficients of theL1 andL2 regularization terms were about 0.001. The learning rate
for the minimization in code space was set to 0.1, and was multiplied by 0.8 every 10 iterations, for
at most 100 iterations. Some components of the sparse code must be allowed to take continuous
values to account for the average value of a patch. For this reason, during training we saturated
the running sumsζ to allow some units to be always active. Values ofζ were saturated to109.
We verified empirically that subtracting the local mean fromeach patch eliminates the need for this
saturation. However, saturation during training makes testing less expensive. Training on this data
set takes less than half an hour on a 2GHz processor.

1Overcompleteness must be evaluated by considering the number of code units and the effective dimension-
ality of the input as given by PCA.

+ 1 + 1= 1 + 1 + 1 + 1 + 1 + 0.8 + 0.8

Figure 4: Top: A randomly selected subset of encoder filters learned by our energy-based model
when trained on the MNIST handwritten digit dataset. Bottom: An example of reconstruction of a
digit randomly extracted from the test data set. The reconstruction is made by adding “parts”: it is
theadditive linear combination of few basis functions of the decoder with positive coefficients.

Examples of learned encoder and decoder filters are shown in figure 3. They are spatially localized,
and have different orientations, frequencies and scales. They are somewhat similar to, but more
localized than, Gabor wavelets and are reminiscent of the receptive fields of V1 neurons. Interest-
ingly, the encoder and decoder filter values are nearly identical up to a scale factor. After training,
inference is extremely fast, requiring only a simple matrix-vector multiplication.

4.2 Feature Extraction from Handwritten Numerals

The energy-based model was trained on 60,000 handwritten digits from the MNIST data set [12],
which contains quasi-binary images of size 28x28 (784 pixels). The model is the same as in the
previous experiment. The number of components in the code vector was 196. While 196 is less than
the 784 inputs, the representation is still overcomplete, because the effective dimension of the digit
dataset is considerably less than 784. Pre-processing consisted of dividing each pixel value by 255.
Parametersη andβ in the temporal softmax were 0.01 and 1, respectively. The other parameters
of the system have been set to values similar to those of the previous experiment on natural image
patches. Each one of the filters, shown in the top part of fig. 4,contains an elementary “part” of a
digit. Straight stroke detectors are present, as in the previous experiment, but curly strokes can also
be found. Reconstruction of most single digits can be achieved by a linear additive combination of
a small number of filters since the output of the Sparsifying Logistic is sparse and positive. The
bottom part of fig. 4 illustrates this reconstruction by “parts”.

4.3 Learning Local Features for the MNIST dataset

Deep convolutional networks trained with backpropagationhold the current record for accuracy
on the MNIST dataset [13, 14]. While back-propagation produces good low-level features, it is
well known that deep networks are particularly challengingfor gradient-descent learning. Hinton
et al. [15] have recently shown that initializing the weights of a deep network using unsupervised
learning before performing supervised learning with back-propagation can significantly improve the
performance of a deep network. This section describes a similar experiment in which we used the
proposed method to initialize the first layer of a large convolutional network. We used an architecture
essentially identical toLeNet-5 as described in [14]. However, because our model produces sparse
features, our network had a considerably larger number of feature maps: 50 for layer 1 and 2, 50
for layer 3 and 4, 200 for layer 5, and 10 for the output layer. The numbers for LeNet-5 were 6, 16,
100, and 10 respectively. We refer to our larger network as the 50-50-200-10 network. We trained
this networks on 55,000 samples from MNIST, keeping the remaining 5,000 training samples as a
validation set. When the error on the validation set reachedits minimum, an additional five sweeps
were performed on the training set augmented with the validation set (unless this increased the
training loss). Then the learning was stopped, and the final error rate on the test set was measured.
When the weights are initialized randomly, the 50-50-200-10 achieves a test error rate of 0.7%, to
be compared with the 0.95% obtained by [14] with the 6-16-100-10 network.

In the next experiment, the proposed sparse feature learning method was trained on 5x5 image
patches extracted from the MNIST training set. The model hada 50-dimensional code. The encoder
filters were used to initialize the first layer of the 50-50-200-10 net. The network was then trained in
the usual way, except that the first layer was kept fixed for thefirst 10 epochs through the training set.
The 50 filters after training are shown in fig. 5. The test errorrate was 0.6%. To our knowledge, this
is the best results ever reported with a method trained on theoriginal MNIST set, without deskewing
nor augmenting the training set with distorted samples.

The training set was then augmented with samples obtained byelastically distorting the original
training samples, using a method similar to [13]. The error rate of the 50-50-200-10 net with random
initialization was 0.49% (to be compared to 0.40% reported in [13]). By initializing the first layer
with the filters obtained with the proposed method, the test error rate dropped to 0.39%. While this
is the best numerical result ever reported on MNIST, it is notstatistically different from [13].

Figure 5: Filters in the first convolutional layer after training when the network is randomly initial-
ized (top row) and when the first layer of the network is initialized with the features learned by the
unsupervised energy-based model (bottom row).

Architecture Training Set Size
20K 60K 60K + Distortions

6-16-100-10 [14] - - 0.95 - 0.60 -
5-50-100-10 [13] - - - - 0.40 -
50-50-200-10 1.01 0.89 0.70 0.60 0.49 0.39

Table 1: Comparison of test error rates on MNIST dataset using convolutional network architectures with
various training set size: 30,000, 60,000, and 60,000 plus 550,000 elastic distortions. For each size, results are
reported with randomly initialized filters, and with first-layer filters initialized using the proposed algorithm
(bold face).

4.4 Hierarchical Extension: Learning Topographic Maps

It has already been observed that features extracted from natural image patches resemble Gabor-like
filters, see fig. 3. It has been recently pointed out [5] that these filters produce codes with somewhat
uncorrelated but not independent components. In order to capture higher order dependencies among
code units, we propose to extend the encoder architecture byadding to the linear filter bank a second
layer of units. In this hierarchical model of the encoder, the units produced by the filter bank are
now laid out on a two dimensional grid and filtered according to a fixed weighted mean kernel. This
assigns a larger weight to the central unit and a smaller weight to the units in the periphery. In
order to activate a unit at the output of the Sparsifying Logistic, all the afferent unrectified units in
the first layer must agree in giving a strong positive response to the input patch. As a consequence
neighboring filters will exhibit similar features. Also, the top level units will encode features that
are more translation and rotation invariant,de facto modeling complex cells. Using a neighborhood
of size 3x3, toroidal boundary conditions, and computing code vectors with 400 units from 12x12
input patches from the Berkeley dataset, we have obtained the topographic map shown in fig. 6.
Filters exhibit features that are locally similar in orientation, position, and phase. There are two
low frequency clusters and pinwheel regions similar to whatis experimentally found in cortical
topography.

5 Conclusions

An energy-based model was proposed for unsupervised learning of sparse overcomplete representa-
tions. Learning to extract sparse features from data has applications in classification, compression,
denoising, inpainting, segmentation, and super-resolution interpolation. The model has none of the
inefficiencies and idiosyncrasies of previously proposed sparse-overcomplete feature learning meth-
ods. The decoder produces accurate reconstructions of the patches, while the encoder provides a
fast prediction of the code without the need for any particular preprocessing of the input images.

It seems that a non-linearity that directly sparsifies the code is considerably simpler to control than
adding a sparsity term in the loss function, which generallyrequires ad-hoc normalization proce-
dures [2]

In the current work, we used linear encoders and decoders forsimplicity, but the model authorizes
non-linear modules, as long as gradients can be computed andback-propagated through them. As
briefly presented in sec. 4.4, it is straightforward to extend the original framework to hierarchical
architectures in encoder, and the same is possible in the decoder. Another possible extension would
stack multiple instances of the system described in the paper, with each system as a module in a

CODE LEVEL 1

CODE LEVEL 2

INPUT X

K

 Wc Wd

Spars.

Logistic

Ec

Ed

CODE Z

CONVOL.

Eucl. Dist.

Eucl. Dist.

0.08 0.12 0.08

0.12 0.23 0.12

0.08 0.12 0.08

K =

Figure 6: Example of filter maps learned by the topographic hierarchical extension of the model.
The outline of the model is shown on the right.

multi-layer structure where the sparse code produced by onefeature extractor is fed to the input of a
higher-level feature extractor.

Future work will include the application of the model to various tasks, including facial feature extrac-
tion, image denoising, image compression, inpainting, classification, and invariant feature extraction
for robotics applications.

References

[1] Lee, D.D. and Seung, H.S. (1999) Learning the parts of objects by non-negative matrix factorization.
Nature, 401:788-791.

[2] Olshausen, B.A. (2002) Sparse codes and spikes. R.P.N. Rao, B.A. Olshausen and M.S. Lewicki Eds. -
MIT press:257-272.

[3] Teh, Y.W. and Welling, M. and Osindero, S. and Hinton, G.E. (2003) Energy-based models for sparse
overcomplete representations. Journal of Machine Learning Research, 4:1235-1260.

[4] Lennie, P. (2003) The cost of cortical computation. Current biology, 13:493-497

[5] Simoncelli, E.P. (2005) Statistical modeling of photographic images. Academic Press 2nd ed.

[6] Hinton, G.E. and Zemel, R.S. (1994) Autoencoders, Minimum Description Length, and Helmholtz Free
Energy. Advances in Neural Information Processing Systems6, J. D. Cowan, G. Tesauro and J. Alspector
(Eds.), Morgan Kaufmann: San Mateo, CA.

[7] Hinton, G.E. (2002) Training products of experts by minimizing contrastive divergence. Neural Compu-
tation, 14:1771-1800.

[8] Doi E., Balcan, D.C. and Lewicki, M.S. (2006) A Theoretical Analysis of Robust Coding over Noisy
Overcomplete Channels. Advances in Neural Information Processing Systems 18, MIT Press.

[9] Olshausen, B.A. and Field, D.J. (1997) Sparse Coding with an Overcomplete Basis Set: A Strategy
Employed by V1? Vision Research, 37:3311-3325.

[10] Foldiak, P. (1990) Forming Sparse Representations by Local Anti-Hebbian Learning. Biological Cyber-
netics, 64:165-170.

[11] The Berkeley Segmentation Dataset http://www.cs.berkeley.edu/projects/vision/grouping/segbench/

[12] The MNIST Database of Handwritten Digits http://yann.lecun.com/exdb/mnist/

[13] Simard, P.Y. Steinkraus, D. and Platt, J.C. (2003) BestPractices for Convolutional Neural Networks.
ICDAR

[14] LeCun, Y. Bottou, L. Bengio, Y. and Haffner, P. (1998) Gradient-based Learning Applied to Document
Recognition. Proceedings of the IEEE, 86(11):2278-2324.

[15] Hinton, G. E., Osindero, S. and Teh, Y. (2006) A fast learning algorithm for deep belief nets. Neural
Computation 18, pp 1527-1554.

