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Commutators, Singular Integrals 
on Lipschitz Curves and Applications 

A. P. Calderón 

The topics discussed in this lecture had their origin in the theory of linear partial 
differential equations. In order to explain how the problem of the so-called commu
tators and that of the Cauchy integral on Lipschitz curves arose, I will recall and 
analyze some of the modern methods employed in the theory of linear partial dif
ferential equations, and in particular that of the pseudodifferential operators which 
became widely used in the last decade. 

Let us consider the basic idea of the method of pseudo-differential operators. 
Every linear partial differential operator is a sum of monomial operators 

(i) «(.)(£)". 
and the operator (djdxf applied to the function f(x) can be thought of as multipli
cation of the Fourier transform /(£,) of / by the function (— /<!;)", that is, 

a(x)(dldxY = aOc)Ku9 where (Kjy =/«)(- i 'ö"-

Consequently, a linear differential operator L can be expressed as 

... Lf=Zaa(x)KJ,(Kjr=AZK-i®", or 

Lf = j£örf2 aa(x)(-i®"e-ìxiA® dl 

Now, pseudo-differential operators are obtained by replacing the function 

(3) 2a.(x)(r-iQT 

in the preceding expression, which in the case of differential operators is a polynomial 
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in ê, by more general functions p(x, Ç) in such a way that the resulting class of 
operators be closed under composition, adjunction, inversion if possible, etc. One 
should observe here that if the class is to be closed under composition, differential 
operators contained in it should be freely composable. As is well known, a differen
tial operator can be freely composed with itself only if its coefficients are infinitely 
differentiable. Thus, classes of pseudo-differential operators which are closed under 
composition cannot possibly contain differential operators with non-smooth co
efficients. 

Another method, which preceded chronologically the one above and avoids this 
obstacle, is that of the singular integral operators. It consists in writing the poly
nomial in (3) as 

(2^r 2«.(*)(-»'ö" = fe<*. 0+r(x, QMQT 

where m is the degree of the polynomial, <p(Ç) is a positive infinitely differentiable 
function such that <•/>(£)=|<j; I if |£|>1, and 

Then if 

(4) 

?(*,Q = |É|-" Zfl„(*)(-iö". 
|a| = NI 

Kf = f q(x, Oe~ix•« A O dt + Sf, 

Sf = fr(x9Ç)e-t*-tAÇ)dZ9 

we have 
(5) Lf=KAmf, where (A/y = ? « ) / « ) • 

The function q(x, £) is homogeneous of degree zero in £, and, as is readily 
verified, the operators S and S(d/dx) are bounded in L2, or more generally in 
Lp, l</?<°°, provided the coefficients aa(x) are bounded. Now the operators 
K are generalized in the following manner: one replaces q{x, Ç) by a function which 
is homogeneous of degree zero in £ and bounded but otherwise arbitrary, and 
S by any operator with the properties described above. Evidently, q(x, Ç) cannot 
be assumed to be more regular, as a function of x, than the coefficients ôf the 
differential operators we want to be included in the theory. On the other hand, if 
one considers general differential operators whose coefficients have a certain degree 
of regularity, it seems reasonable to exclude those whose terms of highest order 
have coefficients not satisfying at least a Lipschitz condition. This becomes clear 
if one considers the case of first order operators. If one allows the coefficients not 
to satisfy a Lipschitz condition there can arise pathologies such as the nonuniqueness 
of trajectories of the associated vector fields. This suggests restricting the generali
zation to the operators K in (4) to those for which the function q(x, Ç) is bounded 
homogeneous of degree zero and regular in f and Lipschitzian in x. Then every 
differential operator whose coefficients are bounded and Lipschitzian for the highest 
order terms and merely bounded for the remaining ones can be represented as in 
(5) with such a q(x, Ç). However, in order that this description be useful the operators 
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K in (4) thus generalized should form an algebra under composition. This is indeed 
the case, and this algebra becomes an instrument which allows us to manipulate 
effectively general linear differential operators and obtain for them results on exist
ence, uniqueness, a priori estimates, etc. Even in the case of operators with smooth 
coefficients this allows us to obtain estimates which depend only on the bounds of 
the coefficients and the bounds of the first order derivatives of the coefficients of 
highest order terms. But let us return to the generalized operators K as in (4). 
The problem of showing that the composition of two such operators is one of the 
same kind can be reduced without great difficulty to the following problem: let 
A be, in the case of one variable, the operator multiplication by the bounded 
Lipschitzian function a(x) and Hf the Hilbert transform of / . As is well known, 
this transform can be expressed as follows 

(#/)(*) = y fsgte-KfiQdt 
— oo 

and this makes it clear that A, H and AH are operators of the type of the gene
ralized K9 and the simplest of their kind. In order to show that HA is of the same 
type, since 

HA = AH + (HA-AH), 

it would suffice to show that (HA-AH)D, D = d/dx, is bounded in Lp, l<:/><°°. 
This was done in 1965 in [4] with the aid of the theory of analytic functions and 
a result closely related to an old conjecture of Littlewood. If we denote now by 
Ca(K) the commutator of K and A, that is AK—KA, then 

(AH-HA)D = Ca(H)D = Ca(HD)-HCa(D) 

and since the operator Ca(D) is multiplication by a'{x)9 which is a bounded 
function if a(x) is Lipschitzian, HCa(D) is bounded in Lp and the continuity 
of Ca(H)D is equivalent to that of Ca(HD). Now, it is easy to see that 

(6) C.(ffl»/=p.v. Y^[!®=^]mdy. 

The integral on the right, which in the case a(x)=x reduces to the Hilbert trans
form, is the one studied in [4] and is the so-called first commutator. Thus, its role 
in the theory of partial differential equations becomes apparent. 

Next let us consider some generalizations of (6) whose interest we will explain 
later. The first one 

—«a y y 

is the so-called 777th commutator. This equality is not evident but also not difficult 
to prove. Aside from the intrinsic interest of the left-hand side of (7) and the analogy 
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of the right-hand sides of (6) and (7), the integral in (7) is a special case of 

(8> *»• T é - y A ^ r 1 } ™ * * 

where F is an analytic function of its argument. Several classical integrals are 
special cases of (8). Let r be the graph of the real valued function a(x), x£R, 
that is, the range of the function x+ia(x) in the complex plane, and let us regard 
the function f(x) as a function on r. Consider now the Cauchy integral of this 
function on r 

Then the limit of G(z) when z approaches x+ia(x) from above T and non-
tangentially, if it exists, is given by 

and this integral, except for ihe pie^ence of the fctUoi {i-riu(y)] which can be 
incorporated in the function f(y), is of the form (8). Thus, the study of the behaviour 
at the boundary of analytic functions given by integrals of the Cauchy type reduces 
to the study of an integral of the type (8). 

On the other hand, let us consider the derivative at the point x+ia(x) and in 
the direction of the vector (a'(x), — 1) of the logarithmic potential of the mass 
distribution f(y) dy on T. This derivative, if it exists, is given by the following 
expression 
tM\\ . 1 *f \ i 1 T° (x-y)a'(x)-a(x) + a(y) . 

which is also essentially of the form (8). Similarly, the value on T of the potential 
of a double layer distributed on T is given by the transpose of the preceding 
expression. As is well known, these potentials are used to obtain and represent 
solutions of boundary value problems for the Laplace equation such as the Dirichlet 
problem, the Neumann problem, etc. The Neumann problem, for example, reduces 
to the integral equation obtained by equating (10) to the given function on the 
boundary T. The applicability of this method depends on T being such that the 
resulting integrals have reasonable continuity properties. However, it depends less 
on the specific type of boundary value problem or equation under consideration 
than the methods using potential theory which are inapplicable to the Neumann 
problem, for example. For this reason it is natural to expect that the study of the 
integral (8) and its generalizations will yield an effective tool for the treatment of 
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boundary value problems for elliptic equations in domains with nonregular 
boundaries. In fact, some interesting results have already been obtained. 

Having justified the interest of the integral (8), let us see what can be said about it. 
In the first place we observe that if one develops in power series the function F in 
(8), that integral appears as a series of integrals as in (7). Thus, it would suffice 
in principle to study these, which are apparently simpler. As was mentioned before, 
the case m = 1 of (7) could be treated by means of a technique based on the use of 
analytic functions. Unfortunately, this method fails utterly if 777 s> 2, and this case 
resisted all efforts to extend to it the results known for 777 = 1 until 1975, when 
R. Coifman and Y. Meyer [11] settled the case 777=2 with an entirely different 
approach. They succeeded by using simultaneously the Fourier and the Mellin 
transforms and certain real variable methods of M. Cotlar and C. P. Calderón. 
Soon afterwards they extended their results to all 777, and more recently and by 
using a generalization of the theory of the function g of Littlewood and Paley, 
they obtained the continuity in Lp, l</?<°°, of the left-hand side of (7) with 
HDm replaced by a pseudo-differential operator in S™0 in several variables. Un
fortunately, the estimates for the norms of the operators (7) obtained by these 
methods do not allow to sum the series resulting from the power series expansion of 
the function F in (8). However, last year it was observed, [5], that the technique 
of analytic functions used in the treatment of (6), strengthened by the results on 
weighted inequalities between a function, its maximal function and area function 
of B. Muckenhoupt, R. P. Gundy and R. L. Wheeden, [20], and certain results 
on conformai mapping, is applicable to the Cauchy integral in (9). It was already 
known that from results on the Cauchy integral there follow corresponding results 
on the integral in (8). Specifically, it was shown that the integral in (8) re
presents a bounded operator in Lp

9 l</?<:°°, provided that Hff'IL^ga, where 
Q is the radius of a disc centered at the origin where F is analytic, and a is an 
absolute positive constant. By means of the so-called rotation method one can 
extend this result to functions of several variables and prove that, for example, 
if k(x9 z)9 x, z£Rn

9 is bounded, homogeneous of degree —77 and even (odd) 
in z9 F is odd (even) and analytic in a disc of radius Q centered at the origin, 
and a(x) is Lipschitzian and such that ||Vfl||oo<^a, then the operator 

di) p.v. J HX, x-y)F[a(lZa
y\

y)]f(y) dy 

is well defined and continuous in Lp
9 1 </?<°°. Later on we shall outline the proof 

of the results of R. Coifman and Y. Meyer as well as those on this last integral. 
Before proceeding to describe some of the applications of the foregoing results, 

I would like to mention still another result on commutators due to R. Coifman, 
R. Rochberg and G. Weiss, [17], which is of a different character. Let k(x)9 x£R", 
be homogeneous of degree —77, of mean value zero on |x| = l, and sufficiently 
regular in x^O, and K the operator convolution with k, then if a(x) is of bounded 
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mean oscillation the operator 

C - ( * ) / = p.V.f(a(x)-a(y))mk(x-y)f(y)dy ' 

is bounded in Lp
9 l<p<:°°. 

Now let us turn to applications. Let f bea simple rectifiable arc in the complex 
plane. Then the function 

G(z)= i ; / w d 
v ' Ini J W — Z ' 27UZ J w — z 

where f(w) is a function on r which is integrable with respect to arc length, has 
a limit almost everywhere in f as z approaches nontangentially a point of J7. In 
the case of several variables one has similar results about double layer potentials 
and derivatives of single layer potentials of functions defined on graphs of functions 
which are of bounded variation in the sense of Tonelli. This gives an affirmative 
answer to old problems about the existence of such limits. 

Another application is the following result due to D. E. Marshall (personal 
communication) which confirms an old conjecture of A. Denjoy (C. R. Acad Sci. 
Paris 149 (1909), 258—260): the analytic capacity y(E) of a compact subset 
E of a rectifiable arc in the complex plane is zero if and only if its one-dimensional 
Hausdorff measure vanishes. 

Finally, I will mention some applications to the theory of partial differential 
equations which motivated the study of our subject. In the first place, on the basis 
of the preceding results it is possible to construct algebras of singular integral operators 
[6] which allow to extend automatically to equations with bounded coefficients and 
terms of highest order with bounded Lipschitzian coefficients the results on the 
uniqueness of the Cauchy problem and the existence and uniqueness of solutions 
of totally hyperbolic systems obtained in [6] and [7]. On the other hand, results 
such as the ones obtained by E, Fabes, M. Jodeit and N. M. Riviere for the Laplace 
equation, [9], with the method of the integral equations on the boundary described 
earlier, are surely also obtainable for much more general elliptic systems. Let us 
see what these results are. Let Q be a domain in Rn with boundary dQ of class C1. 
Let Ny be the interior normal unit vector at the point y of dQ, and Ay a cone 
with vertex at y9 with fixed height and aperture, and except for its vertex, entirely 
contained in Q. Then, in the case of the Dirichlet problem, one has the following: 
if g(y) is a function in Lp(dQ)9 l</7<:°°, there is a unique function u(x)9 har
monic in Q9 and such that 

u*(y) = sup{|ti(x)| \xeAy}£Lp(dQ), tim{u(x)\xeAy} = g(y) p.p. 

This result was obtained for the first time by B. E. J* Dahlberg with different 
methods which show that if p^*2 the same holds even if dQ is merely Lipschitzian. 
If in addition g(y)^L{(dQ), then [VM|*(JO, whose definition is similar to that 
iof u*(y), also belongs to Lp{pQ)> On the other hand, in the case of the Neumann 
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problem, one h^s that if g(y)£Lp(dQ) there exists a harmonic function u(x), 
which is unique up to an additive constant, such that |Vw|*(.y) is in Lp(dQ) and 

lim {Vw (x) *Ny\xe Ay} = g (y) p.p. 

These results are also valid if dQ is merely Lipschitzian, provided that the local 
oscillation of Ny does not exceed a constant which depends on p but not on Q, 
or only on certain global properties of Q. 

An interesting consequence of the preceding results is the following. Given 
p, 1 </?<:«>, there is a positive c such that if the local oscillation of the normal 
N to the boundary dQ of a Lipschitzian domain Q is less than c, then every 
harmonic measure on dQ is absolutely continuous with respect to surface area and 
has a density in Lp(dQ). 

The method of R. Coifman and Y. Meyer. We shall now outline the elegant way 
in which these authors treat the problem of the commutators by its reduction to the 
continuity of certain multilinear operators. We shall confine ourselves to the bilinear 
case where the ideas and techniques they employ are already apparent. 

THEOREM 1. Let 0(1)(£) and <^(2)(0 be two infinitely differentiable functions 
with compact support in Ru such that at least one of them vanishes in a neighborhood 
of the origin. Let (pt(x) = t~"(p(x/t)9 / > 0 , where <p(x) is the inverse Fourier trans
form of 0(£). Let 

o t 

where m(t) is a bounded function. Then 

llftll<c||/illill/.IUIML 
where c depends only on the functions ^{x). 

In order to show this let us assume first that both functions @U)(0 vanish near 
the origin, that is, they both have support in 0<o«s | £ | < i . It is easy to see that 
if fj(£) has compact support and equals 1 in Ç*^2b, and fj(£)=fj(— £), then 

g = / i»r*[( / i*P, ( 1 ))( / .* V»(,))]ni(/)-^ 

and 

(12) J hg dx = ff (h * ,h) (A * cpl») (.A * pf•>) m (0 - ^ dx. 
0 ' 

If we assume now that f2 is bounded then |(/2*<p|2))|2(d*fifr/0 is a Carleson 
measure, that is, if Q is a cube in R"X{t^0} with base B in / = 0, and denote 
this measure by pi, then ju(0^c||/2lllL|^|- Hence, as is well known, 

f\(h*V,)\*dii^c\\h\\l\\ft 211 co-
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On the other hand, by taking Fourier transforms one verifies readily that 

ff\(f1*cp^^^c\\f1r 2 

and using these inequalities in estimating (12) the desired result follows. 
In case one of the functions <p(l)(£)5 call it simply 0(E), does not vanish near 

the origin while the other vanishes in |£|<fl, one decomposes 0 = $ + §, where 
$ vanishes in \Ç\*^a/8 and § has support in \Ç\^a/4. The contribution of $ is 
treated exactly as is the preceding case. The contribution of § is treated essentially 
the same way, with the difference that now one chooses fj(Ç) so that it equals 
1 in a/4^ |£| ^ 2 b and vanishes near the origin, and then (12) can again be estimated 
as above. 

REMARK. A closer examination of the preceding argument shows that if 0^(0 
is replaced by eiuJ'*0u)(l;), then 

||g|]2 ̂  c(i + K|)'"2(i + \ujr*\\fMfJi\- IMI-

where again c depends only on the function (p^(x). 

THEOREM 2. Let p(x, Q. x = (x1. x2)£RnYRn, £ = (£l3 Ç2)fR
nyRn, he a symbol nf 

class S®0 and p(x9D) the corresponding pseudo-differential operator. Then if 
f(x)—fi(xùA(x2) and g is the restriction to the diagonal xx=x2 of p(x,D)fwe 
have 

Hgll^ciiAiuiAiu. 

For the sake of simplicity we shall only consider the case where p is independent 
of x and vanishes near the origin. We shall show that g is a convergent integral 
of operators like those in the preceding theorem. First we take two infinitely dif
ferentiable functions with compact support 0(C) and $(£), Ç£Rn, one of which 
vanishes near the origin, and such that 

0 l 

Then if 

and 

ft«i, «>) = q(sjt, wow«i)#(a+*({i)«wi 
ft (Si. W = j V U l »J+'«*-*) m(t, «i, «a) duj. du2, 

we have \m(t,u1,u^)\<ck(l + \u1\ + \u2\)~
k, \/k. Now, if xÇ.R", then 
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and replacing p by rq and using the preceding identities we obtain 

g = ïéf 7/^1Mll+*2 ' , , l2~* ^ 
•/i(^i)/2(^2) m (t, Wi, w2) rfwi du2 d^ d£2 — 

= / / ( ( ^ 1 * / i ) W 2 * / 2 ) - / ( ^ , 1 * / i ) ( ^ 2 * / 2 ) ) m ( / , ul9 M 2 ) -^ -
o l 

where <pM is the inverse Fourier transform of eu"*0(C). Now an application of 
the preceding theorem yields the desired result. 

THEOREM 3. Let p(x, D) be a pseudo-differential operator of type S^0 and a(x) 
a function with bounded derivatives. Let Ca denote the commutator of multiplication 
by a(x) and 

g = [CaP(^D)]df/dx1; 
then 

llgBi<c||/llil|Vfl|U. 

We shall assume again that p is independent of x. Then, as is readily verified 

g = ^ r / f i [ p ( 0 - P « + i j ) ] c - ' x ' « + ' ) / ( f i ) f l ( i | ) d { d i î . 

Now we decompose 

€ i [ p t t ) - P « + l)] = 2 <ljtt> rÙflj + PiQrjiZ, ifrlì-ptt + 'ÙSjtt, t,)t,j 

where the qi are functions in the class S^Q multiplied by homogeneous functions 
of degree zero, and the ri and Sj are homogeneous of degree zero and infinitely 
differentiable away from the origin. The preceding theorem applies to these functions 
thought of as symbols. If we denote now by B(u) ( / l 5 /2) the bilinear operator 
of the preceding theorem associated with the symbol w(<i;, rj). Then the following 
identities are readily verified 

B(qjrjj)(f,a) = B(qj)(f,da/dxj), 

B(p(Orj(L ti)fij)(f9 a) = B(rj)(p(D)f, da/dxj), 

Biptf + rtsjtf, 77)77,)(/, a) = p(D)B(Sj)(f, da/dxj) 

and an application of the preceding theorem yields the desired result. 

The method of the Cauchy integral« We will see now how the study of the integral 
(11) reduces to that of (8), this to that of (9), and in turn, this one to that of an 
integral similar to the one which appears in (6). Unfortunately the study of the 
latter is too complicated to allow a brief description and we are compelled to refer 
the reader to the literature in this respect (see [4] and [5]). 
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Let us write the integral (8) as 

g(5) = p.v. / t-^Fy K)
 t

K J-\f(s-t) 

and let us assume that for a given function F and a positive number M we have 
llgHi>^cll/llp whenever the function a(t) satisfies the condition \a(s)—a(t)\^ 
M\s—1\. We also write the integral in (11) as 

and, if v denotes a unit vector and t a real variable, we define 

+ oo 
• x 1 , / r ï f̂ a(x) — a(x—f)l *, g(x,v) = -k(x,v)p.v. J f-if[ t -\f(x-t) dt. 

Given our assumptions on the parities of k and F, integration with respect 
to v on the unit shpere I yields 

fg(x,v)da = g(x). 
s 

Now, on account of our assumptions on the one-dimensional case and bounded-
ness of k(x, y) we have 

/ \g(x+tv,v)\Pdt^c f \f(x+tv)\"dt 
CXI — o o 

and integrating with respect to x on a hyperplane perpendicular to v we obtain 
\\s(x9 v)||J<c||/||J. Integrating g(x,v) with respect to v on the unit sphere Z and 
using Minkowski's integral inequality we find that | |g||p<c||/ | |p . Next let us 
see how the integral (8) reduces to that in (9). Let L denote the operator represented 
by the integral (8) and 

AJ = p.y. f [s-t-z-1(a(s)-a(t))]-^f(s)ds. 
— oo 

Then, if F(z) is analytic in \z\^Q = sup\(a(s)—a(t))/(s—t)\, we have 

\Z\=Q 

Now, the integral defining Az is not of the form (9) because there the function 
a(x) is real, while in general this is not the case in Az. However, introducing the 
new variables i=t—ua(t), s=s—ua(s), where z"1=u+iv9 Az takes the form 
of the integral (9), except for the absence of the factor (1 +ia'(s)) in the integrand, 
which is irrelevant. This makes it possible to estimate the operator L by means 
of integrals of the form (9). 
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Finally, we will show how (9) can be estimated by means of integrals similar to 
that in (6). For this purpose let z(X) = t + iA,a(t), w(X)=s-\-iAa(s), and consider 
the operator 

A(i\t ™ y° f(s)ds 

A (A)j = P.V. / —TTT TTT- . 

This operator has essentially the form (9) for each real value of k, and for A=0 
it reduces to the Hilbert transform. Differentiating with respect to A one obtains 
the operator 

whose analogy with (6) is apparent. As was said before, the method used in the 
study (6) can be applied to B(X) and in this manner one obtains 

d\\A(mid^\\m\\ ^ c[l + \\A(X)\\?, 
where the norms denote operator norms in U and c denotes a constant depending 

on Hflf'lloo- From this differential inequality and the fact that A(0) is the Hilbert 

transform and consequently ||y4(0)||=7E, there follows that 

M(l) | | ^2n(l-\\a/\\00a-1)-1-n, a > 0, 

where a is an absolute constant. This result can be extended to Lp, l</?<°°5 

by means of well known techniques. 

Problems. There still are some basic unresolved problems in the subject we have 
been discussing. Consider the integral in (9). Are the results obtained so far about 
it also valid without restrictions on the norm ||fl'|L? It is natural to expect an 
affirmative answer to this question. However, since the integral depends on a in a non
linear fashion, a negative answer cannot be ruled out. More generally we may ask 
which are the function spaces in which the operator given by the integral (8) is 
continuous with the only condition that the quotient (a(x)—a(y))/(x—y) remain 
in a compact subset of the domain of analyticity of F. A clarification of this question 
would be very important in the study of boundary value problems for elliptic equa
tions in general Lipschitzian domains. The methods employed so far seem to be 
insufficient for the treatment of these problems. 
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