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Abstract 
A framework called Cresceptron is introduced for 

$automatic algorithm design through leaming of con- 
Icepis and rules, thus deviating f r o m  the traditional 
:mode in which humans specify the rules comprising 
1% vision algorithm. Wi th  the Cresceptron, humans 
lis designers need only t o  provide a good structure for 
!earning, but they are relieved of most  design details. 
The Cresceptron has been tested on the task of visual 
:recognition: recognizing 3-D general objects f r o m  2-D 
photographic images of natural scenes and segmenting 
ifhe recognized objects f r o m  the cluttered image back- 
ground. The Cresceptron uses a hierarchical structure 
i!o grow networks automatically, adaptively and incre- 
mental ly  through learning. The Cresceptron makes it 
possible t o  generalize training ezemplars  t o  other per- 
ceptually equivalent i t ems .  Ezperiments  wi th a variety  
of real-world images are reported t o  demonstrate the 
jeasibility of learning in  the Cresceptron. 

‘1 Introduction 
In real-world vision problems] the factors that affect 

tlhe intensity of an image change constantly. Most 
of these factors are unknown and uncontrollable in a 
general setting, making computer vision difficult and 
the progress in computer vision slow [9]. 

11.1 Approaches to Vision 
]Manually developing vision rules. Currently 
prevailing approaches to computer vision rely on hu- 
man designers to manually develop a set of rules for a 
specific task and then to explicitly code these rules into 
it program. In order to make the problem manually 
tractable, many assumptions are made. The systems 
constructed using this type of approaches tend to be 
brittle: they fail in situations where one or more of 
the assumptions are not satisfied. Moreover, this ap- 
proach is not scalable: it is intractable to  manually 
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design a set of rules that are sufficient to deal with 
complex vision problems in the real world. 

Learning in human vision. In contrast, human vi- 
sion seems extremely versatile. It is known that learn- 
ing takes place over a long period and plays a central 
role in the development of such a capability in humans. 
Human vision appears to be more a process of learning 
and recalling rather than one relying on understanding 
the physical processes of image formation and object- 
modeling. As demonstrated by the “Thatcher’s illu- 
sion” [13], facial expression is very difficult to recog- 
nize from an upside-down face, although it would be 
quickly revealed by a simple “mental1) rotation if the 
brain could perform such a rotation. The evidence for 
learning in vision includes even low-level vision. For 
instance, a common visual experience, overhead light 
source, is learned and used to perceive shape from 
shading [12], although the solution to the problem is 
not unique from the image formation point of view. 

Learning in computer vision. For complex vi- 
sion problems] self-organizing through self-learning is 
a promising approach. The idea of learning for vision 
is not new. It is the message that comes through most 
clearly from the work in psychology, cognitive science 
and neurophysiology [4] [l] [12] [7]. The question is 
how to do computational learning. 

1.2 Learning Techniques 

Many decision-making problems fall into the gen- 
eral category of classification. The classification meth- 
ods can be roughly divided into two types: statistical 
pattern recognition methods and symbolic methods. 
Recently] there has been a surge in interest in learning 
using models of artificial neural networks (or connec- 
tionist models of computation) [14] [lo] [6 ] .  

Most studies on learning assume that a feature- 
vector description of objects is available, presumably 
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extracted by humans. However extraction of objects 
from images and computation of their descriptions is a 
major task. If a human is available to  segment the ob- 
jects of interest from images, then why not let her/him 
do the entire recognition! If feature vectors are pro- 
vided for the entire image without identifying which 
features belong to  a single object, no traditional learn- 
ing technique will work. 

Some studies of learning from retinotopic data (i.e., 
each data item corresponds to  a sensory position on 
the retina) can be found in the literature. The Neocog- 
nitron by Fukushima and his colleagues [2] [3] was de- 
signed for recognizing a small number of segmented 
patterns such as numerals and alphabets. Pomer- 
leau’s work [ll] demonstrated that the performance 
of a neural-network-controlled CMU NAVLAB in road 
following is comparable to that achieved by the best 
traditional vision-based autonomous navigation algo- 
rithm at CMU. 

1.3 The Challenges 
Although the use of neural networks has shown 

encouraging results, it is not clear whether this ap- 
proach can deal with complex real-world recognition- 
and-segmentation problems for which a retinotopic 
network is needed. There is a lack of systematic treat- 
ment of the retinotopic network structure, and the the- 
ory for such neural networks is missing. Neural net- 
work is most treated as an opaque box and its learning 
is often formulated as an optimization problem with 
a huge number of parameters. A consequence of this 
situation is the unpredictable performance of the net- 
work. Sometimes, a backpropagation learning algo- 
rithm leads to  a good network but often it does not. 
To handle the complexity of general vision problems, 
we have identified the following requirements: 

0 The system must be able to  automatically learn 
the rules that human (practically) cannot manu- 
ally specify. Learning should not be limited to the 
parameters of manually selected rules, because a 
fixed set of rules is not scalable to  complex prob- 
lems. 

0 Knowledge representation must be automatic: it 
is intractable to manually define the feature repre- 
sented by every neuron. Significant image struc- 
tures, or concepts, must be automatically iden- 
tified, and their breakdown and mapping to the 
framework must be automatic. 

0 Learning must be reliable. The unpredicatable 
performance as with backpropagation learning 
must be avoided. 

Figure 1: A schematic illustration of hierarchical fea- 
ture grouping in the Cresceptron. In the figure, not 
all the connections are shown. 

0 Learning must be fast: the size of a network for 
a complex vision task has to  be large. Repeated 
modification of all weights is impractical. 

0 Learning must be incremental: an addition of a 
new object to  be learned should not require the 
entire network to  be re-trained. This is a key 
towards a self-improving complex vision system. 

1.4 The Cresceptron 
Our framework is called Cresceptron,  coined from 

Latin cresco (grow) and perceptio (perception). Like 
Neocognitron, this framework uses a multi-level 
retinotopic layers of neurons. However, it is fun- 
damentally different from the Neocognitron in that,  
among other things, the network configuration of the 
Cresceptron is automatically determined during learn- 
ing. The following are some salient features of the 
Cresceptron which contribute to  the satisfaction of the 
above mentioned requirements. 

The Cresceptron uses unsupervised learning from 
automatic hierarchical image analysis and hierar- 
chical structural concepts derived therefrom (see 
Fig. 1). Learning in the Cresceptron is incremen- 
tal and thus growth is possible. New concepts 
are detected and the network components are ap- 
propriately created to  relate new concepts with 
previously learned concepts. Knowledge sharing 
occurs automatically a t  every level of the network 
which keeps the network size limited. 
Tolerance to  deviation is made hierarchical, 
smaller a t  lower levels and larger at high levels. 
This makes i t  possible to  handle many perceptu- 
ally similar objects from a relatively small set of 
training examplars. 
Learning is based on hierarchical analysis instead 
of back-propagation. Therefore, the network is 



not an opaque box, and the problem of local 
minima with the back-propagation methods is 
avoided. 

4. Segmentation and recognition are simultaneous. 
No foreground extraction is necessary. 

5. The network is locally connected, not globally, for 
efficiency. 

2 The Network Components 

The Cresceptron network consists of several levels 
(7 in the current version). The number of levels is 
to guarantee that the receptive field of each top-level 
node covers the entire fovea image. 

Each level has 2 or 3 layers. Thus, totally, the 
network has several layers that are numbered by 1, 
1 = 0 , 1 , 2 ,  ..., L .  The output of a lower layer 1 is the 
input for the next higher layer I + 1. At each layer 
I ,  there are many neural planes. Each neural plane 
consists of a square of k(1) x k(1) nodes. Since each 
neural plane represents a concept and the response 
at  a certain location of the neural plane indicates the 
presence of the concept, all the locations in a neu- 
ral plane share the same sigmoidal function and the 
same set of synaptic weights. The receptive field of 
a node at a layer 1 is defined as the spatial extent of 
the layer-0 input pixels it connects to either directly, 
or indirectly through other intermediate lower layers. 
We first briefly describe basic components of the Cres- 
ceptron network. 

2.1 Pattern-Detection Layer 
The purpose of the pattern-detection layer is to  de- 

tect the presence of a feature a t  all locations. Two 
types of pattern-det,ection layer are useful: regu- 
lar pattern-detection layer and subsampled pattern- 
detection layer. 

The regular pattern-detection layer is illustrated in 
Fig. 2. Let n(1, m, i, j) denote the value of response 
at  position ( i ,  j) in the m-th neural plane at  layer 
1. A concept at position (i0,jo) is a 2-D pattern 
{ n ( l , m , i o  + i ,  j o  + j )  I - h 5 i ,  j 5 h } .  In the learn- 
ing phase, once a new concept is detected a t  ( i o ,  jo )  at  
layer 1, a new neural plane k is created at layer I + 1 
which is devoted to  this concept. The new concept is 
memorized by a new node whose synapses are assigned 
with the observed values 

-h  5 i, j 5 h.  Let P denote the set of all the indices 
of input planes where the new concept is detected. In 

(a) (b) 

Figure 2: Regular pattern-detection layer. (a) A 
schematic illustration in which only the connections 
to  one node are drawn and only one input plane is 
shown. The arc across the connections represents an 
AND-like condition. (b) The symbol of the regular 
pattern-detection layer. The number of connections 
indicates the size value 2h + 1 .  But, the case of 2 
connections is reserved for the subsampled pattern- 
detection layer. 

the recognition phase, the response in the k-th new 
neural plane a t  ( i o ,  j o )  of layer I + 1 is 

n( l+ l ,  k , i o ,  j o )  = f[s(l+l,k)r(~,k,io,jo)-T(I+1,k)] 

where 

and f(z) is a sigmoidal function [SI that maps z to  
a normalized range [0, 11, and the values s(1 + 1 , k )  
and T(I -t 1, k) are automatically determined in the 
learning phase so that 

and 

where v is a user-specified sys tem vigilance parameter. 
Another type, the subsampled pattern-detection 

layer, is similar to  the regular one except that the 
input nodes are subsamples of the input neuron ar- 
ray with a subsample spacing P (one sample every r 
nodes) as illustrated in Fig. 3. In our system, P is such 
that the receptive fields of these four subsamples have 
a minimal overlap. 

2.2 Node-Reduction Layer 
If the number of nodes in each neural plane is re- 

duced from layer 1 t o  1 + 1, then we say that 1 + 1 is 
a node-reduction layer  which is shown in Fig. 4. We 
use node-reduction layer to  increase the space connec- 
tivity, arid reduce the spatial resolution. At a node 
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Figure 3: Subsampled pattern-detection layer. (a) A 
schematic illustration. The arc across the connections 
represents an AND-like condition. (b) The symbol of 
the subsampled pattern-detection layer. 
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(a) (b) 

Figure 4: Node reduction layer. (a) A schematic il- 
lustration. No arc across the connections is present, 
which represents an OR-like condition. (b) The sym- 
bol of the subsampled pattern-detection layer. 

reduction layer, the value of a node-reduction neural 
plane k that accepts the input from neural plane m at 
layer 1 is determined by: 

Definition 1 If a network learns, in the learning 
phase, a pat tern  that is  presented at a certain loca- 
t ion in  the input ,  and i t  can also recognize, in the 
later  recognition phase, the s a m e  pat tern but trans- 
lated arbitrarily in the input image,  then, this network 
is  recallable under translation. 

2.3 Node-Reduction Modules 
Definition 2 A grid-centered node-reduction 
module (GCNR module) consists of t w o  layers: the 
lower layer  i s  a regular pat tem-detec t ion  layer  and the 
upper layer  i s  a node-reduction layer .  The  output of 
the lower layer  is  the input of the upper layer. 

Property 1 The GCNR module i s  recallable under 
translation. 

2.4 Blurring Layer 
Suppose layer 1+1 is a blurring layer. Let n(1, i0,jo) 

denote the response at  position ( i o , & )  in a neural 
plane at input layer 1 .  Then the output a t  position 
( i o ,  j o )  of the corresponding neural plane at  layer 1 + 1 

r-7 3' -r- Y -# T ~..Y-',---'r--Y"Y"Y-.-#-.~ -1 ... ...~--.. >...r...>...~...~...~...~ .... '...>...>...>.......... 

(a) (b) 

Figure 5 :  Blurring layer. (a) A schematic illustration 
in which only the connections to  one node are shown. 
Every neural plane at  the blurring layer has only one 
input plane. No  arc across the connections is present, 
which represents an OR-like condition. (b) The sym- 
bol of the blurring layer. The black triangle represents 
the contribution from a single input node. 

Output layer Output layer 

Input layer Input layer 

(a) (b) 

Figure 6: The mechanism of detection and measure- 
ment of geometric configuration of features from input 
layers. In the input layer, the position of a feature is 
represented by a peak. The bluring of the peak enables 
the output layer t o  measure the positional accuracy. 
(a) If the positions are exactly correct, two peaks are 
sensed and thus, the response is high at the output 
layer. (b) If the positions are displaced, the slopes are 
sensed and thus, the output response is relatively low. 

is defined by 

n(1+ 1,  i o ,  j o )  = 

as illustrated in Fig. 5, where R is the radius of blur- 
ring, whose value depends on the receptive field. The 
blurring layer is designed to  tolerate positional devia- 
tion, as shown in Fig. 6. 

2.5 Hierarchical Networks 
At each level, the amount of blurring should be pro- 

portional to the receptive field of the node, as shown 
by the example in Fig. 7. The framework for our net- 
work is illustrated in Fig. 8. 

3 The Cresceptron 
Visual attention. Visual attention defines a square 
attention window. The objective of visual attention 
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Figure 7: A 1-D illustration of a hierarchical network 
which consists of NCB modules (pattern-detection 
layer plus blurring layer). Note how the subsample 

Figure 9: Interface console of the Cresceptron. 

spacing r and the amount of blurring change from low 
levels to high levels. applied to it 

Lyer 0 I 2 3 -2 6 1 8 9 IO I 1  12 13 I 4  I 5  __ __ - 
L C W l  1 1 3 4 5 6 1  

Figure 8: Schematic illustration of the selected frame- 
work for a multi-level network. In the illustration, a 
plane being connected to  two lower-layer planes means 
that every plane in this layer can be connected to  sev- 
eral planes during automatic learning. Otherwise, it 
accepts input from only one lower-layer plane. 

is to  scale the part of image covered by the square 
attention window down to  the size of the “fovea” of the 
neural network. In our experiment, the fovea image is 
i i  square of 64 x 64 pixels. 

In order to deal with object of different sizes, a 
series of legal attention window sizes are defined: 
W,, W2, . . . ,  W k ,  where Wj+l = aW,. (In our experi- 
ment cr = 4/5). There are two attention modes, man- 
ual and automatic. In  the manual attention mode, 
which is mainly designed for the learning phase, the 
user interactively selects a location and a legal size 
of the attention window so that the object to  be rec- 
ognized can be directly mapped to  the fovea. In the 
automatic attention mode, which is designed for the 
recognition phase, the system automatically scans the 
entire image, from a large attention window to small, 
with a step size (1/5 of attention window size). After 
a fovea image is obtained, learning or recognition is 

Image primitives. The system is designed in such 
a way that any image primitive can be easily used for 
learning and recognition. The current version of the 
Cresceptron uses directional edges as image primitives 
(zero-crossings of the second directional derivative of 
the Gaussian smoothed image along one of the 8 dis- 
cretized directions, two different, scales) as shown in 
the bottom two rows of Fig. 11. 

Learning: what to learn. We have developed a 
window-based interactive interface shown in Fig. 9. 
During the learning phase, the user selects the object 
to  learn by interactively draw a polygon in the fovea 
image to  outline the object using a computer mouse. 

Learning: detection of new concepts. New- 
concept detection is performed starting a t  layer 1, 
the pattern detection layer, and all the subsampled 
pattern-detection layers 4, 6, 8, 10, 12. An active pat- 
tern is significant if the response is high in the pattern. 
A new concept a t  (io, j o )  consists of the significant re- 
sponse a.t the location (io, j o )  in all the input neural 
planes. The concept is new if it has not been observed 
a t  any position at this level. 

Learning: growth. Initially, the network does not 
exist: no neural plane or neurons exist a t  any layer. 
Given each input image to  learn, the system automat- 
ically grows the network recursively starting from the 
lowest layer to the top layer. At each level, once a 
significant new concept, is detected a t  position ( i o ,  j o )  
in some lower-level neural planes, a new neuron with 
the synaptic connections is created together with a 
new neural plane that is devoted to  this new concept. 
Finally, a t  the top layer, if the examplar is not recog- 
nized, a new plane is created a t  the top layer with a 
default label. The user assigns a meaningful name of 
the object to  the label. Later in the recognition phase 
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4 Experiments 

For the theoretical and algorithmic development, 
the Cresceptron system has been simulated on a SUN 
SPARC workstation with an interactive user interface 
to allow effortless training and examination of the net- 
work, as shown in Fig. 9. 

Here we show the result from an automatically gen- 
erated network that has been fully tested. This net- 
work has learned 21 classes of objects: 10 faces of 
different persons to test the power of discrimination, 
and 11 other objects to test the versatility, including 
a path scene, street car, dog, fire hydrant, walking hu- 
man body, stop sign, parked car, telephone set, chair, 
and computer. This neural network was automatically 
created through learning of these objects. 

The tolerance is demonstrated by correctly rec- 
ognizing all the 35 expression images of a female re- 
porter, extracted from a TV interview, based on a 
learning of three images. Some of these images are 
shown in Figure 12. The discrimination power is 
shown by correctly recognizing all the 10 faces learned, 
without confusion between different faces. Some of 
the faces are shown in Figs. 13 and 14. The versatil- 
ity is displayed by successfully learned and recognized 
11 different objects mentioned above. (See some in 
Figs. 13 and 14). The edge segments marked by the 
segmentation are shown in Fig. 14 for some objects 
recognized. It is interesting to observe that the edge 
segments are not completely connected and some are 
missing. The system does not rely on the connectiv- 
ity of the detected edges nor on a close outline of the 
object . 

After learning 25 objects, the network has a total 
of 4133 neural planes in the output layers of all the 
levels. 

Cumnt object 
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Figure 10: Recognize different orientations by learning 
several exemplars. 

if this new neural plane is active at  a position (i ,j) ,  
then the label reports the name of the object being 
recognized at this position. The system can also learn 
several examplars in a class. To do this, the user iden- 
tifies the top neural plane that represents this class 
and then clicks the button “class” instead of “learn”. 
Thus, the system will share the same neural plane at  
the top layer. 

Recognition and decision making. Fig. 11 shows 
the response of a few neural planes after recognition. 
At the top layer, the network reports all the response 
values (confidence values) higher than 0.5. When two 
or more different objects are reported, the one with 
the highest confidence is the one recognized. If multi- 
ple reports belong to the same type of object, further 
inference can be performed, as shown in Fig. 10. 

Other variations. In the current version of the 
Cresceptron, scale and positional variations of the ob- 
jects are addressed by visual attention coupled with 
the size tolerance and recallability under translation 
in the fovea recognition. A limited 3-D orientational 
tolerance is also obtained by the shape tolerance of 
the fovea recognizer. Significant variations should be 
learned individually. Some studies have demonstrated 
that the human vision system does not have a per- 
fect invariance in either translation [8], scale [5], or 
orientation [13]. 

Segmentation. Once an object is recognized, the 
network can identify the location of the recognized 
object in the image. This is done by back tracking the 
response paths of the network from top layer down to 
the lowest layer. 

5 Conclusions 

The result demonstrated a way of automatically 
creating an complex vision system by letting it learn, 
grow and organize by itself. 
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Figure 11: Response of the Cresceptron and inputs. 
The bottom two rows show the input edge images. 
The bottom row shows 8 directional edge images at  a 
smaller scale and the row above it shows those with a 
larger scale. The rows 1 to 5 from top show the first 
several neural planes in the output layers of the levels 
6 ,  4, 3, 2, 1, respectively. 

1 .b 1 .oo 1 .oo 1 .oo 1 .od 

Figure 12: Face expressions in the images recognized as “ET Hostess’’ by the Cresceptron. The first three images 
are used to train the network. The number under each image is the response value (or confidence value) of the 
recognition, i.e., the response value at  the corresponding node at  the top layer. 

127 



EH Mpmeoted SR rrcopized with ad 1 00 SR SR segmented 

Youngactreu(YA) YA rccoDptcsd with ad. 0.64 Y A segmented 

RC recognized with conf 1 00 RC segmented PS recognwd with conf 0 76 PS segmented 

Walking dog (WD) view 1 WD segmented TS segmented Telephone set (TS) TS rccognlzed with conf. 0.68 

Figure 13: Some examples of learning, recognition and segmentation 

ET h o s k s  Sports reporter C-Span speakm Young Lctress NYSE reporter Student Petei TV host 

Smiling child Female performar Movie actor Path scene Road car Walking dog Walking dog 

Fire hydrant Walking student Stop sign Parked car Telephone set Laboratory chair Computer monitor 
Figure 14: Edge segments marked by the segmentation process for some of the examples. These are the major 
edge segments contributing to the recognition. 
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