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AbstractÐStochastic discrimination is a general methodology for constructing classifiers appropriate for pattern recognition. It is

based on combining arbitrary numbers of very weak components, which are usually generated by some pseudorandom process, and it

has the property that the very complex and accurate classifiers produced in this way retain the ability, characteristic of their weak

component pieces, to generalize to new data. In fact, it is often observed, in practice, that classifier performance on test sets continues

to rise as more weak components are added, even after performance on training sets seems to have reached a maximum. This is

predicted by the underlying theory, for even though the formal error rate on the training set may have reached a minimum, more

sophisticated measures intrinsic to this method indicate that classifier performance on both training and test sets continues to improve

as complexity increases. In this paper, we begin with a review of the method of stochastic discrimination as applied to pattern

recognition. Through a progression of examples keyed to various theoretical issues, we discuss considerations involved with its

algorithmic implementation. We then take such an algorithmic implementation and compare its performance, on a large set of

standardized pattern recognition problems from the University of California Irvine, and Statlog collections, to many other techniques

reported on in the literature, including boosting and bagging. In doing these studies, we compare our results to those reported in the

literature by the various authors for the other methods, using the same data and study paradigms used by them. Included in this paper

is an outline of the underlying mathematical theory of stochastic discrimination and a remark concerning boosting, which provides a

theoretical justification for properties of that method observed in practice, including its ability to generalize.

Index TermsÐPattern recognition, classification algorithms, stochastic discrimination, SD.
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1 INTRODUCTION

1.1 General Outline of Paper

STOCHASTIC discrimination (SD) is a general methodology
for constructing classifiers appropriate for pattern

recognition. It is based on combining arbitrary numbers of
very weak components, which are usually generated by
some pseudorandom process and it has the property that the
very complex and accurate classifiers produced in this way
retain the ability, characteristic of their weak component
pieces, to generalize to new data. This phenomenon is well-
understood from a theoretical point of view and has been
consistently observed in applications where theoretical
norms are not usually met. In fact, it is often observed that
classifier performance on test sets continues to rise as more
weak components are added, even after performance on
training sets seems to have reached a maximum. This
phenomenon is also understood mathematically; it turns out
that even though the formal error rate on the training set
may have reached a minimum, more sophisticated measures
intrinsic to this method indicate that classifier performance
on both training and test sets continues to improve as
complexity increases.

Stochastic discrimination might appear to fall in the

general category of pattern recognition methods based on

the notion of combining classifiers. But there is a

fundamental difference which epitomizes the essence of

stochastic discrimination. Indeed, most combination meth-
ods deal with component classifiers which, even if they
may be weak for the problem at hand, are still somewhat
ªexpertº in that they will tend to agree with one another
about the classification of at least some of the ªeasyº points
in the feature space. However, in the case of stochastic
discrimination, not only does this tend not to happenÐit is
essential to the success of the method that it be avoided to
the greatest extent possible. We are not talking here about
simply trying to maintain some degree of orthogonality
among component classifiers. In the case of SD, all points of
a given class in the feature space must be ªviewed
equivalentlyº by the full set of weak component classifiers.
This notion, which in the theory of stochastic discrimination
is known as ªuniformity,º captures the essence of stochastic
discrimination, making it, in effect, a method for combining
ªclassifiersº which, modulo specific points in the feature
space, have no commonality whatsoever. In a sense, the
weak component classifiers are not really classifiers at
allÐthey are simply subsets of the feature space selected
from a randomly generated stream of such subsets solely by
virtue of their having an error rate for the problem at hand
slightly better than the average for the stream.

Combination methods do exist which bear relationships
to SD. Most of these, such as Ho's work dealing with
Decision Forests (see [6], [7]), are derivatives of the original
theory of stochastic discrimination (see [8], [9]), where
resistance to overtraining is maintained by combining
uniform streams of (slightly) enriched, projectable weak
classifiers. Here, for example, one uses multiple trees built
in randomly chosen subspaces of the feature space. For
another example of derivative work, see [1].
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However, the combination method known as boosting
(see [4]), based as it is on the notion of iteratively adjusting
the distribution of training points so as to deemphasize the
ªeasyº points, also bears a certain relationship to SD. In fact,
by viewing boosting in an appropriate way, one can use the
mathematical theory of SD ([8], [9]) to provide a theoretical
base explaining empirically observed characteristics of
boosting, including its performance on nontraining data.
We do not appeal to an argument involving VC dimension
(see [14]), as is done in [5]. We comment further on this later
in this paper, and provide a complete, self-contained
presentation in [11].

While SD may be easily structured with a preset limit on
the VC dimension of the ªweak modelsº considered for
inclusion in the final (combined) classifier, another unique
aspect of the underlying theory is that there is no restriction
on the number of such weak models which may be
included. In fact, the VC dimension of the set of classifiers
built by SD in any particular context is usually infinite, and
as such, our mathematical proof that classifiers built by SD
generalize to nontraining data is not based on limiting
VC dimension.

Stochastic discrimination has a complete theoretical base
([8], [9]) which accounts for the performance of algorithmic
implementations. While historically the mathematical theory
came first, in this paper we begin with a nontheoretical,
algorithm-oriented, review of the method of stochastic
discrimination. Using a sequence of simple, synthetic exam-
ples, we motivate the required components by observing the
effect of different algorithms on carefully constructed
problems. In short order, we build up to pseudocode
containing all key pieces required for a full implementation.

There exist many methods for building classifiers. Some
of these are quite general and do well on large classes of
problems, whereas others are quite specific to certain types
of applications. Some methods have strong theoretical
bases, while others are quite heuristic, and their apparent
success at dealing with certain problems is not well-
understood. Given all of this, it has become popular in
recent years to compare different methods by evaluating the
performance of algorithmic implementations on standar-
dized problems in pattern recognition. Two such sets of
problems have been used extensively, namely the Statlog
datasets and the University of California, Irvine datasets.

We conclude this paper with a discussion of the applica-
tion of an implementation of stochastic discrimination to
these datasets and compare its performance to that of other
methods as reported in the recent literature under the same
test conditions. In the case of the Statlog problems, we
compare results to 23 different methods reported on by the
Statlog project and in the case of the Irvine problems, we
compare results to three underlying methods along with their
boosted and bagged versions (for a total of nine methods) as
reported on by Freund and Schapire in [4]. As an initial
preview, we might point out here that of the 24 experiments
reported on, stochastic discrimination placed first on 19 of
them, second on two others, fourth on another, and fifth on
the remaining two. Again, we compare our performance to
results as reported in the literature by the various authors for
the other methods and carried out our runs using the same
data and study paradigms as that used by them. Furthermore,
we basically ran our algorithm as it came ªout of the boxº with

no special ªtuning,º or adjustment of parameters, to the
particular problems at hand.

2 STOCHASTIC DISCRIMINATION

2.1 The Central Limit Theorem

Classification models built by the method of stochastic
discrimination are created by sampling from the space of all
subsets of the underlying feature space of the problem at hand.
For the purpose of motivating the method, let us assume
that our underlying feature space is the subset of Euclidean
2-space consisting of all points (n,m) such that n and m are
positive integers no larger than 18. In other words, our
feature space, henceforth denoted F , consists of an 18 by 18
grid of lattice points (see Fig. 1). (There is nothing special
about our choice of the size of this feature space. We could
just as well have used 20 by 20, 15 by 15, etc.) Given a subset
S of F , recall that the characteristic function of S, denoted
CS , is the function from F into {0,1} defined by ªCS�q� � 1
iff q is a member of S.º

For a start, assume that we carry out the following very
simple process:

Algorithm: 1cl.pts
Procedure: INITIALIZE()

For each q in F
Set numberq :� 0:0

end for
Set counter :� 0

end Procedure:INITIALIZE()
While 1

Procedure:GENERATE.RANDOM.SUBSET()
Generate a random subset S of F , with the

probability of any point of F being in S of 0.5
end Procedure:GENERATE.RANDOM.SUBSET()
Procedure:UPDATE.VARIABLES()

For each q in F
Update numberq :� numberq � CS�q�

end for
Update counter :� counter� 1
For each q in F

Update probtyq :� numberq=counter
end for

end Procedure:UPDATE.VARIABLES()
end while
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In effect, this process proceeds to place random subsets
(see Fig. 2) on top of the points inF again and again, and at any
given stage, the variable numberq simply counts the total
number of such sets which have landed on top of q to that
point in time, something we might call the total coverage of q
to that point in time; and probtyq measures the average
coverage of q to that point in time, that is, the total number of
covers which landed on top of q divided by the total number
of covers produced. Note that in each iteration of this process,
each point q of the space has its associated variables numberq
and probtyq updated. Also, note that, in our generation of
subsets of F , we are sampling with replacement.

For a given value of counter, we are primarily interested
in the distribution of the values probtyq (with q varying over
F ). But there are really two random variables which can be
considered here. The first, as just mentioned, is the random
variable probtyq, a function of q ranging over the discrete
sample space F (assuming a fixed value for counter).
However, we could, alternatively, choose a point q0 in F ,
and consider the random variable CS�q0�, a function of S
ranging over the discrete sample space, F:5, consisting of
those subsets of F whose measure is equal to half the
measure of F . Given the way our algorithm above carries
out sampling from this space, it is clear that for any fixed
values of counter and q0, the first of these random variables,
probtyq (defined on the sample space F ), is identically
distributed to the random variablePcounter

k�1 CSk�q0�
counter

(defined on the product sample space �F:5�counter). On the
other hand, given that our algorithm is carrying out
sampling with replacement from F:5,

Xcounter
k�1

CSk�q0�

is a sum of independent identically distributed random
variables, and as such, by the Central Limit Theorem, as
counter approaches infinity, the distribution ofPcounter

k�1 CSk�q0�
counter

approaches a normal distribution with mean equal to that of
CS�q0�, namely 0.5, and variance approaching 0.

This brief analysis is illustrated graphically in Fig. 3,
where we present pictures of probability mass functions for
the random variable probtyq over a sequence of increasing
values of counter produced by an actual run of our
algorithm 1cl.pts described above. As predicted by the
Central Limit Theorem, the shape of the mass functions
approaches the standard bell-shape; furthermore, note the
change in shape of the mass functions, in particular, the
evident decrease in variance, as counter increases.

(For these pictures, as well as for other pictures to appear
later in this paper, the ªmass functionsº are really smoothed
approximations which we produced by partitioning the set
of possible values for random variables into intervals and
then calculating probabilities by simply counting numbers
of points q (whose associated values probtyq were)
ªbracketedº by these intervals. We then carried out
average-smoothing (each yi replaced with yiÿ1�yi�yi�1

3 ) on
the resulting functions. In the graphs themselves, the x-axis
represents possible values for the random variable probtyq
and the y-axis represents probabilities. Furthermore, we
place an x-tic, and (space permitting) associated value, at
the mean of probtyq and place x-tics one standard deviation
to either side of the mean. We also place reference values
near the extremes of each axis to provide a sense of scale.)

So far, no discrimination has taken place, but this is
about to change.

2.2 Two-Class Problem

Assume now that the points in our feature space are
actually of two different types. Let's refer to them as the
green points and the red points, and let us assume that the
green points reside in the three outer rings of the feature
space, and that the reds reside in the remaining inner 12 by
12 square region (see Fig. 4). Then, of course, if we carry out
the above process as before, as counter approaches infinity,
the mass function of the distribution of the probtyq for red
points, q, approaches bell-shape, with mean 0.5 and
standard deviation approaching 0, and the mass function
of the distribution of the probtyq for green points, q, also
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approaches bell-shape with mean 0.5 and standard devia-
tion approaching 0.

However, suppose that we now carry out the process of
repeatedly covering the feature space with random subsets,
but this time, rather than allowing the covering sets to treat all
points equally, having the same probability of capturing any
one point as any other, we require that a covering set have
slightly higher probability of capturing red points than of
capturing green points. For example, we could generate
random subsets in such a way that any given red point has a
0.51 chance of being captured and any given green point has a
0.49 chance of being captured. Instead, let us use a more
general algorithm. We will simply generate subsets of F at
random as before, but now only ªkeepº those which capture a
higher fraction of red points than of green points: (note that
some procedures called in this code were defined
previously).

Algorithm: 2cl.pts
INITIALIZE()
While 1

Set S:not:enriched :� 1
While S:not:enriched

GENERATE.RANDOM.SUBSET()
Procedure:CALCULATE.COVERAGES(F )

Set Frac:reds equal to number of reds in F
covered by S divided by the total number
of reds in F

Set Frac:greens equal to number of greens in
F covered by S divided by the total
number of greens in F

end Procedure:CALCULATE.COVERAGES(F )
Procedure:CHECK.ENRICHMENT()

If Frac:reds > Frac:greens

Set S:not:enriched :� 0
end Procedure:CHECK.ENRICHMENT()

end while
UPDATE.VARIABLES()

end while

There are a few things to note. First of all, given the way
in which we did not use all subsets which are generated in
updating the values of the probtyq, the distribution of the
probtyq for red points q is now different from that for green
points q. Furthermore, while the means and standard
deviations for the distributions of red and green probtyq
are now more difficult to calculate than before, we can
easily see that, 1) the expectation of probtyq for red q is
greater than the expectation of probtyq for green q; and 2) the
central limit theorem applies to the distributions of the
probtyq for red q and for green q, and, in particular, as
counter approaches infinity, the mass functions approach
bell-shape with means mean:red > mean:green and stan-
dard deviations approaching 0.

In Fig. 5, we illustrate this graphically for an actual run of
the algorithm described above. In this figure, and in all future
figures of this general sort displaying sequences of prob-
ability mass functions, the probability mass functions of
probtyq for red q appear in red, and are usually located shifted
to the right of the corresponding probability mass functions
of probtyq for green q, which appear in green. Furthermore,
we draw a vertical line at the value threshold, a number equal
to the average of the two means mean:red and mean:green.
Finally, we use the word ªlevelº to refer to the number of
enriched, random subsets used. This is the same notion we
had called ªnumber of weak modelsº in Fig. 3.

The idea underlying stochastic discrimination is now
apparent: in order to decide if a given point q is a red or a
green, simply calculate probtyq. If probtyq is greater than
threshold, the point is a red; otherwise it is a green.

How accurate is the classifier we just described? Clearly
the points erroneously classified are those reds whose
probtyq lies to the left of threshold and those greens whose
probtyq lies to the right of threshold, in other words, those
points represented by the region in any of the graphs in
Fig. 5 where the two mass functions overlap. However, as
counter increases to infinity, the variance of the mass
functions approaches zero, and since the expectations of the
mass functions remain the same distinct values, the area of
the overlap region, and hence, the probability of error for
the classifier, approaches zero. This is apparent by looking
at the progression of graphs.

2.3 Training and Test Sets

Of course, when building classifiers in pattern recognition,
we are just given a ªrepresentativeº training set to work
with, as opposed to the entire space of examples. Our goal
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is to carry out the above development of a classifier now
using only a training set of examples, with the hope that the
classifier which is created has good accuracy not only on the
training examples, but on all points in the feature space.

One might note that in most ªreal-worldº pattern recogni-
tion problems the feature space contains points which are of
neither of the two classes. From the perspective of motivating
our approach, however, this extra complication adds no
useful insight, and so, for the sake of simplicity, we ignore it.

Let us then partition the feature space F , at pseudoran-
dom into training and test sets, TR and TE, respectively, of
approximately equal size, and run the above algorithm just
as before with the one exception that the determination of
whether or not a set is enriched with respect to reds is made
solely based on computations involving points in the
training set.

Algorithm: trte.pts
INITIALIZE()
While 1

Set S:not:enriched :� 1
While S:not:enriched

GENERATE.RANDOM.SUBSET()
CALCULATE.COVERAGES(TR)
CHECK.ENRICHMENT()

end while
UPDATE.VARIABLES()

end while

In Fig. 6, we illustrate the results of our run as before, but
this time, directly below each pair of probability mass
functions for the greens and reds in the training set, we
show the corresponding pair of mass functions for the
greens and reds in the test set. (As a result, there are a total
of eight images displayed in this figure rather than the four
displayed in previous such figures.)

As before, the pair of mass functions for the training set
behave as expected with distinct expectations and variances
approaching zero; but the pair for the test set, while
certainly having variances approaching zero, seem to have
nondistinct expectations. What has happened here?

The answer is quite simple. Since the enrichment which
took place was just with respect to the training set, the
stream of subsets which were retained was not enriched

with respect to the test set, and so, as far as the points in the
test set were concerned, the stream was not enriched at all,
resulting in no distinction between reds and greens in the
test set. The net effect is exactly the same as the process we
carried out initially as illustrated in Fig. 3, where we had a
single mass function for all points in the feature space.

2.4 Thick Weak Models

How then, can one go about building a classifier based
solely on training data which shows at least some
discrimination power when evaluated on test data? The
problem we had in the example above was based on the fact
that any particular subset being enriched with respect to
reds on training data does not imply anything about
whether or not that same set is enriched with respect to
reds on test data. We need a method to retain sets enriched
with respect to reds on test data and we must do this
without having any access to the test data.

Of course, this is, in general contexts, impossible to do.
However, there is implicit in any pattern recognition
problem an underlying assumption about the data pro-
vided and that is that there exists some relationship
between points of a given class in the training set and in
the test set. In our example given here, that relationship is
that points of either class, in both training and test sets, tend
to be clustered in similar regions of the feature space, that is,
neighborhoods (of diameter greater than zero) of red points
in the training set tend to have mostly red points (from both
training and test sets), and neighborhoods (of diameter
greater than zero) of green points in the training set tend to
have mostly green points (from both training and test sets).

The stream of subsets of the feature space generated in
our algorithm above consisted of subsets which were
unions of neighborhoods of diameter zero about points in
the feature space, and as such, the fact that any such set
tended to contain a higher fraction of reds than of greens on
the training set said nothing about the relative fractions of
reds and greens from the test set captured by the generated
subset. However, if we generated subsets which are unions
of positive-diameter neighborhoods about points in the
feature space, then the fact that such a subset is enriched
with respect to reds as measured on the training set should
translate into its being enriched with respect to reds as
measured on the test set.
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So let's do exactly that. For simplicity, each of our
randomly generated subsets of the feature space will consist
of a single 2x2 square region (see Fig. 7). For the problem at
hand, any such region, even though small, is still ªthickº
enough that if it tends to be enriched with respect to red
points from the training set, it will probably also be
enriched with respect to red points from the test set.
(ªThicknessº in the context of more complex classification
problems will be discussed later in this paper. In particular,
see the discussion at the start of Section 5.)

Here is the algorithm:

Algorithm: trte.2x2
INITIALIZE()
While 1

Set S:not:enriched :� 1
While S:not:enriched

Procedure:GENERATE.RANDOM.SQUARE()
Generate a random subset S of F , such that S
consists of a 2x2 region in F ; that is, choose a
random point (i,j) in F such that both i and j
are less than 18, and let S be the set
{(i,j),(i+1,j),(i,j+1),(i+1,j+1)}

end Procedure:GENERATE.RANDOM.
SQUARE()

CALCULATE.COVERAGES(TR)

CHECK.ENRICHMENT()
end while
UPDATE.VARIABLES()

end while

In Fig. 8, we illustrate the results of a run of this
algorithm. Note, as predicted, the expectations for the test
set mass functions are distinct, and so, the classifier
produced does have some predictive power when it comes
to distinguishing among points in the test set. But there
seems to be a new wrinkle, namely the mass functions for
both the training and test sets no longer seem to be
approaching bell-shaped functions. What has happened?

2.5 Uniformity

The answer lies at the heart of the method of SD. Let's
simplify the example and try to isolate the problem.
Namely, let's not worry about training and test sets for
the moment, but let's retain our ªthickº-component
subspaces. First, a run with no enrichment:

Algorithm: Nenrich.2x2
INITIALIZE()
While 1

Set S:not:enriched :� 1
While S:not:enriched

GENERATE.RANDOM.SQUARE()
Set S:not:enriched :� 0

end while
UPDATE.VARIABLES()

end while

Notice the fact that in Fig. 9 the mass functions now
appear bell-shaped. However, as we would expect from a
nonenriched stream, the means of the red and green mass
functions are identical.

Now consider the same algorithm, but this time with
enrichment. In order to make our analysis of the output as
simple as possible, we will, for this example, use a very
simple scheme of enrichment, namely the requirement that
the randomly generated subset contains only red points:

Algorithm: enrich.2x2
INITIALIZE()
While 1

Set S:not:enriched :� 1
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While S:not:enriched
GENERATE.RANDOM.SQUARE()
CALCULATE.COVERAGES(F )
Procedure:CHECK.STRONG.ENRICHMENT()

If Frac:greens � 0
Set S:not:enriched :� 0

Else
Set S:not:enriched :� 1

end Procedure:CHECK.STRONG.
ENRICHMENT()

end while
UPDATE.VARIABLES()

end while

Now we have separation of means, but that problem of
non-bell-shaped mass functions has, not surprisingly, once
again appeared. A moment's reflection, however, tells us
why. For given that we are randomly generating 2x2 square
regions in the feature space, but only keeping those which
only lie entirely within the central region occupied by the
red points, the probability that a red point lying at a corner
of the red region gets hit by such a set is 1/4 the probability
that a red point lying in the interior or the red region gets
hit, and it is 1/2 the probability that a red point lying on the
edge of the red region (but not at a corner) gets hit. This is
simply because each interior point has four different
possible 2x2 squares which may hit it, each edge point
has two different possible 2x2 squares, but each corner
point has only one possible 2x2 square which may hit it.
Keep in mind, the squares in the stream must lie entirely
within the red region.

So the shapes of the mass functions resulting from our
run, shown in Fig. 10 are exactly what we would expect. For
reds, the bulk of the function concentrates on the interior
red points, and becomes a bell-shaped ªsubfunctionº with a
given expectation, say m. The edge (noncorner) points
generate a ªsubfunctionº which also approaches bell-shape
and has expectation m=2. Finally, the corner points generate
a bell-shaped ªsubfunctionº having expectation m=4. As the

number of weak models approaches infinity, the variances
of each of these ªsubfunctionsº approaches zero.

So far as the green points are concerned, since no weak
model in our stream can hit any of them, the distribution
function of green points is a simple step function with
expectation 0.

The astute reader may well be concerned with our result in
Fig. 9, where we did not carry out any enrichment, for given
that our feature space is an 18 by 18 square grid, points on the
extreme edge of this grid are less likely to be hit by randomly
generated 2x2 squares just as corner and edge red points
were less likely to be hit by enriched 2x2 squares above. This
is indeed the case. However, in order to take this wrinkle out
of the picture, we effectively removed the edges and corners
of our feature space for that example by identifying opposite
edges, effectively turning the feature space into a torus. We
simply felt that the additional complication introduced by
points located at the extreme edges of the space, was a
complication we didn't need at this point.

At any rate, this issue of subfunctions resulting from
unequal treatment of differently positioned red points,
causes clear problems for our classifier since as can be seen
from the example above, the corner reds, no matter how
long we seem to run the algorithm, remain on the wrong
side of the threshold.

This is a manifestation of the problem of uniformity. A
stream of weak models is said to constitute a uniform cover
of the space if any two points of a given class (e.g., any two
reds or any two greens) are equally likely to be captured by
a weak model in the stream. One should refer to [9] (or
Section 3 following) for a precise definition, but based on
our informal discussion here, the following facts emerge:
1) If we simply generate a stream of random subsets of the
feature space, that stream provides a uniform cover (but
enriching it with respect to the training set fails to enrich it
with respect to the test set, and so, the stochastic model built
from such a stream does not generalize, to any degree
whatsoever, to new data); 2) if we generate a nonenriched
stream of ªthickº subsets of the feature space, that stream
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provides a uniform cover of the feature space (if the space
lies on a torus) (but a nonenriched stream fails to
distinguish among the different classes in the feature space
and as such is useless for doing pattern recognition); 3) if
we generate an enriched stream of ªthickº subsets of the
feature space that stream does distinguish among the
difference classes, and it does generalize to new data, but
it fails to provide a uniform cover of the feature space, and
as such, the accuracy of the resulting classifier may suffer.

2.6 Uniformity Forcing

Thus, with respect to the three central factorsÐenrichment,
uniformity, and generalization-powerÐany two can be
achieved naturally, with an appropriate stream of weak
models, if we don't worry about achieving the third. Since
we are doing pattern recognition here, let us resolve,
initially, that achieving generalization-power is essential.

The resulting conflict between enrichment and unifor-
mity can now be ameliorated algorithmically by adding
another requirement for retaining weak models beyond that
dictated by enrichment. Specifically, we will require that the
algorithm keep track of the coverage of points in the feature
space by weak models previously retained, and if a new
weak model is being considered for retention we simply
look at the points it captures, and if their coverage was
below the average coverage for points of their class, then the
new weak model will be retained. In effect, we select from
the full stream of possible weak models those which
capture, and hence, effectively, elevate, points in the feature
space whose current coverage is light compared to others in
their class. From a theoretical perspective, this algorithmic
device allows us to sample from a uniform subspace of the
space of enriched weak models, and as such we are still,
effectively, taking sums of independent, identically dis-
tributed random variables. See Section 3.

Here is the algorithm:

Algorithm: Ntrte.unif
Procedure:INITIALIZE.ALL()

INITIALIZE()
Set avred :� 0

end Procedure:INITIALIZE.ALL()
While 1

Set S:not:yet:acceptable :� 1
While S:not:yet:acceptable

GENERATE.RANDOM.SQUARE()
CALCULATE.COVERAGES(F )
CHECK.STRONG.ENRICHMENT()
If S:is:enriched � 1

Procedure:CHECK.UNIFORMITY.
FORCING(F )

If counter � 0
Set S:not:yet:acceptable :� 0

Else
Set S:avred equal to the average of

numberq
for red points q in F which lie in S.

If S:avred < avred
Set S:not:yet:acceptable :� 0

end Procedure:CHECK.UNIFORMITY
.FORCING(F )

end while
Procedure:UPDATE.ALL.VARIABLES(F )

UPDATE.VARIABLES()
Update avred to be the average of numberq for

red q in F
end Procedure:UPDATE.ALL.VARIABLES(F )

end while

A run of this algorithm produces the mass functions

shown in Fig. 11. Notice that there are no longer separate

ªsubfunctionsº present and that the reds and the greens

each have mass functions with distinct expectations, each of

which appears to approach bell-shape.

2.7 The Full Algorithm

We're now ready to go back to the complete problem with

training and test sets:

Algorithm: trte.unif
INITIALIZE.ALL()
While 1

Set S:not:yet:acceptable :� 1
While S:not:yet:acceptable

GENERATE.RANDOM.SQUARE()
CALCULATE.COVERAGES(TR)
CHECK.STRONG.ENRICHMENT()
If S:is:enriched � 1

CHECK.UNIFORMITY.FORCING(TR)
end while
UPDATE.ALL.VARIABLES(TR)

end while

At last, we have exactly what we need. As we see in

Fig. 12, both training and test sets show approximately bell-

shaped mass functions for reds and greens, and as counter

approaches infinity, the convergence of the variances to

zero leads to perfect separation of the classes. (In light of the

simplifications included in our previous four examples, we

used a regular partition scheme for the run illustrated in

Fig. 12, namely, a given point (i,j) of the feature space was

placed into the training set iff �i� j�mod�2� � 0.)
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2.8 Resistance to Overtraining

We are now in a position to see why SD is particularly
resistant to overtraining and why it is possible for test set
performance, in fact, classifier generality, to continue to
improve after training set performance appears to reach a
maximum. For the error rate on either the training or test set
of a model produced by SD is based on the overlap of the
mass functions associated with the training or test set for
the different classes. The shapes of the mass functions, in
turn, are based on the enrichment and uniformity char-
acteristics of the weak models which go into the stochastic
model being built. The fact that we use thick weak models
means that these enrichment and uniformity characteristics,
which are based on performance on training examples,
carry over to some extent to test points. In effect, then, while
the mass functions associated with the training points for
the different classes are shrinking (variances approach 0)
away from one another as the number of weak models
increases, the mass functions associated with the test points
are also shrinking away from one another. But due to the
degradation in enrichment and uniformity characteristics of
the stream in going from training to test sets, both the
separation of (i.e., the expectations of) the mass functions,
and their rates of shrinkage (i.e., the rates at which
variances decrease), will usually be less for the test points.
So, it may well happen that a point will be reached where
the training functions lie entirely on opposite sides of the
threshold, (error rate 0.0 on the training set), yet the
variances of the test set functions are not yet small enough
so that the functions associated with the test set lie on
opposite sides of the threshold. In this case, as the number
of weak models increases, the training set performance
error rate will clearly not improve further; however, the
variances of the training set mass functions will continue to
decrease, as will the variances on the test set mass functions,
and so the classifier will continue to improve showing,
among other things, decreased error rate on the test set.

2.9 Some Additional Wrinkles

Needless to say, the examples we've considered so far are
very simple and are just meant to illustrate the underlying
concepts behind the method of stochastic discrimination.
Without much effort, we can consider just slightly more
complex synthetic examples for which our solution to the

uniformity problem would not work quite so neatly. For
example, by making the region occupied by the reds
somewhat star-shaped, some red points couldn't even be
captured by 2x2 squares which we required to lie entirely
within the red region. Thus, we would have to go back to
the more general form of enrichment used in our initial
algorithm utilizing thick weak models. In this case, we
would still have examples where, in an attempt to promote
uniformity among red points, red points on the boundary of
the red region could not have their coverage increased
without also increasing the coverage of neighboring green
points, points whose coverage we probably would want to
decrease in order to promote uniformity among greens. In
effect, this conflict would make it literally impossible to
induce perfect uniformity by subsampling any stream of
sufficiently thick weak models. In other words, no matter
what we do in subsampling our stream, perfect uniformity
could not be achieved in this case. In actual practice, the
hope is that such problematic points on boundaries of class
regions do not account for a large enough percentage of the
population to cause significant problems. In our experience,
this hope is usually realized.

2.10 Multiclass Problems

The transition from 2-class problems, such as that considered
above, to arbitrary m-class problems, is completely straight-
forward and adds little to the underlying theory. This is
discussed in [9]. We might add one small point here, however.

The idea behind handling m-class problems is to break
them into a set of 2-class problems. In [9], two ways of
doing this are mentioned, namely, considering m-many
problems of the form ªclass iº vs. ªclasses other than iº for
every i less than m, or considering m�mÿ 1�-many
problems of the form ªclass iº vs. ªclass jº for every i 6� j
less than m. In the original algorithmic implementations of
SD, the first method was used. However, due to advantages
gained from what we referred to as the secondary stochastic
effect, [9] went into more detail about, and, in fact, used an
implementation based on the second method.

Recent advances in algorithm design, such as the
inclusion of automatic scaling routines for regulating the
size of weak models, as well as the obvious advantage of
only having to deal with m-many binary problems instead
of m�mÿ 1�-many, have recently led us back to favoring
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method 1. The idea is just as in [9], but we can make things
somewhat simpler here. For each i, we run our uniform,
training/test set, algorithm, trte.unif, on the problem where
the ªredsº are all points of class i and the ªgreensº are all
points of classes other than i, with the one change of
normalizing the random variable probtyq by replacing

Update numberq :� numberq � Cs�q�
with

Update i:numberq :� i:numberq � CS�q�ÿFrac:greens
Frac:readsÿFrac:greens
� �

in each of the m-many subalgorithms.
The primary effect of this change is to cause, for each

i � m, the expectation of i:probtyq to be 1.0 for red points q,
and to be 0.0 for green points q. So, quite simply, to classify
any given point q, one need only evaluate each random
variable i:probtyq and classify q as being of class i0, where i0
is the index such that i0:probtyq is largest.

Other than this, enrichment and uniformity are handled
individually for each of the m-many problems, basically as
before.

Needless to say, we are now left with m-many pairs of
mass functions for the m-many component problems we are
now dealing with. In order to simplify visualization, in all
future graphical depictions of mass functions, the ªupperº

mass function will actually be the average of the ªredº mass
functions over all m-many problems and the ªlowerº mass
function will actually be the average of the ªgreenº mass
functions over all m-many problems.

2.11 The Real World

In actual practice, we consider as possible weak models,
finite unions of rectangularly shaped subsets of the given
feature space and just require the simpler enrichment step
first introduced in our second algorithm. While the
uniformity algorithm used is quite similar to that used
above in our uniform, training/test set, algorithm, trte.unif,
it must be modified slightly to take into account these more
complex weak models and the more general enrichment
scheme. The resulting implementation of SD, which we will
use in actual experiments reported on henceforth, in this
paper, is known as SDK.

Of course, as alluded to above, it is usually impossible in
practice on ªreal-worldº problems to force perfect uni-
formity. However, one can do remarkably well. For
example, let us consider an example from the University
of California, Irvine database concerning gene splicing. This
is a 3-class problem containing 3,190 examples sitting in a
discrete feature space of size 860. We randomly broke the set
of examples into training and test sets of approximately
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equal size and ran our algorithmic implementation, SDK, on
the result. For our first run, we removed all uniformity
forcing code and the output is illustrated in Fig. 13. We then
repeated the procedure, this time with the uniformity
forcing code in place. The output is illustrated in Fig. 14.
Keeping in mind that the mass functions shown are now
averages (we are dealing here with a 3-class problem), the
output is exactly what our discussion above would lead one
to expect. In particular, note that the expectations of the
mass functions associated with the training set are further
apart than those associated with the test set (since
enrichment of the weak model stream is carried out by
looking only at the training set and so the degree of
enrichment as measured on the test set is less), and, of
course, note the subpeaks on the mass functions associated
with the run which didn't force uniformity.

3 THE UNDERLYING MATHEMATICS

3.1 Introduction

The discussion above involving separating probability mass
functions is intended for motivational purposes. In order to
prove rigorously that the method operates as indicated, we
start on a very different track. For the weak models from
which our classifiers are built are (randomly) chosen from
the collection of all subsets of an underlying feature space,
and as such, the random variables we consider first in a
mathematical treatment of this topic are random variables
defined on sample spaces whose members are subsets of the
feature space rather than members of the feature space.

3.2 The Sample Space

Specifically, let F denote the underlying feature space
associated with a given 2-class pattern recognition problem
(let R and G denote the two classes), and let F denote the
power set of F , that is, the set of all subsets of F . We assume
that F is finite, and as such, will use counting measures for
calculating probabilities as needed. If probabilities are taken
with respect to the underlying feature space, we will use the
usual notation ºPrº; however, if they are taken with respect
to the space F, we will use the notation ºPrF.º

Our first objective is to narrow down the space F along
the lines discussed in our motivational sequence above,
namely, to restrict our attention to a subspace of F whose
elements 1) do NOT have the same chance of capturing R
points as of capturing G points (see Fig. 5); and 2) provide a
uniform cover (see Fig. 11).

Point 1 is easy to define:

Definition 3.1. A subset M of F is said to be (R,G)-enriched if

inf jPr�MjR� ÿ Pr�MjG�j jM 2Mf g > 0:

Point 2 is more difficult. We start by introducing the
following notation:

Definition 3.2. Given a subset M of F and a pair of real
numbers �x; y�, M�x;y� denotes the set of M in M such that
Pr�MjR� � x and Pr�MjG� � y.

It turns out to be easy to prove (see [9]) that the
requirement that two points of a given class are equally

likely to be captured by a weak model (of a given size), is
equivalent to the following:

Definition 3.3. A subset M of F is said to be (R,G)-uniform if
for every q in either R or G, and every nonempty subset of M
of the form M�x;y�, PrF�q 2MjM 2M�x;y�� is equal to x if q
is a member of R, and is equal to y if q is a member of G.

3.3 The Base Random Variable

Let, then, M be a given (R,G)-enriched, (R,G)-uniform,
subspace of F. We define a random variable X�R;G� on the
sample space F �M by

X�R;G��q; S� � CS�q� ÿ Pr�SjG�
Pr�SjR� ÿ Pr�SjG�
� �

;

(where CS is the characteristic function of the set S).
The following proposition is easy to prove.

Proposition 3.4 For a given point q in F , consider the random
variable Xq

�R;G� which results from restricting X�R;G� to the
space fqg �M. Then the variables Xq

�R;G�, for q restricted to R
are all identically distributed, and have common expectation 1.
The variables Xq

�R;G�, for q restricted to G are also all
identically distributed. They have common expectation 0.

Note once again that we are talking here about random
variables defined on spaces of subsets of the underlying feature
space. We now randomly sample from such spaces of weak
models.

Let t be a given positive integer, and let us denote by
Xk
�R;G� the random variable corresponding to X�R;G� asso-

ciated with the kth of t-many trials, that is, the random
variable defined on the sample space F �Mt whose value
at any point �q; �S1; S2; . . . ; St�� is X�R;G��q; Sk�. Let Y t

�R;G�
denote the random variablePt

k�1 X
k
�R;G�

� �
t

:

By the Central Limit Theorem, as t increases, the probability
distribution function of Y t

�R;G� approaches the normal
probability distribution function having expectation that
of X�R;G�, and having variance 1

t

th
that of X�R;G�.

3.4 The Classifier

Thus, consider the following method of classification: given

a point q in the feature space F , simply evaluate Y t
�R;G��q; st�

at some (randomly chosen) member st � �S1; S2; . . . ; St� of

Mt, and proceed to classify q as being of type R iff that

value is greater than 0.5. In light of our remarks above, by
choosing t sufficiently large, one can make the probability

that this method of classification makes an error as small as

desired.
One can see this point clearly by looking at pictures of

the probability mass functions associated with the random
variables Y t

�R;G��q; st� for given fixed q. In particular, for
sufficiently large t (so that we can effectively replace
thinking in terms of probability mass functions, with
thinking in terms of probability density functions) the pdf
associated with points of type-G has a mean of 0.0 and a
variance of, say, �2

G, and that associated with points of type-
R has a mean of 1.0 and a variance of �2

R. An error occurs at
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a given point q, if q is of type-G and the value of Y t
�R;G��q; st�

for the (randomly chosen) member st of Mt is greater than
0.5, or q is of type-R and the value of Y t

�R;G��q; st� for the
(randomly chosen) member st of Mt is less than or equal to
0.5. Thus, pictorially, the probability that a type-G point is
incorrectly classified is the area of the red-shaded region in
Fig. 15, and the probability that a type-R point is incorrectly
classified is the area of the green-shaded region in Fig.15.

One must be careful here for these probabilities are taken
with respect to the sample space Mt. Let us identify a
classifier for our two-class problem with a subset of feature
space F (that subset being the points classified as being in
R), and let us define, for a given t, and member st �
�S1; S2; . . . ; St� of Mt, the classifier Mst to be

qjY t
�R;G��q; st� > 0:5

n o
:

Then, what we are saying is that given any point q in the
feature space, the probability that a member st of Mt

produces a classifier Mst which makes a mistake at classify-
ing q is the area of the shaded region in Fig. 15, that is, the area
of the intersection of the regions bounded below by the x-axis
and above by the graphs of the type-G and type-Rpdfs. Since,
as t approaches infinity, the variances of these pdfs approach
0, we can say that as t approaches infinity, the area of the
(shaded) intersection, and hence, the probability of incorrect
classification, approaches 0.

Unfortunately, the ªprobability of incorrect classifica-
tionº we are talking about here is quite different from what
is usually meant by ªprobability of errorº for a classifier.
We are taking probabilities with respect to sample spaces of the
form Mt, and not with respect to the underlying feature
space. In order to fully understand the theory of stochastic
discrimination, it is important to understand this point. At
the expense of repeating ourselves, let us make this contrast
clear. In the usual parlance, when a classifier is said to have
an error rate of e, it is understood that the probability, with
respect to the feature space, that a randomly chosen point is
misclassified, is e; when we say that level-t stochastic
classifiers have probability d of misclassification, we mean

that for any fixed, generic point q in the feature space, the
probability, with respect to the sample space Mt, that a
randomly chosen point st produces a classifier Mst which
makes a mistake at classifying q as d.

3.5 The Duality Lemma

We can get a better handle on evaluating the accuracy of
classifiers built by this method of stochastic discrimination,
and in particular, develop the machinery necessary to prove
that such classifiers generalize to test data, by examining the
relationship between these two, seemingly disparate,
notions of ªerror.º We say this because for the case of
stochastic discrimination, error is based solely on the
characteristics of the probability density functions of the
Y t
�R;G��q; st� associated with a certain stochastic process, and

these probability density functions, in turn, are based on the
characteristics of the underlying sample space of weak
model subsets of the feature space. But if these weak model
subsets generalize well from training to test data, then these
characteristics of the sample space of weak model subsets of
the feature space which determine the probability density
functions of the Y t

�R;G��q; st� will be the same whether q is a
training point or a test point. As such, the process of
evaluating error will be the same whether done with respect
to the training set or the test set. It is this basic idea which is
behind our proof of the fact that classifiers built by this
method of stochastic discrimination generalize to nontrain-
ing data.

We now proceed to relate the two notions of ªerror.º For

a given subset C of the feature space F , let gCst denote the

probability mass function of the random variable

Y t
�R;G��q; st� restricted to q 2 C. Then it is clear that

Pr�Mst jG� is equal to Z
�0:5;1�

gGst

and Pr�Mst jR� is equal to
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Z
�0:5;1�

gRst :

Thus, the ªclassicalº probability of error, eMst
, for the

classifier Mst is given by

eMst
�
Z
�ÿ1;0:5�

gRst �
Z
�0:5;1�

gGst :

Of course, any such classifier, Mst is a function of the
ªrandomly chosenº sample st in Mt, and so our interest is
really in the ªexpected errorº of stochastic models built
from samples from Mt, that is, in the value

e�t� �
Z
�ÿ1;0:5�

gRt �
Z
�0:5;1�

gGt

where, for any subset C of F , and any real number r, gCt �r�
is equal to the expectation of the random variable gCst�r�
defined on the sample space Mt.

So, how do we tie the probability mass functions gRt and
gGt needed for classical calculation of error, to the mass
functions of the random variables Y t

�R;G��q; st� used above in
our discussion of ªprobability of misclassification?º With
the so-called duality lemma (see [9] for a proof):

Theorem 3.5. Given any positive integer t, and any point q in R
(q in G), gRt (gGt ) is equal to the mass function of the random
variable Y t

�R;G��q; st� defined on Mt.

One is now in a position to derive classical estimates of
accuracy for stochastic classifiers. For example, on a very
simple level, since for a given point q, Y t

�R;G��q; st� is a sum of
independent identically distributed random variables, we
can use Chebyshev's inequality to see that for any given q,

PrMt jY t
�R;G��q; st� ÿ E�X�R;G��q; S��j � 1=h

� �
� �

2h2

t
;

where �2 is the variance of X�R;G��q; S�.
By Proposition 3.4, 0.5 is the mean of the expectations

E�X�R;G��q; S�� (for type-R q and type-G q), and so, by
taking h equal to 2, we immediately have thatZ

�ÿ1;0:5�
gRt �

2

t
�2
R

and Z
�0:5;1�

gGt �
2

t
�2
G;

where �2
R and �2

G are the variances of X�R;G��q; S� for q in R
and G, respectively. Thus,

eMst
�t� � 2

t
��2

R � �2
G�:

Again, this is a very simple estimate, presented here for
illustrative purposes only. For a more elaborate statistical
analysis of such issues, we refer the reader to [3].

3.6 Classifier Generalization

What about the notion of generalization to test data? Before
one can even touch this issue, there has to be some
understanding concerning the relationship between train-
ing and test sets. There are many ways to effect this, the

most common involving some sort of topological proximity
of like points between training and test sets (as illustrated
above in our Fig. 8). We feel, however, that a very elegant,
general way to define the notion of a training set being
ªrepresentativeº is simply to require that there exist some
uniformly distributed collection of subsets of the feature
space, such that each subset is better than random at
distinguishing among the classes and such that each subset
generalizes from training to test data. Thus, in effect, the
notion is really ªthere exists an appropriate subspace N of
F such that the training set is N-representative of the test
set.º This doesn't require a topological relationship
between training and test sets, and as such allows for a
number of interesting alternative possibilities. It certainly
seems to constitute a reasonable, minimal set of conditions.
For a full development of these notions, we refer the reader
to [9] and [10].

Given this, let us now assume that instead of carrying
out the development of classifiers above using all examples
for training, we just use training subsets Rtr and Gtr. We are
now interested in evaluating the accuracy of the resulting
stochastic classifier on test sets Rte and Gte. In this more
general context, let us define, for any two subsets A and B
of F , the expected error (at separating classes A and B) of
level-t stochastic classifiers by

e�t; A;B� �
Z
�ÿ1;0:5�

gAt �
Z
�0:5;1�

gBt :

Then the theorem is this:

Theorem 3.6. Given any pair of subsets �A;B� of F , if �Rtr;Gtr�
is M-representative of �A;B�, then e�t; A;B� � e�t; Rtr; Gtr�.

The proof of this theorem revolves around the duality
lemma, and can be found in [9]. In essence, both e�t; A;B�
and e�t; Rtr; Gtr� are based on certain probability mass
functions. By the duality lemma, these probability mass
functions are equal to probability mass functions of random
variables defined on the sample space of weak models.
However, given that �Rtr;Gtr� is representative of �A;B�
with respect to this space of weak models, these random
variables, specifically, the Y t

�Rtr;Gtr��q; st�, and Y t
�A;B��q; st�,

defined on Mt, are identically distributed. Thus, by the
duality lemma,

e�t; A;B� �
Z
�ÿ1;0:5�

gAt �
Z
�0:5;1�

gBt

�
Z
�ÿ1;0:5�

gR
tr

t �
Z
�0:5;1�

gG
tr

t � e�t; Rtr; Gtr�
:

The details concerning all of this can be found in [9]
and [10].

3.7 Multiclass Problems

We deal with problems involving m-many classes, R1, R2,

. . .Rm, by breaking things intom-many 2-class problems. For

any i, let Gi denote [j6�iRj. Then, for each of the m-many

problems ªRi vs. Gi,º we carry out a development as above,

and are left, for any positive integer t, withm-many functions

Y t
�Rtr

i ;G
tr
i �
�q; sti�. Then as above, assuming that t is large

enough, if we choose samples sti from (Rtr
i ,Gtr

i )-enriched,
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(Rtr
i ,Gtr

i )-uniform, spaces, then for any point q in the feature

space, if q is of class i, then the value ofY t
�Rtr

i ;G
tr
i ��q; s

t
i� should be

close to 1, and if q is not of class i then the value of

Y t
�Rtr

i ;G
tr
i ��q; s

t
i� should be close to 0. Thus, if we simply classify a

given point q to be of class i0, where i0 is the index for which

Y t
�Rtr

i0
;Gtr

i0
��q; sti0� is largest, then with high probability (assum-

ing that t is large enough), this classification of q will be

correct.

3.8 Theory vs. Practice

One additional remark: In actual practice, many of our
theoretical definitions concerning, for example, uniformity
and representativeness, are not met exactly, but rather to
within some error �. It turns out that stochastic discrimina-
tion is quite robust and small values of � propagate to small
divergences from theoretical prediction. For detail on this,
as well as for the derivation of a number of statistical
estimates of classifier accuracy for this general method, we
refer the reader to [3].

4 A REMARK CONCERNING BOOSTING

Schapire's boosting algorithm has attracted a great deal of
attention over the past few years. It is a method for
combining classifiers trained on iteratively-modified dis-
tributions of examples, and while it has produced extremely
good results for many problems in statistical pattern
recognition, a completely satisfactory explanation for its
success at generalizing performance to test data has not yet
been forthcoming. We propose an explanation here.

Boosting algorithms iteratively modify training set
distributions so as to deemphasize ªeasyº points, namely,
points correctly classified by earlier ªweak classifiers.º If
one views such algorithms from the appropriate perspec-
tive, this notion of redistribution provides a particular
approach toward promoting uniformity. This is an algo-
rithmic issue and clearly the uniformity-forcing algorithms
we have discussed thus far are of a very different nature;
however, in the context of SD, the goal of uniformity can be
achieved in many ways.

In [11], we develop a theoretical base for boosting

algorithms and discuss these issues in some detail. However,

just to get some sense for the use of boosting as a means of

achieving uniformity, we took the AdaBoost algorithm of

Freund and Schapire (see [4]) and modified it so as to be

usable within the program SDK in place of the default

uniformity-forcing algorithm. We then took the same gene

splicing dataset discussed above (see Figs. 13 and 14) and ran

the modified version of SDK on it. Specifically, we randomly

generated weak models as before, but after filtering them for

enrichment, we filtered them a second time so as to minimize

the AdaBoost-error based on the weight vector at that point in

time. Once such a weak model was selected, we readjusted

the weight vector as called for by AdaBoost. The results for

this run are illustrated in Fig. 16. While the pdfs don't look

quite as nice as those in Fig. 14 produced by SDK's standard

uniformity forcing algorithm, by comparing them to those in

Fig. 13, it is clear that an effective uniformity forcing

algorithm is a play.
Of course AdaBoost is a selfcontained learning algo-

rithm and we just used its weak learning iteration
segment in producing this uniformity forcing algorithm.
Using AdaBoost's final hypothesis output was not
relevant here under SD's paradigm. However, by viewing
boosting as a uniformity-forcing algorithm, the under-
lying theory of stochastic discrimination comes into play,
and in particular, the theoretical basis behind the
generalization to nontraining data of models built by
the method of stochastic discrimination applies, with
trivial modification, to show the generalization to non-
training data of models built by the method of boosting.

5 EXPERIMENTAL RESULTS

We carried out a series of experiments using an algorithmic

implementation of SD known as SDK. As discussed

previously, the implementation itself is along the lines of

the pseudocode introduced earlier in this paper, with

relatively minor modifications as needed to deal with the

fact that feature spaces, in general, are more complex than

18 by 18 grids.
More specifically, given a general, n-dimensional feature

space F , SDK first embeds F into Euclidean n-space (by
mapping any nonnumeric field values to nonnegative
integers). For each coordinate k, 1 � k � n, it then
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determines maximum and minimum values, maxk and
mink, respectively, among training points for that coordi-
nate. Weak models are now formed by simply taking finite
unions of rectangular parallelopipeds R � F , each of which
is generated as follows: 1) randomly choose a point
�q1; q2; . . . ; qn� in the training set; 2) for each k between 1
and n randomly generate upper and lower bounds uprk
and lwrk such that mink � lwrk � qk � uprk � maxk; 3) let
R denote the set of �x1; x2; . . . ; xn� in F such that for each k,
1 � k � n, lwrk � xk � uprk. The only problem-specific
modification used, if dictated by extremely ªsparseº
datasets, might have SDK further increase the ªthicknessº
of weak models by pushing a number of lwrk and uprk out
to their limits mink and maxk, respectively, or have SDK
increase the number of parallelopipeds in the finite union
so as to increase the percentage of F covered by weak
models. All problems considered here shared a key
characteristic with our synthetic 18 by 18 example, namely
that there existed a spatial relationship between points of
like class. Thus as before, the evident ªthicknessº of the
weak models just described, translated into an ability of
these weak models to generalize. (Note that weak models
of this sort can alternately be viewed simply as finite
unions of finite intersections of regions determined by
splitting F with axis-orthogonal hyperplanes.)

We retrieved by anonymous FTP, datasets from two
major repositories for sets of standardized problems in
pattern recognition, that at the University of California at
Irvine, and that at the University of Porto in Portugal.

From Irvine, we chose 17 different datasets, namely,
Australian credit (henceforth denoted ªcrxº), Pima diabetes
(dia), glass (gls), Cleveland heart (hrt), hepatitis (hep),
ionosphere (ion), iris (iri), labor (lab), letter (let), satimage
(sat), segment (seg), sonar (son), soybean-large (soy), splice
(spl), vehicle (veh), vote (vot), and Wisconsin breast cancer
(wsc). Our decision about which sets to use was based solely
on popularityÐof the many recent papers containing
comparative studies of pattern recognition methods, these
17 sets tended to be studied more than any others from the
Irvine collection. We compared our results to those reported
by Freund and Schapire in [4]. We decided to use this paper

since it focuses on boosting (see [4]) and bagging (see [2]), two

of the most popular and powerful methods currently being

studied in pattern recognition. Three underlying ªweak

learning algorithms,º FindAttrTest (henceforth denoted,

ªFIAº), FindDecRule (FID), and Quinlan's C4.5 (C45) (see

[13]), along with their boosted and bagged versions (denoted

ABO, DBO, 5BO, ABA, DBA, and 5BA, respectively), for a

total of nine methods, are reported on in [4] and in our runs on

these datasets, we used the same study paradigms (either 10-

fold cross validation, or training/test set, depending on the

dataset) as used by Freund and Schapire. Our only change

(made because of time constraints) was that for two of the

datasets which used training/test sets, namely, letter and

satimage, we did not rerun the study 20 times with different

seeds, but just reported the results for our single run (seed 1)

of each problem. For the 10-fold cross-validation studies,

however, we reran each cross-validation 10 times using

different initial seeds for a total of 100 runs per study and for

the remaining training/test set problem, soybean-large, we

reran the study 20 times with different seeds and averaged the

results. The reader should refer to [4] for the details here.
The results for our runs, as well as for those reported in

[4] are presented in Fig. 17. The values listed under each
method are error rates for the different problems. In Fig. 18,
we summarize these results graphically. Our focus is
toward the relative ranks of the various methods over the
17 problems considered. Specifically, for each of the 10
methods (as listed on the x-axis), we provide a bar ranging
from the best rank that method achieved on any of the
problems, to the worst rank. That bar also has a left tic
located at the mean of the ranks of that method across all 17
problems and a right tic located at the mode of the ranks
(assuming a mode exists for that method). The methods are
listed in order of their mean rank and our graph includes a
line graph connecting the means of the ranks.

From Porto, 10 sets were publicly available. However,

two of these sets (heart data and German credit data)

involved nontrivial cost matrices and since the imple-

mentation SDK does not take issues of cost into account,
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we didn't use these sets. One additional set, namely the

shuttle dataset, was extremely underrepresented in some

classes (two test points for class seven out of a total of

58,000 training and test examples) so we also decided to

eliminate that set from consideration. Of the remaining

seven sets, we carried out studies using the same

conditions as [12]. In particular, the Australian Credit

Approval problem (henceforth denoted ªcrxº) used
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10-fold cross-validation, the Pima Indians Diabetes pro-

blem (dia) used 12-fold cross-validation, the DNA

problem (dna) used training (2,000 points) and test

(1,186 points) sets, the Letter Image Recognition problem

(let) used training (15,000 points) and test (5,000 points)

sets, the Satellite Image problem (sat) used training (4,435

points) and test (2,000 points) sets, the Image Segmenta-

tion problem (seg) used 10-fold cross-validation, and the

Vehicle Silhouette problem (veh) used 9-fold cross-

validation.
The results for our runs, as well as for those reported in

[12] are presented in Fig. 19. In Fig. 20, we graphically

represent relative ranks as we did before in Fig. 18.

6 CONCLUSIONS

As a method, stochastic discrimination combines very weak

components in such a way that the ability of the eventual

classifier to generalize to nontraining data is comparable to

the ability of the component pieces to generalize. Since by

making the components very weak we can maintain their

high generalization ability, SD can build arbitrarily complex,

and highly accurate, classifiers which also generalize well.

The theoretical basis for this resides in the structural

characteristics of higher-order sample spaces of subsets of

the underlying feature space and not on limiting VC

dimension by restricting the complexity of the eventual

classifier. In fact, the space of classifiers built by SD for most

problems has infinite VC dimension. Limits on attainable

error rate are dictated solely by the degree to which

underlying weak models fail to generalize and the degree to

which the space of such weak models fails to be enriched

and uniform. However, these issues lie at the heart of what

constitutes a solvable pattern recognition problem and in

some sense provides a basis for establishing the optimality

of stochastic discrimination as a general method for

classifier construction. For a thorough discussion of these

issues we refer the reader to [10].
In this paper, our goal was to bridge the gap between the

theoretical promise shown for the method of stochastic

discrimination in [8], [9] and its practical implementation as

an effective, general method in pattern recognition. On 14 of

17 benchmark problems from the University of California,

Irvine collection, the implementation of SD discussed here,

SDK, outperformed both boosting and bagging applied to

three underlying weak learning algorithms; and on five of

the seven benchmark problems from the Statlog collection,

SDK outperformed a comprehensive suite of 23 different

methods. On only one problem, the Pima Indians diabetes

study, did SDK finish out of the top 25 percent of methods

considered. Here, it placed fourth out of 10.
Thus, there appears to be good evidence that the general

method of stochastic discrimination is a very promising

approach in the field of pattern recognition. As new

algorithmic implementations are created, results should

improve further. In particular, so far as we know, there has
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been little effort at adjusting the nature of the weak-model-
stream, or of the enrichment and uniformity-forcing
algorithms, based on specifics of any particular problem
being considered. In fact, as discussed above, the results
reported on here used a single program with essentially no
adjustment of parameters from problem to problem. This
may well have been the difficulty with respect to the Pima
diabetes study. It will be a focus of further study.
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