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Abstract 

This research investigates the urban climate of Las Vegas and establishes long-

term trends relative to the regional climate in an attempt to identify climate disturbances 

strictly related to urban growth. An experimental surface station network (DRI-UHI) of 

low-cost surface temperature (T2m) and relative humidity (RH) sensors were designed to 

cover under-sampled low-intensity residential urban areas, as well as complement the in-

city and surrounding rural areas. In addition to the analysis of the surface station data, 

high-resolution gridded data products (GDPs) from Daymet (1km) and PRISM (800 m) 

and results from numerical simulations were used to further characterize the Las Vegas 

climate trends. The Weather Research and Forecasting (WRF) model was coupled with 

three different models: the Noah Land Surface Model (LSM) and a single- and multi-

layer urban canopy model (UCM) to assess the urban related climate disturbances; as 

well as the model sensitivity and ability to characterize diurnal variability and rural/urban 

thermal contrasts. The simulations consisted of 1 km grid size for five, one month-long 

hindcast simulations during November of 2012: (i) using the Noah LSM without UCM 

treatment, (ii) same as (i) with a single-layer UCM (UCM1), (iii) same as (i) with a multi-

layer UCM (UCM2), (iv) removing the City of Las Vegas (NC) and replacing it with 

predominant land cover (shrub), and (v) same as (ii) with increasing the albedo of 

rooftops from 0.20 to 0.65 as a potential adaptation scenario known as “white roofing”. 

T2m long-term trends showed a regional warming of minimum temperatures 

(Tmin) and negligible trends in maximum temperatures (Tmax). By isolating the regional 

temperature trends, an observed urban heat island (UHI) of ~1.63°C was identified as 
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well as a daytime urban cool island (UCI) of ~0.15°C. GDPs agree with temperature 

trends but tend to underpredict UHI intensity by ~1.05°C. The WRF-UCM showed strong 

correlations with observed T2m (0.85 < ρ < 0.95) and vapor pressure (ea; 0.83 < ρ < 

0.88), and moderate-to-strong correlations for RH (0.64 < ρ < 0.81) at the 95% 

confidence level. UCM1 shows the best skill and adequately simulates most of the UHI 

and UCI observed characteristics. Differences of LSM, UCM1, and UCM2 minus NC 

show simulated effects of warmer in-city Tmin for LSM and UCM2, and cooler in-city 

Tmax for UCM1 and UCM2. Finally, the white roofing scenario for Las Vegas was not 

found to significantly impact the UHI effect but has the potential to reduce daytime 

temperature by 1°-2°C.  
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1. Introduction 

1.1 Urban Climate 

The City of Las Vegas has grown extensively in population and size over the last 

five decades (Figure 1). Changing the natural land use/land cover (LULC) into a city 

environment can have an impact on air quality, local climate, and weather (Taha, 1997). 

These impacts further include socioeconomic and health factors (Huang et al., 2011). 

Urban development generally causes temperatures to increase due to greater heat storage 

by impervious surfaces leading to a phenomenon known as the urban heat island (UHI) 

effect. The UHI is a common phenomenon among large cities as surface areas with large 

amounts of impervious materials absorb heat during the daytime that is later released 

during nighttime/early morning hours (Oke and Maxwell, 1975). This characterizes a 

warmer urban environment relative to the suburban and rural surroundings that is most 

significant during the nighttime and early morning (Fast et al., 2005; Kim and Baik, 

2005; Guhathakurta and Gober, 2010). 

Extreme temperatures from heat waves can be enhanced by the UHI, making 

residents vulnerable to heat exhaustion. Along with higher dewpoint temperatures (Td), 

increases in air temperature can affect the human thermal comfort. The human body can 

become restricted from evaporating moisture (i.e. sweat) to cool itself as the environment 

reaches its threshold to absorb moisture (Kunkel et al., 1996). Wind speeds are also 

influenced by the urban environment. Surface roughness of urban materials and building 

structures can slow down wind speeds (Kim and Kim, 2009; Yushkov et al., 2009). 

Slower wind speeds also favor an increase in anthropogenic emissions by reducing 
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turbulent mixing processes that are responsible for the dispersion of pollutants (Allwine 

and Whiteman, 1988). Furthermore, reduced winds can slow down the transport of 

warmer air allowing the UHI to persist for a longer period of time. 

 

 

Fig. 1. The metropolitan population of Las Vegas, Nevada provided by the US Census 

Bureau. Source: census.gov. 

 

The urban cool island (UCI) is an inverse effect of the UHI in which rural arid 

surrounding environments tend to be warmer than the urban area. The UCI is most 

significant during the daytime. Contributions that influence the UCI include: enhanced 

evapotranspiration (ET) from foreign vegetation which includes turf grass from lawns 

and golf courses (Hart and Sailor, 2009; Mendonca, 2009; Li et al., 2011; Linde ́n, 2011; 

Middel et al., 2012); evaporative cooling from open water surfaces such as artificial 

ponds and lakes within or nearby the city (Mendonca, 2009; Linde ́n, 2011); urban 

shading from buildings and trees (Hart and Sailor, 2009; Linde ́n, 2011); and surfaces 
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characterized by higher albedo (Mendonca, 2009; Akbari et al., 2012). Surfaces shaded 

by urban features tend to absorb less solar energy due to the density of buildings, trees, 

and other urban structures (Hart and Sailor, 2009). 

Urban environments impact all the components of the surface energy balance 

(SEB) which include: shortwave and longwave radiation exchanges, latent and sensible 

heat fluxes, and albedo (Oke, 1987). A difference in albedo between urban surfaces 

affects the amount of absorbed incoming solar radiation. For example, brighter urban 

objects (e.g., light concrete surfaces and white roofs) reflect more light than darker 

objects (e.g., dark pavement and ponds). Urban geometry can be of importance as large 

buildings increase the UHI when warm air is exerted by these buildings along with paved 

streets and anthropogenic activities (Wallace and Hobbs, 2006). The limited spacing 

between houses and buildings has a tendency to trap outgoing radiation, and further add 

to the cities warming (Aguado and Burt, 2007). Furthermore, tall buildings can create 

shading during the daylight hours and reduce heat storage resulting in less upwelling 

longwave radiation during the night (Roberts et al., 2006). However, estimating the net 

thermal effect of buildings can be challenging and may vary depending on the urban 

orientation, city geometry, and surface characteristics. Fast et al. (2005) showed from 

observations during the summer of 2001 that downtown Phoenix, AZ, tends to be warmer 

outside and to the west of the downtown central core. 

1.2 UHI Impacts 

Previous studies have shown that precipitation patterns can be modulated as a 

warmer city creates more buoyant boundary layer parcels fostering rising motions, thus 
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increasing the likelihood for the development of convection and precipitation downwind 

of a city (Van Heerwaarden and Vila ̀-Guerau De Arellano, 2008). Additionally, urban 

pollution increases aerosol loadings that can serve as condensation nuclei and reduce the 

intensity and magnitude of downwind precipitation (Changnon, 1981; Van Den Heever 

and Cotton, 2007). 

Due to the climate perturbations and human health threats associated with the 

UHI and the rapid growth of cities, it is necessary for cities to have a plan for adaptation 

and mitigation (NCA, 2013). Mitigation and adaptation strategies can help decrease 

pollution concentrations while cooling strategies such as white roofing (Jacobson and 

Ten Hoeve, 2012), cool paving (Li et al., 2013), and increasing the green fraction (Smith 

and Roebber, 2011) can help reduce the UHI impacts. Using a computer model, Jacobson 

and Ten Hoeve (2012) simulated a white roofing scenario for the globe. Results totaled a 

population-weighted cooling of 0.02°C, however, global temperatures still continued to 

rise. Li et al. (2013) investigated the hydraulic and thermal performances of cool 

pavements showing that interlocking cool pavers infiltrate 0.4 cm s
-1 

more than non-

interlocking cool pavers. This helps prevent intense runoff and cools the surface through 

diffuse evaporation. In addition, the albedo of cool pavements helped reduce pavement 

temperatures by ~15-35°C depending on the moisture infiltrated. Smith and Roebber 

(2011) modeled a green roofing summer scenario for Chicago, Illinois, and showed that 

vegetation on rooftops increased ET and albedo to cool the urban environment by ~3°C. 

Other green strategies suggest building more parks and planting more trees (Kloss and 

Calarusse, 2006; EPA, 2008; NCA, 2013). Cooling the urban environment will lead to 
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less usage of air conditioning thus reducing electrical consumption (Shorr et al., 2009). 

For example, the Houston Advanced Research Center (HARC) has taken initiative on 

using several of the mentioned methods to mitigate the UHI in Dallas, Texas. The Dallas 

Sustainable Skyline Initiative is a project of the US Environmental Protection Agency in 

which mitigation activities include: planting trees in hotspots of the city; installing cool 

roofs (white roofs and green roofs); and using cool pavements to increase albedo and 

minimize stormwater runoff (HARC, 2009). HARC describes how the benefits of these 

strategies outweigh the costs based on the potential amount of energy it can save.    

The UHI can affect water demand as warmer temperatures result in higher 

evaporation and ET rates, and therefore providing the need to increase irrigation water 

requirements (Gober et al., 2010). Thus, further stressing the effects of episodic droughts 

and frequency of heat waves. The severe drought in North-Central Texas exacerbated 

nighttime UHI in Dallas as shown by Winguth and Kelp (2013), who recorded a UHI of 

5.4°C during severe drought and heat wave activity on July 2011. In the late morning, a 

UCI magnitude of 2.3°C was recorded due to lower soil moisture content in the rural 

regions. Of note is that the UHI combined with drought and climate change in the 

Southwest can degrade the quality of water through dust storm intrusions, and impact 

urban water supplies by accelerating the evaporation process (Earman et al., 2006; Reheis 

and Urban, 2011; Yates et al., 2013). 

Alghannam and Al-Qahtnai (2012) examined T2m and relative humidity (RH) in 

the Al Hofuf region of Saudi Arabia. They argued that larger RH differences between 

urban and rural areas (ΔRH) can exhibit less UHI intensity from an outcome of more 
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vegetation coverage in the rural district. In the arid/semi-arid climate of Phoenix, Middel 

et al. (2012) investigated various LULC characteristics in the city during 2 summer days 

in 2005 using a Local-Scale Urban Meteorological Parameterization Scheme. They found 

that the LULC strongly influenced the time of negative sensible heat flux at night based 

on the surface heat storage. Impervious surfaces containing high heat storage capacities 

delayed positive-to-negative sensible heat transitions up to 3 hours, while vegetated areas 

accelerated them by 2 hours. 

1.3 UHI and UCI Temporal Variability 

The UHI intensity depends on the urban location, climate regime, synoptic 

patterns, and season (Kimura and Takahashi, 1991; Kim and Baik, 2005; Alghannam and 

Al-Qahtnai, 2012). UHI tends to be stronger during the summertime as larger amounts of 

solar radiation allows more heat to be absorbed and released by urban structures (Fast et 

al., 2005; Svoma and Brazel, 2010). The winter poses the opposite effect having less 

solar radiation and resulting in weaker UHI activity (Svoma and Brazel, 2010). Clear 

skies and light winds during high-pressure systems favor stronger UHIs and UCIs (Oke, 

1987), while low-pressure systems associated with stronger winds, increased cloudiness, 

and precipitation act to suppress the UHI and UCI effects (Kim and Baik, 2005). 

1.4 Observing the UHI and UCI 

Hansen et al. (2001) analyzed global surface temperatures throughout the US 

using the Goddard Institute for Space Studies analysis and the U.S. Historical 

Climatology Network records. Since the start of the 20
th

 century, they found warming 

from 1900-1940 and 1965-2000, while 1940-1965 corresponded as a cooling period. 
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They argued that aerosol forcing was at its highest during 1940-1965 due to massive 

amounts of fossil fuel burning. This could have contributed to the slight global cooling of 

-0.1°C (Hansen et al., 2001). When conducting analysis of the UHI, it is fundamental to 

examine and separate the trends in the records related to the local, regional, and global 

trends. On a global scale, it is argued that cities could have negligible effects (Hansen et 

al. 2001), but city temperature related trends are influence by regional and global trends. 

However, it is challenging to separate such influences due to the large variation of city 

LULC characteristics (Hansen et al., 2001; Cai and Kalnay, 2003). 

The difficulties of studying urban climate are generally based on data quality and 

availability of sites that adequately represent in-city characteristics. Some observational 

networks lack rigorous quality assurance and quality control (QA/QC) protocols and are 

not adequately design to highly contrasting surface characteristics of city landscapes. The 

complex terrain inside and surrounding an urban structure further limits UHI 

characterization. Hence, adequate distinction of global and regional temperature trends 

(including interdecadal-to-decadal climate variation) from changes attributed to LULC 

and SEB alterations is a challenging task. 

Remote sensing tools can be very valuable to characterize urban temperature 

environments. Jin (2012) used skin temperature from remote sensing platforms to 

measure the UHI in Beijing and New York. Her results showed diurnal and seasonal 

variations of maximum UHI in the daytime and during summer. Since this was based on 

skin temperature, these conclusions pertained more to the estimated heat storage of 

heterogeneous surfaces. Even though observations from remote sensing are more 
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accurate during clear sky conditions, they can be very valuable to characterize the highly 

contrasting thermal differences within the city. 

Xian (2008) used Landsat satellite imagery to distinguish surface parameters for 

Seattle, Tampa Bay, and Las Vegas. Long-term climate observation records (50-years) 

measuring T2m were also examined to clarify regional climate conditions. Monthly data 

from these records showed a weak increase in mean temperatures (Tmean) and a moderate 

increase in minimum temperatures (Tmin) for Tampa Bay and Seattle. Las Vegas showed 

the strongest increase for Tmin at 0.69°C/decade with a moderate increase in Tmean. 

Landsat temperatures were separated into 4 categories of LULC based on the percentage 

of impervious surface per pixel. Urban-rural temperature differences showed warmer 

temperatures with greater percentages of impervious surface area. Las Vegas is the only 

city to show negative differences, which were evident for impervious pixels between 10-

60%. Similar results of surface temperature in correlation with the amount of impervious 

surfaces are further discussed in Xian and Crane (2006) for the study areas of Las Vegas 

and Tampa Bay.  

1.5 Urban Canopy Models 

The urban canopy model (UCM) is arising as a fundamental tool for urban 

weather and climate studies. Typically, the UCM accounts for processes and city 

geometry, including: canyon orientations regarding the shading and radiative reflectivity 

inside the canyon; canopy layer wind profile; the heat transfer of roof, walls, and roads; 

diurnal changes of the solar azimuth angle oriented to the canyon; anthropogenic heat; 

and the thin bucket model for hydrological processes (Kusaka and Kimura, 2004). The 
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UCM coupled with the Weather Research and Forecasting (WRF) model and Noah Land 

Surface Model (LSM) takes into account the physics and dynamics of the urban structure. 

UCMs have been used for many urban studies associated with large coastal cities 

such as Tokyo (Chen et al., 2011; Ikeda and Kusaka, 2010; Kusaka and Kimura, 2004), 

New York (Holt and Pullen, 2007), Houston (Chen et al., 2004; Lee et al., 2011), Beijing 

(Miao et al., 2009), and Taiwan (Lin et al., 2008) among several other urban areas. 

Kusaka et al (2001) showed that the UCM had a consistent diurnal energy budget for 

roofs, roads, and walls when compared against observations.  

Two main UCM categories have been developments: the single-layer (Kusaka et 

al., 2001) and the multi-layer urban canopy (Ca et al., 1999; Kondo et al., 2005). The 

difference between the single- and multi-layer UCMs is the 2-dimensional and 3-

dimensional urban canyon geometries, respectively (Kusaka et al., 2001). Although the 

urban geometry of buildings, streets, and walls have different dimensions, both models 

have a 3-dimensional radiation treatment due to the canyon orientation and the diurnal 

variations of the solar azimuth angle (Kusaka et al., 2001; Kusaka and Kimura, 2004). 

According to the previously mentioned studies, the UHI is well simulated by both UCMs. 

However, nighttime UHIs were generally better simulated than daytime UHIs (Holt and 

Pullen, 2007; Lin et al., 2008; Miao et al., 2009).  

According to Kusaka et al. (2001) study in Tokyo, single- and multi-layer UCM 

sensitivity for heat storage differed a few hours after sunset and before sunrise by 20 and 

29%, respectively. They found that the multi-layer UCM produced a greater heat storage 

capacity than the single-layer UCM. Miao et al. (2009) showed that UCM simulations for 
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the Beijing Valley adequately represented the main diurnal and spatial patterns associated 

with the UHI, even with the complex interactions of mountain-valley circulations. He 

concluded that canopy layer parameters (e.g., temperature and wind speed) for the UCM 

performed better than the surface parameters (e.g., T2m and 10 m wind speed). Lin et al. 

(2008) simulations for Taiwan showed underestimates of T2m by 1.7°C from 1100-1600 

LST, while overestimates of 1.0°-1.3°C occurred between 0500-0700 LST for the single-

layer UCM. Lee et al. (2011) conducted a sensitivity study using a three model 

configuration: the Noah-LSM, a modified LSM, and the single-layer UCM. When 

evaluating against the observations, the UCM performed better than the other two 

models. The Noah-LSM overestimated sensible heat up to 200 W m
-2

, which not only 

affected the T2m warm-bias by ~3.6°C, but also the planetary boundary layer (PBL) 

conditions. 

A few simulated studies have been performed in the semi-arid climate of Salt 

Lake City, Utah to evaluate and model anthropogenic activity (Tewari et al., 2011; 

Nehrkorn et al., 2013). Tewari et al. (2011) modeled the transport and dispersion of urban 

pollutants by coupling the WRF to the Noah/UCM and using WRF without UCM 

treatment. For T2m, the WRF and WRF-UCM displayed similar values except for in the 

industrial/commercial zone where WRF-UCM performed better. However, the models 

showed some disagreements from the observations which was theorized as a prelude to 

the urban parameterizations of the model. Similar conclusions were discussed in 

Nehrkorn et al. (2013) where they used WRF and WRF-UCM to simulate urban CO2 on a 

local and mesoscale level. Error statistics were improved for CO2 test sites when using 
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the WRF-UCM. The diurnal cycle of T2m was much more accurate during the nighttime 

and morning with the WRF-UCM. However, Td exhibited a larger bias with WRF-UCM 

and provided inconclusive results. Although simulated RH was accurate against the 

observations, it was noted that the function of T2m had the strongest influence on these 

results. Therefore, the moisture simulations remained to show inaccuracies. The primary 

idea from these studies in Salt Lake City insist that adjusting the urban parameters would 

be needed to accurately depict the local flow, which can help decrease the biases of other 

meteorological variables to forecast realistic values.  

1.6 Statement of Work 

This work was funded by an NSF-EPSCoR research project aiming to initiate and 

explore methodologies for water vulnerability studies in the City of Las Vegas and 

surrounding areas under changing climate. An important task in this project was to 

characterize the Las Vegas current climate and observed trends. The goal of this thesis is 

to distinguish the Las Vegas climate and its relationship to urban growth, as well as to 

test new and alternative observational and modeling tools to address the following 

overarching research questions: i) Are there any observable and discernable differences 

between the urban temperature trends from those observed in the regional/global scale? 

ii) How are diurnal temperatures changing in response to a growing arid/semi-arid city? 

To address these questions and to characterize the urban climate in Las Vegas we 

used different tools including surface stations (historical and from a specially design field 

campaign), high-resolution gridded data products (GDPs), and fine scale atmospheric 

modeling simulations with UCM treatment. Chapter 2 provides details of these tools and 
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the various methodologies of data analysis implemented throughout this study. Chapter 3 

reports the results based on surface station observations, while Chapter 4 shows the 

analysis of the atmospheric modeling component using a single- and multi-layer UCM 

coupled with the WRF-LSM. The final section (Chapter 5) summarizes, integrates, and 

discusses the research findings and proposes future areas of research derived from this 

study. 

2. Data and Methodology 

2.1 Surface Station Networks 

Significant efforts to collect surface station observations in the Las Vegas area 

was performed as part of this research. A total of 49 sites from six different networks 

were used for this study, which include: the Community Environmental Monitoring 

Program (CEMP; www.wrcc.dri.edu), National Weather Service (NWS; 

www.ncdc.noaa.gov), Nevada Climate-ecohydrological Assessment Network (NevCAN; 

sensor.nevada.edu), Weather Underground (WU; www.wunderground.com), the Remote 

Automated Weather Station network (RAWS; raws.dri.edu), and our own DRI-Urban 

Heat Island surface station network (DRI-UHI). General descriptions of these networks 

follow: 

CEMP: The CEMP network is operated by the Desert Research Institute as part of 

a Department of Energy program designed to monitor regional environmental conditions, 

and radiation detection associated with desert nuclear test sites. Four stations from CEMP 
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were analyzed: three urban stations located in Las Vegas, Henderson, and Boulder City; 

and a fourth station located NNW outside of Las Vegas in the Indian Springs area. 

NWS: The NWS network provides historical records for airport stations. 

McCarran Airport has records dating back to 1948. During QA/QC procedures it was 

noted that McCarran had most of the 1988 data missing from the records. The data was 

therefore reprimanded, and the year 1988 was completely removed from the McCarran 

analysis. Nellis Air Force Base has historical data to 1928, but records dated that far back 

were too inconsistent due to the large time gaps per measurement (up to 15 hours). In 

2000, the Nellis station was moved ~2 km south and kept within the confines of the base. 

It was then moved back to the original location in 2005. The surface station at Henderson 

Executive Airport was established in 2004 before it was moved ~875 m north in 2006 

where its current location still stands. The NWS network provides a few rural sites 

outside Las Vegas. However, Desert Rock Airport (located ~75 km NW of Las Vegas) is 

the only rural station that continues to collect data with a record over 30 years.  

 NevCAN: NevCAN is part of a climate project by the University of Nevada, 

Reno; University of Nevada, Las Vegas; and the Desert Research Institute in conjunction 

with land owner agencies on efforts for long-term climate assessments with regards to the 

impacts of ecological and hydrological processes (Mensing et al., 2013). There are two 

transects occupied by the NevCAN network, each are located on the Snake Range (along 

the western Utah border) and the Sheep Range (~35 km NNW of Las Vegas). Four 

stations were selected in the Sheep Range site for analysis. Although NevCAN stations 
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have only been recording for a few years (since October 2011), they have one of the most 

robust and consistent datasets available to the public.  

WU: WU stations are self-installed by scientists and amateur weather enthusiasts 

with purchase from the company’s website (http://www.weatherunderground/personal-

weather-station). The WU network was created to provide meteorologists with more 

weather data outside of airports. WU has the world’s largest network of personal weather 

stations that are monitored and updated continually on their website. From the data of 23 

WU stations collected, only 12 were used for the analysis. WU stations were rejected due 

to insufficient values (e.g. inordinate amount of missing records), and several stations in 

the WU database were uploaded from other networks that were already chosen for this 

study. All WU stations chosen for this study are located in or around residential sites 

within the City of Las Vegas. 

RAWS: RAWS stations are in conjunction with the Desert Research Institute and 

the Western Regional Climate Center (WRCC). The data is available to the public in 

which it is collected, stored, and forwarded to satellite before returning to the National 

Interagency Fire Center in Boise, Idaho. RAWS data is used by fire and environmental 

managers to monitor fuels and conditions and predict fire behavior. Four RAWS stations 

were analyzed for this study. Similar to the NevCAN network, all the RAWS stations 

were located outside the city.  

 DRI-UHI: For this study, we deployed a network of 20 low-cost T2m and RH 

HOBO sensors to improve the spatial coverage inside and outside the City of Las Vegas. 

Careful planning went into selecting the sites and setting up the network to improve the 
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spatial distribution of existing surface station networks, and to better characterize the 

UHI from under-sampled land use categories. Eleven stations were installed in the front 

and backyards of residencies employed by UNLV and DRI who volunteered to setup the 

sensors at their homes. Seven more sensors were installed in Clark County School 

District schools and school maintenance facilities. Two stations were installed in the 

middle of golf courses: Wildhorse Golf Course located in east-central Las Vegas and 

Summerlin Golf Course located in NE Las Vegas.   

Table 1. Observational networks and recording time increments. 

Network Time Increments 

DRI-UHI 15 minutes 

CEMP 10 minutes 

NWS 1 hour 

NevCAN 1 minute 

WU 5, 10, 15, 30 minutes 

RAWS 1 hour 

  

    On July 2012 and following siting and setup recommendations, the DRI-UHI 

T2m/RH sensors were installed within a solar radiation shield to avoid direct sunlight 

(Appendix B). When possible, the sensors were placed in shaded areas to further avoid 

direct solar radiation in order to properly measure the temperature and RH of the ambient 

air. The methods for setting up the DRI-UHI stations followed Watts (2009) guidelines. 

     Since observations were recorded in each site by a data logger, the sampling time 

increments were set to 15 minutes to maximize recording sampling and to minimize visits 

to the sites. The DRI-UHI data was downloaded manually every six months, during 2 

years. With every visit to these locations, we performed basic quality assurance protocols 
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along with maintenance and cleaning of equipment. Due to funding constrains, the 

sampling time increment was recently reset to hourly measurements. Depending on 

further resources, we hope to maintain the network for at least three more years. Data 

collected from this network is made available to the public and other scientific groups on 

the Nevada Climate Change Portal (sensor.nevada.edu). 

Urban climate studies can be easily skewed due to stations located near 

impervious surfaces, influences of nearby equipment generating heat, 

moving/replacement of sites, technical changes in the sensors, and short and missing 

record periods (Watts, 2009). Thorough QA/QC protocols were carried out to clean the 

data from all surface station networks, and to create a robust and solid database for UHI 

characterization in time and space. Only sites with hourly or smaller time increments 

were kept for the analysis (Table 1). Also, metadata and LULC attributes and footprints 

of station sites were recorded to composite stations by their dominant footprint 

characteristics. Figure 2 shows a map of all the analyzed surface networks for this study, 

while Appendix A shows a summary of each station’s characteristics. 
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Fig. 2. (a) Spatial distribution of analyzed stations. Networks are classified by shapes and 

total 49 stations. (b) Elevation across the yellow line in (a) shows a 434 m east-west 

difference through Las Vegas. Source: Google Earth.  

 

2.2 Gridded Data Products 

  Two climate GDPs were tested for spatial temperature analyses: The Parameter-

elevation Regression on Independent Slopes Model with 800 m grid size of monthly data 

(PRISM 800 m; Daly et al., 2008) and Daymet 1 km grid size of daily data (Thornton et 

al., 1997). For the purpose of this thesis, Daymet daily data was aggregated to monthly 
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means. These gridded datasets integrate data assimilations/interpolation procedures with 

topography, temperature, and other meteorological variables (Scully, 2010). GDPs use 

surface station data that is weighted from regression analysis in which gridded values are 

determined by the distance from the analyzed grid cell (Daly, 2006). Hence, a few of the 

surface observation stations analyzed in this study (e.g. NWS and RAWS) are used in the 

GDPs interpolation methods. The goals were to evaluate whether PRISM 800 m and 

Daymet are useful in detecting urban signals, and if their spatial distribution adds value to 

urban climate studies.   

Figure 3 displays a map with three regions of interest over and around the city to 

represent the Las Vegas Valley. The red rectangle is a representation of the dense 

downtown structure of Las Vegas while the green rectangle represents more suburban 

influence within the city. The blue rectangle is a representation of the rural region outside 

of Las Vegas. Of note is that Daymet data is available as far back as 1980, while PRISM 

800 m had estimates back to 1895. Therefore, monthly trends from January 1980-

December 2011 were analyzed for Tmax and Tmin. Residuals (i.e. UHI/UCI estimates) 

were calculated by averaging the output of T2m from the core (red box) and outer-core 

(green box) areas before subtracting by the output of the rural domain (blue box). Of note 

is that this analysis was not setup for the data of the customized domains to overlap each 

other. However, with the predetermined grid points provided by the GDPs, there may be 

small insignificant overlaps in the corner and edges of the domains.  
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Fig. 3. A Landsat image of Las Vegas containing three rectangles covering the city core 

(red), outer-core (green), and rural (blue) boundaries for Daymet and PRISM 800 m 

analysis.   

 

2.3 Long-Term Trend Detection 

    Las Vegas has been one of the fastest growing cities in the United States through 

the last decade taking in over 650,000 residencies since 2000 (source: www.census.gov; 

Figure 1) with the persistence of urban expansion. Figure 4 shows Landsat imagery 

highlighting the urban expansion of Las Vegas from 1973 through 2006 provided by the 

United Nations Environment Programme (UNEP, 2014). Note the spatial patterns of 

increased asphalt and vegetation.  



20 
 

 

Fig. 4. Satellite composites of the expansion (urban footprint) of the City of Las Vegas. 

From left to right: 13 May 1973, 03 May 2000, and 21 February 2006. Vegetation is 

highlighted in green. This figure was adapted from UNEP (2014). 

 

McCarran and Nellis airports have the best historical records available for Las 

Vegas (Appendix A). These two NWS sites are the only urban stations in Las Vegas that 

exceed a 30-year climatology record. Trends from December 1949-November 2011 for 

Tmax, Tmean, and Tmin were selected for long-term analyses. Additionally, 5- and 10-year 

moving averages were estimated to smooth out interdecadal-to-decadal variability. 

Seasonal analysis was performed by aggregating the months as follow: winter (DJF), 

spring (MAM), summer (JJA), and fall (SON). Monthly T2m anomalies were calculated 

as follow:  

Ta = μij - X̅i    (Equation 1), 

where Ta is the temperature anomaly, μ is the temperature average, and X̅ is the 

climatological average of temperature. The indices of i and j represent the year and 

month, respectively.  
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Changes in the diurnal cycle of temperature and humidity were also estimated 

using hourly records from McCarran and Nellis. Diurnal patterns have been used to 

characterize local changes in climate (Scheitlin and Dixon, 2010; Svoma and Brazel, 

2010; Middel et al., 2012). Computing the diurnal cycle required averaging temperature 

data for each hour in a specified timeframe through a 24-hour period. To see how diurnal 

patterns were behaving through time, the cycles were separated into 10-year periods from 

1950-2009. Hence, there were five decades of data analyzed for the stations of McCarran 

and Nellis to establish the occurring changes in nighttime and daytime patterns of 

temperature. Diurnal analyses were computed by season. 

To remove regional climate trends from the local city-related trends, statewide 

averages for Tmax and Tmin were selected for Nevada (NV) and Arizona (AZ). Statewide 

data was obtained using Westmap (http://www.cefa.dri.edu/Westmap/) provided by the 

WRCC, where averages were computed from the PRISM 4 km data. Tmax and Tmin 

statewide trends were estimated by subtracting the decades of 2000-2009 minus 1950-

1959 to represent the regional changes. For robustness and consistency, averages during 

intermediate decades were also evaluated. The average decadal differences between city-

estimated trends and regional statewide trends were calculated to retrieve residuals. Thus, 

positive and negative city residuals were a representation of the UHI and UCI magnitude, 

respectively. 

A similar approach was implemented while analyzing GDPs. However, instead of 

using statewide averages to compute a city residual, the rural boundary average (Fig. 3) 
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was subtracted from the average output between the city core and outer-core boundaries 

to retrieve a residual value. GDP residuals were estimated through the 1980-2011 period. 

Moisture parameters of RH, Td, dewpoint depression (Ko), vapor pressure (ea), 

and vapor pressure deficit (VPD) were examined for long-term trends (December 1949-

November 2011) from the McCarran and Nellis stations. These parameters were used to 

measure the near surface humidity and characterize the long-term interannual variability 

of wet and dry periods. More importantly, moisture variables drive UCI so it is of value 

to assess the behavior of these parameters. 

RH is defined as a ratio of ea over the saturation vapor pressure (es), and is a 

representation of the amount of moisture in the air versus the amount of moisture the air 

can have before saturation. Hence, if ea and es were the same value, the RH would be 

100% and the air would be completely saturated. Ko simply measures moisture by taking 

the difference between temperature and Td (i.e. T2m - Td). In other words, smaller Ko 

values signify greater moisture which in turn compliments larger RH. The ea is a function 

of Td and was calculated using the equation from Bolton (1980): 

   ea = 6.11 ∙ 10
7.5Td / (Td + 237.3)

   (Equation 2). 

VPD is the deficit between ea and es (i.e. es – ea) which is larger when RH and Ko are low. 

The VPD further implies how dry or moist the air is by larger or smaller differences in 

vapor pressure, respectively. 

 An advance drought index created by McEvoy et al. (2014) was used to examine 

the role of regional droughts relative to observed changes in Las Vegas surface 
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temperature and humidity parameters. The Evaporative Demand Drought Index (EDDI) 

follows the concepts of popular drought indices (e.g. Standardized Precipitation Index) 

while accounting for important parameters that affect evaporation and ET. For further 

validation of the EDDI, the interannual shifts of the Pacific Decadal Oscillation (PDO) 

and Lake Mead levels were also used to detect the severity of drought. The PDO detects 

warm and cold sea surface temperatures in the Pacific Ocean that impact the global 

climate. Warm (Positive) phases of the PDO are associated with above average 

precipitation, while cold (negative) phases permit below average precipitation in the 

Southwestern US. PDO data was collected from the Joint Institute for the Study of 

Atmospheric and Ocean website: jisao.washington.edu.      

2.4 Land Use Land Cover (LULC) 

Surface stations were classified by the surrounding land use using the 2006 

National Land Cover Database (NLCD 2006) at 1 km grid size (Fig. 5). For each grid the 

dominant LULC category (i.e. the LULC category covering the largest percentage in a 

pixel) was selected as the characterizing LULC (Wickham et al., 2013). Appendix C 

shows the LULC categories for all analyzed sites. These categories were further 

evaluated and verified by using recent Landsat Imagery (Fig. 2), and by a direct survey 

made during the DRI-UHI field campaign. 
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Fig. 5. LULC map of the Las Vegas region provided by the 2006 NLCD. Networks are 

classified by shapes: DRI-UHI (circle), NWS (triangle), CEMP (square), NevCAN (star), 

RAWS (x), and WU (diamond). The LULC are classified by the color grids with the 

major categories labeled in the legend.  

 

High-, medium-, and low-intensity pixels are representations of the urban 

development containing impervious surfaces. The high-intensity areas are located in 

downtown Las Vegas along the strip and around McCarran Airport. Total impervious 

coverage for high-intensity areas approximate between 80-100% (Wickham et al., 2013). 

Medium- and low-intensity areas are primarily attributed to residential areas that contain 

some vegetation with 50-79% and 20-49% impervious coverage, respectively (Wickham 

et al., 2013). Barren areas are composed of bare desert surfaces that contain < 15% 

vegetation. There are barren sites that are associated with in-city stations primarily along 

the northern perimeter of Las Vegas. The shrub pixels make up most of the rural domain 

around Las Vegas and appear to have a slightly darker tint than the barren soil under 
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Landsat visible imagery (Fig. 3). Shrub areas contain moderately more vegetation than 

barren pixels according to the NLCD 2006 descriptions provided by Wickham et al. 

(2013). Evergreen forest pixels are located at higher elevations in the Spring Mountains 

and Sheep Range (Las Vegas study area described further in Chapter 2.5). These areas 

are governed by trees exceeding 5 m with canopy coverage greater than 20% (Wickham 

et al., 2013). Finally, the open water pixels highlight Lake Mead and are categorized to 

contain less than 25% coverage of vegetation or soil.   

2.5 Surface Station Elevation Differences and Correction Factors 

 This section describes the efforts for temperature corrections due to elevation 

differences across the Las Vegas Valley. As displayed in Figure 2b, the elevation within 

the city varies ~400 m in the west-east direction. Las Vegas is part of the Mojave Desert 

and is surrounded by various mountain ranges. To the west are the Spring Mountains, 

which has a north-south transect that creates the southern boundary of the Great Basin. 

As mentioned before, the Sheep Range covers the range north of Las Vegas. The valley is 

also surrounded by the Frenchman Mountain located to the east, and the McCullough 

Range located to the south. 

To adjust T2m from the complexity of the desert terrain for the purpose of 

estimating the UHI, the mean environmental lapse rate (Γe= 6°C
1000 m⁄ ) was used to 

correct T2m to a reference level. The lowest elevated station amongst all networks was 

Las Vegas High School (534 m) from the DRI-UHI network. Las Vegas High School was 

used as a base station to adjust the higher elevated areas down to its elevation level. The 
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equation implemented for this method is termed the “correction factor” (CF). The 

equation for CF is as follows: 

    CF= (zi-z) ∙ Γe     (Equation 3), 

where zi is the elevation of the observed station, z is the elevation of Las Vegas High 

School, and Γe is the environmental lapse rate. After the CF was calculated, it was added 

to the original temperature for each station, thus referencing the T2m at the altitude of 

Las Vegas High School. Once the new T2m values were established for each station, the 

UHI magnitude was calculated by averaging the station temperatures located in urban 

intensity sites in accordance to the updated LULC (Appendix C), thereafter subtracting 

them by the average temperature of the rural stations (i.e. stations with shrub LULC). 

Stations located in the evergreen forest were ignored in this process, as these sites do not 

represent the footprint of the shrub land that existed prior to urban development. The 

period analyzed for the CF method was from August 2012 to April 2013. This particular 

period was selected in order to implement the full temporal dataset collected from DRI-

UHI. Further validity of this method was tested by observing the differences of UHI for 

colder months (January to February 2013) versus warmer months (March to April 2013). 

RH and other moisture variables were not measured in the CF analysis as they are more 

complex in their variation in space and altitude. 

A second strategy was performed by estimating the standard z-scores as follow: 

     z =  
x−μ

σ
    (Equation 4),  
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where x is the monthly data, and μ and σ are the mean and standard deviation, 

respectively, for each month of the year. Monthly calculations for Equation 4 were done 

to reduce errors from the NWS station dataset by computing the standard deviations from 

the mean. Data was analyzed from January 1980-December 2011 for the in-city stations 

of McCarran and Nellis, and the rural site of Desert Rock. Linear regression was used to 

estimate T2m trend values in the z-score. In-city trends from McCarran and Nellis were 

subtracted by rural trends from Desert Rock to estimate the overall UHI/UCI at Tmax and 

Tmin. Furthermore, RH values were calculated from Equation 4 before using the ΔRH 

method from Alghannam and Al-Qahtnai (2012). As described in Chapter 1, this method 

was used as a reference to the behavior of RH under the circumstances of UHI and LULC 

influences. ΔRH is simply the urban RH minus the rural RH. RHmax and RHmin were used 

to test any correlated behavior of Tmin and Tmax, respectively. Further examination was 

done for ea by subtracting the urban ea from the rural ea. This was referenced as Δea, and 

it is executed to remove the T2m impact and focus strictly on the moisture content. Of 

note is that Equation 4 was calculated for ea prior to solving Δea, and further used for the 

GDP T2m analysis. 

2.6 Urban Canopy Modeling 

The WRF model is a numerical mesoscale model used for both operational 

forecasting and atmospheric research (Skamarock et al., 2005; NCAR, 2013). The UCM 

is a sub-model within WRF which parameterizes the energy of the urban canyon and 

water balances that are coupled to the WRF model. In other words, it accounts for 

radiation and hydrological principles of an urban setting (Kusaka and Kimura, 2004), 
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including: the shadowing and albedo from urban infrastructure; road orientation and 

diurnal changes from the solar azimuth angle; the exponential wind profile in the canopy 

layer; a multi-layer heat equation for the impermeable surfaces of roads, roofs, and walls; 

anthropogenic heat from urban energy consumption; and hydrological processes for soil 

properties and urban vegetation (Kusaka et al., 2001; Kusaka and Kimura, 2004; Holt and 

Pullen, 2007; Miao et al., 2009; Wang et al., 2013). 

Five, one month-long hindcast (i.e. test) simulations for November 2012 were 

performed. This period was selected because no rain was recorded, allowing to isolate 

rather unreliable processes associated with precipitation (e.g. spatial/temporal variability 

and intensity) within WRF that carry on to affect other parameters (Coniglio et al., 2010; 

Zhang et al., 2013). The five simulations performed were: (i) using a Land Surface Model 

(LSM) called Noah Land Surface Model without UCM treatment,  (ii) same as (i) with a 

single-layer UCM (UCM1), (iii) same as (i) with a multi-layer UCM (UCM2), (iv) 

removing the urban categories within the simulation and replacing them with the 

predominant shrub LULC (NC; Fig. 6), and (v) is the same as  (ii) but considering the 

scenario of increasing the urban albedo. In terms of increasing the albedo for a simulated 

scenario, the surface albedo of rooftops were changed from 0.20 to 0.65 (Jacobson and 

Ten Hoeve, 2012). Additionally, we assume that the difference of T2m and ea simulations 

from (i, ii, iii) minus (iv) represents the simulated effect of the urban environment.  

A four-nested domain was adopted to downscale the initial and lateral large-scale 

atmospheric input from the NCEP Final Analyses (FNL; rda.ucar.edu) at 1-degree arc 

grid size (~100 km) to 27 km, 9 km, 3 km, and 1 km grid sizes (Fig. 7). However, only 
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the 1 km grid was evaluated as it reasonably considers the basic intra-city features (Fig. 

5). Vertical grids contained 51 sigma levels from the surface to 50 hPa as the upper limit. 

The vertical resolution was greatest near the surface to better compliment active 

processes driven by topography and the PBL. 

Other physics parameters implemented were: the Rapid Radiative Transfer Model 

(RRTM) scheme for longwave radiation; the Duhdia scheme for shortwave radiation; the 

Monin-Obukhov similarity theory modified by the Janjić scheme for the surface layer; 

the Mellor-Yamada-Janjić (MYJ) PBL scheme for the PBL physics; the Kain-Fritsch 

(KF) for convective parameterization only on the coarser domain (convection in the inner 

domains are treated explicitly); and Single-Moment 6-class (WSM6) scheme for the 

microphysics process. These schemes are standard for WRF which are commonly used in 

arid/semi-arid regions for research purposes (Castro et al., 2012; Tripathi and 

Dominguez, 2013). 

Since WRF uses the U.S. Geological Survey (USGS 1993) as the default land use 

map, some modifications were necessary to upgrade the model to the NLCD 2006; which 

were also necessary for UCM parameterization schemes implemented by WRF. Table 2 

lists all the configurations from the model. 
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Fig. 6. Same as Figure 5 but removed the City of Las Vegas urban categories and 

replaced them with shrub.   

 

 The purpose of the LSM, UCM1, and UCM2 simulations are to assess the model 

output from the default urban settings and compare them with the surface observations. 

As mentioned in Chapter 1, the UCM has rarely been tested under non-coastal arid cities. 

Using default urban parameters will display the sensitivity of the models under idealized 

climate in the arid southwest. The sensitivity of the models were tested by implementing 

a time series for the entire month to characterize synoptic and diurnal variability against 

observations. Spatial sensitivity was also examined by subtracting domain 4 outputs 

between the LSM, UCM1, and UCM2.  

Statistical methods used to help show confidence of the simulations against 

observations consisted of calculating the bias, root-mean-square error (RMSE), and the 
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correlation coefficient for T2m, RH, and ea. The bias is simply the model output minus 

the observations. In connection with the bias, the RMSE is calculated as so: 

   RMSE = √
1

n
∑ (ŷi − yi)2n

i=1     (Equation 5), 

where n is the sample size,  i is the data index, ŷ is the model output, and y is the 

observational data. The correlation coefficient is based off of Pearson’s and is computed 

as: 

    ρ = 
n ∑ ŷiyi ∑ ŷi ∑ yi

√n ∑ ŷi
2−(∑ ŷi)2√n ∑ yi

2−(∑ yi)2

  (Equation 6). 

The correlation coefficient measures the linear relationship between the model and 

observations with values between -1 and 1. In other words, values of 1 and -1 represents a 

perfect positive and negative linear relationship, respectively. When ρ = 0, then the 

relationship is uncorrelated.  
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Fig. 7.  The setup of the WRF model contains four-nested domains with grid sizes of (1.) 

27 km, (2.) 9 km, (3.) 3 km, and (4.) 1 km.   

 

Table 2. Model configuration. 

 

Model

Simulation Period 1 November 00 LST to 29 November 23 LST 

Horizontal Resolution 27 km, 9 km, 3 km, 1 km 

Vertical Resolution 51 sigma levels to 50 hPa

Land Surface Scheme Noah-LSM

Urban Scheme Single-layer UCM and Multi-Layer UCM

Shortwave Radiation Dudhia

Longwave Radiation RRTM

Planetary Boundary Layer YSU

Cumulus Physics KF (Domain 1 only)

Cloud Microphysics WSM6

Surface Physics Monin-Obukov (Janjic Eta) 

LULC Map NLCD 2006 (40 Categories)

WRF Version 3.5.1
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3. Results 

3.1 Observed Temperature Trends 

 Figures 8 and 9 shows monthly surface temperature anomalies with 5- and 10-

year moving averages highlighting the long-term trends through the period December 

1949-November 2011 for McCarran and Nellis, respectively. Of note is that observed 

temperature changes include not only the local trends associated with LULC change, but 

also the regional and global trends. Though substantial interdecadal-to-decadal variability 

is observed, a warming trend is evident in Tmean and Tmin, with larger trends exhibited by 

McCarran Tmin of ~0.68°C/decade. McCarran Tmax trends of ~0.18°C/decade are less 

significant but still show a warming pattern. Nellis shows similar results but with slightly 

smaller warming trends with Tmin increasing ~0.52°C/decade and Tmax increasing 

~0.05°C/decade.   

Fig. 10 and 11 show statewide/regional temperature anomalies for Arizona (AZ) 

and Nevada (NV), respectively. Overall, regional temperature trends follow similar long-

term trend patterns indicated at McCarran and Nellis. Tmax in NV shows a slight warming 

of ~0.05°C/decade while AZ shows ~0.12°C/decade. Tmin contributed to greater regional 

warming of ~0.28°C/decade and ~0.30°C/decade for NV and AZ, respectively. 

During the last decade in this analysis, the local stations and statewide 

temperatures show a cooling trend. Such cooling trends have been related to global 

teleconnection patterns associated with the PDO (Mantua and Hare, 2002; Benson et al., 

2003; McCabe et al., 2004; Schneider and Cornuelle, 2005) and their regional impact 
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over the West. Nevertheless, a striking result is that McCarran and Nellis exhibit larger 

warming relative to the regional trends that we argue are attributed to the UHI effect.  

 

 

Fig. 8. McCarran monthly maximum (top panel), mean (mid panel) and minimum (lower 

panel) temperature anomalies. Red bars signify positive anomalous months, while blue 

bars present negative anomalous months from December 1949 to November 2011. A 5- 

(green) and 10-year (black) moving average is overplotted to highlight trends of the 

interannual variability. The 1988 data has been removed due to excessive data missing.  
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Fig. 9. Nellis monthly maximum (top panel), mean (middle panel), and minimum (lower 

panel) temperature anomalies. Red bars signify positive anomalous months, while blue 

bars present negative anomalous months from December 1949 to November 2011. A 5- 

(green) and 10-year (black) moving average is overplotted to highlight trends of the 

interannual variability. The station was moved on 1 Jan 2000, before moving back on 1 

Jan 2005 to its original location.   
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Fig. 10. Arizona monthly maximum (top panel) and minimum (bottom panel) 

temperature anomalies. Red bars signify positive anomalous months, while blue bars 

present negative anomalous months from December 1949 to November 2011. A 5- 

(green) and 10-year (black) moving average is overplotted to highlight trends of the 

interannual variability. Source: Westmap. 
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Fig. 11. Nevada monthly maximum (top panel) and minimum (bottom panel) temperature 

anomalies. Red bars signify positive anomalous months, while blue bars present negative 

anomalous months from December 1949 to November 2011. A 5- (green) and 10-year 

(black) moving average is overplotted to highlight trends of the interannual variability. 

Source: Westmap. 

 

Seasonally, temperature anomalies of Tmax and Tmin exhibit similar interannual 

variability with consistent warming trends for Tmin containing some variability, and 

smaller less consistent trends in Tmax (Figs. 12-15). For example, Tmax at McCarran (Fig. 

12) shows a slight warming during all seasons, while Nellis (Fig. 14) shows a cooling 

trend for SON and DJF. Overall, seasonal results further show that in-city Tmin is 

warming, regardless of the season. 
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Fig. 12. Seasonal Tmax anomalies at McCarran from 1950-2011. The bars represent 

seasonal anomalies of DJF (blue), MAM (green), JJA (red), and SON (orange). Overall 

seasonal values were computed using the slope of the best fit line. The 1988 data has 

been removed due to excessive missing data. 
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Fig. 13. Seasonal Tmin anomalies at McCarran from 1950-2011. The bars represent 

seasonal anomalies of DJF (blue), MAM (green), JJA (red), and SON (orange). Overall 

seasonal values were computed using the slope of the best fit line. The 1988 data has 

been removed due to excessive missing data.   
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Fig. 14. Seasonal Tmax anomalies at Nellis from 1950-2011. The bars represent seasonal 

anomalies of DJF (blue), MAM (green), JJA (red), and SON (orange). Overall seasonal 

values were computed using the slope of the best fit line. The station was moved on 1 Jan 

2000, before moving back on 1 Jan 2005 to its original location. 
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Fig. 15. Seasonal Tmin anomalies at Nellis from 1950-2011. The bars represent seasonal 

anomalies of DJF (blue), MAM (green), JJA (red), and SON (orange). Overall seasonal 

values were computed using the slope of the best fit line. The station was moved on 1 Jan 

2000, before moving back on 1 Jan 2005 to its original location. 

 

3.2 Observed Changes in the Diurnal Cycle 

Figure 16a shows a seasonal diurnal cycle for the decades of 1950-1959 and 

2000-2009 at McCarran. The behavior of hourly T2m shows a diurnal evolution of 

increased nighttime/morning T2m with smaller daytime changes for all seasons, which 

supports findings from other UHI studies (Svoma and Brazel, 2010). During the daytime, 

warming is observed during MAM and JJA, while negligible cooling is observed at Tmax 

time during DJF (~-0.13°C) and SON (~-0.26°C). 
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Nellis exhibits similar diurnal behavior to McCarran (Fig. 16b). However, Nellis 

shows a stronger cooling signal during daytime for DJF (~-1.48°C) and SON (~-1.33°C). 

Furthermore, observations show that Tmax and Tmin trends shifted ~1 hour earlier since the 

mid-20
th

 century. The Tmin shift is evident at Nellis for JJA and SON; moving from 0500 

to 0400 LST and 0600 to 0500 LST, respectively. Note the shifting for Tmax at McCarran 

between 1400 and 1500 LST in DJF show similar T2m, and are to a lesser degree than 

the Tmin shifts.  

The diurnal cycle at McCarran and Nellis shows evidence of the diurnal 

temperature ranges (Tamp) decreasing with time. Results show a strong change in the 

diurnal regime that we argue is attributable to Las Vegas urban and population growth 

and their UHI effects (Emmanuel and Fernando, 2007). 
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Fig. 16. Seasonal diurnal cycle in LST of T2m for (a) McCarran and (b) Nellis. Hourly 

temperature averages were determined for mid-20
th

 century (1950-1959; solid lines) and 

early 21
st
 century (2000-2009; dash lines) for DJF (blue), MAM (green), JJA (red), and 

SON (orange).  
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3.3 Local and Statewide/Regional Trend Differences 

 Figure 17 shows seasonal statewide decadal averages of recent (2000-2009) 

minus past (1950-1959) 10-year periods. A sensitivity test was performed by computing 

the differences with other past decades (e.g. 1960s, 1970s, 1980s, and 1990s) to evaluate 

the influence of decadal-to-interdecadal variability in this analysis, which indicated that 

differences monotonically increase as decadal averages were closer in time (figure not 

shown). NV and AZ show T2m differences that further highlight JJA and MAM 

exhibiting greater regional warming, while statewide Tmax cooling for DJF and SON 

concurs with McCarran and Nellis daytime trends. 

Figure 18 shows the in-city or “local” station differences between the 2000s and 

1950s for McCarran and Nellis. Of note is that the local trends have larger seasonal T2m 

decadal differences when compared to the statewide trends. Thus further showing that 

Tmin has increased most rapidly in the urban than in the regional environments (Hansen et 

al., 2001). Furthermore, Tmax regional cooling trends have been locally identified, further 

expressing the response of the observed cooling shown by the diurnal cycle (Fig. 16). 
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Fig. 17. Seasonal statewide Tmin (top panels) and Tmax (bottom panels) differences (2000-

2009 average minus 1950-1959 average) for Nevada (left hand side panels) and Arizona 

(right hand side panels). 

 

 

Fig. 18. In-city Tmin (top panels) and Tmax (bottom panels) differences (2000-2009 

average minus 1950-1959 average) for McCarran (left hand side panels) and Nellis (right 

hand side panels). 
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Table 3 shows seasonal residuals (i.e. in-city minus statewide differences) for 

Tmax and Tmin. Statewide and in-city values are given by the average decadal differences 

shown in Figures 17 and 18, respectively. Overall, residuals in Table 3 are an estimation 

of the observed UHI (positive residuals) and UCI (negative residuals). Although MAM 

and JJA exhibited the strongest T2m warming, UHI intensity was greatest for DJF. 

Furthermore, DJF also showed a weak Tmax UHI. Tmax UHI is most evident at McCarran 

aside from a trivial UCI during JJA (~-0.03°C). Nellis exhibits UCI for Tmax and a weaker 

Tmin UHI effect than McCarran by 1.10°C. Stronger UCI intensities are evident for the 

seasons that had the largest warming trends (i.e. JJA and MAM).  

It is recognized that local cooling can be established through the latent heat flux 

of ET from turf grass (Linden, 2011; Taha, 1997), and the introduction of an artificial 

open water surface in the city (Theeuwes et al. 2013). However, since Nellis is primarily 

barren soil it could simply be an artifact of using statewide trends rather than the 

influence from ET. Additionally, residuals slightly differed based on the statewide 

impacts. AZ had more of an overall warming trend than NV. Without AZ, the UHI was 

~0.10°C cooler and the UCI was ~0.09°C warmer. However, for robustness we averaged 

all residuals to estimate the overall metric of the UHI and UCI influence for Las Vegas.  



47 
 

Table 3. Tmin and Tmax trends for in-city (McCarran and Nellis) and statewide (Arizona 

and Nevada) data in °C. The residuals define the local effect from removing regional 

trends. When residuals are positive (negative), we argue that the temperature trends are 

attributed to the UHI (UCI). 

 

 

3.4 Moist Diurnal Cycle and Trends 

 In arid or semi-arid areas, adding vegetation (e.g., turf grass) can benefit the 

improvement of air quality, minimize runoff for flood control, and reduce other 

hazardous potentials driven by local climate change (Beard and Green, 1994). Adding 

turf grass can increase ET modulating the UHI/UCI within the city (Yu and Hien, 2006). 

The potential effect of ET on the UHI/UCI phenomenon is generally greater under arid 

and semi-arid regions (Kjelgren and Montague, 1998; Jonsson, 2004; Mueller and Day, 

2005).   

Figure 19a shows the RH diurnal cycle by seasons for McCarran averaged over 

for 1950-1959 and 2000-2009. In general, all seasons show a significant increase in 

daytime RH with JJA, DJF, and SON showing a decrease in RH during the 

nighttime/early morning hours. During the 2000s, relatively small spikes (< 5%) are 

NV AZ Average McCarran Nellis Average McCarran - NV McCarran - AZ Nellis -NV Nellis-AZ Average

DJF 0.71 0.48 0.60 3.01 1.99 2.50 2.30 2.53 1.28 1.51 1.91

MAM 1.52 1.56 1.54 3.82 2.56 3.19 2.30 2.26 1.04 1.00 1.65

JJA 1.92 1.52 1.72 3.75 2.60 3.18 1.83 2.23 0.68 1.08 1.46

SON 1.13 1.32 1.23 3.20 2.25 2.73 2.07 1.88 1.12 0.93 1.50

Annual 1.32 1.22 1.27 3.45 2.35 2.90 2.13 2.23 1.03 1.13 1.63

NV AZ Average McCarran Nellis Average McCarran - NV McCarran - AZ Nellis -NV Nellis-AZ Average

DJF -0.35 -1.16 -0.76 0.07 -1.02 -0.48 0.42 1.23 -0.67 0.14 0.28

MAM 1.07 1.40 1.24 1.29 0.53 0.91 0.22 -0.11 -0.54 -0.87 -0.33

JJA 0.99 0.91 0.95 0.92 0.31 0.62 -0.07 0.01 -0.68 -0.60 -0.34

SON -0.63 -0.43 -0.53 -0.19 -1.33 -0.76 0.44 0.24 -0.70 -0.90 -0.23

Annual 0.27 0.18 0.23 0.52 -0.38 0.07 0.25 0.34 -0.65 -0.56 -0.15

Urban Heat Island effect  Urban Cool Island effect

Tmin
State wide trends In city trends Residuals

Tmax
State wide trends In city trends Residuals
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observed at 1500 LST, 2100 LST, and 0300 LST. Of note is that there is a lack of 

evidence containing these artifacts from other stations. In Nellis (Fig. 19b), DJF and SON 

show nighttime RH decreases with larger daytime increases. Nevertheless, both sites 

(McCarran and Nellis) show a decreasing trend in the amplitude of the RH diurnal cycle. 

Observations show a significant shift in RHmin of about one hour forward for SON and 

DJF at McCarran, whereas Nellis shows that RHmax shifted from 0400 to 0500 LST and 

decreased by ~5% during JJA. Not surprisingly, these results are consistent with the Tmin 

shift presented earlier (Fig. 16b) as RH is a function of temperature.   

To what extent the observed changes in RH are related only to moisture changes? 

We address this question by using moist parameters unrelated or less related to 

temperature, such as Td, Ko, and VPD. Figure 20 shows the average Td, Ko, and VPD 

trends for McCarran. In general Td, Ko and VPD show similar trends to Tmean (Fig. 8), 

with the exception of the last 7 years (2005-2011). Note that long-term moisture trends at 

Nellis (Fig. 21) show similar trends to McCarran. Overall, McCarran shows a Td increase 

of 0.64°C/decade, and Nellis increasing by 0.16°C/decade. The long-term trends of Ko 

and VPD were -0.17°C/decade and 0.03 kPa/decade, respectively at McCarran. Ko and 

VPD at Nellis were 0.14°C/decade and 0.03 kPa/decade, respectively.   
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Fig. 19. Seasonal diurnal cycle in LST of RH for (a) McCarran and (b) Nellis. Hourly RH 

averages were determined for mid-20
th

 century (1950-1959; solid lines) and early 21
st
 

century (2000-2009; dash lines) for DJF (blue), MAM (green), JJA (red), and SON 

(orange).  
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Fig. 20. Monthly mean Td (top panel), Ko (middle panel), and VPD (bottom panel) 

anomalies for McCarran. The 5- (green) and 10-year (black) moving averages were 

added to highlight trends of the interannual variability. Time period is from December 

1949 to November 2011. The red bars signify dry anomalous months, while the blue bars 

signify moist anomalous months. The 1988 data has been removed due to excessive data 

missing. 

 

 

From 2000-2011, the Southwest regional droughts may have affected Las Vegas 

moist and temperature trends (Holdren and Turner, 2010; US Drought 

Monitor:droughtmonitor.unl.edu). Since 2000, the Southwestern US has experience 

severe-to-extreme droughts from March 2002-December 2005 followed by another 
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severe drought from June 2007-December 2007. Moderate drought and abnormal dry 

spells continued after 2007. McCabe et al. (2004) found that the most intense droughts in 

the Southwest typically occur during positive phases of the Atlantic Multidecadal 

Oscillation (AMO; Enfield et al., 2001) mixed with negative phases of the PDO (Mantua 

and Hare, 2002). These global teleconnection relationships could have also influenced the 

regional and Las Vegas drying trends. It is speculated in this study that daytime UCI is 

related to Las Vegas lawns and open water surfaces leading to the increase of ea. 

However, a recent buy-out of Las Vegas residencies beginning in 2003 aimed to remove 

lawn turf grass to replace it with more natural/xeric landscapes. These water conservation 

methods could have been partially related to the observed changes in ea.  

Figure 22 shows Tmin and ea monthly mean anomalies for the period 1949-2012, 

contrasting in-city and rural temperature and moisture trends. The in-city Tmin warming 

trend relative to the rural sites is yet further striking evidence of the UHI effect. In-city 

and rural ea show similar interannual variability as both regions are influence by the same 

wet/drying regional patterns. However, McCarran ea shows a distinct increase from 1950-

2004 as the Las Vegas urban area expanded. There is a noticeable difference in trends 

between McCarran ea and rural/Nellis ea after 1995, with McCarran ea increasing ~1 kPa 

likely related to the rapid rise in population (Fig. 1). After 2004, ea experiences a drastic 

drop, most notably in McCarran which is arguably related to the implementation of water 

conservation strategies (Southern Nevada Water Authority, personal communication). As 

this occurs, the Tmin positive trends at McCarran became neutral. After 2005, both in-city 

and rural ea patterns start showing similar values once again.  
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Fig. 21. Monthly mean Td (top panel) Ko (middle panel), and VPD (bottom panel) 

anomalies for Nellis. The 5- (green) and 10-year (black) moving averages were added to 

highlight trends of the interannual variability. Time period is from December 1949 to 

November 2011. The red bars signify dry anomalous months, while the blue bars signify 

moist anomalous months. The station was moved on 1 Jan 2000, before moving back on 

1 Jan 2005 to its original location. 
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Fig. 22. Tmin (top panel) and ea (bottom panel) 1-year moving averages for in-city 

(McCarran and Nellis) and rural (Desert Rock and Red Rock) stations. Positive ea values 

signify wetter than normal months, while negative ea values signify drier than normal 

months. The 1988 data has been removed for McCarran due to excessive data missing. 

The Nellis station was moved on 1 Jan 2000, before moving back on 1 Jan 2005 to its 

original location. 

 

Separation of regional climate trends from those associated with local influences 

(i.e. UHI/UCI) is challenging. In the Southwest, other changes could have contributed 

partly to the observed trends shown in Fig. 22. For example, Figure 23 shows Lake Mead 

water levels, the Evaporative Demand Drought Index (EDDI), and the PDO as proxies 

for regional climate variability in the region. The EDDI was analyzed for the Las Vegas 
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region and incorporates ea along with other parameters related to the drivers of ET 

(McEvoy et al., 2014). Other factors to lake levels lowering water levels should be noted 

as the watershed contains five other states: Colorado, Wyoming, Utah, New Mexico, and 

Arizona. Lake Mead receives most of its inflow from the Colorado River which depends 

on snowmelt and rainfall in the Rocky Mountains (Holdren and Turner, 2010). Hence, 

watershed population and regional climate in the Rocky Mountains are also a factor. 

After 2010 the levels increased by ~10 m. However, current analysis suggests that lake 

levels are at their lowest in 2014 (Holthaus, 2014). During 1999-2010, lake levels 

dropped and primarily coincided with negative phases of the PDO. Between 1965 and 

1988 the negative phases were less extreme and had smaller effects on the sinks of the 

lake level. After 2000, lake levels were decreasing rapidly with the majority of PDO 

variability in the negative phases. Positive values for the EDDI represent dry periods that 

are most discernable after 2000. Overall, the EDDI wet and dry periods are strongly 

correlated to PDO variability (ρ = 0.42). Of note is that the last decade involved 

frequencies of negative PDO with positive AMO activity, which have been argued to be 

related to regional droughts in the Southwestern US (McCabe et al., 2004). The constant 

decline from 2000-2010 of Lake Mead are also the effect of water demand (Holdren and 

Turner, 2010). Although there were some positive PDO activity and increases in ea during 

severe lake level drop, the Las Vegas population and urban expansion were growing at an 

alarming rate during the early stages of a prolonged drought. 

The slope of best fit line showed that in-city ea has increased by 0.06 kPa while 

rural ea has decreased by 0.09 kPa since 1991. This equates to a positive residual of 0.15 
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kPa that estimates the in-city local effect of ea increasing from 1991-2012. Meanwhile, 

Lake Mead levels have dropped by 33.02 m during that time span. There is a solid pattern 

that relates lake levels increasing with positive ea and sinking with negative ea when 

comparing Figures 22 and 23 (primarily before 2000). In addition, Tmin has been at least 

1°C above average during the current depression of Lake Mead. Therefore, recent activity 

affecting water demand are linked to the prolong drought, negative PDO activity, and can 

partly explain some of the observed warming trends in Tmin.  

 

 

Fig. 23. Lake Mead surface elevation 1-year moving averages with EDDI and PDO 

anomalies. Positive and negative PDO values are associated with wetter and drier than 

normal periods in the Southwest US, respectively. Positive and negative indices of the 

EDDI represent drier and wetter periods, respectively. 
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3.5 CF Results  

 The CF (Equation 3) was used to reduce the T2m (dry adiabatically) of urban and 

rural stations at the reference elevation, in our case the lowest station within the city. The 

DRI-UHI network recording period of August 2012-April 2013 was used in this method 

to maximize the number of stations in the analysis. Table 4 shows a summary of T2m and 

the UHI determined by the average difference of in-city stations minus rural stations after 

CF calculations, per land use category. To no surprise, Tmin accentuated greater UHI 

intensity than Tmax. The smallest magnitudes of UHI were exhibited during the cooler 

period from January-February, 2013. However, March-April 2013 showed the lowest 

UHI range (Tmin UHI minus Tmax UHI). This may have been the result of the CF method 

overanalyzing Tmax as there was no evidence of UCI present in the overall analysis.  

Tamp values were smaller for urban sites than for rural shrub stations (~1°C) 

further showing evidence of an urban signal. However, there were no strong T2m 

significances between the urban LULC, with the exception of smaller Tmax values in the 

barren and medium-intensity areas during the cooler period. Medium- and low-intensity 

areas are generally residential sites conformed mostly by lawns, parks, and golf courses 

(Appendix C). Hence, this cool/wet season may have resulted in a smaller UHI value for 

January-February 2013. Of note is that some low-intensity sites are conformed of little 

vegetation and xeric landscaping. This may have affected Tmax averages to be warmer 

than high-intensity areas. High-intensity LULC had the warmest relative Tmin during 

January-February 2013 (> 1°C) and March-April 2013 (< 1°C). These particular areas are 

known to absorb and trap most of the heat resulting in the largest in-city T2m and UHI 
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intensity (Grossman-Clarke et al., 2010). This was confirmed with the long-term trends in 

Las Vegas (Chapter 3.3; Table 3) by the McCarran station. Hence, this method does 

portray some effect of urban signals related to UHI. However, it may be less effective as 

elevation becomes more complex and with orographic induced circulations affecting 

T2m.  

Table 4. LULC T2m averages and UHI detection based on the CF method (Chapter 2.5). 

The CF method uses Γe to bring T2m to the reference level of the Las Vegas High School 

station (534 m ASL). The number of stations (N_Stations) is shown for each LULC 

composite category. The UHI is estimated by the adjusted temperature differences 

between average composited LULC in-city categories minus the shrub category. 

 

 

LULC N_Stations Tmax Avg Tmin Avg Tamp Avg

Low Intensity 15 26.22 13.99 12.23

Medium Intensity 13 25.08 13.01 12.07

High Intensity 2 25.75 13.98 11.77

Barren 3 24.88 13.32 11.56

Shrub 11 25.01 12.11 12.90

UHI 0.47 1.46 -0.99

Low Intensity 15 16.32 4.45 11.87

Medium Intensity 13 14.54 4.04 10.50

High Intensity 2 16.07 4.76 11.31

Barren 3 15.12 3.50 11.62

Shrub 11 15.65 3.45 12.20

UHI 0.23 0.77 -0.54

Low Intensity 15 26.76 13.62 13.14

Medium Intensity 13 26.68 13.50 13.18

High Intensity 2 26.98 14.62 12.36

Barren 3 26.02 13.16 12.86

Shrub 11 25.74 12.32 13.42

UHI 0.93 1.27 -0.34

Aug 2012-Apr 2013

Jan-Feb 2013

Mar-Apr 2013
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3.6 Normalized Observed Results 

 The normalized T2m calculated in Equation 4 showed a significant UHI for Tmin 

(Table 5). McCarran shows a stronger UHI effect than Nellis as both sites appear to warm 

much faster than Desert Rock. Furthermore, Tmin rates for McCarran and Nellis were 

significant at the 95% confidence level, which reflects indication of UHI activity via 

increased city warming. These results agree with our earlier findings summarized in 

Table 3. Tmax yearly trends increased at slower rates for in-city sites, which is argued to 

be partially related to the UCI effect. Desert Rock Tmax rates increased almost twice that 

of McCarran and three times more than Nellis. It is established that dry deserts have low 

thermal inertia, making the surface susceptible to heat and cool quickly during daylight 

and night hours, respectively (Titus et al., 2013).  

Table 5. Yearly rates of normalized trends, and residuals for Tmax and Tmin from January 

1980-December 2011. Residuals are the overall in-city trends (i.e. McCarran and Nellis) 

minus the overall trends at Desert Rock. Positive residuals represent the UHI effect. 

When residuals are negative, it is argued that the temperature trends are attributed to the 

UCI. McCarran was calculated as a 31-year period due to the absence of 1988 data.   

Station Tmax [°C/yr] Tmin [°C/yr] Tmax Residuals 

[°C] 

Tmin Residuals 

[°C] 

McCarran 1.2x10
-2

 5.9x10
-2 

-0.26 1.80 

Nellis 5.6x10
-3 

3.2x10
-2

 -0.43 1.00 

Desert Rock 1.9x10
-2 

1.1x10
-3

 *** *** 

 

Table 6 shows decreases in RH for the three NWS stations examined. However, 

when considering the urban minus the rural residual, Nellis shows the largest increase in 

ΔRHmax. Not surprisingly, ΔRH exhibits an inverse relation to temperature trends. 

Particularly, McCarran ΔRH behavior is in agreement with Alghannam and Al-Qahtnai 

(2012). Their argument was that increasing vegetation outside the city would help 
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suppress UHI activity by showing an inverse correspondence to ΔRH. However, since 

Desert Rock is without foreign vegetated surfaces; the results could be due to the addition 

of impervious material in the McCarran area. The inverse relation holds up to both 

maximum and minimum residuals at McCarran. In contrast, urban vegetation is 

increasing nearby Nellis as parks and other cool urban patches from golf courses and 

residencies may correspond to increasing RH by reducing both nighttime radiative 

cooling and thermal comfort (Spronken-Smith and Oke, 1999; Theeuwes et al. 2013). 

Although development nearby Nellis has been occurring, it is difficult to say whether 

ΔRH has a rapport with the UHI and UCI effects in this area.  

Table 6. Yearly rates of normalized trends, and ΔRH for RHmax and RHmin from January 

1980-December 2011. ΔRH is the overall in-city trends (i.e. McCarran and Nellis) minus 

the overall trends at Desert Rock. ΔRH represents an RH reference to UHI. McCarran 

was calculated as a 31-year period due to the absence of 1988 data.   

Station RHmax [%/yr] RHmin [%/yr] ΔRHmax [%] ΔRHmin [%] 

McCarran -2.5x10
-2

 -1.8x10
-2 

-0.11 0.30 

Nellis -3.8x10
-3 

-2.5x10
-2

 0.57 0.04 

Desert Rock -2.2x10
-2 

-2.6x10
-2

 *** *** 

 

 To get a better understanding of the Las Vegas moisture trends, Δea was 

calculated (Table 7). Instead of using maximum and minimum values, Δea was separated 

into daytime (Δea_day) and nighttime/morning (Δea_nm) hours of the day. The 

nighttime/morning ea covers the hourly period of 1700-0900 LST. Daytime ea covers the 

hourly period of 1000-1600 LST. Results show greater Δea_day for McCarran where there 

is an exceptional amount of residential (i.e. medium- and low-intensity) sites nearby 

compared to Nellis. Δea_nm have similar values at McCarran and Nellis. Low Δea_day at 

Nellis are due to the similar yearly rates as Desert Rock which shows both sites getting 
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dryer. Although residencies have expanded closer to Nellis, the station still lies on light 

colored barren soil which may be influencing less solar intake due to a larger albedo. It is 

known in arid/semi-arid regions that surface albedo decreases when soil moisture 

increases (Liu et al., 2008; Guan et al., 2009). Hence, the high albedo at Nellis may be 

partial to low Δea_day due to a lack of soil moisture. Larger Δea_nm may be influenced by 

atmospheric stability as moisture from upper levels (e.g. evergreen forest in the 

mountains and vegetation at upper elevated residencies) sink into the valley during the 

night.  

Table 7. Yearly rates of normalized trends, and Δea for ea_day and ea_night from January 

1980-December 2011. Δea is the overall in-city trends (i.e. McCarran and Nellis) minus 

the overall trends at Desert Rock. McCarran was calculated as a 31-year period due to the 

absence of 1988 data. 

Station ea_day [kPa/yr] ea_nm [kPa/yr] Δea_day [kPa] Δea_nm [kPa] 

McCarran 1.6x10
-2

 -5.5x10
-3 

1.23 0.50 

Nellis -2.3x10
-2 

-4.6x10
-3

 0.04 0.55 

Desert Rock -2.4x10
-2 

-2.3x10
-2

 *** *** 
 

 

3.7 GDP Long-Term Trends 

 The GDP datasets of Daymet and PRISM 800 m were analyzed from January 

1980-December 2011. As previously mentioned for the customized domains in Figure 3, 

the core (red box) represents a more dense urban structure than the outer-core (green 

box). In regards to the analyzed observation sites, McCarran represents the core while 

Nellis represents the outer-core of Las Vegas. The rural domain (blue box) is located 

outside the Las Vegas metropolitan area.  
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  Figure 24 shows the Tmax and Tmin trends of the customized domains for the GDPs 

in the format of 5-year moving averages. Warming trends were labeled for each product, 

and calculated by linear regression after T2m was normalized by Equation 4. Trends 

show that Daymet suggests greater Tmax warming than PRISM 800 m, while Tmin is 

warming more for PRISM 800 m. Residuals calculated from the average of the in-city 

domains (red box and green box average) minus the rural domain show small negative 

values for Tmax with larger Tmin positive residuals. Positive residuals suggested a UHI of 

~1.03°C and ~0.69°C for Daymet and PRISM 800 m, respectively for the 32-year period. 

Negative residuals showed a UCI of ~-0.04°C and ~-0.11°C for Daymet and PRISM 800 

m, respectively. Of note is that the rural domain contains more complexities of 

topography, and T2m gathered from this domain will provide greater differences from the 

different interpolation methods used by the GDPs which will overall affect residuals. In 

comparison to observations the GDPs undersample UHI and UCI (i.e. observations show 

larger residuals for UHI and UCI). The core presents the most activity in the trends as it 

suggests the most warming and cooling for Tmin and Tmax, respectively.  

The downward trend shown for anomalous trends in Chapter 3.1 bares evidence 

under the 32-year time period displayed by the GDPs. Tmax showed the greatest effect 

with an anomalous decline of ~1.5°C and ~1.25°C from 2006-2011 for PRISM 800 m 

and Daymet, respectively. Furthermore, the evolution of Tmin trends show in-city 

warming exceeding rural T2m just prior to the millennium. An interesting artifact is the 

rural Tmin trend increasing significantly for PRISM 800 m during the downward trend 
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effect, matching the outer-core values and possibly somehow influenced by the Tmax 

cooling. Daymet does not show as strong of an effect for Tmin in the rural domain.  

 

 

 

Fig. 24. Tmax (top panel) and Tmin (bottom panel) 5-year moving averages for the 

customized domains of the urban core (solid lines), urban outer-core (dashed lines), and 

rural area (dotted lines) of Daymet (blue) and PRISM 800 m (red) from January 1980 to 

December 2011.  
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3.8 UHI from Gridded Data Products 

 For a direct comparison between the station locations and GDPs, the nearest 

neighbor method was used. Figures 25 and 26 are annual time series of Tmax and Tmin, 

respectively, from 1980-2011 for three stations: McCarran, Nellis, and Desert Rock. In 

general, all products capture year-to-year variability quite well. The GDPs resemble the 

observations best for Tmax with overall differences < 0.25°C. A greater separation exists 

for Tmin. PRISM 800 m does a better job at tracking year-to-year trends, especially at 

Desert Rock. Daymet shows to be less certain at Desert Rock, which questions Daymet’s 

ability at pristine locations and higher elevations. For in-city stations, Tmin for Daymet 

and PRISM 800 m have differences of ~1.88°C and ~0.92°C, respectively. PRISM 800 m 

best highlights the observations at Desert Rock than for the in-city stations, and provides 

better analysis than Daymet.    

 Figure 27 shows seasonal biases of the GDPs and McCarran for Tmax and Tmin 

during the period of December 1981-November 2011. Since the earliest Daymet data 

available was January 1980, seasonal analysis had to start in December 1981 to fully 

capture seasonal trends in the dataset. Furthermore, since 1988 is missing from McCarran 

that year has been removed from the GDPs as well. The GDPs agree well with Tmax as 

each season has a bias within ~0.6°C. Both evaluated GDPs show similar biases during 

DJF and SON, with PRISM 800 m having a cold (negative) bias for all seasons. Tmax for 

the GDPs agree most with McCarran observations during JJA. On the other hand, Tmin 

has a significant systematic cool bias all year (< -1°C). Daymet Tmin shows colder biases 

than PRISM 800 m for every season over 1°C except for DJF.  



64 
 

 

Fig. 25. Temperature trends of Tmax for NWS surface stations and gridded products from 

1980 to 2011. The gridded products of PRISM 800 m (red line) and Daymet (blue line) 

were retrieved for the nearest point to the observational sites (black line) for: McCarran 

(top panel), Nellis (middle panel), and Desert Rock (bottom panel). Note that biases are 

constant.  

 

Figure 30 shows the seasonal biases at Desert Rock. For Tmax, the GDPs slightly 

overpredict the observations. SON has the largest Tmax biases and the greatest difference 

between Daymet and PRISM 800 m. PRISM 800 m has excellent performance against 

Desert Rock observations for Tmin with negative biases under -0.5°C. However, Daymet 

biases for Desert Rock are about as unfavorable as McCarran (< -2°C). Hence, PRISM 

800 m has a better representation of Tmin outside the city while Daymet shows little 
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difference against in-city and rural observations. The magnitude of these biases will have 

important implications on how GDPs characterize in-city temperature environments as 

describe below. 

 

 

Fig. 26. Temperature trends of Tmin for NWS surface stations and gridded products from 

1980 to 2011. The gridded products of PRISM 800 m (red line) and Daymet (blue line) 

are to the nearest point to the location of the observational sites (black line) for: 

McCarran (top panel), Nellis (middle panel), and Desert Rock (bottom panel). Note that 

biases are constant.  
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Fig. 27. Tmax (top panel) and Tmin (bottom panel) seasonal GDP biases from December 

1981 to November 2011 for McCarran. The 1988 data was removed from the GDPs and 

McCarran due to excessive missing data from the observations. 



67 
 

 

Fig. 28. Tmax (top panel) and Tmin (bottom panel) seasonal GDP biases from December 

1981 to November 2011 for Desert Rock.  
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3.9 GDP Spatial Analysis  

Figure 29a and 29b shows Daymet and PRISM 800 m Tmax spatial differences for 

the 2000s minus 1980s decades, respectively in the Las Vegas region. In light of the 

observed interannual-to-decadal variability observed in Figure 24, it is reasonable to 

assume that these spatial differences can be used to characterize long-term trends. There 

are some surprising and striking differences between the GDPs. For example, PRISM 800 

m shows more contrast in the urban footprint as North Las Vegas has cooled while the 

core and southern areas have warmed for Tmax. In contrast, Daymet shows homogenous 

warming patterns in the metropolitan. North Las Vegas has transitioned from barren land 

to a more developed urban landscape with residencies and recreational areas (i.e. parks 

and golf courses), which may be a reason PRISM 800 m is interpolating a cooling signal 

that appears to be more accentuated in that area. Recall, however, that GDP biases shown 

earlier in Figure 27 suggest that GDP uncertainty to depict in-city spatial patterns in Tmax 

is not statistically significant. Outside the city, Daymet shows a significant and 

interesting cooling pattern over the Spring Mountains and Sheep Range (~3°-4°C). This 

could be related to the deficiency that Daly (2006) acknowledged about Daymet’s 

inability to produce nonlinear and non-monotonic elevation relationships. 

Figure 29c and 29d Tmin spatial trend distributions show urban warming in the 

metropolitan on the order of ~1°C for Daymet and ~2°-4°C for PRISM 800 m, 

respectively. In contrast to the North Las Vegas Tmax cooling; PRISM 800 m shows an in-

city warming, arguably significant (Fig. 29d), depicting a UHI that is more apparent in 

the northern half of the city. Once again, the temperature in the city is homogenous for 
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Daymet, as well as features outside the city. It is known that small-scale forcings that 

have an effect on larger scales (i.e. LULC) are generally not accounted for in the GDPs 

(Daly, 2006). Hence, the UHI/UCI magnitude and core locations may be erroneous. 

 

 

Fig. 29. Tmax and Tmin decadal differences (2000s minus 1980s) for (a, c) Daymet and (b, 

d) PRISM 800 m. The symbols show observed network locations for: DRI-UHI (circle), 

NWS (triangle), CEMP (square), NevCAN (star), RAWS (x), and WU (diamond). 
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Fig. 30. 2000s minus 1980s (a) Tmax and (b) Tmin for McCarran (green bars), Daymet 

(blue bars), and PRISM 800 m (red bars). The 1988 data was removed from the GDPs 

and McCarran due to excessive missing data from the observations. 
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GDP annual in-city (city core, Fig. 3) long-term trends are presented in Figure 30. 

Overall, the sign and magnitude of the decadal differences (2000s minus 1980s) agree 

between McCarran and the GDPs. Tmax shows cooling for February, April, and 

December. The GDPs and observations agree most in May and September. Tmin (Figure 

30b), however, highlights May-October with the largest trends, presumably associated to 

the UHI effect (Table 3; Fig. 30). Despite the biases and interpolation scheme 

uncertainties, there is moderate confidence when characterizing overall and seasonal 

UHI/UCI from the evaluated GDPs. 

4. Urban Canopy Modeling 

4.1 Control Run 

The control run involves a simulation of the WRF-LSM without the UCM 

treatment. Figures 31-34 shows the observed and LSM in-city T2m and ea diurnal and 

synoptic evolution during the month-long simulated experiment (November, 2012). In 

general, the model shows difficulties in simulating the urban diurnal cycle, which 

consistently overestimates nighttime and morning T2m (Fig. 31). These features hold true 

when evaluating against rural sites as well (Fig. 32). By contrast, ea (Fig. 33) for urban 

stations show some deficiencies in simulating magnitudes by underpredicting most of the 

month. The ea is most accurate during times of significant moisture increases as seen on 

days 8, 17-18, and 29. Of note is the model lags on day 16 predicting an early increase in 

ea. For pristine rural stations (Fig. 34b-c), however, the ea exhibits more skill. Overall, the 

LSM adequately simulates the synoptic patterns throughout the month. An example is the 

cold/wet spell occurring November 8-10 that was simulated very well for T2m and ea. To 
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some extent this is not surprising as FNL global analysis updates boundary conditions 

every 6 hours. 

 

 

Fig. 31. Observed (black) and LSM (red) time series of T2m for November 2012 at the 

urban site locations (Appendix A) of (a) McCarran, (b) Las Vegas, and (c) West. Daily 

tick marks on the x-axis represent 00 LST. 
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Fig. 32. Observed (black) and LSM (red) time series of T2m for November 2012 at rural 

site locations (Appendix A) of (a) Indian Springs, (b) Mojave Desert Shrub, and (c) 

Yucca Gap. Daily tick marks on the x-axis represent 00 LST. 
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Fig. 33. Observed (black) and LSM (blue) time series of ea for November 2012 at the 

urban site locations (Appendix A) of (a) McCarran, (b) Las Vegas, and (c) West. Daily 

tick marks on the x-axis represent 00 LST. 
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Fig. 34. Observed (black) and LSM (blue) time series of ea for November 2012 at the 

rural site locations (Appendix A) of (a) Indian Springs, (b) Mojave Desert Shrub, and (c) 

Yucca Gap. Daily tick marks on the x-axis represent 00 LST. 

 

4.2 Single-Layer and Multi-Layer UCMs  

Simulated T2m biases of urban stations for LSM, UCM1, and UCM2 are shown 

in Figure 35. In general, all simulations behave similarly, with the models 

underestimating the amplitude of the diurnal cycle showing warm biases during the 

nighttime and cold biases during the day. Rural simulations in Figure 36 show similar 

biases with the exception of Indian Springs (Fig. 36a) influenced by a small urban 
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community nearby. Of note is that bias patterns are somehow controlled by the synoptic 

conditions, with warmer biases occurring during dry days and less warm or even cold 

biases during the wet spells (cloudy conditions). 

    

 

Fig. 35. Time series of T2m biases for November 2012 at the urban site locations 

(Appendix A) of (a) McCarran, (b) Las Vegas, and (c) West. The blue rectangle 

represents the time of the cold sink. 
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Fig. 36. Time series of T2m biases for November 2012 at the rural site locations 

(Appendix A) of (a) Indian Springs, (b) Mojave Desert Shrub, and (c) Yucca Gap. The 

blue rectangle represents the time of the cold sink. 

 

Figure 37 shows the Tmax and Tmin spatial differences between LSM, UCM1, and 

UCM2 simulated outputs. Not surprisingly, the largest differences are located over urban 

LULC categories, while the smallest differences are outside the city. Of note is that for 

grid points marked as non-urban, all model configurations follow the same LSM 

procedure (Noah model). However, all differences in rural regions are associated with the 

propagation of differences on the outlined urban treatments. In general, results show that 

the LSM tends to simulate warmer urban T2m with Tmin more sensitive across the models 
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relative to Tmax. These results agree with Kusaka et al. (2001) who showed that different 

UCM treatments on urban radiation fluxes tend to diverge during the nighttime. The 

largest differences appear to be related to low-intensity urban categories. 

 

 

Fig. 37. Simulated outputs for Tmax (top row) and Tmin (bottom row) pertaining to the 

differences of (a, d) LSM minus UCM1, (b, e) LSM minus UCM2, and (c, f) UCM2 

minus UCM1. The inset map shows the urban LULC based on Figure 5. 

 

4.3 No City (NC) Simulation and Simulated UHI/UCI (UHIsim/UCIsim) 

The ability of the models to simulate a UHI/UCI (hereafter defined 

UHIsim/UCIsim) is categorized by the difference of LSM, UCM1, and UCM2 minus the 

NC simulation. Figure 38 shows the spatial Tmax and Tmin of the UHIsim/UCIsim. Again, it 
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is expected that the largest differences fall within the city boundaries. In general, LSM 

shows very little to no difference for Tmax, while both UCM1 and UCM2 show an UCIsim 

over most of Las Vegas. According to the UCM1 and UCM2, the strongest UCIsim effect 

appears to be related to the low-intensity urban development. For Tmin, all models show 

an UHIsim. However, the UCM1 simulation shows strong cool patches over the low 

residential areas with little sensitivity, relative to LSM and UCM2 elsewhere. Recalling 

Table 3, the UCM2 simulations match up quite well and compliment the high-intensity 

space against McCarran observations for SON with a UHI and UCI bias of ~-0.5°C and 

~-0.35°C, respectively. 

 

Fig. 38. Simulated outputs for Tmax (top row) and Tmin (bottom row) pertaining to the 

differences of (a, d) LSM minus NC, (b, e) UCM1 minus NC, and (c, f) UCM2 minus 

NC. The inset map shows the urban LULC based on Figure 5. 
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Fig. 39. T2m diurnal cycle for November 2012 of observations (black) and simulations. 

Model outputs include the LSM (red), UCM1 (cyan), UCM2 (yellow), and NC (blue). 

Site locations (Appendix A) in the figure are: (a) McCarran, (b) Indian Springs, (c) Las 

Vegas, (d) Mojave Desert Shrub, (e) West, and (f) Yucca Gap.  

 

 Figure 39 show both observed and simulated T2m diurnal cycles. In general, the 

simulations have close resemblances to the observed diurnal cycles over urban areas, 

with UCM1 having the most accurate simulations among the urban modeling. 

Simulations of the diurnal cycle accommodates similar results to Lin et al. (2008), with 

underestimates during daytime and overestimates during the early morning for T2m. 

Simulations over rural sites follow similar T2m diurnal patterns due to the rural grid 

points following the Noah-LSM procedures as previously mentioned. NC simulations 
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have the largest range among urban simulations clarifying the impact the urban 

environment has over rural desert land as it suppresses the diurnal range. Additionally, 

NC simulations for urban sites show a slight change for Tmin which appears to occur one 

hour later relative to observations.  

4.4 Moisture Parameters and UHIsim/UCIsim 

4.4.1 Moisture Results from the LSM and UCMs 

Figure 40 shows the month-long bias patterns of simulated ea for urban stations. 

For urban sites, the models had a tendency to underestimate ea for most of the month. 

Day-to-day variability associated with synoptic activity, for example the 8-11 November 

cold front, was simulated well. In contrast, the rural sites (Fig. 41) have the largest biases 

in ea during the same cold front, showing that there was minor delay in the models during 

that moisture surge. Of note are the simulated ea anomalies on November 14, 24, and 25 

at Indian Springs for UCM1 simulations (Fig. 41a). These artifacts occur at 1500 LST 

and on days that do not show significant moisture surges. The ea anomalies are associated 

with the T2m drop from 1500 to1600 LST (Fig. 39b). Among the three anomalous days, 

the T2m drops 5.58°C on average between 1500 and 1600 LST for the UCM1 

simulations.  
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Fig. 40. Time series of ea biases for November 2012 at the urban site locations (Appendix 

A) of (a) McCarran, (b) Las Vegas, and (c) West. The blue rectangle represents the time 

of the cold spell shown in Figure 35. 

 

Figure 42 shows the RH mean diurnal cycle for the month of November 2012. 

The RH is best simulated during 1000-1600 LST. Nighttime/morning RH is 

underpredicted at urban sites along with Indian Springs and Mojave Desert Shrub, which 

is consistent with the overprediction in T2m. Given the same amount of moisture, warm 

nighttime biases would consistently simulate low RH. Rural simulations had different 

results in regards to simulating observations. The Indian Springs (Fig. 42b) simulated 

artifact at 0700 LST is surprising, however RH from UCM1 has been producing more 
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anomalous features (e.g. noise) than the LSM and UCM2. Over urban sites, the simulated 

RHmax offsets 1-2 hours earlier, while the daytime RHmin is accurately simulated by all 

models. Of note is that nighttime NC and UCM1 simulations agree better with 

observations. Yucca Gap has the closest agreement to observations, and slightly over 

predicts RH in the nighttime/morning hours. It is difficult to argue that rural sites 

generally have more skill in surface parameters compared to urban. However, the 

addition of the UCMs or LULC associated with urban areas appears to be in detrimental 

to the statistical results presented here. As expected the RH diurnal cycle inversely 

follows the diurnal cycle for T2m in Figure 39, which validates their relationship to be 

robust when simulated. 

Simulated differences of ea_day and ea_nm between LSM, UCM1, and UCM2 are 

shown in Figure 43. As mentioned earlier, grid points marked as rural sites follow the 

same LSM procedure (Noah model) and any differences between models over rural areas 

are presumed to be related to the propagation effect of the urban environment cascading 

into the region. T2m results presented in Figure 37 have a few similar features to ea 

outputs regarding the spatial activity. UCM1 simulates the most moisture for urban ea_day 

values with significant differences between urban categories. Low-intensity urban 

categories show the largest (wettest) simulated values for UCM1. Other than the low-

intensity urban pixels, there is not much difference in other urban categories when 

comparing the models for ea_day. Aside from a few miscellaneous pixels, there is no 

strong significance of ea_nm between the models as well.  
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Fig. 41. Time series of ea biases for November 2012 at the rural site locations (Appendix 

A) of (a) Indian Springs, (b) Mojave Desert Shrub, and (c) Yucca Gap. The blue 

rectangle represents the time of the cold spell shown in Figure 36. 
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Fig. 42. RH diurnal cycle for November 2012 of observations (black) and simulations. 

Model outputs include the LSM (red), UCM1 (cyan), UCM2 (yellow), and NC (blue). 

Site locations (Appendix A) in the figure are: (a) McCarran, (b) Indian Springs, (c) Las 

Vegas, (d) Mojave Desert Shrub, (e) West, and (f) Yucca Gap.  

 

Figure 44 shows the spatially simulated ea_day and ea_nm minus NC simulations. 

UCM1 best highlights the features of ea as downtown Las Vegas and high intensity sites 

have the driest simulations. The LSM shows minimal ea_day effects, and is about as 

insignificant as the UCIsim. UCM2 highlights the similar activity as UCM1, however the 

spatial features are not as strong as there is smaller differences against the NC simulation. 

Smaller differences throughout the city are shown for ea_nm which are mostly negligible 

towards the LULC classifications. In general, the spatial effects show specifics of the 
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Δea_day McCarran results (specifically UCM1) with UHIsim intensity leading to drier 

mornings.  

 

 

Fig. 43. Simulated outputs for ea_day (top row) and ea_nm (bottom row) pertaining to the 

differences of (a, d) LSM minus UCM1, (b, e) LSM minus UCM2, and (c, f) UCM2 

minus UCM1. The inset map represents the urban LULC from Figure 5. 
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Fig. 44. Simulated outputs for ea_day (top row) and ea_nm (bottom row) pertaining to the 

differences of (a, d) LSM minus NC, (b, e) UCM1 minus NC, and (c, f) UCM2 minus 

NC. The inset map shows the urban LULC based on Figure 5. 

 

4.4.2 UHIsim and UCIsim at McCarran 

Figure 45 shows the November 2012 UHIsim and UCIsim, simulated RH, simulated 

zonal (U) winds, and observed cloud coverage for McCarran. McCarran was chosen as 

UCM1 and UCM2 showed the warmest activity in the core of Las Vegas during Tmin 

when subtracted from NC. Periods with relatively less simulated cloud coverage was 

determined as clear sky (0-1/10
th

 coverage), scattered (1/10
th

-5/10
th

 coverage), broken 

(5/10
th

-9/10
th

 coverage), and overcast (full coverage). The U wind is positive moving 

eastward and negative when moving westward. Daily results of cloud coverage with 

UHIsim and UCIsim are available in Appendix D.  
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Fig. 45. The simulated November, 2012 evolution of UHIsim (positive values) and UCIsim 

(negative values) or [LSM, UCM1, and UCM2] minus NC (top panel), RH (middle 

panel), and U wind component (bottom panel). Simulated outputs include the LSM (red), 

UCM1 (green), and UCM2 (blue). The yellow shaded boxes show the days with 

dominant clear skies.  

 

UHIsim/UCIsim appears to be stronger during days of clear skies, light winds, and 

low RH (Figure 45). The LSM shows more intense UHIsim activity while the UCM1 

shows the strongest UCIsim activity throughout the month. All the simulations show 

weaker UHIsim and UCIsim activity during the cold front passage (November 8-9) that 
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highlighted enhanced westerly winds and RH. Cloud coverage was mostly scattered and 

broken with a slight period of overcast during this cold spell (Appendix D).  

UCM2 had the strongest UHIsim intensity during the RH surge from November 

17-19. UHI intensity can increase when outgoing radiation becomes trapped from 

atmospheric water vapor (Neelin, 2011). Winds slightly increased during that period to 6 

m s
-1

. Though there is not a clear relationship of UHIsim and winds, results show that 

UHIsim tends to decrease only for days with significantly stronger winds. These results 

agree with the observations of Fast et al. (2005) who argued that the UHI in downtown 

Phoenix was not significantly modulated for winds under 7 m s
-1

. 

4.5 Statistical Results of the Models 

 In this section the confidence of the models is evaluated by using the bias, root-

mean-square error (RMSE), and the correlation coefficient of T2m, RH, and ea 

parameters. An evaluation is performed using all surface stations available (Chapter 2.1) 

that are composited by major rural and urban LULC categories. 

Table 8, 9 and 10 show the results by model configuration and by LULC 

categories for the bias, RSME, and correlation coefficient (“error”) statistics, 

respectively. Overall, UCM1 stands out as the model with better error statistics across the 

various LULC categories and parameters. Interestingly, UCM1 was relatively weak on 

simulating RH for stations with barren LULC. This may largely be due to the observed 

error from a WU station (NORTH6) where simulations had RH biases over 10%. The 

other barren sites had a 4-7% less bias RH difference.  
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Table 8. T2m (RH) [ea] biases for LSM, UCM1, UCM2, and NC categorized by LULC. 

LULC LSM UCM1 UCM2 NC 

High Intensity 1.14°C 

(-6.87%) 

[-0.08 kPa] 

-0.42°C 

(-4.05%) 

[-0.07 kPa] 

0.73°C 

(-6.23%) 

[-0.08 kPa] 

-0.07°C 

(-4.52%) 

[-0.08 kPa] 

Medium 

Intensity 

2.04°C 

(-12.35%) 

[-0.14 kPa] 

0.50°C 

(-9.45%) 

[-0.14 kPa] 

1.66°C 

(-11.72%) 

[-0.14 kPa] 

1.07°C 

(-10.55%) 

[-0.14 kPa] 

Low Intensity 1.35°C 

(-6.86%) 

[-0.07 kPa] 

-0.35°C 

(-3.47%) 

[-0.06 kPa] 

1.10°C 

(-6.25%) 

[-0.07 kPa] 

0.64°C 

(-5.55%) 

[-0.07 kPa] 

Barren 1.14°C 

(-0.60%) 

[0.02 kPa] 

0.12°C 

(1.32%) 

[0.02 kPa] 

0.83°C 

(0.02%) 

[0.02 kPa] 

0.87°C 

(-0.14%) 

[0.02 kPa] 

Shrub 1.29°C 

(-5.15%) 

[-0.03 kPa] 

0.87°C 

(-5.23%) 

[-0.03 kPa] 

1.30°C 

(-6.04%) 

[-0.03 kPa] 

1.26°C 

(-6.17%) 

[-0.04 kPa] 

Evergreen 

Forest 

-0.19°C 

(-3.57%) 

[-0.04 kPa] 

-0.16°C 

(-3.92%) 

[-0.04 kPa] 

-0.17°C 

(-3.76%) 

[-0.04 kPa] 

-0.15°C 

(-4.07%) 

[-0.04 kPa] 

Average 1.13°C 

(-5.90%) 

[-0.06 kPa] 

0.09°C 

(-4.13%) 

[-0.05 kPa] 

0.91°C 

(-5.66%) 

[-0.06 kPa] 

0.60°C 

(-5.17%) 

[-0.06 kPa] 

 

The UCM2 has smaller T2m biases than the LSM, but performed similar for the 

non-urban stations. UCM2 had an average RH bias of 0.02% for barren land, which is 

misrepresented by the large positive RH bias from the WU network (~10.51%) in 

response to averaging smaller negative biases into the calculation. The correlation 

coefficients for RH are moderate-to-strong and have an overall range from 0.65-0.80 with 

the strongest accounting for barren land and evergreen forest. The high and medium 

urban intensities have the lowest RH correlation. T2m correlations are strongest for 

barren land and are no less than 0.86 overall. UCM1 has the strongest correlations among 

the urban models followed by both LSM and UCM2. 
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Table 9. T2m (RH) [ea] RSMEs for LSM, UCM1, UCM2, and NC categorized by LULC.  

LULC LSM UCM1 UCM2 NC 

High Intensity 2.71°C 

(12.56%) 

[0.14 kPa] 

2.39°C 

(11.58%) 

[0.14 kPa] 

2.52°C 

(12.06%) 

[0.14 kPa] 

2.00°C 

(11.48%) 

[0.14 kPa] 

Medium 

Intensity 

3.37°C 

(16.78%) 

[0.20 kPa] 

2.55°C 

(14.79%) 

[0.19 kPa] 

3.13°C 

(16.30%) 

[0.19 kPa] 

2.50°C 

(15.40%) 

[0.20 kPa] 

Low Intensity 2.91°C 

(11.77%) 

[0.13 kPa] 

2.36°C 

(10.36%) 

[0.13 kPa] 

2.88°C 

(11.45%) 

[0.13 kPa] 

2.41°C 

(11.18%) 

[0.14 kPa] 

Barren 2.47°C 

(11.87%) 

[0.15 kPa] 

2.09°C 

(11.55%) 

[0.15 kPa] 

2.36°C 

(11.58%) 

[0.15 kPa] 

2.40°C 

(12.05%) 

[0.16 kPa] 

Shrub 3.13°C 

(13.23%) 

[0.10 kPa] 

2.85°C 

(12.70%) 

[0.10 kPa] 

3.14°C 

(13.14%) 

[0.10 kPa] 

3.05°C 

(13.23%) 

[0.11 kPa] 

Evergreen 

Forest 

2.74°C 

(12.74%) 

[0.08 kPa] 

2.74°C 

(12.79%) 

[0.09 kPa] 

2.74°C 

(12.65%) 

[0.09 kPa] 

2.73°C 

(12.75%) 

[0.09 kPa] 

Average 2.88°C 

(13.16%) 

[0.13 kPa] 

2.50°C 

(12.30%) 

[0.13 kPa] 

2.80°C 

(12.86%) 

[0.13 kPa] 

2.52°C 

(12.68%) 

[0.14 kPa] 

 

Statistical significances for ea show less error than RH, with the best correlation in 

the rural sections (i.e. shrub and evergreen forest). For biases, ea agrees with the other 

parameters on having the smallest differences in the barren area. For urban 

classifications, ea has the largest RMSE and bias for medium intensity, while high- and 

low-intensity areas have similar statistical results. The correlation coefficient of ea is 

moderately strong, and similar among models and LULC categories that range between 

0.84-0.88.  

Although the error statistics of NC simulations were more exceptional than 

UCM2 and LSM, the diurnal range for all models were systematically smaller than the 



92 
 

observations, resulting in NC simulations comparing better against observations. By 

following the UHI concepts, the LSM, UCM1, and UCM2 successfully capture a UHI 

effect relative to the NC simulation.   

Table 10. T2m (RH) [ea] correlation coefficients for LSM, UCM1, UCM2, and NC 

categorized by LULC. 

LULC LSM UCM1 UCM2 NC 

High Intensity 0.90 

(0.68) 

[0.85] 

0.91 

(0.69) 

[0.85] 

0.91 

(0.68) 

[0.85] 

0.93 

(0.72) 

[0.85] 

Medium Intensity 0.88 

(0.65) 

[0.84] 

0.90 

(0.67) 

[0.84] 

0.88 

(0.65) 

[0.84] 

0.91 

(0.69) 

[0.84] 

Low Intensity 0.88 

(0.76) 

[0.87] 

0.91 

(0.77) 

[0.86] 

0.87 

(0.75) 

[0.87] 

0.91 

(0.77) 

[0.86] 

Barren 0.92 

(0.77) 

[0.84] 

0.94 

(0.80) 

[0.85] 

0.93 

(0.79) 

[0.85] 

0.92 

(0.78) 

[0.83] 

Shrub 0.88 

(0.74) 

[0.88] 

0.89 

(0.74) 

[0.87] 

0.88 

(0.74) 

[0.87] 

0.89 

(0.74) 

[0.87] 

Evergreen Forest 0.87 

(0.79) 

[0.88] 

0.87 

(0.79) 

[0.88] 

0.86 

(0.79) 

[0.88] 

0.87 

(0.79) 

[0.88] 

Average 0.89 

(0.73) 

[0.86] 

0.90 

(0.74) 

[0.86] 

0.89 

(0.73) 

[0.86] 

0.91 

(0.75) 

[0.86] 

   

4.6 White Roofing Scenario 

 The albedo was increased from 0.20 to 0.65 for rooftops in the city to simulate a 

mitigation method of white roofing. This particular scenario was simulated with UCM1. 

The exercise to increase the albedo was performed to evaluate the model’s response to 

UHI adaptation and mitigation efforts to reduce in-city temperature (e.g. Gaffin et al. 
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2012; Jacobson and Ten Hoeve, 2012). To find how much cooler T2m would be in the 

city, the albedo simulation was simply subtracted from the T2m simulation of UCM1.  

Figure 46 shows the spatial distribution changes in T2m from increasing the 

albedo. Tmax within the city decreased ~1°-2°C in areas not containing open space or 

barren land which only decreased < 0.5°C. Tmin also decreases, but with very little effect 

in comparison to Tmax. There is not an obvious relationship of cooling due to white 

roofing for LULC categories. However, effects appear to be stronger in East Las Vegas. 

 

 

Fig. 46. The (a) Tmax and (b) Tmin changes (relative to UCM1) from increasing the albedo 

(“white roofing”). The inset map shows the urban LULC based on Figure 5. 
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Figure 47 shows that increasing the albedo only has a significant effect on cooling 

daytime (0900-1700 LST) temperatures over the city, and  in return increasing  daytime 

RH by ~5% in some areas (Figure 48). The increasing effect of RH is driven by T2m 

decreasing as this lowers es instead of increasing moisture. Table 11 displays UCM1 and 

the albedo simulated Tmax along with the difference of UCM1 minus albedo. According 

to the simulations, increasing the albedo from 0.2 to 0.65 can decrease daytime 

temperatures by over 1°C in Las Vegas. Recall that this simulation was done for 

November 2012, and values are subject to be dissimilar under wetter conditions and 

changing of seasons. Furthermore, this simulation does not account for changes in energy 

use and emissions from white roofing that can further alter T2m. Rural sites do not show 

as strong of a response, even with smaller scale urban influences as Indian Springs cooled 

only by 0.43°C.  
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Fig. 47. Simulated diurnal cycle of T2m for UCM1 and increased albedo (α) for 

November 2012. Stations analyzed are: (a) McCarran, (b) Indian Springs, (c) Las Vegas, 

(d) Mojave Desert Shrub, (c) West, and (f) Yucca Gap. 

  

Table 11. Tmax of the diurnal cycle (Fig. 47) for the UCM1 and albedo simulations. The 

differences show the simulated effect “white roofing” has for each location. 

Station UCM1 Tmax α = 0.65 Tmax UCM1-α 

McCarran 19.90°C 18.73°C 1.17°C 

Las Vegas 27.72°C 25.88°C 1.31°C 

West 20.41°C 19.19°C 1.22°C 

Indian Springs 18.69°C 18.26°C 0.43°C 

Mojave Desert Shrub 19.52°C 19.36°C 0.16°C 

Yucca Gap 18.91°C 18.76°C 0.15°C 
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Fig. 48. Simulated diurnal cycle of RH for UCM1 and increased albedo (α) for 

November 2012. Stations analyzed are: (a) McCarran, (b) Indian Springs, (c) Las Vegas, 

(d) Mojave Desert Shrub, (c) West, and (f) Yucca Gap. 

 

5. Discussion 

5.1 In-City versus Regional Long-Term Trends  

For the region of Southern Nevada, there is a marked warming trend in Tmin with 

relatively small warming trends in Tmax, which to some extent relate to the Las Vegas 

urban expansion and the UHI (Guhathakurta and Gober, 2010; Major et al., 2011). Local 

climate change adaptation and mitigation strategies for Las Vegas recommends that 

planting trees and increasing green space and canopy coverage would alleviate the UHI 
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effect. Recent results from Black (2013) suggested that such adaptation strategies appear 

to have a positive impact in reducing UHI trends. However, the results presented in this 

research suggests the existence of regional/statewide temperature trends (Figs. 10 and 11) 

could have contributed to such in-city local changes. Only after isolating the 

global/regional climate trends can one argue local climate effects due to urban growth 

and any adaptation measures.  

Xian (2008) analyzed McCarran Tmin long-term data and estimated a warming 

trend of about 0.07°C/yr, which is fairly equivalent to the 61-year result 

(~0.68°C/decade) in Chapter 3.1. Using remote sensing tools, Xian (2008) suggested that 

high intensity urban areas are responsible for most warming trends, followed by medium- 

and low-intensity urban developments. Xian and Crane (2006) found daytime cooling 

primarily in low-intensity space, but from 1984 to 2002 the cooling effect had reduced. 

To some extent our analyses of observed T2m agree. Anomalous T2m shows a small 

increase in Tmax from 1984 to 2002 for local and statewide trends (Figs. 8-11). However, 

Tmax and Tmin have currently been experiencing a slight cooling trend in relation to global 

teleconnection patterns (e.g. PDO). Xian and Crane (2006) concluded a daytime UCI of -

0.84°C and -0.35°C for 1984 and 2002, respectively. Although our results show a 

daytime UCI of -0.15°C, it is important to note that these results were established 

through: a different and longer period of time, the removal of statewide trends, and from 

surface observations rather than remote sensing data. Xian (2008) suggests the daytime 

cooling effect of Las Vegas is contributed to trees, lawns, and other green areas in 
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contrast to the dry desert surroundings. We believe ET is the primary driver of daytime 

cooling in these particular LULC areas (Hart and Sailor, 2009).   

After isolating the local in-city effect from the regional trends, this research 

showed that the Las Vegas Tamp has decreased through the past 50 years from urban 

growth. The declination of Tamp is a well-known effect of urban development in dry 

(Svoma and Brazel, 2010) and moist (Kim and Baik, 2005) climates. The urban 

development has also shown to shift Tmax and Tmin timing. In Phoenix, Svoma and Brazel 

(2010) found that Tmax and Tmin tend to occur about 1 hour earlier, which is presumably 

related to thermal inertia from in-city heat storage. This research found little evidence to 

support this claim, though the Nellis JJA and SON diurnal cycle composites (Fig. 16) 

suggest similar trends for Las Vegas in low-intensity urban zones. The extent to which 

this shifting effect in the diurnal cycle being solely attributed to local rather than regional 

changes has not been demonstrated.  

The urban minus regional residual approach implemented here and the results 

from several observation methods (station based and GDPs) show high consistency in the 

UHI/UCI detection. The magnitudes of UHI and UCI varied with season, showing 

stronger UHI activity during DJF while UCI was most evident for MAM and JJA. Other 

major cities in the world have found that UHI is more intense during JJA due to increased 

solar radiation and the increase of electricity consumption from air conditioning (Oke, 

1973; Kimura and Takahashi, 1991; Fast et al., 2005; Aguado and Burt, 2007; Lin et al., 

2008). In Tokyo, however, the UHI appears to be more intense during DJF, presumably 

related to increased hotel occupation during the cold season (Ichinose et al. 1999). The 
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maximum UCI intensity found during MAM and JJA supports Chow and Svoma (2011) 

findings for Phoenix, who attributed such cooling to the increased urban vegetation 

relative to the surrounding desert. For Las Vegas, Nellis contributes to a larger UCI effect 

than McCarran. Reasons to such contributions may be partial to the high albedo of the 

surface and/or advection from the medium- and low-intensity areas outside of Nellis. 

However, based on the confidence interval between the 1950s and 2000s, daytime T2m 

changes were insignificant resulting in the UCI failing the significance test at 95%. 

On another note, a proposition was created in 2003 to buy out Las Vegas 

residencies to remove their turf grass. Although this strategy was implemented to 

conserve water demand, it counteracts the actions suggested by researchers to combat the 

UHI threat by planting more vegetation in order to cool the city (HARC, 2009). Despite 

the heavy droughts experienced after 2000, Las Vegas showed positive residuals and 

regression for ea and Td, respectively. Regardless, it is possible that the city may be an 

example of a creeping environment as Lake Mead levels have severely plummeted since 

the drought in 2000 occurred, and interannual activity from global teleconnections 

became more fixed than in earlier decades. Furthermore, the frequency of negative PDO 

with positive AMO activity may have liberated the post-2000 drought.      

The UHI/UCI activity has strong influence in the surface RH. Observations show 

that Las Vegas is experiencing a decrease in RHamp via increasing daytime RH and 

decreasing nighttime/morning RH (Akindobe et al., 2008). Furthermore, the urban core is 

subjected to RH deficits due to less available vegetation (Mohan and Arumugam, 1996). 

In this research, long-term trends in Td, Ko, and VPD were estimated as proxies for 
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moisture availability in Las Vegas. Trends from these parameters were not significant at 

the 95% confidence level which makes it difficult to determine if there are indeed strong 

moisture changes within the city. Hence, it is likely that RH observed changes that are 

merely related to temperature trends. Furthermore, using observed ea to further explore 

moisture trends was difficult to establish as conservation practices of removing turf grass 

occurred during strong drought activity. What is certain is that Lake Mead levels have 

declined ~40 m through the millennium which poses a threat to Las Vegas, and signifies 

attention for water demands.  

5.2 The CF Approach 

To estimate observed spatial patterns in Las Vegas, an experimental CF based on 

the average temperature of Γe was estimated to reduce the temperatures from all 

observation sites to obtain a single reference altitude. Results were composited according 

to the predominant LULC category in their surroundings. From August 2012-April 2013 

low-intensity urban areas showed larger T2m values. This may be partial to some of the 

low-intensity sites having open space (i.e. natural desert landscape within the city) that 

contains less vegetation. In addition, there were only two observed sites for high-intensity 

urban areas, which may be a misrepresentation compared to the sample sizes of low- and 

medium-intensity sites.  

Nighttime/early morning drainage flows from surrounding sierras create 

significant limitations in applying this approach as cool air tends to concentrate over low-

elevation areas (e.g. eastern LV). Further work should be performed to include such 

mountain-valley circulations in the spatial characterization of the UHI/UCI effect. This 
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work has shown that seasonality and synoptic effects can also be important factors. The 

CF method provided some aspect of UHI/UCI effect by showing smaller diurnal 

temperature ranges in the city, smaller UHI signals from cooler and wetter months that 

are consistent with long-term trend results presented here, and also as a function of 

LULC (e.g. high-intensity having the warmest Tmin). 

5.3 The GDP Results 

GDPs were analyzed by averaging the data over three different regions: core, 

outer-core, and rural area defined in Chapter 2.2. Tmax and Tmin trends from January 1980-

December 2011 have similar long-term variability to observations with Tmin increasing 

and Tmax having little effect in change. Differences were noticeable when calculating the 

overall trends. The core domain for PRISM 800 m showed a more intense warming trend 

than McCarran for Tmin, while Daymet showed a more intense warming trend than Nellis 

for Tmax. When comparing Tmax, Daymet has a larger warming trend than PRISM 800 m, 

while PRISM 800 m has a more prominent Tmin warming trend. Based on the warming 

differences of the observations and GDPs, the GDPs are likely to underpredict the UHI 

and UCI.  

The sparseness of rural station siting and the complex topography creates 

challenges in the interpolations of GDPs (Daly, 2006). However, PRISM 800 m shows 

Tmin warming trends confined to the in-city area, whereas Daymet lacks a coherent 

warming structure related to the Las Vegas urban development. The Daymet interpolation 

approach uses local linear regression to relate temperature to elevation without 

accounting for climate transitions that are terrain-induced (Daly, 2006). PRISM 800 m 



102 
 

accounts for mountain-valley circulations which could modulate Tmin by incorporating 

the effect of cold air pooling, inversions, and other atmospheric boundary layer 

mechanisms. It is unknown whether LULC is considered in the interpolation procedures 

on the outlined GDPs. 

5.4 The UCM as a Tool for Urban Climate Studies and LULC Scenarios 

WRF-UCM models adequately simulate T2m, and its diurnal and day-to-day 

variability. The models were sensitive and showed intricate responses for urban LULC 

categories. Two high-intensity observed sites located in lower urban elevated zones were 

analyzed and simulated best among other in-city LULC categories. Miao et al. (2009) 

analyzed 11 high-intensity sites for Beijing that showed the smallest RMSEs for T2m 

compare to other LULC categories from UCM1 simulations. This agrees to some extent 

with the error statistics in Chapter 4.5 as UCM1 simulated the urban categories quite 

well.   

In an attempt to simulate the effect of a city in an arid environment and their UHI 

and UCI characteristics, the urban modeled simulations were subtracted by the NC 

simulation. Urban simulations successfully produce a UHIsim and simulated UCIsim. Low-

intensity pixels showed the most cooling during Tmax while high intensity pixels showed 

the most warming during Tmin. Lee et al. (2011) found the LSM to overestimate sensible 

heat flux which may be the reason for stronger UHIsim intensity for Tmin. UCIsim was 

evident over the city for UCM1 and UCM2 simulations during Tmax, while the LSM 

showed insignificant cooling. Although the LSM provides an urban bulk 

parameterization approach, it was originally designed to simulate natural surfaces, while 
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the UCM has been designed to treat man-made surfaces (Chen et al., 2011). Other 

researchers have found that the LSM, unmodified and without UCM treatment, is not 

reliable as it does not account for seemingly important processes such as: the urban 

vegetation and urban hydrological processes (Lee et al., 2011). Hence, the lack of latent 

heating for the urban environment can enhance the daytime sensible heat flux and fail to 

clearly simulate the intensity of the UCIsim.  

Results show less skill in simulating RH relative to T2m and ea. Overall, all 

models showed negative RH biases with the largest over medium-intensity sites, and the 

smallest over barren sites. Yang et al. (2012) showed lower values of simulated RH over 

urban areas than rural areas for Nanjing, China. This held true for the nighttime results in 

Las Vegas. However, RH during the daytime was larger in the urban environment 

relative to surrounding rural areas according to the spatial analysis conducted in this 

research (figure not shown). UCM1 simulations in Tokyo by Kusaka et al. (2012) showed 

smaller biases (2.2%) and RMSE (7.8%) for RH when compared to the results in Chapter 

4.5. However, WRF-UCM results can be synoptic, seasonal, and climate dependent 

which institutes simulated differences for a sensitive variable such as RH. It is also 

important to establish that the LULC surrounding Las Vegas vastly differs from cities 

similar to Nanjing or Tokyo. Furthermore, the simulations from this research are 

conducted well above sea level without a strong influence of sea breeze. In addition, 

other grid and model configurations, including selection of PBL, microphysics, 

convection and radiation schemes can affect overall results. 
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Simulations for ea provided better statistics for moisture than RH. Similar to the 

outputs of T2m and RH, the rural stations simulate ea best. For urban simulations, the 

models had the most difficulty simulating ea for medium-intensity stations. RMSEs for 

medium-intensity LULC differed by at least 0.5 kPa compared to other LULC categories 

in the urban regime. Overall, ea observations and simulations correlated well in every 

LULC category (0.83-0.88). Of note is that the UCM1 had some difficulty simulating RH 

and ea at Indian Springs. Simulated artifacts consisted of: anomalous RH increases at 

0700 and 1500 LST (Fig. 42b), and ea increases at 1500 LST on November 14, 24, and 

25. A more in-depth analysis should be conducted as remote urban influences in 

arid/semi-arid environments may somehow be affecting the performance of the UCM1 

model. 

According to the McCarran simulation in Chapter 4.4.2, UHIsim was more 

noticeable during days of clear skies, light winds, and low RH. Under these conditions 

the LSM had the strongest UHIsim activity, but under the events of the moisture surge 

occurring November 17-19 the UCM2 favored larger UHIsim intensity. Although the wind 

slightly increased during that time period, wind speeds under 7 m s
-1

 have been known to 

have little effect on relieving UHI in dry arid regions (Fast et al., 2005). As expected 

from the previous simulations, UCM1 simulated a more intense UCIsim.  

Lastly, the white roofing scenario implemented in this research showed that the 

model had greater effects for daytime T2m decreasing Tmax ~1°-2°C which supports the 

findings of Jacobsen and Ten Hoeve (2012). In addition, the effects of the albedo 
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simulations reduced the diurnal range of T2m and RH, but showed little effect on 

nighttime/early morning results.  

6. Summary and Conclusions 

This document addresses the UHI and UCI in Las Vegas through several 

approaches consisting of: removing long-term regional trends, implementing a correction 

factor, normalizing station data, assessing the ability of GDPs to observe UHI/UCI, and 

running modeled simulations. Issues with the observational data consisted of: missing 

data, limited number of stations available for long-term analysis, limited number of rural 

sites near Las Vegas, and station maintenance among other issues on quality and quantity 

of data. These issues are of importance to address as they also affect the quality and 

robustness of the GDPs that interpolate from surface observations. Furthermore, a few 

networks were rejected from this study due to the poor quality that stemmed from a lack 

of maintenance and records.    

This work shows that approaches to isolate the city long-term climate trends from 

those related to global/regional trends is a necessary step for any urban growth attribution 

and local climate effect relationships. The effects of global/regional trends show warming 

in Tmin and interdecadal variability for Tmax, while isolated long-term trends showed a 

UHI of ~1.63°C that was strongest during DJF. UCI was evident during daytime with a 

magnitude of ~-0.15°C and was most prominent during MAM and JJA. Furthermore, the 

city has shown to warm faster than the rural area in response to urban and population 

growth and activity.  
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The GDPs were able to highlight the climatological influence of the city over 

time. However, due to some well-known limitations of the interpolation procedures the 

GDPs tend to underemphasize the UHI in comparison to the normalized observations in 

Chapter 3.6. PRISM 800 m had a UHI bias of -0.71°C while Daymet data showed a bias 

of -1.38°C. The UCI was slightly overemphasized by 0.24°C and 0.31°C from PRISM 

800 m and Daymet, respectively. Based on the spatial analysis, PRISM 800 m did a better 

job at interpreting an urban footprint. However, due to uncertainties of small-scale 

forcings, the spatial contrast of warm and cool spots in the city may be inaccurate. 

Furthermore, GDP interpolations become more credible with network enhancements. 

This could have some effect on comparing past and present changes.   

The DRI-UHI experimental network (20 new sites) was set out to accomplish the 

task of enhancing current urban networks, and provide an unbiased representation of 

unsampled areas in and around Las Vegas. Five other regional and in-city surface station 

networks were available for this study totaling 29 sites. Extensive QA/QC protocols were 

performed to create a solid, reliable, and consistent dataset for this research. However, 

rural and high-intensity areas still remain undersampled relative to low- and medium-

intensity urban areas. Furthermore, the DRI-UHI recorded only T2m and RH while other 

networks logged more variables to assess the climate. Data for the DRI-UHI network will 

be made available to the public on the Nevada Climate Change Portal at: 

http://sensor.nevada.edu/NCCP/Default.aspx. As of the time of this thesis report, DRI-

UHI is still functional. The observations can further enable in-city hydrological studies, 
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create and calibrate remote sensing relationships, and further evaluate high-resolution 

models.  

Five, one month high-resolution simulations (1 km grid size) for November 2012 

created opportunities to evaluate model sensitivity, and developed an adaptation and 

mitigation scenario to reduce the observed warming trends. In general, several WRF-

UCM configurations (using UCM default city parameters) were found to be very 

sensitive for the case of Las Vegas. To our knowledge this was the first time Las Vegas 

was simulated using the UCM, and it is suggested that further exploration be necessary to 

assess proper calibration of the model to adequately simulate the arid/semi-arid climates. 

Furthermore, it is recommended to update the LULC data (NLCD 2006 was used in this 

research) to incorporate more recent urban changes and growth.  

We argue that the WRF-UCM is an adequate tool to explore the effects of city 

growth on local and remote climate, and assess the potential effect of adaptation and 

mitigation strategies such as: reforestation, cool paving, white roofing, landscape 

replacement, and designs of future urban developments. These strategies can further be 

explored by simulating the effects of water and electrical resource management before 

and after mitigation practices. 

Recommendations to improve this research suggests: using remote sensing to 

elaborate on the current spatial thermal effects of Las Vegas, setting up more surface 

stations to enhance the network (especially in high-intensity and rural areas), using a 

different approach for the WRF-UCM simulations (i.e. updating the LULC maps, 

changing the physics and urban parameters from the default settings, etc.), and observe 
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more atmospheric variables and features above the surface level. Furthering this research 

can help get a better idea of the effects of current conservation practices and confirm 

climatological changes in Las Vegas. 
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8. Appendix 

Appendix A: Featured stations analyzed in this study along with their specific location 

(latitude and longitude), elevation, length of observation record, and recorded parameters. 

The “*” are represented as homes, “**” are represented as CCSD sites, and “***” are 

represented as golf courses for the DRI-UHI network. Parameters available: T2m, Td, 

RH, wind vectors (Wind), surface pressure (P), precipitation (precip) solar radiation (SR), 

cloud cover (CC), and visibility (Vis).  

Station Name Network Latitude Longitude Elevation 

(m ASL) 

Recording 

Period 

Parameters 

Boulder City CEMP 35.985° -114.841° 734 1999-current T2m, RH, wind, SR, precip 

Henderson CEMP 36.007° -114.966° 670 1999-current T2m, RH, wind, SR, precip 

Indian Springs CEMP 36.574° -115.676° 964 1999-current T2m, RH, wind, SR, precip 

Las Vegas CEMP 36.114° -115.149° 623 1999-current T2m, RH, wind, SR, precip 

Boulder City Municipal NWS 35.947° -114.861° 653 2010-current T2m, Td, P, wind, precip, CC, Vis 

Desert Rock NWS 36.621° -116.028° 990 1978-current T2m, Td, P, wind, precip, CC, Vis 

Henderson Executive NWS 35.976° -115.133° 740 2004-current T2m, Td, P, wind, precip, CC, Vis 

McCarran NWS 36.072° -115.163° 663 1948-current T2m, Td, P, wind, precip, CC, Vis 

Nellis NWS 36.250° -115.033° 577 1928-current T2m, Td, P, wind, precip, CC, Vis 

Blackbrush NevCAN 36.520° -115.163° 1670 2011-current T2m, RH, P, wind, SR 

Mojave Desert Shrub NevCAN 36.435° -115.355° 900 2011-current T2m, RH, P, wind, SR 

Montane NevCAN 36.591° -115.215° 2320 2011-current T2m, RH, P, wind, SR 

Pinyon Juniper NevCAN 36.575° -115.205° 2065 2011-current T2m, RH, P, wind, SR 

KNVHENDE6 WU 36.032° -115.075° 625 Unknown T2m, RH, Td, P, wind, precip  

KNVHENDE15 WU 36.001° -115.078° 714 Unknown T2m, RH, Td, P, wind, precip 

KNVHENDE21 WU 35.995° -115.070° 688 Unknown T2m, RH, Td, P, wind, precip 

KNVHENDE25 WU 35.945° -115.104° 878 Unknown T2m, RH, Td, P, wind, precip 

KNVLASVE11 WU 36.045° -115.286° 832 Unknown T2m, RH, Td, P, wind, precip 

KNVLASVE35 WU 36.206° -115.330° 914 Unknown T2m, RH, Td, P, wind, precip  

KNVLASVE71 WU 36.082° -115.250° 743 Unknown T2m, RH, Td, P, wind, precip  

KNVNORTH6 WU 36.264° -115.148° 632 Unknown T2m, RH, Td, P, wind, precip  

KNVNORTH9 WU 36.232° -115.171° 656 Unknown T2m, RH, Td, P, wind, precip  

MC7282 WU 36.040° -115.095° 618 Unknown T2m, RH, Td, P, wind, precip  

MD5799 WU 36.047° -115.186° 699 Unknown T2m, RH, Td, P, wind, precip  
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MUP076 WU 36.029° -115.227° 738 Unknown T2m, RH, Td, P, wind, precip  

Desert NWR RAWS 36.579° -115.144° 2197 2002-current T2m, RH, wind, SR, precip 

Yucca Gap RAWS 36.437° -115.331° 972 2004-current T2m, RH, wind, SR, precip 

Kyle Canyon RAWS 36.267° -115.600° 2065 1998-current T2m, RH, wind, SR, precip 

Red Rock RAWS 36.135° -115.477° 1266 1990-current T2m, RH, wind, SR, precip 

Blue Diamond** DRI-UHI 36.048° -115.406° 1029 2012-current T2m and RH 

Cheyenne 

Transportation** 

DRI-UHI 36.215° -115.149° 625 2012-current T2m and RH 

Clough* DRI-UHI 36.144° -115.330° 908 2012-current T2m and RH 

Collins* DRI-UHI 35.989° -114.986° 758 2012-current T2m and RH 

DL Dickens** DRI-UHI 36.260° -115.091° 599 2012-current T2m and RH 

Fenstermaker* DRI-UHI 36.271° -115.250° 717 2012-current T2m and RH 

Kim* DRI-UHI 36.120° -115.267° 764 2012-current T2m and RH 

Las Vegas High** DRI-UHI 36.146° -115.031° 534 2012-current T2m and RH 

Miller* DRI-UHI 36.317° -115.280° 775 2012-current T2m and RH 

Peacock* DRI-UHI 36.031° -115.204° 722 2012-current T2m and RH 

Piechota* DRI-UHI 35.988° -115.118° 744 2012-current T2m and RH 

Pitchford* DRI-UHI 36.095° -115.129° 616 2012-current T2m and RH 

Pohlmann* DRI-UHI 36.022° -115.077° 653 2012-current T2m and RH 

Roos* DRI-UHI 36.251° -115.283° 744 2012-current T2m and RH 

Spangler* DRI-UHI 36.120° -115.106° 584 2012-current T2m and RH 

Summerlin*** DRI-UHI 36.192° -115.287° 796 2012-current T2m and RH 

Sunrise Acres** DRI-UHI 36.165° -115.113° 561 2012-current T2m and RH 

Wallin** DRI-UHI 35.932° -115.089° 918 2012-current T2m and RH 

West** DRI-UHI 36.194° -115.168° 631 2012-current T2m and RH 

Wildhorse*** DRI-UHI 36.056° -115.078° 596 2012-current T2m and RH 
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Appendix B: Photographs of DRI-UHI sites. 

 

Kim residential site. 

 

 

Charles West Middle School CCSD site. 
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Wildhorse Golf Course. 

 

 

Pohlmann residential site. 
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Appendix C: LULC categories for each surface station based on the 2006 NLCD and 

Landsat imagery. Station LULC categories range in 6 different categories which are: 

High-intensity urban (High Int), medium-intensity urban (Med Int), low-intensity urban 

(Low Int), barren, shrub, and evergreen forest (EF). LULC classification was updated 

based on current visual and Landsat analysis. 

Station Name Network Latitude Longitude Elevation 

(m) 

LULC 

2006 

LULC 

Updated 

Boulder City CEMP 35.985° -114.814° 734 Low Int Low Int 

Henderson CEMP 36.008° -114.966° 670 Med Int Med Int 

Indian Springs CEMP 36.574° -115.676° 964 Low Int Shrub 

Las Vegas CEMP 36.114° -115.149° 623 High 

Int 

High Int 

Boulder City 

Municipal 

NWS 35.947° -114.861° 653 Shrub Shrub 

Desert Rock NWS 36.621° -116.028° 990 Shrub Shrub 

Henderson 

Executive 

NWS 35.976° -115.133° 740 Shrub Shrub 

McCarran NWS 36.072° -115.163° 663 High 

Int 

High Int 

Nellis NWS 36.250° -115.033° 577 Barren Barren 

Blue Diamond DRI-UHI 36.048° -115.406° 1029 Shrub Shrub 

Cheyenne 

Transportation 

DRI-UHI 36.215° -115.149° 625 Barren Barren 

Clough DRI-UHI 36.144° -115.330° 908 Shrub Med Int 

Collins DRI-UHI 35.989° -114.986° 758 Shrub Low Int 

DL Dickens DRI-UHI 36.260° -115.091° 599 Barren Low Int 

Fenstermaker DRI-UHI 36.271° -115.250° 717 Med Int Low Int 

Kim DRI-UHI 36.120° -115.267° 764 Med Int Med Int 

Las Vegas 

High 

DRI-UHI 36.146° -115.031° 534 Barren Low Int 

Miller DRI-UHI 36.317° -115.280° 775 Low Int Low Int 

Peacock DRI-UHI 36.031° -115.204° 722 Shrub Low Int 

Piechota DRI-UHI 35.988° -115.118° 744 Low Int Med Int 

Pitchford DRI-UHI 36.095° -115.129° 616 Med Int Med Int 

Pohlmann DRI-UHI 36.022° -115.077° 653 Med Int Med Int 

Roos DRI-UHI 36.251° -115.283° 744 Med Int Low Int 

Spangler DRI-UHI 36.120° -115.106° 584 Med Int Med Int 

Summerlin DRI-UHI 36.192° -115.287° 796 Med Int Med Int 

Sunrise Acres DRI-UHI 36.165° -115.113° 561 Med Int Med Int 

Wallin DRI-UHI 35.932° -115.089° 918 Shrub Med Int 

West DRI-UHI 36.194° -115.168° 631 Med Int Med Int 

Wildhorse DRI-UHI 36.056° -115.078° 596 Med Int Med Int 

Blackbrush NevCAN 36.520° -115.163° 1670 Shrub Shrub 
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Mojave Desert 

Shrub 

NevCAN 36.435° -115.355° 900 Shrub Shrub 

Montane NevCAN 36.591° -115.215° 2320 EF EF 

Pinyon Juniper NevCAN 36.575° -115.205° 2065 EF EF 

HENDE6 WU 36.032° -115.075° 625 Med Int Med Int 

HENDE15 WU 36.001° -115.078° 714 Med Int Low Int 

HENDE21 WU 35.995° -115.070° 688 Shrub Low Int 

HENDE25 WU 35.945° -115.104° 878 Med Int Low Int 

LASVE11 WU 36.045° -115.286° 832 Low Int Low Int 

LASVE35 WU 36.206° -115.330° 914 Low Int Low Int 

LASVE71 WU 36.082° -115.250° 743 Med Int Low Int 

NORTH6 WU 36.264° -115.148° 632 Barren Barren 

NORTH9 WU 36.232° -115.171° 656 Low Int Low Int 

MC7282 WU 36.040° -115.095° 618 Med Int Med Int 

MD5799 WU 36.047° -115.186° 699 Low Int Low Int 

MUP076 WU 36.029° -115.227° 738 Shrub Shrub 

Desert NWR WU 36.579° -115.144° 2197 Shrub Shrub 

Yucca Gap WU 36.437° -115.331° 972 Shrub Shrub 

Kyle Canyon WU 36.267° -115.600° 2065 EF EF 

Red Rock WU 36.135° -115.477° 1266 Shrub Shrub 
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Appendix D: Daily dominant cloud cover and maximum simulated UHI (UCI) at 

McCarran Airport for the month of November 2012. 

 Day Cloud Cover LSM UHI UCM1 UHI UCM2 UHI 

1 Broken 3.64°C (none) 1.53°C (-3.08°C) 3.24°C (-1.31°C) 

2 Scatter 2.66°C (-0.33°C) 1.49°C (-2.62°C) 1.57°C (-1.30°C) 

3 Scatter 3.02°C (-0.99°C) 1.17°C (-2.42°C) 1.67°C (-1.77°C) 

4 Clear 3.24°C (-0.73°C) 1.76°C (-2.52°C) 2.09°C (-1.66°C) 

5 Clear 4.18°C (-2.04°C) 1.82°C (-3.72°C) 2.65°C (-2.95°C) 

6 Clear 3.35°C (-0.74°C) 1.41°C (-2.53°C) 1.63°C (-1.61°C) 

7 Clear 2.88°C (-0.34°C) 1.51°C (-1.91°C) 2.21°C (-1.51°c) 

8 Broken 2.03°C (-1.04°C) 1.33°C (-0.94°C) 1.98°C (-1.35°C) 

9 Scatter 1.84°C (-0.66°C) 0.73°C (-1.01°C) 1.48°C (-1.42°C) 

10 Scatter 3.16°C (-0.66°C) 0.97°C (-2.01°C) 2.92°C (-1.83°C) 

11 Clear 4.12°C (-0.18°C) 1.74°C (-2.74°C) 3.77°C (-1.45°C) 

12 Scatter 2.74°C (-0.64°C) 1.21°C (-2.37°C) 2.84°C (-1.03°C) 

13  Clear 2.89°C (-1.41°C) 0.86°C (-2.65°C) 2.86°C (-1.67°C) 

14 Broken 3.16°C (-1.75°C) 1.38°C (-3.06°C) 3.29°C (-1.71°C) 

15 Broken 2.05°C (-1.35°C) 0.54°C (-2.28°C) 1.91°C (-1.01°C) 

16 Scatter 2.45°C (-1.62°C) 1.27°C (-3.10°C) 2.85°C (-1.16°C) 

17 Broken 3.63°C (-0.49°C) 2.13°C (-3.77°C) 3.78°C (-1.47°C) 

18 Scatter 2.69°C (-0.50°C) 1.28°C (-1.51°C) 2.58°C (-1.06°C) 

19 Scatter 3.54°C (-0.40°C) 2.48°C (-2.12°C) 3.70°C (-0.91°C) 

20 Clear 1.80°C (-1.18°C) 0.56°C (-2.84°C) 1.71°C (-1.70°C) 

21 Scatter 2.50°C (-0.33°C) 0.68°C (-1.97°C) 2.27°C (-0.66°C) 

22 Scatter 3.67°C (-1.50°C) 2.00°C (-2.83°C) 4.01°C (-1.37°C) 

23 Clear 3.23°C (-1.09°C) 1.79°C (-2.17°C) 2.53°C (-1.21°C) 

24 Clear 3.77°C (-1.21°C) 1.76°C (-2.50°C) 2.88°C (-1.27°C) 

25 Scatter 2.58°C (-0.75°C) 1.82°C (-2.30°C) 2.09°C (-0.68°C) 

26 Clear 2.78°C (-0.94°C) 1.33°C (-2.57°C) 2.98°C (-1.04°C) 

27 Broken 2.03°C (-1.07°C) 0.76°C (-2.37°C) 1.68°C (-1.19°C) 

28 Scatter 1.89°C (-0.72°C) 1.56°C (-2.01°C) 2.64°C (-0.83°C) 

29 Broken 2.34°C (-0.90°C) 1.23°C (-0.76°C) 2.45°C (-0.79°C) 

AVERAGE 2.89°C (-0.91°C) 1.38°C (-2.37°C) 2.56°C (-1.34°C) 

 

 

 


