
Continuous CMAC-QRLS and Its Systolic Array
TING QIN, HAITAO ZHANG, ZONGHAI CHEN, WEI XIANG
Department of Automation, University of Science and Technology of China, Hefei 230027, P.R.China

e-mail:qinting@ustc.edu

Abstract：Conventionally, least mean square rule (LMS) is used to update the weights of CMAC. The algorithm of

CMAC-RLS which applies recursive least square algorithm (RLS) to update the weights of CMAC has proved to

be a good tool for modeling on line. Based on QR decomposition, a simplified algorithm of CMAC-RLS named

CMAC-QRLS is brought forward next and its corresponding systolic array is also designed. Combining with

B-splines, we further devise the systolic array of continuous CMAC-QRLS. The simulation results reveal the good

performance of this proposed algorithm.

Key words：CMAC-QRLS, QR decomposition, Systolic array, B-splines

1. Introduction

Three decades ago, the cerebellar model articulation controller (CMAC) was first proposed
by Albus [1,2]. In the nineties of last century the continuous CMAC combined with Gaussian[3] or
B-splines[4] receptive field functions was introduced. This kind of continuous CMAC can further
improve the accuracy of function approximation and provide the values of function derivatives. It
was also since the nineties of last century that the convergence property of CMAC has been
investigated and these theoretical research results[6-8] simultaneously have been promoting the
application of CMAC. Because CMAC possesses good local generalization property, moreover, it
is capable of fast learning and easy to be realized in hardware[9] as well as in software, it has been
successfully applied in many fields, such as robotic control[10-13]，pattern recognition[14], and signal
processing[15], etc.

Traditionally, CMAC uses LMS rule to update its weights. Recently, Qin[16] introduced the
CMAC-RLS algorithm which can guarantee the learning algorithm to converge in just one epoch
when a new provided sample is trained. In order to make this algorithm more suitable for
implementing on line, a simplified algorithm based on QR decomposition and named
CMAC-QRLS will be introduced next. CMAC-QRLS not only reduces the computation time and
memory storage, but also improves the numerical stability. And it can also be easily implemented
in pipelined systolic array. Because B-splines are very appropriate for interpolation, the systolic
array of continuous CMAC is further devised combined with B-splines.

2. Mechanism of CMAC-RLS

2.1. CMAC Technique

Figure.1. Basic skeleton of CMAC

A schematic sketch of CMAC without hash-coding is illustrated in Figure.1. It can be
regarded including two mappings:

 c
M AX ⎯→⎯ (1)

 YA S
c ⎯→⎯ (2)

where X , cA and Y are input space, the space of conceptual memory and output space,

respectively.

First, the input vector is quantized and then activates g association neurons in cA by (1)

(In Figure.1, 5=g).Then, the weights attached to the activated neurons of cA are summed to

produce the output. g is generally called the generalization factor. It represents the neurons
activated by one input.

If two inputs are close, there will be overlap between their corresponding activated neurons,

such as 2x and 3x . On the contrary, the neurons activated by input vectors far away do not

overlap, such as 1x and 2x .

Given a set of sample data),(kk yx , where kx is the input and ky is the desired output.

We represent the neurons that kx activates by a vector of characteristic function)1(nia ki ≤≤ ,

where

⎩
⎨
⎧

=
 otherwize 0

by activated is in neuron th the1 kc
ki

xAi
a (3)

and n is the size of conceptual memory.
The vector of characteristic function is also called indicator[6] and denoted as

],,,[21 knkkk aaa L=ϕ (4)

Form the matrix []TT
k

TT
k nk

A
×

= ϕϕϕ L21 ， []Tkkk yyyY 121 ×= L (5)

where k is the number of training samples. The goal of CMAC learning is to find a weight

vector kθ such that

 kkk YA =θ (6)

where],,,[21 nkkk
T
k www L=θ and represents the contents in cA after the k th set of sample

data has been presented and the calculating is over.

2.2. CMAC-RLS Algorithm

CMAC-RLS can converge in just one epoch and has proved to be a useful tool for modeling
on line. It can be descried as follows.

The initial values of kP and kθ̂ are set as

 nIP β=0 and 0ˆ
0 =θ (7)

where β is set as some large constant and nI is an nn× unit matrix.

k∀ , kkk P11 ++ = ϕπ (8)

)1(1111
T
kk

T
kkL ++++ += ϕππ (9)

111 +++ −= kkkk LPP π (10)

)ˆ- (ˆˆ
1111 kkkkkk yL θϕθθ ++++ += (11)

where kθ̂ is the estimated vector of kθ .

The CMAC-RLS learning is used on line following the next steps:

1) Initialize the values of kP and kθ̂ by (7);

2) Quantize kx when a new sample),(kk yx is provided;

3) Compute kϕ by (3) and (4);

4) Update the weight vector by (8),(9),(10),(11);
5) Go to 2) until the end.

 Based on the special characteristic of indicator, a simplified CMAC-RLS was also
introduced in reference [16] which can be described next:

k∀ , :),()(11 kkkkk nzposPnzpos++ = ϕπ (12)

)()(1 1111 k
T
kkk

T
kk nzposnzposL ++++ += ϕππ (13)

111 +++ −= kkkk LPP π (14)

))(ˆ)(- (ˆˆ
1111 kkkkkkkk nzposnzposyL θϕθθ ++++ += (15)

knzpos is the set to indicate the positions of those nonzero elements in kϕ .

Then the computation complexity of this simplified CMAC-RLS can be calculated in
Table.1:

Table.1. computation complexity of this simplified CMAC-RLS

Equations multiplications Divisions Square Roots

(12) ng ×

(13) g n

(14) nn×

(15) ng +

Total ngngnn ++×+× 2 n 0

With regard to the storage memory, CMAC-RLS needs at least 2n memory cells. It is

necessary to reduce the computation time and memory storage for more convenient
implementation. Thus another simplified algorithm of CMAC-RLS is brought forward in the next
section.

3. Continuous CMAC-QRLS and Its Systolic Array

3.1. The QR-RLS Algorithm of CMAC

Let k
T
kk AA=Φ (16)

then kΦ can be expressed in its factored form with Cholesky factorization:

 2/2/1 T
kkk ΦΦ=Φ (17)

where 2/T
kΦ is the Hermitian transpose of the lower triangular matrix 2/1

kΦ .

We also introduce a new vector variable defined by

 k
T
k

T
kp θ̂2/Φ= , (18)

and let 2
1−

= βδ (19)

then the QR-RLS[17] algorithm of CMAC is deduced and presented in Table 2:

Table.2. Summary of QR-RLS algorithm of CMAC

1. Initialization:

 nIδ=Φ 2/1
0 (δ is set as a small real constant), Tp 0=0 , (20)

where 0 is the null vector.
2. Recursive Operation

),(kk yx is provided, compute

2.1. Forward computation:

⎥
⎦

⎤
⎢
⎣

⎡Φ
=Θ⎥

⎦

⎤
⎢
⎣

⎡Φ

−

−
2/1

2/1

1

2/1
1 0

kkk

k
k

kk

T
kk

pyp γξ
ϕ

 (21)

2.2. Back substitution:

kθ̂ can be calculated through (18) in the way that exploits the upper triangular structure

of 2/T
kΦ .

3. Terminate

Note: where kΘ is a unitary rotation that operates on the elements of T
kϕ in the prearray,

annihilating them one by one so as to produce a block zero entry in the top block row of the
postarray.

1
ˆ
−−= kkkk y θϕξ ,

1
ˆ
ˆ

−−

−
=

kkk

kkk
k y

y
θϕ
θϕ

γ , and they will not be considered here.

The QR-RLS algorithm of CMAC based on Givens rotation can also be implemented in
systolic array[17] which is shown in Figure 2.

1,1

2,1ka2

3,1 3,2

2,2

3,3ka3

ka1

n,1 n,2 n,3nka

1 2 3ky n

n,n

x

sc

inσInitialization:

0
1
0

set,0At

=
=
=
=

s
c
x
t

xx

in

→
→
→
=

s0
c1

,0 If σ

xx

s
x

c
x
x

xx

in

in

→

→

→

→+

'

'

'

'22

else,

σ

σ

xcxs
sxc

in

outin

→−
→−

σ
σσ

xinσ outσ

Initialization:

0
1
0

set,0At

=
=
=
=

s
c
x
t

(a) systolic array

(b) angle computer

(c) rotator

sc

sc
21 3 n

Figure.2. Systolic array of QR-RLS algorithm of CMAC

inσ : cell input signal, outσ : cell output signal,

 c , s : cell computation signal.

The systolic array is controlled by a single clock and consists of three types of processing
cells arranged in the form of a triangular section:

 Diagonal cells depicted as circles compute square roots and divisions, as described in
Figure.2(b). This kind of cell is also called angle computer.

 Internal cells depicted as squares perform only additions and multiplications as described in
Figure.2(c). This kind of cell is also called rotator.

 Hemline cells depicted as diamonds store the weights calculated by back substitution.
For simplicity, let us define that

 ⎥
⎦

⎤
⎢
⎣

⎡Φ
=Ω

−

−

1

2/1
1

k

k

p
 (22)

The upper memory cells correspond Ω one by one. That is,
i,j

 stores the element who

is in the i th row and the j th column of 2/1
1−Φk and stores the i th element of 1−kp .It

should be noted that the upper triangular elements of 2/1
1−Φ k are all zeros and do not participate in

any computation, so they are not considered.
The detailed procedure for the operation of the systolic array can be referred to reference [17],

and it is only described here by code in Table.3.

Table.3. Code of QR-RLS algorithm of CMAC

1. Initialization:

jLoopofEnd
iLoopofEnd

LoopnjjiFor

LoopnjFor

ji

jj

⎪
⎩

⎪
⎨

⎧

=Ω
+++=

=Ω
=

0
1,,2,1

,,2,1

,

,

L

L

δ

2. Recursive Operation

),(kk yx is provided, compute

 2.1. Forward Computation

jLoopofEnd
iLoopofEnd

cs

sc
LoopnjjiFor

dsdc

d

LoopnjFor
y

iLoopofEnd
a

LoopniFor

ijii

ijiji

jjj

jjj

kn

iki

⎪
⎪
⎩

⎪
⎪
⎨

⎧

+Ω−=

+Ω=Ω
++=

=Ω=

Ω+=

=
=

=
=

+

σσ

σ

σ

σ

σ

σ

,

,,

,

2
,

2

1

1,,1,

,

,,2,1

,,2,1

L

L

L

2.2. Back Substitution

jLoopofEnd

tempw
iLoopofEnd

wtemptemp
LoopgjjjiFor

temp
LoopTTjFor

jLoopofEnd

tempw
iLoopofEnd

wtemptemp
LoopnjjiFor

temp
LoopTnnjFor

gnT
w

jjjnj

iji

jjjnj

iji

nnnnn

,,1

,

,,1

,

,,1

/)(

,1,,2,1

0
,1,,1,

/)(

,,2,1

0
1,,2,1

/

Ω−Ω=

⎪
⎩

⎪
⎨

⎧

Ω+=
−+++=

=
−=

Ω−Ω=

⎪
⎩

⎪
⎨

⎧

Ω+=
++=

=
+−−=

−=

ΩΩ=

+

+

+

L

L

L

L

3. Terminate

3.2. CMAC-QRLS and Its Systolic Array

The QR-RLS Algorithm of CMAC can be simplified step by step based on the particular
characteristic of CMAC that only g nonzero elements exist in the indicator of CMAC:

Table.4. Code of CMAC-QRLS

1. Initialization:

jLoopofEnd
iLoopofEnd

LoopgTjTjiFor

LoopnTTjFor
jLoopofEnd
iLoopofEnd

LoopgiFor

LoopTjFor
gnT

ji

jTj

ji

j

⎪
⎩

⎪
⎨

⎧

=Ω
++−+−=

=Ω
++=

⎪
⎩

⎪
⎨

⎧

=Ω
+=

=Ω
=
−=

−

0
1,,2,1

,,2,1

0
1,,3,2

,,2,1

,

,

,

,1

L

L

L

L

δ

δ

2. Recursive Operation: H2

),(kk yx is provided, compute

 2.1. Forward Computation

⎪
⎩

⎪
⎨

⎧
=

−=

⎪
⎪
⎭

⎪
⎪
⎬

⎫

=
=
=

⎪
⎪
⎩

⎪
⎪
⎨

⎧

+Ω−=

+Ω=Ω
+=

=Φ=

Ω+=

+=

=

⎪
⎭

⎪
⎬

⎫
=

=

==

+

+

−+

iLoopofEnd

LoopgiFor

IfEnd
jEndAddress

EndSign
allIf

iLoopofEnd

cs

sc
LoopgiFor

dsdc

d

LoopTlljFor

y
iLoopofEnd

a
LoopgiFor

TEndAddressEndSign

ii

out

ijii

ijiji

i

i

kg

kili

1

,

,,

1,1

2
,1

2
1

1

,1

,1,2,1

1
0)(

1,,2,1

,

,,1,

,,2,1

;0

σσ

σ

σσ

σ

σ

σ

σ

σ

L

L

L

L

H3

H1

IfofEnd
jLoopofEnd

iLoopofEnd

cs

sc
LoopgTjTjiFor

dsdc

d

LoopnTTjFor
EndSignIf

jLoopofEnd

ijii

ijiji

TjjTj

jTjTj

g

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

⎪
⎪
⎩

⎪
⎪
⎨

⎧

+Ω−=

+Ω=Ω
++−−=

=Φ=

Ω+=

++=

=

−−

−−

σσ

σ

σ

σ

σ

,

,,

,

2
,

2

1,,1,

,

,,,2,1
!

0

L

L

2.2. Back Substitution

jLoopofEnd

tempw
iLoopofEnd

wtemptemp
LoopgiFor

temp
LoopEndAddressEndAddressjFor

IfEnd
jLoopofEnd

tempw
iLoopofEnd

wtemptemp
LoopnTjTjiFor

temp
LoopTnnjFor

w
EndSignIf

jjgj

jiji

jTjjgj

Tiji

ngngn

,1,1

1,

,,1

,

,,1

/)(

,,3,2

0
1,,1,

/)(

,,2,1

0
1,,2,1

/
!

Ω−Ω=

⎪
⎩

⎪
⎨

⎧

Ω+=
=

=
−=

⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

Ω−Ω=

⎪
⎩

⎪
⎨

⎧

Ω+=
+−+−=

=
+−−=

ΩΩ=

+

−+

−+

+

+

L

L

L

L

3. Terminate

1. Address mapping.(H1)

Suppose that the indicator of kx is]0,,,0,0[1 LLL −+gll aa , where l is the address of

the first nonzero element. Considering the result of unitary transformation in (21), the elements in

front of la are not required to participate in the computation. So the unitary transformation

begins from la and simultaneously from the l th column of Ω . In other words, it is not

required the computation to begin from the first column and thus we can use the address mapping
mechanism of CMAC to locate the beginning address for the forward computation.
2. Change the triangular structure to a rectangular structure.(H2)

The elements behind 1−+gla are all zeros. Considering the procedure of unitary

transformation, it can be seen that only g elements closely lower from the diagonal of Ω and

the elements of the last row of Ω take part in the computation, so we can eliminate the elements

unused and change the triangular structure to a rectangular structure of ng ×+)2(.

3. End the forward computation and begin the back substitution.(H3)
In the process of one epoch, the forward computation can be carried to the last column of Ω .

However, when the forward computation reaches one column whose cell output signals are all
zeros, it can also be ended. Then the back substitution begins from this column till the first column,
i.e., the weights after this column remain unchanged.

0 0 0 0 0 0

kx L1σ 2σ 3σ gσ ky

 Figure.3. Systolic array of CMAC-QRLS
Combine the three simplifying methods above, the code in Table.3 can be rewritten in Table.4.

We call this latter simplified algorithm CMAC-QRLS. The systolic array of CMAC-QRLS is
illustrated in Figure.3. For easy explanation, the various module functions of Figure.3 are descried
by the corresponding code in Table.4 using the same symbol.

Similarly, the computation complexity of CMAC-QRLS can be calculated through the next
table:

Table.5. computation complexity of CMAC-QRLS
 Multiplications Divisions Square Roots
Angle computer n2 n2 n

Rotator ng ×4

Back substitution
2

)1(−× nn
 n

Total nngn
2
34

2

2

+×+ n3 n

Compared with Table.1, we find that the former simplified CMAC-RLS needs almost 2n

multiplications, whereas CMAC-QRLS requires nearly
2

2n
 multiplications. However,

CMAC-QRLS increases the operations of divisions and it also needs the operations of square roots.
From these analyses, we can not decide which algorithm runs faster. So in order to compare their
practical computation speed, the simulation to approximate same function in Matlab is carried out.

The function is:

]360,0[)360/2sin(∈= xxy π (23)

CMAC uses the parameters of 18;360 == gQ and is trained using data with the

sampling interval of 1. Q is the level of quantization.

Each algorithm is run eight times and the computation time results are listed in Table.6.
Table.6. computation time comparison

 1 2 3 4 5 6 7 8 Average
Simplified CMAC-RLS
CMAC-QRLS

24.44
11.22

24.11
11.14

23.93
11.20

23.96
11.18

24.00
11.22

24.00
11.19

24.06
11.13

24.10
11.19

24.07
11.18

Obviously, CMAC-QRLS runs faster than the previous algorithm. So compared with the
former simplified CMAC-RLS algorithm, CMAC-QRLS reduces the computation time. It should
be noticed that CMAC-QRLS is much easier to be implemented in hardware structure due to its
pipelined systolic array, and therefore if it is realized in high-speed hardware, it may achieve
rather faster computation speed compared with its software implementation.

As shown in Figure.3, CMAC-QRLS only needs about ng ×+)2(memory cells. The

memory storage is reduced. Moreover, due to the property of QR-RLS[18], the numerical stability
is also improved simultaneously.

Considering the analyses above, it can be concluded that CMAC-QRLS exhibits more
advantage in fast computation speed, low memory storage, pipelined hardware realization and
high numerical stability, so it will be more suitable for implementation.

3.3. Continuous CMAC-QRLS

Since the rectangular shape of CMAC receptive field functions produce discontinuous
staircase function approximation, by formulating CMAC with B-splines receptive field functions.
Lane[4] has developed continuous CMAC-LMS which can provide the information of both
functions and function derivatives.

B-splines can be constructed using deBoor-Cox recursive relation[19].

⎩
⎨
⎧ ∈

= +

 otherwise ,0
),[,1

)(1
1,

jj
j

xxx
xBS (24)

 njmxBS
xx

xx
xBS

xx
xx

xBS mj
jmj

mj
mj

jmj

j
mj ≤≤>

−

−
+

−

−
= −+

++

+
−

−+

0,1),()()(1,1
1

1,
1

, (25)

and its first-order derivatives can be calculated

 ⎥
⎦

⎤
⎢
⎣

⎡
−

−
−

−=
++

−+

−+

−

1

1,1

1

1,)1(
,

)()(
)1()(

imi

mi

imi

mi
mi tt

tBS
tt
tBS

ktBS (26)

So the higher derivative can be calculated recursively by (26)

Give n partitions over the interval),[bax∈ , an m th order spline function)(, xBS mj

can be constructed to approximate)(xf

 ∑
−+

=

=≈
1

1
,)()(ˆ)(

mn

j
mjj xBSwxfxf (27)

by using a linear combination of)(, xBS mj weighted by jw .

B-splines receptive function is preferable to other spline functions due to its superior
numerical and computational properties. The main properties include:

a) Positive on a bounded support:

⎩
⎨
⎧ ∈>

= +

 otherwise ,0
),[,0

)(,
mjj

mj

xxx
xBS (28)

b) Form a partition of unity

),[1)(11
0

, +−
=

∈=∑ nm

n

j
mj xxxxBS (29)

To efficiently design continuous CMAC-QRLS chip, we have to develop cost-effective
architectures for the recurrent B-splines evaluator. For easy explanation, we suppose that the order

of B-splines function equals to the generalization factor and let 4== mg . Thus the values of

B-splines in CMAC-QRLS can be calculated through the following procedure:

1,3+jBS

2,2+jBS

2,3+jBS 3,3+jBS

3,2+jBS

3,1+jBS

44,3 σ=+jBS

34,2 σ=+jBS

24,1 σ=+jBS

14, σ=jBS31

25

303030

25

2531

31

Figure.4. Computation procedure of B-splines in CMAC-QRLS

It can be seen from Figure.4 that (30), (31) are used in each side and only (25) is used in the
internal part.

 njmxBS
xx

xx
xBS mj

jmj

j
mj ≤≤>

−

−
= −

−+

0,1),()(1,
1

, (30)

 njmxBS
xx

xx
xBS mj

jmj

mj
mj ≤≤>

−

−
= −+

++

+ 0,1),()(1,1
1

, (31)

In order to implement B-splines in hardware, we need to arrange the data of in the registers
properly. At first the rightmost register stores 1, and the following procedure corresponding to
Figure.4 is depicted in Figure.5.

2,3+jBS2,2+jBS

3,3+jBS3,2+jBS3,1+jBS 4,3+jBS4,2+jBS4,1+jBS4,jBS

Figure.5. B-splines array in CMAC-QRLS

The indicator of continuous CMAC is calculated using address mapping and B-splines
functions, so it is composed of floats instead of only binary elements in that of discrete CMAC. So
one advantage of continuous CMAC-QRLS is that it is able to provide the output derivative
information with respect to input when it is used to model on line.

4. Simulation Study

To show the effectiveness of the proposed continuous CMAC-QRLS algorithm, two
examples are studied for demonstration.

4.1. Example 1: Approximate Sinusoid

As stated in previous sections, continuous CMAC-QRLS is very suitable for modeling. Next
we will examine this capability through approximate a sine function:

]360,0[)360/2sin()(∈= xxxf π (32)

The simulation results in Figure.6 are based on the following choice of design parameters and
conditions:

The parameters of continuous CMAC-QRLS are adopted as 20=Q and 4== mg

CMAC is trained using data with the sampling interval of 10 , and checked with the
sampling interval of 2.0 .

0 90 180 270 360
-1

0

1

(a)
0 90 180 270 360

-1

0

1

(b)

0 90 180 270 360
-0.02

0

0.02

(c)
0 90 180 270 360

-0.02

0

0.02

(d)

0 90 180 270 360
-5

0

5
x 10

-4

(e)
0 90 180 270 360

-5

0

5
x 10

-4

(f)

f f̂

dx
df

dx
fdˆ

2

2

dx
fd

2

2 ˆ

dx
fd

Figure.6 .Approximation ability of continuous CMAC-QRLS for Sinusoid

The errors of function values, first-order and second-order derivatives are summarized in
Table.7 respectively.

Table.7. Various errors of continuous CMAC-QRLS
 function values first-order derivatives second-order derivatives

RMSE
MAE

0.2894e-4
3.7270e-4

0.7739e-5
7.9379e-5

1.5137e-6
10.240e-6

RMSE: root mean square error; MAE: max absolute error

As illustrated in Figure.6 and Table.7, the approximation results show that continuous
CMAC-QRLS can approximate function and provide the information of derivatives well even if it
is trained with incomplete training sets. So when it is used to model on line, it can provide us more
accurate information than the discrete CMAC.

4.2. Example 2: Approximate Simple Pendulum

Now let us demonstrate the approximation ability of continuous CMAC-QRLS again via an
elementary example of a simple pendulum.

The equation of motion of a simple pendulum is given by (see reference [20])

 u
l

klmgml 1sin +−−= ηηη &&& (33)

where u is the torque applied to the pendulum, η is the anticlockwise angle between the
vertical axis through the pivot point and the rod, g is the gravity acceleration, and the constants
k , l and m denote a coefficient of friction, the length of the rod and the mass of the bob,

respectively. Set lga = , mkb = , 21 mlc = and define the state variables η=1x ,

η&=2x , system (33) can be written as its state equation:

⎩
⎨
⎧

+−−=
=

cubxxax
xx

212

21

sin&

&
 (34)

In this case, the parameters of CMAC are 20=Q and 4== mg .

The nominal parameters are 10== ca and 1=b .

The original state is)0,0(. The time span of t is]8,0[.

The input is varying and)80/2sin(5.0 tu π= .

CMAC whose input is time t and output is the angle η is trained using data with
sampling period of 4.0 to approximate the running process, and checked with the sampling
period of 1.0 .

The simulation results are depicted in next figure:

η
η̂

η̂&
η&

Figure7 .Approximation ability of continuous CMAC-QRLS for Simple Pendulum

In Figure.7, the solid curve is the original state of the pendulum, and the curve denoted by
circle represents the state approximated by continuous CMAC-QRLS. Obviously, we even can get
the information of angular velocity when continuous CMAC-QRLS is only used to approximate
the angle with incomplete training sets. And owing to the more information of continuous
CMAC-QRLS, it can be concluded that the angular acceleration may also be obtained and we do
not discuss it here. Approximating angular velocity of around eighth second still requires the data
after this time, so there exist relatively bigger errors for angular velocity around eighth second.

From these two examples, we find that adequate approximation results with a broad and
uniform distributed incomplete training set can be obtained if the approximated function is smooth
and the parameters of continuous CMAC-QRLS are well-chosen. All these demonstrated
continuous CMAC-QRLS is a good approximation tool for modeling on line.

5. Conclusion

Least square adaptive algorithms based on the QR decomposition are very promising due to
their numerically robust performance. In this paper, CMAC-RLS is simplified based on QR
decomposition. Compared with the original CMAC-RLS algorithm, it reduces the memory storage,
what’s more, the proposed algorithm exhibits low time cost and pipeline structure. Subsequently
we design the systolic array of continuous CMAC-QRLS which can provide the further
information of derivatives. The simulation results show that CMAC-QRLS appears to be an
appropriate algorithmic tool for modeling on line.
Acknowledgement: This work is supported by the national ‘985’high-level university fund, Hefei
key science and technology plan and the youth fund of USTC. The authors also would like to
thank the anonymous reviewers for their constructive comments, which helped improve the
presentation.

Reference:

1. J.S.Albus, ”A new approach to manipulator control: The cerebellar model articulation controller(CMAC)”,

Trans.ASME,J.Dyanmic Syst.,Meas.Contr.,Vol.97,pp.220-227,1975.

2. J.S.Albus,”Data storage in the cerebellar model articulation controller(CMAC)”, Trans.ASME J. Dynamics

Syst.Means.Contr.,vol.97,pp.228-233,1975.

3. Chiang-Tsan Chiang and Chun-shin Lin,” CMAC with general basis functions”, Neural Networks, Vol.9,

pp.1199-1211, 1996.

4. Stephen H.Lane,David A.Handelman,and Jack J.Gelfand, ”Theory and development of higher-order CMAC

neural networks”, IEEE Control Systems Magazine, Vol.12, pp.23-30, 1992.

5. P.C.Parks and J.Militzer, ”Convergence properties of associative memory storage for learning control

system.”, Automation and Remote Cotnrol,vol.50,pp254-286,1989

6. Yiu-fai Wong and Athanasios Siders, ”Learning convergence in the cerebellar model articulation controller”,

IEEE trans.on nerural networks,vol.3,pp115-121,1992

7. Chun-shin Lin and Ching-Tsan Chiang, ”Learning convergence of CMAC technique”, IEEE trans.on neural

networks,vol.8,pp.1281-1292,1997.

8. Chao He, Lixin Xu, Yuhe Zhang, ”Learning Convergence of CMAC Algorithm”, Neural Processing Letters,

vol.14, pp.61-74,2001

9. Ker Jar-Shone,Kuo Yau_Hwang,Liu Bin-Da ,”Hardware realization of higher-order CMAC model for color

calibration”, Proceedings of IEEE International Conference on Neural Networs, Perth, WA, Austrialia,

11/27/1995-12/01/1995,pp.1656-1661

10. W. T.Miller, Latham, P. J., and Scalera, S. M., "Bipedal Gait Adaptation for Walking with Dynamic Balance",

Proceedings of the 1991 American Controls Conference, Boston, MA, vol.2, pp. 1603-1608, June, 1991.

11. W.T.Miller, F.H.Glanz and L.G.Kraft, ”Application of a general learning algorithm to the control of robotic

manipulators”, Int.J.of Robotics Research, vol.6,pp.84-98,1987.

12. W.T.Miller, “Real-time application of neural networks for sensor-based control of robots with vision”,

IEEE Transactions on Systems, Man and Cybernetics, Vol. 19,pp. 825 -831,1989

13. W.T.Miller,R.P.Hewes,F.H.Glanz,L.G.Kraft, ”Real-time dynamic control of an industrial manipulator using a

neural-network-based learning controller”, IEEE trans. on robotics and automation,vol.6,pp.1-9,1990

14. S.Manglevhedakar, ”An adaptive hierarchical model for computer vision”, Thesis, Louisiana State Univ.

1986.

15. A.Kolcz and N.M.Allinson,” Application of the CMAC input encoding scheme in the N-tuple approximation

network”, IEE Proc.Comput.digital Techniques,vol.141,pp.177-183,1994

16. Ting Qin, Zonghai Chen, etc , ” A Learning Algorithm of CMAC Based On RLS”, Neural Processing Letters,

19: 49–61, 2004.

17. Simon Haykin,”Adaptive Filter Theory”, Prentice Hall ,2002

18. Yang, B., Bohme, J.F, ” Rotation-based RLS algorithms: unified derivations, numerical properties, and

parallel implementations”, IEEE Transactions on Signal Processing, Vol.40, pp.1151-1167, 1992

19. Wan Shengfu, “spline functiond and their application”, Northwestern Polytechnical University Press,1989

20. H. Khalil, Nonlinear Systems, 3rd ed. Upper Saddle River, NJ: Prentice-Hall, 2002.

