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Abstract：Conventionally, least mean square rule (LMS) is used to update the weights of CMAC. The algorithm of 

CMAC-RLS which applies recursive least square algorithm (RLS) to update the weights of CMAC has proved to 

be a good tool for modeling on line. Based on QR decomposition, a simplified algorithm of CMAC-RLS named 

CMAC-QRLS is brought forward next and its corresponding systolic array is also designed. Combining with 

B-splines, we further devise the systolic array of continuous CMAC-QRLS. The simulation results reveal the good 

performance of this proposed algorithm.  
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1. Introduction 

Three decades ago, the cerebellar model articulation controller (CMAC) was first proposed 
by Albus [1,2]. In the nineties of last century the continuous CMAC combined with Gaussian[3] or 
B-splines[4] receptive field functions was introduced. This kind of continuous CMAC can further 
improve the accuracy of function approximation and provide the values of function derivatives. It 
was also since the nineties of last century that the convergence property of CMAC has been 
investigated and these theoretical research results[6-8] simultaneously have been promoting the 
application of CMAC. Because CMAC possesses good local generalization property, moreover, it 
is capable of fast learning and easy to be realized in hardware[9] as well as in software, it has been 
successfully applied in many fields, such as robotic control[10-13]，pattern recognition[14], and signal 
processing[15], etc.  

Traditionally, CMAC uses LMS rule to update its weights. Recently, Qin[16] introduced the 
CMAC-RLS algorithm which can guarantee the learning algorithm to converge in just one epoch 
when a new provided sample is trained. In order to make this algorithm more suitable for 
implementing on line, a simplified algorithm based on QR decomposition and named 
CMAC-QRLS will be introduced next. CMAC-QRLS not only reduces the computation time and 
memory storage, but also improves the numerical stability. And it can also be easily implemented 
in pipelined systolic array. Because B-splines are very appropriate for interpolation, the systolic 
array of continuous CMAC is further devised combined with B-splines. 

2. Mechanism of CMAC-RLS 

2.1. CMAC Technique 

 



 

Figure.1. Basic skeleton of CMAC  

A schematic sketch of CMAC without hash-coding is illustrated in Figure.1. It can be 
regarded including two mappings: 

  c
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where X , cA  and Y  are input space, the space of conceptual memory and output space, 

respectively. 

First, the input vector is quantized and then activates g  association neurons in cA  by (1) 

(In Figure.1, 5=g ).Then, the weights attached to the activated neurons of  cA  are summed to 

produce the output. g  is generally called the generalization factor. It represents the neurons 
activated by one input. 

If two inputs are close, there will be overlap between their corresponding activated neurons, 

such as 2x  and 3x . On the contrary, the neurons activated by input vectors far away do not 

overlap, such as 1x  and 2x . 

Given a set of sample data ),( kk yx , where kx  is the input and ky  is the desired output. 

We represent the neurons that kx  activates by a vector of characteristic function )1( nia ki ≤≤ , 
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and n is the size of conceptual memory. 
The vector of characteristic function is also called indicator[6] and denoted as 
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where k  is the number of training samples. The goal of CMAC learning is to find a weight 

vector kθ  such that 

 kkk YA =θ  (6) 

where ],,,[ 21 nkkk
T
k www L=θ  and represents the contents in cA  after the k th set of sample 

data has been presented and the calculating is over. 

2.2. CMAC-RLS Algorithm 

CMAC-RLS can converge in just one epoch and has proved to be a useful tool for modeling 
on line. It can be descried as follows. 

The initial values of kP  and kθ̂  are set as 

  nIP β=0  and 0ˆ
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where  β  is set as some large constant and nI  is an nn×  unit matrix. 
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where kθ̂  is the estimated vector of  kθ . 

The CMAC-RLS learning is used on line following the next steps: 

1) Initialize the values of kP  and kθ̂  by (7); 

2) Quantize kx  when a new sample ),( kk yx  is provided; 

3) Compute kϕ  by (3) and (4); 

4) Update the weight vector by (8),(9),(10),(11); 
5) Go to 2) until the end. 
 



 Based on the special characteristic of indicator, a simplified CMAC-RLS was also 
introduced in reference [16] which can be described next: 
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knzpos  is the set to indicate the positions of those nonzero elements in kϕ . 

Then the computation complexity of this simplified CMAC-RLS can be calculated in 
Table.1: 

Table.1. computation complexity of this simplified CMAC-RLS 

Equations multiplications Divisions Square Roots 

(12) ng ×    

(13) g  n   

(14) nn×    

(15) ng +    

Total ngngnn ++×+× 2 n  0  

With regard to the storage memory, CMAC-RLS needs at least 2n  memory cells. It is 

necessary to reduce the computation time and memory storage for more convenient 
implementation. Thus another simplified algorithm of CMAC-RLS is brought forward in the next 
section. 

3. Continuous CMAC-QRLS and Its Systolic Array 

3.1. The QR-RLS Algorithm of CMAC 

Let  k
T
kk AA=Φ  (16) 

then kΦ  can be expressed in its factored form with Cholesky factorization: 
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where 2/T
kΦ  is the Hermitian transpose of the lower triangular matrix 2/1

kΦ . 

We also introduce a new vector variable defined by 
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then the QR-RLS[17] algorithm of CMAC is deduced and presented in Table 2:  
 

Table.2. Summary of QR-RLS algorithm of CMAC 

1. Initialization: 

 nIδ=Φ 2/1
0 (δ  is set as a small real constant), Tp 0=0 , (20) 

where 0  is the null vector. 
2. Recursive Operation 

),( kk yx  is provided, compute 
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2.2. Back substitution:  

kθ̂  can be calculated through (18) in the way that exploits the upper triangular structure 

of 2/T
kΦ . 

3. Terminate 

Note: where kΘ  is a unitary rotation that operates on the elements of T
kϕ  in the prearray, 

annihilating them one by one so as to produce a block zero entry in the top block row of the 
postarray. 
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The QR-RLS algorithm of CMAC based on Givens rotation can also be implemented in 
systolic array[17] which is shown in Figure 2. 
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Figure.2. Systolic array of QR-RLS algorithm of CMAC 

inσ : cell input signal, outσ : cell output signal, 

                          c , s : cell computation signal. 

The systolic array is controlled by a single clock and consists of three types of processing 
cells arranged in the form of a triangular section: 

 Diagonal cells depicted as circles compute square roots and divisions, as described in 
Figure.2(b). This kind of cell is also called angle computer. 

 Internal cells depicted as squares perform only additions and multiplications as described in 
Figure.2(c). This kind of cell is also called rotator. 

 Hemline cells depicted as diamonds store the weights calculated by back substitution. 
For simplicity, let us define that  
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The upper memory cells correspond  Ω  one by one. That is, 
i,j

 stores the element who 

is in the i th row and the j th column of 2/1
1−Φk  and  stores the i th element of 1−kp .It 

should be noted that the upper triangular elements of 2/1
1−Φ k  are all zeros and do not participate in 

any computation, so they are not considered. 
The detailed procedure for the operation of the systolic array can be referred to reference [17], 

and it is only described here by code in Table.3. 
 
 
 



Table.3. Code of QR-RLS algorithm of CMAC 

1. Initialization: 
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2. Recursive Operation 

),( kk yx  is provided, compute 

 2.1. Forward Computation  
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2.2. Back Substitution 
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3. Terminate 

3.2. CMAC-QRLS and Its Systolic Array 

The QR-RLS Algorithm of CMAC can be simplified step by step based on the particular 
characteristic of CMAC that only g  nonzero elements exist in the indicator of CMAC: 

 

 

 

 

 

 

 

 

 



Table.4. Code of CMAC-QRLS 

1. Initialization: 
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2. Recursive Operation: H2 

),( kk yx  is provided, compute 

 2.1. Forward Computation  
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2.2. Back Substitution 
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3. Terminate 



1. Address mapping.(H1) 

Suppose that the indicator of kx  is ]0,,,0,0[ 1 LLL −+gll aa , where l  is the address of 

the first nonzero element. Considering the result of unitary transformation in (21), the elements in 

front of la  are not required to participate in the computation. So the unitary transformation 

begins from la  and simultaneously from the l th column of Ω . In other words, it is not 

required the computation to begin from the first column and thus we can use the address mapping 
mechanism of CMAC to locate the beginning address for the forward computation.  
2. Change the triangular structure to a rectangular structure.(H2) 

The elements behind 1−+gla  are all zeros. Considering the procedure of unitary 

transformation, it can be seen that only g  elements closely lower from the diagonal of Ω  and 

the elements of the last row of Ω  take part in the computation, so we can eliminate the elements 

unused and change the triangular structure to a rectangular structure of ng ×+ )2( . 

3. End the forward computation and begin the back substitution.(H3) 
In the process of one epoch, the forward computation can be carried to the last column of Ω . 

However, when the forward computation reaches one column whose cell output signals are all 
zeros, it can also be ended. Then the back substitution begins from this column till the first column, 
i.e., the weights after this column remain unchanged. 

0 0 0 0 0 0

kx L1σ 2σ 3σ gσ ky

 Figure.3. Systolic array of CMAC-QRLS 
Combine the three simplifying methods above, the code in Table.3 can be rewritten in Table.4. 



We call this latter simplified algorithm CMAC-QRLS. The systolic array of CMAC-QRLS is 
illustrated in Figure.3. For easy explanation, the various module functions of Figure.3 are descried 
by the corresponding code in Table.4 using the same symbol.  

Similarly, the computation complexity of CMAC-QRLS can be calculated through the next 
table: 

Table.5. computation complexity of CMAC-QRLS 
 Multiplications Divisions Square Roots 
Angle computer n2  n2  n  

Rotator ng ×4    

Back substitution 
2

)1( −× nn
 n   

Total nngn
2
34
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Compared with Table.1, we find that the former simplified CMAC-RLS needs almost 2n  

multiplications, whereas CMAC-QRLS requires nearly 
2

2n
 multiplications. However, 

CMAC-QRLS increases the operations of divisions and it also needs the operations of square roots. 
From these analyses, we can not decide which algorithm runs faster. So in order to compare their 
practical computation speed, the simulation to approximate same function in Matlab is carried out. 

The function is:  

 ]360,0[      )360/2sin( ∈= xxy π  (23) 

CMAC uses the parameters of 18;360 == gQ  and is trained using data with the 

sampling interval of 1. Q  is the level of quantization. 

Each algorithm is run eight times and the computation time results are listed in Table.6. 
Table.6. computation time comparison 

 1 2 3 4 5 6 7 8 Average 
Simplified CMAC-RLS 
CMAC-QRLS 

24.44 
11.22 

24.11 
11.14 

23.93 
11.20 

23.96 
11.18 

24.00 
11.22 

24.00 
11.19 

24.06 
11.13 

24.10 
11.19 

24.07 
11.18 

Obviously, CMAC-QRLS runs faster than the previous algorithm. So compared with the 
former simplified CMAC-RLS algorithm, CMAC-QRLS reduces the computation time. It should 
be noticed that CMAC-QRLS is much easier to be implemented in hardware structure due to its 
pipelined systolic array, and therefore if it is realized in high-speed hardware, it may achieve 
rather faster computation speed compared with its software implementation. 

As shown in Figure.3, CMAC-QRLS only needs about ng ×+ )2(  memory cells. The 

memory storage is reduced. Moreover, due to the property of QR-RLS[18], the numerical stability 
is also improved simultaneously.  



Considering the analyses above, it can be concluded that CMAC-QRLS exhibits more 
advantage in fast computation speed, low memory storage, pipelined hardware realization and 
high numerical stability, so it will be more suitable for implementation. 

3.3. Continuous CMAC-QRLS 

Since the rectangular shape of CMAC receptive field functions produce discontinuous 
staircase function approximation, by formulating CMAC with B-splines receptive field functions. 
Lane[4] has developed continuous CMAC-LMS which can provide the information of both 
functions and function derivatives.  

B-splines can be constructed using deBoor-Cox recursive relation[19]. 
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and its first-order derivatives can be calculated  
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So the higher derivative can be calculated recursively by (26) 

Give n  partitions over the interval ),[ bax∈ , an m th order spline function )(, xBS mj  
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by using a linear combination of )(, xBS mj  weighted by jw . 

B-splines receptive function is preferable to other spline functions due to its superior 
numerical and computational properties. The main properties include: 

a) Positive on a bounded support: 
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To efficiently design continuous CMAC-QRLS chip, we have to develop cost-effective 
architectures for the recurrent B-splines evaluator. For easy explanation, we suppose that the order 



of B-splines function equals to the generalization factor and let 4== mg . Thus the values of 

B-splines in CMAC-QRLS can be calculated through the following procedure: 
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Figure.4. Computation procedure of B-splines in CMAC-QRLS 

It can be seen from Figure.4 that (30), (31) are used in each side and only (25) is used in the 
internal part. 
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In order to implement B-splines in hardware, we need to arrange the data of in the registers 
properly. At first the rightmost register stores 1, and the following procedure corresponding to 
Figure.4 is depicted in Figure.5. 

2,3+jBS2,2+jBS

3,3+jBS3,2+jBS3,1+jBS 4,3+jBS4,2+jBS4,1+jBS4,jBS

 
Figure.5. B-splines array in CMAC-QRLS 

The indicator of continuous CMAC is calculated using address mapping and B-splines 
functions, so it is composed of floats instead of only binary elements in that of discrete CMAC. So 
one advantage of continuous CMAC-QRLS is that it is able to provide the output derivative 
information with respect to input when it is used to model on line.  

 



4. Simulation Study 

To show the effectiveness of the proposed continuous CMAC-QRLS algorithm, two 
examples are studied for demonstration. 

4.1. Example 1: Approximate Sinusoid 

As stated in previous sections, continuous CMAC-QRLS is very suitable for modeling. Next 
we will examine this capability through approximate a sine function:  

 ]360,0[      )360/2sin()( ∈= xxxf π  (32) 

The simulation results in Figure.6 are based on the following choice of design parameters and 
conditions: 

The parameters of continuous CMAC-QRLS are adopted as 20=Q  and 4== mg  

CMAC is trained using data with the sampling interval of 10 , and checked with the 
sampling interval of 2.0 . 

0 90 180 270 360
-1

0

1

(a)
0 90 180 270 360

-1

0

1

(b)

0 90 180 270 360
-0.02

0

0.02

(c)
0 90 180 270 360

-0.02

0

0.02

(d)

0 90 180 270 360
-5

0

5
x 10

-4

(e)
0 90 180 270 360

-5

0

5
x 10

-4

(f)

f f̂

dx
df

dx
fdˆ

2

2

dx
fd

2

2 ˆ

dx
fd

Figure.6 .Approximation ability of continuous CMAC-QRLS for Sinusoid  

The errors of function values, first-order and second-order derivatives are summarized in 
Table.7 respectively. 

 
 
 
 



Table.7. Various errors of continuous CMAC-QRLS 
 function values first-order derivatives second-order derivatives 

RMSE 
MAE 

0.2894e-4 
3.7270e-4 

0.7739e-5 
7.9379e-5 

1.5137e-6 
10.240e-6 

RMSE: root mean square error; MAE: max absolute error 

As illustrated in Figure.6 and Table.7, the approximation results show that continuous 
CMAC-QRLS can approximate function and provide the information of derivatives well even if it 
is trained with incomplete training sets. So when it is used to model on line, it can provide us more 
accurate information than the discrete CMAC. 

4.2. Example 2: Approximate Simple Pendulum 

Now let us demonstrate the approximation ability of continuous CMAC-QRLS again via an 
elementary example of a simple pendulum. 

The equation of motion of a simple pendulum is given by (see reference [20]) 

 u
l

klmgml 1sin +−−= ηηη &&&  (33) 

where u  is the torque applied to the pendulum, η  is the anticlockwise angle between the 
vertical axis through the pivot point and the rod, g  is the gravity acceleration, and the constants 
k , l  and m  denote a coefficient of friction, the length of the rod and the mass of the bob, 

respectively. Set lga = , mkb = , 21 mlc =  and define the state variables η=1x , 

η&=2x ,  system (33) can be written as its state equation: 
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In this case, the parameters of CMAC are 20=Q  and 4== mg . 

The nominal parameters are 10== ca  and 1=b .  

The original state is )0,0( . The time span of t  is ]8,0[ . 

The input is varying and  )80/2sin(5.0 tu π= .  

CMAC whose input is time t  and output is the angle η  is trained using data with 
sampling period of 4.0  to approximate the running process, and checked with the sampling 
period of 1.0 . 

The simulation results are depicted in next figure: 
 



η
η̂

η̂&
η&

 

Figure7 .Approximation ability of continuous CMAC-QRLS for Simple Pendulum 

In Figure.7, the solid curve is the original state of the pendulum, and the curve denoted by 
circle represents the state approximated by continuous CMAC-QRLS. Obviously, we even can get 
the information of angular velocity when continuous CMAC-QRLS is only used to approximate 
the angle with incomplete training sets. And owing to the more information of continuous 
CMAC-QRLS, it can be concluded that the angular acceleration may also be obtained and we do 
not discuss it here. Approximating angular velocity of around eighth second still requires the data 
after this time, so there exist relatively bigger errors for angular velocity around eighth second. 

From these two examples, we find that adequate approximation results with a broad and 
uniform distributed incomplete training set can be obtained if the approximated function is smooth 
and the parameters of continuous CMAC-QRLS are well-chosen. All these demonstrated 
continuous CMAC-QRLS is a good approximation tool for modeling on line.  

5. Conclusion 

Least square adaptive algorithms based on the QR decomposition are very promising due to 
their numerically robust performance. In this paper, CMAC-RLS is simplified based on QR 
decomposition. Compared with the original CMAC-RLS algorithm, it reduces the memory storage, 
what’s more, the proposed algorithm exhibits low time cost and pipeline structure. Subsequently 
we design the systolic array of continuous CMAC-QRLS which can provide the further 
information of derivatives. The simulation results show that CMAC-QRLS appears to be an 
appropriate algorithmic tool for modeling on line.  
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