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Deep Learning Techniques to Improve Intraoperative Awareness
Detection from Electroencephalographic Signals

Oleksii Avilov1,2, Sébastien Rimbert1, Anton Popov2, and Laurent Bougrain1

Abstract— Every year, millions of patients regain conscious-
ness during surgery and can potentially suffer from post-
traumatic disorders. We recently showed that the detection
of motor activity during a median nerve stimulation from
electroencephalographic (EEG) signals could be used to alert
the medical staff that a patient is waking up and trying to move
under general anesthesia [1], [2]. In this work, we measure the
accuracy and false positive rate in detecting motor imagery
of several deep learning models (EEGNet, deep convolutional
network and shallow convolutional network) directly trained on
filtered EEG data. We compare them with efficient non-deep
approaches, namely, a linear discriminant analysis based on
common spatial patterns, the minimum distance to Riemannian
mean algorithm applied to covariance matrices, a logistic
regression based on a tangent space projection of covariance
matrices (TS+LR). The EEGNet improves significantly the
classification performance comparing to other classifiers (p-
value < 0.01); moreover it outperforms the best non-deep clas-
sifier (TS+LR) for 7.2% of accuracy. This approach promises
to improve intraoperative awareness detection during general
anesthesia.

I. INTRODUCTION

Three hundred million of general anesthesia procedures
are being performed each year all over the world [3]. Among
these patients, from 0.2 to 1.3 % are victims of Accidental
Awareness during General Anesthesia (AAGA) [4]. Although
anesthesiologists try to closely monitor patients to prevent
this terrifying phenomenon, there is currently no efficient
solution to accurately predict it [5].

In previous works [1], [2], we proposed the concept of an
innovative passive brain-computer interface (BCI) based on
the intention of movement to prevent AAGA. Indeed, patients
typically try to move to alert the medical staff during an
AAGA, but discover that they are unable to. The proposed
solution incorporates a Median Nerve Stimulation (MNS)
causing specific modulations in the motor cortex, which are
known to be altered by an intention of movement. The design
of such a BCI presents us with the challenge of obtaining a
high level of accuracy, which would guarantee the reliability
of the BCI device so that it can be used in a clinical setting.
The accuracy obtained for a movement imagery (MI) versus
Rest classification in the BCI field in general remains low and
should be improved to create a device reliable enough to be

1Oleksii Avilov, Sébastien Rimbert and Laurent Bougrain
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used in hospitals. Previous studies have shown that a painless
stimulation of the median nerve induces an event-related
desynchronization (ERD) during the stimulation while an
event-related synchronization (ERS) appears after the stimu-
lation [6]. More interestingly, a motor task performed during
a MNS abolishes the patterns previously generated by this
stimulation. In our study [2] it was already shown that a MI +
MNS vs MNS classification results can have better accuracy
than a MI vs Rest classification, suggesting that MNS could
be used as a trigger. The best classification performance was
reached by a logistic regression (LR) based on a tangent
space (TS) projection of covariance matrices (TS+LR) which
obtained 70.5% accuracy for an MI vs. Resting state task
comparable to 82.03% for an MI + MNS vs. MNS task.

While deep neural networks show better performances
compared to standard machine learning methods in almost all
areas, analysis of EEG signals especially in the BCI domain
remains an area where the use of deep learning techniques
is still limited. The potential of deep learning architectures
which can deal with raw EEG signals especially for motor
imagery based tasks is rather unexplored and is an active
research field [7].

II. MATERIALS AND METHODS

A. Participants and Electrophysiology Data

Sixteen right-handed healthy volunteers (8 females; 19
to 57 years-old; 28.56 ± 13.3 years old, without medical
history which could influence the task) were recruited for
this study. EEG signals were acquired at 2048Hz using the
OpenViBE platform with a Biosemi Active Two 128-channel
EEG system.

Participants signed an informed consent which was ap-
proved by the ethical committee of Inria (COERLE, approval
number: 2016-011/01) as it satisfied the ethical rules and
principles of the institute.

B. Experimental Tasks

The aim of this research is to discriminate between two
different brain activities: a motor imagery during a median
nerve stimulation (MI + MNS) and a median nerve stimula-
tion during rest (MNS). Participants were asked to perform
each condition randomly during two runs of 26 trials per
condition. So in total the database consists of 52 examples
of each class for every subject.

Condition 1: motor imagery with a median nerve stimu-
lation: During the MI + MNS condition (C1), subjects had
to perform a motor imagination while their median nerve
was stimulated 750 milliseconds after the start of the motor



Fig. 1. Timing schemes of the trial for C1 and C2. For all motor tasks,
one low frequency beep indicates when to start the task. For the MNS+MI
condition, the MNS occurs at 750 milliseconds after the first beep. The end
of the MI is announced by a high frequency beep and followed by a rest
period of 6 seconds.

imaginary task (Fig. 1). A low frequency beep indicated
when the subject had to start the motor imagery and a high
frequency beep indicated when to stop it. The duration of
the stimulation was 100 ms and stimulation intensity was
adapted for each subject and varied between 8 and 15 mA.

Condition 2: median nerve stimulation only: The MNS
only condition (C2) consisted of a series of stimulations of
the median nerve during rest. We placed the two electrodes
of stimulation on the wrist according to the standards [6].

C. Data Preprocessing

At the first step, EEG signals were re-referenced to com-
mon average reference. Then EEG signals were resampled
at 128 Hz and divided into 3 seconds trials for classification;
starting at 250 milliseconds after the first beep (Fig. 1)
corresponding to 384 samples (3 s at 128 Hz) per channel.
Then each signal was filtered in the mu+beta frequency band
(8-30 Hz) using a 4th-order Butterworth band-pass filter
[8] and standardized by removing the mean and scaling to
unit variance using StandardScaler from Scikit-learn [9]. No
artifact rejection technique was applied to the data. No data
augmentation strategy was applied to the data.

D. Feature Extraction and Classification

In this study, we selected three deep neural network archi-
tectures to compare their performances to three well-known
approaches for classification in MI-based BCI domain.

The first standard approach uses 4 common spatial pattern
(CSP) filters for feature extraction [10] and a linear discrim-
inant analysis (LDA) for classification.

The second one uses covariance matrices for feature
extraction and the minimum distance to Riemannian mean
algorithm (MDRM) for classification [11].

The third one uses a tangent space projection of covariance
matrices for feature extraction and a Logistic Regression for
classification (TS+LR) as described in [2].

Deep neural networks have been trained directly on filtered
EEG data. We used i) a deep convolutional network (Deep-
ConvNet) [12]) as reference for deep networks; ii) a shallow
convolutional network (ShallowConvNet) [12] because they
are designed specifically for oscillatory signal classification;
and iii) a generic architecture for EEG data (EEGNet)

proposed in [13] that had already obtained good results on
several BCI paradigms.

Performances have been evaluated comparing the accuracy
and the false positive rate (FPR) since a low FPR reduces
false alarms when monitoring peroperative awereness.

DeepConvNet: DeepConvNet has four convolution-max-
pooling blocks, with a special first block designed to handle
the EEG input, followed by three standard convolution-max-
pooling blocks and a dense softmax classification layer. The
first convolutional block was split into two convolutional
layers in order to better handle the large number of input
channels [12]. Details about the network architecture used
in this paper can be found in Table I.

ShallowConvNet: The architecture designed for the Shal-
low Convolutional Network was inspired by the Filter Bank
Common Spatial Pattern (FBCSP) algorithm. The first two
layers of the ShallowConvNet perform a temporal and a
spatial convolution, as in the DeepConvNet. After the two
convolutions of the ShallowConvNet, a squaring nonlinearity
x2 activation function, a mean pooling layer and a logarith-
mic activation function log(x) followed; together these steps
are analogous to the trial log-variance computation in FBCSP
[12]. Full details about the network architecture can be found
in Table II.

EEGNet: The first layer of the EEGNet is a temporal con-
volution to learn frequency filters. Then follows a depthwise
convolution layer, connected to each feature map individu-
ally to learn frequency-specific spatial filters. The separable
convolution is next convolutional layer; it is a combination of
a depthwise convolution, which learns a temporal summary
for each feature map individually, followed by a pointwise
convolution, which learns how to optimally mix the feature
maps together [13]. We tested sets of different parameters
(not detailed in the paper). We kept 8 temporal filters F1 = 8,
2 multiplier depth D = 2 (which determines the number of
spatial filters), 16 pointwise filters F2 = 16 and (1, 32) for
the lengths of temporal kernel size for the first convolutional
layer. Full details about the network architecture can be
found in Table III.

Training parameters: Deep neural networks were im-
plemented with the TensorFlow framework and Keras and
trained using Grid’5000 [14] to speed up the computing.
ADAM [15] is used as the optimization method. The param-
eters are set to default values as proposed in [15]. Categorical
cross-entropy is taken as the optimization criterion. Batch
size 28 was selected. We run 2000 training iterations (epochs)
and perform validation stopping, saving the model weights
which produced the lowest validation set loss. Usually
model’s best validation set performance was observed after
300-2000 epochs, what varies greatly depending on the
subject data. For all neural networks we used a batch normal-
ization [16] layer before the activation layer and a dropout
layer after the activation with a probability of 50%. Finally,
DeepConvNet has 214,077 parameters, ShallowConvNet has
209,442 and EEGNet has 3,362 parameters.



TABLE I
PARAMETERS OF THE DEEPCONVNET ARCHITECTURE.

WHERE C = 128 IS THE NUMBER OF CHANNELS AND N IS NUMBER OF

CLASSES. T = 3 S X 128 HZ = 384 IS THE NUMBER OF TIME SAMPLES .

Layer (Activation) # filters / (kernel size) Output
Input (1, C, T )
Conv2D 25 / (1, 5) (25, C, 380)
Conv2D (ELU) 25 / (C, 1) (25, 1, 380)
MaxPool2D (1, 2) (25, 1, 190)
Conv2D (ELU) 50 / (1, 5) (50, 1, 186)
MaxPool2D (1, 2) (50, 1, 93)
Conv2D (ELU) 100 / (1, 5) (100, 1, 89)
MaxPool2D (1, 2) (100, 1, 44)
Conv2D (ELU) 200 / (1, 5) (200, 1, 40)
MaxPool2D (1, 2) (200, 1, 20)
Flatten (4000)
Dense (Softmax) N = 2 (2)

TABLE II
PARAMETERS OF THE SHALLOWCONVNET ARCHITECTURE.

WHERE C = 128 IS THE NUMBER OF CHANNELS AND N IS NUMBER OF

CLASSES. T = 384 IS THE NUMBER OF TIME SAMPLES

Layer (Activation) # filters / (kernel size) Output
Input (1, C, T )
Conv2D 40 / (1, 13) (40, C, 372)
Conv2D 40 / (C, 1) (40, 1, 372)
Activation(square) (40, 1, 372)
AveragePool2D (1, 35), stride (1, 7) (40, 1, 49)
Activation(log) (40, 1, 49)
Flatten (1960)
Dense(Softmax) N = 2 (2)

TABLE III
PARAMETERS OF THE EEGNET ARCHITECTURE.

WHERE C = 128 IS THE NUMBER OF CHANNELS, T = 384 IS THE

NUMBER OF TIME SAMPLES, F1 = 8 IS THE NUMBER OF TEMPORAL

FILTERS, D = 2 IS THE MULTIPLIER DEPTH , F2 = 16 IS THE NUMBER

OF POINTWISE FILTERS AND N = 2 IS THE NUMBER OF CLASSES.

Layer (Activation) # filters / (kernel size) Output
Input (1, C, T )
Conv2D F1 / (1, 32) (F1, C, T)
DepthwiseConv2D (ELU) D ∗ F1 / (C, 1) (D ∗ F1, 1, T )
AveragePool2D (1, 4) (D ∗ F1, 1, T/4)
SeparableConv2D (ELU) F2 / (1, 16) (F2, 1, T/4)
AveragePool2D (1, 8) (F2, 1, T/32)
Flatten (F2 ∗ T/32)
Dense(Softmax) N (N )

E. Data analysis

We report subject-specific classification results corre-
sponding to a ten-fold blockwise cross-validation, where
eight of the ten blocks are chosen as the training set, one
block as the validation set, and the remaining block as the test
set. We performed a Wilcoxon signed-rank test to show the
significant difference about accuracy obtained by different
models.

III. RESULTS

For each classifier, accuracy and false positive rate of a
MI + MNS vs. MNS discrimination task were averaged for
a ten fold estimation and for all subjects. EEGNet has the
highest performance according to both accuracy (91.6%) and
false positive rate (8.8%). Boxplots showing the distribution
of classification accuracy and FPR are represented on Fig. 2
and Fig. 3 respectively. Results obtained by ShallowConvNet
are comparable to results obtained by the best standard model
i.e. here TS+LR. The Wilcoxon signed-rank test showed
highly significant differences between performances obtained
by EEGNet and each other model both for accuracy (p-value
< 0.005) and false positive rate (p-value < 0.01).

Individual classification results show a higher classifica-
tion performance with EEGNet for 12 subjects (Fig.4).

IV. DISCUSSION AND CONCLUSIONS

In this study we have shown the ability of deep learning
techniques to extract features from filtered EEG signals
for detecting intraoperative awareness. We proposed three
different deep learning architectures: DeepConvNet, Shal-
lowConvNet and EEGNet. ShallowConvNet and EEGNet
shown high performances especially for the false positive rate
metric which is very important when detecting intraoperative
awareness, as false alarms are extremely undesirable in
this task and as regain of consciousness can be potentially
detected every five seconds in our procedure. Statistical tests
show that EEGNet significantly outperformed other methods
in terms of accuracy, false positive rate and convergence time
due to its smaller number of parameters which helps to avoid
overfitting.

Fig. 2. Boxplots showing the distribution of classification accuracy for
each model, averaged over all folds (k = 10) and all subjects (n = 16).
Significance levels of Wilcoxon signed-rank test comparisons **p < 0.01,
***p < 0.001. Significance levels with other non-deep methods than
TS+LR are not reported.

Fig. 3. Boxplots showing the distribution of false positive rate for each
model, averaged over all folds (k = 10) and all subjects (n = 16).
Significance levels of Wilcoxon signed-rank test comparisons *p < 0.05,
**p < 0.01, ***p < 0.001. Significance levels with other non-deep
methods than TS+LR are not reported.



Fig. 4. Ten-fold subject-specific classification accuracies obtained for all subjects (n = 16) by each model for MNS vs. MI + MNS task

Although most anesthetics reduce the global metabolic
activity of the central nervous system by decreasing neuronal
excitability [17], the effect of anesthetics on the sensorimotor
cortex appears to be relatively well preserved [18], [1].
In fact, regions of the cortex would still be receptive to
information, but their ability to communicate with other
regions seems to be damaged during general anaesthesia
[19], suggesting that our method can be used in patients with
clinical conditions [1].

Further research should be aimed at reducing the num-
ber of EEG electrodes since each electrode increases the
preparation time before surgery In real conditions we have
no training patterns of intention of movement. So further
investigations will be aimed at subject to subject transfer
learning and generative adversarial networks.
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