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Eugene Paul Wigner
1902–1995

A. S. Wightman 

Eugene Wigner died in Princeton, NJ, on Janu-
ary 1, 1995, at the age of 92. He had been one
of the last survivors of the generation that wit-
nessed the creation of quantum mechanics and
participated in the exciting initial years of its de-
velopment. He spent most of six active decades
on the faculty of Princeton University. Although
he was best known for his physical and mathe-
matical analyses of symmetry in quantum me-
chanics, he also made important contributions
to solid-state physics, physical chemistry, nuclear
engineering, and epistemology. In his later years,
he found himself in the unusual position of
being highly esteemed by physicists, mathe-
maticians, chemists, engineers, and philoso-
phers.

Eugene Wigner was born Jenö Pál Wigner in
Budapest, Hungary, on November 17, 1902. Since
he was a somewhat sickly child, his parents
arranged for his early education to occur at
home. However, later on he spent four years at
the famous Lutheran gymnasium (high school)
of Budapest, where he had the good fortune to
have as friend and classmate (one class behind
him) Jancsi (=Johann=John) von Neumann.
Wigner was attracted by mathematics and
physics, but, following his father’s wish that he
study something that could be useful in the
leather tannery where his father was a foreman,
Wigner got a degree in chemical engineering
from the Technische Hochschule in Berlin. His
thesis (1925), written under the supervision of
Michael Polanyi, was on the theory of chemical
reactions. Wigner’s acumen so impressed Polanyi
that he recommended him for his first position

as a physicist, assistant to the physicist Richard
Becker.

During the next decade and a half Wigner
continued his study of the theory of chemical re-
actions but used the then new quantum me-
chanics. He did related work with Victor Weis-
skopf on the theory of line breadth in atomic
spectra as well as a study of nuclear reaction
rates with Gregory Breit. However, the main
focus of his effort was in the application of
group theory to the study of the symmetry prop-
erties of stationary states of atoms, molecules,
atomic nuclei, and crystals.

It was also during this period that Wigner
made a transition from Germany to the United
States. From 1930 to 1933 Wigner and von Neu-
mann had a common arrangement: they spent
one term each year at their jobs in Berlin and one
at Princeton University. In the spring of 1933 the
National Socialists came to power in Germany,
and the Berlin positions of von Neumann and
Wigner vanished. Von Neumann then joined the
faculty of the new Institute for Advanced Study.
Wigner spent three years full-time in Princeton
and then went to Wisconsin for two years. In the
fall of 1938 he was back in Princeton in an en-
dowed professorship, just in time to hear the
news of the discovery of nuclear fission, a phe-
nomenon whose consequences dominated the
next decade of his life.

Wigner and his friend Leo Szilard foresaw as
clearly as anyone the disastrous consequences
of the Third Reich’s acquiring nuclear weapons
before the Allies. They persuaded Albert Einstein
to write a letter alerting President Roosevelt.
The result was the Manhattan Project, a large-
scale effort to separate U235 from U238 in ura-
nium ore and to create nuclear reactors to pro-

A. S. Wightman is professor emeritus of mathematical
physics at Princeton University, Princeton, NJ.

wigner.qxp  4/27/98 10:06 AM  Page 769



770 NOTICES OF THE AMS VOLUME 42, NUMBER 7

However, he found the case of n ≥ 4 electrons
too complicated to do by hand. On the advice of
von Neumann, he studied the pre-World War I
papers of Frobenius, Schur, and Burnside on the
representation theory of finite groups, as well
as the later papers of Weyl and of Schur on con-
tinuous groups. The latter enabled him to enlarge
his study to the consideration of the action on
eigenfunctions, of rotations R of the coordi-
nates of n electrons ~x1, ..., ~xn :

~x1, ...~xn → R~x1, ...R~xn.

He recognized that if the Hamiltonian commutes
with the action on wave functions of permuta-

tions of coordinates or with
the action on wave func-
tions of rotations of coor-
dinates, then the linear
subspace spanned by the
eigenfunctions of a fixed
eigenvalue is left invariant
by these actions and, in the
subspace, yields a unitary
representation of the per-
mutation and the rotation
group. Such a representa-
tion is a direct sum of ir-
reducibles, so the dimen-
sion of the linear space
spanned by the eigenfunc-
tions must be a sum with
possible multiplicities of
the dimensions of the irre-
ducible representations of
the groups. This is the ele-
mentary group theoretical
explanation for the ubiq-
uitous appearance in
atomic physics of degen-
erate multiplets of multi-
plicity 2j + 1 where j is a
positive integer or half-odd
integer. Later on, in the
context of nuclear physics,
this argument led to a the-
ory of super-multiplets in
which the group SU (2) is
replaced by the group

SU (4).
Up to this point, Wigner had treated the un-

physical case of spinless electrons. However, in
the very same issue of the Zeitschrift für Physik
in which he had published these considerations,
there appeared Pauli’s paper on nonrelativistic
electrons with spin 1/2. Within a few months von
Neumann and Wigner published the first of three
papers generalizing everything that Wigner had
done to the case of spin 1/2 Pauli electrons.
These papers were not easy to read, and it seems
plausible that they, together with Hermann

duce plutonium as well as to design bombs
which used these products as explosives. Wigner
was heavily involved in design studies for the nu-
clear reactors. Most of the work took place in the
mathematics department of the University of
Chicago, code-named the Metallurgical Labora-
tory. It was here that Wigner acquired his repu-
tation as a formidable nuts-and-bolts engineer.
When his design work for the plutonium pro-
duction reactors was done, Wigner turned to
the design of power reactors. This continued
after the war; he spent 1946–47 as director of
research at Oak Ridge on leave from Princeton.
Wigner and his coworker Alvin Weinberg col-
lected their knowledge and
experience in the definitive
treatise, The Physical The-
ory of Neutron Chain Re-
actors (1958).

He returned to academic
life in 1947 but, over the
next three decades, often
served as a consultant to
the federal government in
nuclear matters. Both his
scientific achievements and
his service were richly rec-
ognized with prizes and
awards, of which only a few
will be mentioned: Medal
for Merit, 1946; Fermi
Award, 1958; Max Planck
Medal, 1961; Nobel Prize
for Physics, 1963; National
Medal of Science, 1969.
After his retirement in
1971, he remained active
until the late 1980s.

In the remainder of this
obituary I have singled out
for discussion a few points
from Wigner’s work on the
application of group the-
ory to the study of sym-
metry in quantum me-
chanics. More details and
more complete coverage
are to be found in Volume I
of Wigner’s Collected Works in the magistral an-
notations of Brian Judd, Part II “Applied Group
Theory 1926–1935”, and George W. Mackey, Part
III “Mathematical Papers”. 

Wigner began his study of symmetry in quan-
tum mechanics with the problem of classifying
the behavior of eigenfunctions of the Schrödinger
Hamiltonians for atoms under permutations of
the electrons. Inspired by a paper of Heisenberg
on helium (two electrons), he first treated the
case of three electrons, without recourse to the
representation theory of the permutation group.

Although he was
best known for his

physical and
mathematical

analyses of
symmetry in

quantum
mechanics, he also
made important
contributions to

solid-state physics,
physical chemistry,

nuclear
engineering, and

epistemology.
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Weyl’s classic book Gruppentheorie und Quan-
tenmechanik (1928) were the origin of the use
by physicists of the phrase “die Gruppenpest”
to describe this approach to spectroscopy. (The
German word is often translated “group pest”,
but the alternative “group plague” is probably
better, if you take into account some of the pas-
sionate animadversions on group theory by
physicists in those days.) In any case, it is in-
structive to compare Weyl’s book with Wigner’s
Gruppentheorie und Ihre Anwendung auf die
Quantenmechanik der Atomspektren (1931).

Both books have introductory chapters on
linear transformations, groups, and quantum
mechanics. Here Weyl puts more emphasis on
vector spaces; Wigner on calculations with ma-
trices. Wigner confines his attention to the per-
mutation group and rotation group or its cov-
ering group SU (2). However, he goes into much
more detail on the representation theory of these
groups. For example, he derives the Wigner
Eckart formula for the matrix elements of ten-
sor operators. This permits him to derive the in-
tensity relations for spectral lines that follow
from rotation invariance. He also gives a quan-
titative and general analysis of the splitting of
spectral lines in the presence of external sym-
metry-breaking interactions. Weyl, on the other
hand, discusses the Lorentz group, its covering
group SL(2, C), and the relation of their finite-
dimensional representations to quantum field
theory. Physicists interested in spectroscopy
naturally preferred Wigner’s book to Weyl’s, but,
of late, there has also been mathematical inter-
est in the kind of detailed formulae for the
Clebsch-Gordon coefficients that Wigner’s
book contains.

The work of Wigner best known among math-
ematicians is undoubtedly his construction of a
class of irreducible unitary representations of the
inhomogeneous Lorentz group. This group is
not compact, and all its irreducible unitary rep-
resentations except the trivial one are infinite di-
mensional. The representation theory of such
groups was still unknown territory when Wigner
published his fundamental paper in 1938. Of
course, later, as a result of the work of Gelfand,
Naimark, Bargmann, and others on such groups
as SL(2, C) and SL(2, R), this theory became
highly developed. Wigner limited his consider-
ations to those irreducible representations in
which the spectrum of the representation of the
translation subgroup lies in or on the future
cone: 

(k0)2 − (k1)2 − (k2)2 − (k3)2 ≥ 0.

The irreducibles turned out to be characterized
by the squared mass (= the left-hand side of the
inequality) and the representation of the so-
called little group, the group of transformations

leaving a vector of mass 2 =m2 fixed. When
m2 > 0, the little group is isomorphic to SO(3)
or SU (2) and so is determined by a positive in-
teger or half-odd integer, the spin. For m2 = 0,
the little group is isomorphic to the euclidean
group of a two-dimensional plane or to the two-
sheeted covering of such a group; the physically
interesting irreducible representations are de-
termined by a helicity which is an integer or
half-odd integer.

Wigner came to the problem of the determi-
nation of the unitary ray representations of the
inhomogeneous Lorentz group by adopting a
space-time point of view in a discussion of sym-
metry in quantum mechanics. By an analogue of
the argument he had presented in his book for
the case of symmetry in space at a fixed time,
he showed that a quantum mechanical theory in-
variant under inhomogeneous Lorentz trans-
formations has an associated unitary ray repre-
sentation of the inhomogeneous Lorentz group.
It is a remarkable fact that the law of evolution
of states in the most general quantum mechan-
ical theory can be characterized by a measure
class and multiplicity function on the masses
spins and helicities.

In his later years Wigner devoted most of his
scientific effort to sharpening what he saw as the
paradoxes in the standard interpretations of the
quantum theory of measurement. He became
convinced that an essential extension of
physical theory to include consciousness
was necessary.
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