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Was an Industrial Revolution
| nevitable? Economic Growth Over
the Very Long Run

Abstract

This paper studies a growth model that is able to match several key facts
of economic history. For thousands of years, the average standard of living
seems to have risen very little, despite increases in the level of technology
and large increases in the level of the population. Then, after thousands
of years of little change, the level of per capita consumption increased
dramatically in less than two centuries. Quantitative analysis of the model
highlights two factors central to understanding this history. The first is
a virtuous circle: more people produce more ideas, which in turn makes
additional population growth possible. The second is an improvement in
institutions that promote innovation, such as property rights: the simulated
economy indicates that arguably the single most important factor in the
transition to modern growth has been the increase in the fraction of output
paid to compensate inventors for the fruits of their labor.
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1. INTRODUCTION

The past century has been marked by extremely rapid increases in stan-
dards of living. Measured GDP per capita is perhaps ten times higher in
the United States today than 125 years earlier, and with a mismeasurement
of growth of one percentage point per year, the factor could easily be more
than thirty.

Also remarkable is the relatively brief span of history during which this
rapid growth has occurred. Conservative estimates suggest that humans
were already distinguishable from other primates 1 million years ago. Imag-
ine placing a time line corresponding to this million year period along the
length of a football field. On this time line, humans were hunters and gather-
ers until the agricultural revolution, perhaps 10,000 years ago — that is, for
the first 99 yards of the field. The height of the Roman empire occurs only
7 inches from the rightmost goal line, and the Industrial Revolution begins
less than one inch from the field’s end. Large, sustained increases in stan-
dards of living have occurred during a relatively short time — equivalent
to the width of a golf ball resting at the end of a football field.

This paper combines an idea-based theory of growth in which people are
a key input into the production of new ideas with a model of endogenous
fertility and mortality in order to analyze these remarkable facts. The model
features the classic race between technological progress and the Malthusian
diminishing returns associated with a limited supply of land. A key require-
ment for technological progress to be able to win this race is the presence of
increasing returns to accumulable factors. With this assumption, the inter-
nal dynamics provided by the model are able to produce thousands of years
of virtually no sustained growth in standards of living despite increases
in both technology and population, followed by the emergence of rapid
growth and a demographic transition. It is this event — the emergence of
large, sustained increases in standards of living — that we will refer to as an
industrial revolution. While this is a slightly broader use of the term than is
standard, | will ask the reader’s indulgence; for the time scale considered
in this paper, this is the key revolution that needs to be explained.

The last part of the paper explores an additional factor that is often as-
signed an important role in the emergence of modern growth by economic
historians including North and Thomas (1973), Rosenberg and Birdzell
(1986), Jones (1988), and Mokyr (1990): changes in institutions such as
property rights. While the modeling of institutions in this paper is ex-
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tremely rudimentary and reduced-form, quantitative analysis of the model
assigns a major role to such changes in explaining growth over the very
long run. A counterfactual experiment at the end of the paper suggests,
for example, that absent the large improvements in innovation-promoting
institutions measured to have occurred in the 20th century, the Industrial
Revolution would have been delayed by more than 300 years.

This project builds on a number of recent studies of growth over the very
long run, including Lee (1988), Becker, Murphy and Tamura (1990), Kre-
mer (1993), Goodfriend and McDermott (1995), Acemoglu and Zilibotti
(1997), Tamura (1998), Lucas (1998), Galor and Weil (1998), and Hansen
and Prescott (1998). Following Lee (1988) and Kremer (1993), the link
between population and the discovery of new ideas plays a critical role.* As
in the human capital-driven models of Becker et al. (1990), Tamura (1998),
Lucas (1998), and Galor and Weil (1998), fertility behavior is governed by
utility maximization. Common to most of these papers and to this one is a
Malthusian building block: a fixed supply of land that generates decreasing
returns to scale when technology is held constant.

This paper differs from the existing literature in several ways. It is the
first paper to place the population and ideas channel at the center of a
complete, unified model of both population and standards of living over the
entire course of history, including the distant past, the industrial revolution,
the demographic transition, and modern growth. Second, the paper is the
most explicit and successful attempt to date to match the dramatic change
in the time path of living standards that occurred in the last two hundred
years. Finally, the paper emphasizes the role of changes in institutions
that promote innovation, and especially their importance for understanding
previous cycles of growth and stagnation as well as the ultimate triumph of
modern economic growth that we know as the Industrial Revolution.

The remainder of the paper is organized as follows. Section 2 presents
the basic model. Section 3 analyzes the model’s dynamics and discusses
how it generates a demographic transition. Section 4 presents a summary
of the facts the model should address, explains how parameter values are
obtained, and exhibits the basic simulation of the model. Section 5 con-
ducts the quantitative analysis. Section 6 discusses some of the results and
implications, and Section 7 concludes.

1This link has been emphasized by Simon (1986) and Romer (1990), among others.
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2. THE MODEL
2.1. People
We begin by describing an environment in which fertility is chosen in a
utility maximizing framework, in the tradition of Becker (1960), Razin and
Ben-Zion (1975), and Becker and Barro (1988). The economy consists of
Ny identical individuals, wheret = 0, 1, 2, ... indexes time. Each individual
obtains utility from consumption ¢; and from the number of children b,
produced by the individual in period ¢, according to
~1—y btl_n

b) = (1—
'U:(Ct, t) ( M)l—’}/—i_ul—?’],

(1)

where & = ¢, —cand by = b, — b. The parameter ¢ > 0 denotes the
subsistence level of consumption in this economy, and the parameter b > 0
is related to the long-run rate of fertility, as we will see shortly.

We assume 0 < 4 < 1,0 <y < 1,and 0 < n < 1. These parameter
restrictions ensure that the elasticity of substitution between consumption
¢ and children b is always greater than one. This simple assumption will
play an important role in generating the demographic transition.?

Individuals are each endowed with one unit of labor per period, which
they can use to obtain consumption or to produce children. Let ¢; denote the
amount of time the individual spends working, and let w; denote the wage
earned per unit of time worked. The technology for producing children is
straightforward: each unit of time spent producing children leads to o« > b
births.

The individual’s optimization problem at each time ¢ is given by

c{{lb?,}é u(ey — ¢,by — b) (2)
subject to
cr = wily (3)
and
by = a(l —4), 4)
2We do not necessarily require n < 1. Let z = 1*7” le Then the elasticity of

substitution between & and b is given by
usual value 1/~.

142 H _
=15 Itis constant when v = n and takes the
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taking w; as given. The fact that this optimization problem is static sim-
plifies the analysis. This fact can be derived from a more general dynamic
optimization problem under two assumptions. First, we assume that utility
depends on the flow of births rather than on the stock of children. Second,
we assume that the probability of death faced by an individual depends on
aggregate per capita consumption, which individuals take as given. With
these assumptions, the more standard dynamic optimization problem re-
duces to the sequence of static problems given above.

2.2. Production of the Consumption Good

The consumption good in this economy is produced using labor Ly, land
T, and a stock of ideas A. Total output of this consumption good, denoted
Y, is given by

Y, = A7LY. T} Pey, (5)

where ¢ > 0and 0 < 8 < 1, and ¢, is an exogenous productivity shock.
This production function is assumed to exhibit constant returns to scale to
the rivalrous inputs labor and land, and therefore increasing returns to labor,
land, and knowledge taken together. As in Romer (1990), this assumption
reflects a key property possessed by knowledge. Knowledge is nonrivalrous
and can therefore be used at any scale of production without having to be
reinvented. The amount of land in this economy is fixed and normalized so
that T = 1.

2.3. Dynamics: Production of Ideas and People

The dynamics of this economy arise from two sources. First, people today
produce knowledge that makes it easier to produce consumption goods in
the future. As above, A; denotes the stock of ideas at the start of period
t. Therefore, AA;+1 = Apr1 — A, is the number of new ideas discovered
during period ¢. In this economy, people produce new ideas according to

Ay =013, AL, (6)

where L 4 is the number of people engaged in producing ideas and § > 0,
A > 0and ¢ < 1 are assumed. The production of ideas is modeled very
much like the production of any other good. Just as a larger labor force
produces more widgets, a larger number of researchers produce more ideas.

As in Jones (1995), the parameter \ allows for diminishing returns to
increasing the number of researchers at a point in time, a way to capture
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duplication in idea creation. The parameter ¢ allows the productivity of
research to be either an increasing (¢ > 0) or a decreasing (¢ < 0) function
of the stock of ideas that have been previously discovered.

The second source of dynamics in the model is demography. Between
two periods, the change in the population is equal to the number of births
minus the number of deaths:

ANH_:[ = bs Nt — di Ny = ny Ny, Ng > 0. (7)

The number of births per capita b; is determined by the fertility behavior of
individuals, discussed above. The mortality rate d; is assumed to be a func-
tion of the average level of per capita consumption relative to subsistence,
a useful summary measure of the technological capability of the economy
as well as a measure that likely reflects the sensitivity of the population to
disease and natural disasters. The mortality rate is given by

di(c/e) = f(e/e—1) +d, (8)

where f(-) is some decreasing function such that f(0) > 1 + « and
f(oc0) = 0. As consumption rises, the mortality rate falls. As per capita
consumption falls to the subsistence level, everyone in the population dies.
This characteristic implicitly defines what we mean by subsistence. Notice
also that d > 0 denotes the mortality rate in an economy with infinitely
large consumption.

2.4. The Allocation of Labor and Factor Payments

Three rivalrous inputs to production exist in this economy: labor used to
produce goods, labor used to produce ideas, and land. As a simplification,
we assume land is not owned by anyone; i.e. it is treated as an external
factor. Next, we define an exogenous variable 7; € [0, 1] as the fraction
of total production of the consumption good that is paid to compensate
inventive effort in period ¢t. We think of 7; as capturing one aspect of the
institutional structure of the economy: in some periods, the institutions
encourage the production of new ideas by devoting a large amount of re-
sources to this endeavor, while in others, the production of new ideas may
be discouraged by institutions that limit the extent to which inventors can
be compensated. Historically, such institutions have included support for
research from monarchs or patrons, prizes, and the awarding of temporary
monopoly power through patents. The relationship between this variable
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and intellectual property rights is clear, but the relationship extends to other
property rights as well. For example, the value of a patent obviously de-
pends on the enforcement of property rights more generally.

With this definition, payments to labor in the idea sector are

warlay = m Yy, ©)
and payments to labor in the consumption sector are
wytLys = (1 —m)Y;, (10)

where w 4 and wy are the wages paid per unit of labor in the two sectors.
These wages will be equated in equilibrium by the free flow of labor between
the two sectors.

The resource constraint for labor in this economy is

Lys + Las = Ly = €4 Ny. (11)

2.5. Equilibrium

The setup of the economy is now complete and we can define the equi-
librium.

Definition: A static equilibrium in this economy in period ¢ is a col-
lection of allocations and prices (¢, €4, Yz, Lt, L at, Lyt, by, wy, wag, wyt)
such that, given values of the state variables A;, Ny, 7, and ¢, (i) the choice
variables ¢, b, and ¢; solve the representative individual’s maximization
problem, (ii) people are indifferent between spending their time producing
goodsandideas, i.e. w; = w4; = wyy, and (iii) the resource constraint (11)
is satisfied.

Definition: A dynamic equilibrium in this economy is a sequence of
static equilibrium allocations for t = 0,1, 2, ..., together with sequences
for { A¢, Ni,di, e }22,, such that, given an exogenous sequence of shocks
{m, €.}, and given the initial conditions Ay and NNy, the evolution of the
economy satisfies the laws of motion in equations (6), (7), and (8) and the
constraints A; > 0 and N; > 0.
Solving for the equilibrium is straightforward. The individual’s maxi-
mization problem yields the first order condition
e (12)

U (6]
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This says that an individual must be indifferent at the optimum between
spending a little more time working and spending a little more time pro-
ducing children.

With the preferences given by equation (1), this first order condition

implies
~ ap & 1/
bt=<—“—t> . (13)
1— pws

Along a balanced growth path in this model, ¢; and w; will grow at the
same rate. The assumption that 0 < ~ < 1, then, is what allows this model
to exhibit a fertility transition, i.e. a situation in which fertility eventually
declines as the wage rate rises.

This can be seen formally by noting that equations (3) and (4) imply a
second relationship ¢; = wy(1 — b; /). Substituting this expression for ¢,
into (13) one gets an implicit expression for b; as a function of the wage

wy. Differentiating this expression, the sign of % is the same as the sign

w1 0-2)
ywt Y «
The traditional income and substitution effects are reflected in the second
term. As the wage goes up, the income effect leads individuals to increase
both consumption and fertility. The substitution effect, on the other hand,
leads people to substitute toward consumption and away from fertility:
the discovery of new ideas raises the productivity of labor at producing
consumption, but the technology for producing children is unchanged. If
~ < 1, then the substitution effect dominates, while if v > 1, the income
effect dominates. As usual, if v = 1, i.e. with log utility, these two
effects offset. A third effect not traditionally present is reflected in the
first term: as the wage rises, the subsistence consumption level which the
consumer is required to purchase gets cheaper, leading consumers to have
more after-subsistence income to spend on both more children and more
consumption. Thiseffectdisappears asthe wage gets large. The assumption
that 0 < « < 1, then, leads the subsistence effect to dominate for small
values of the wage and the substitution effect to dominate for large values of
the wage, producing one component of the demographic transition: fertility
rises and then falls as the wage rate rises.

The allocation of labor between the two sectors is even more straightfor-
ward. Define s, = L 4;/ L. as the fraction of the economy’s labor that works
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to produce new ideas. Equating w 4; and wy- in equations (9) and (10) leads
immediately to

St = T¢. (14)

That is, not only is 7, the fraction of the economy’s output devoted to
compensate inventors, in equilibrium it is also the fraction of the economy’s
labor devoted to searching for new ideas. The remaining fraction 1 — 7y is
engaged in producing goods.

Based on these conditions, the following proposition (proved in Ap-
pendix A.1) establishes a simple condition under which an interior static
equilibrium exists and is unique.

Proposition: Leta; = (1 — wt)ﬁA;’et/Ntl_ﬂ be a measure of produc-
tivity in this economy. Assume this measure of productivity is sufficiently
large that (¢/a;)'/? < 1 — b/a. Then, there exists a unique interior static
equilibrium ¢*(a;), w*(at), c*(at), and b* (ay).

The technical condition in the proposition is needed for an interior so-
lution. In the case in which this condition is just violated, (¢/a;)'/? =
1 —b/a = ¢*. The population is so large relative to the technology level
that diminishing returns to land reduces the wage leading to ¢* = ¢ and
b* = b. Given the mortality function in equation (8), everyone in the econ-
omy would die in that period, and the population would be zero from then
on.

3. DYNAMICS AND STABILITY

To see how the static equilibrium evolves over time, we proceed as fol-
lows. First, we shut down the shocks in the model: we assume for the
moment that 7, = = € (0,1) and ¢, = 1 for all ¢. Then, we character-
ize the equilibrium along a steady-state balanced growth path. Finally, we
explore the dynamics and the stability properties of this path.

3.1. Balanced Growth

A balanced growth path is a situation in which all variables grow at
constant geometric rates (possibly zero). We will look for a balanced growth
path in which ¢, s, b, and d are constant. To characterize the balanced
growth path of this economy, begin with the production function for new
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ideas, equation (6). This equation implies
Adppr _ o Loy
AT
Along a balanced growth path, the left-hand-side of this equation is constant

by definition, so the right-hand-side must also be constant. Since ¢ and s
are constant, this is true when

(15)

A A

Ga=Gp ' =G\°, (16)

where G, is defined as the gross growth rate of any variable =z along a
balanced growth path, i.e. G, = Z’% The economy can exhibit balanced
growth only if ¢ < 1.

Since ¢; = wly and wy = at/ﬁtl_ﬁ, consumption is given by ¢; = atﬁf.
Also, note that a; is proportional to A;’/Ntl_ﬁ. The constancy of ¢ along a
balanced growth path then implies
G
Gy’

Ge=Gyp=GCG4= =G4, (17)

where 0 = 1>\——0¢ — (1 — ). Asthe ratio in equation (17) indicates, there is
a race in the model between technical progress and the diminishing returns
implied by a fixed supply of land (holding the stock of ideas constant). The
assumption of 8 > 0, which we now make, ensures that this race can be
won by technical progress and makes sustained exponential growth in per
capita income possible.

The assumption of & > 0 implies that the model is characterized by
increasing returns to accumulable factors. For example, suppose that the
production of ideas is homogeneous of degree one, sothat A\ + ¢ = 1. Itis
easy to show that # > 0 then requires o + 3 > 1. Recall that the nonrivalry
of ideas motivated the assumption of constant returns to land and labor and
increasing returns to land, labor, and ideas together — i.e. o > 0. We
require the stronger assumption that there are increasing returns to ideas
and labor, holding land constant. That is, the increasing returns implied by
nonrivalry must be sufficiently strong.

As in several recent papers, the growth rate of per capita income and
consumption along the balanced growth path is proportional to the rate of
population growth. Notice that

AN
Ny

=n(a;) = b(ay) — d(ay), (18)
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where we abuse notation somewhat in writing d(a;) for d(c(a:)/¢). In
addition, b(a;) = a(l — ¢(a)), so that a constant ¢ requires constant
birth and mortality rates along the balanced growth path. Under what
condition will these rates be constant? Recall that the first order condition
for the individual’s optimization problem in equation (13) leads her to set
the excess birth rate b; proportional to (¢} /w;)/". Therefore, we need
¢; Jwy to be constant. Along a balanced growth path, however, ¢; and w;
grow at the same rate. This implies that a balanced growth path occurs only
asymptotically as ¢; and w; go to infinity, and the demographic transition
effects associated with v < 1 apply. As this happens, b; approaches zero
so that b, approaches b. In addition, the mortality rate approaches d. We
assume that b > d so that

Gy=1+b—-d>1. (19)

Applying this result to equation (17), we see that along the balanced
growth path,

Ge=Guy=Ga=Gyy=(1+b-d)". (20)

Notice that increasing returns is not sufficient for positive per capita growth
along the balanced growth path. If b = d, then there is no population growth
in the long run and the balanced growth path has zero per capita growth.

One must also be careful with the asymptotic nature of this result. The
balanced growth path in this model is an asymptotic result that applies only
as a; goes to infinity. For example, even if the balanced growth path has
zero (geometric) per capita growth, the growth rate of per capita income
will be positive in every period and the level of per capita income will go
to infinity.

3.2. The Demographic Transition

A necessary prelude to characterizing the stability of the balanced growth
path and the nature of the transition dynamics of the model is an analysis
of population growth and the demographic transition. Recall that n(a) =
b(a) — d(a). We examine b(a) and d(a) in turn.

First, b(a) = a(1 — £(a)). From our discussion of b earlier, it should not
be surprising that b is a humped-shaped function of the wage, and hence of
productivity a. This pattern, and the implied ¢(a) schedule, are shown in
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FIGURE 1. Working Time, Fertility, and Mortality

Figure 1.2 Also shown in this figure is a d(a) schedule; it is easy to show
that c¢(a) is a monotonic function, so that d(a) has the same general shape
as d(c).

Finally, provided the function f(-) is restricted appropriately, we can now
characterize n(a) = b(a) — d(a) as shown in Figure 2. The population
growth rate is zero when productivity is a. It increases as a function of a
to a level greater than b — d (at least for a range of parameters values), and
then declines to its balanced growth path level as a goes to infinity. The
demographic transition is apparent in both Figures 1 and 2.

3To be more precise, #(a) is the solution of the following nonlinear equation, obtained
by combining (A.1) and w = a/¢*~°:

F(0) = a(a(l — ) —b)" — f‘—“(aeﬁ —e P =.

Totally differentiating both sides of this equation with respect to a and £, one sees that

. ay . 0%
szgn{%}—szgn{l 15}, (21)

where ¢ = af(a)’. The conditions that @ > 0 and b > 0 limit the range of values that
£(a) cantake to (¢/a)'/? < £ <1—b/a. Whena = a® = m this range shrinks
to the single point at which ¢ = (¢/a”)'/? = 1 — b/a. On the other hand, we have
already shown that lim, . £(a) = 1 —b/c. These endpoint conditions, together with the
conditions on the slope given by equation (21) imply that the solution £(a) has the shape
given in Figure 1.
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FIGURE 2. Population Growth as a Function of Productivity

n(a)

This general picture describes the classic version of the demographic
transition. As summarized by Cohen (1995) and Easterlin (1996), the de-
mographic transition consists of two phases. In the first, called a mortality
revolution, mortality rates fall sharply, while birth rates either remain rela-
tively constant or perhaps even rise slightly. The result is an increase in the
population growth rate. The second phase is the fertility revolution, char-
acterized by a birth rate that now falls more quickly than the relatively low
but still declining mortality rate. The result is a decline in the population
growth rate.*

3.3. Stability and Transition Dynamics

At a technical level, the balanced growth path in this model is globally
stable; this result is documented in Appendix A.2. The transition dynamics
themselves turn out to be quite rich. In particular, under the crucial as-
sumption of increasing returns to accumulable factors (6 > 0), the general

4The existing papers studying very long-run growth that have included a model of the
demographic transition — Becker et al. (1990), Tamura (1998), Lucas (1998), and Galor
and Weil (1998) — do so purely through a fertility transition that occurs as individuals begin
to trade off quantity for quality. The models are set up in an overlapping generations context
so that mortality is unaffected by technological progress. Galor and Weil (1996) generate
a demographic transition through a difference in the endowments of men and women and
a shift in comparative advantage. See Galor and Weil (1999) for an overview of several
different theories of the demographic transition.
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pattern is for growth rates of both population and standards of living to first
increase and then to decrease, following the pattern displayed in Figure 2.

The intuition for this result is as follows. Initially, the economy begins
with a small number of people who are not particularly good at producing
ideas. Because new ideas are discovered infrequently, their main effect
is to produce a temporary rise in consumption and a long-term rise in the
size of the population — the standard Malthusian result. However, the
increase in the size of the population means that new ideas are discovered
with increasing frequency, which gives rise to the acceleration in growth
rates emphasized by Lee (1988) and Kremer (1993). Under the increasing
returns assumption, per capita consumption rises, gradually leading to the
demographic transition, which slows population growth rates and therefore
the growth rate of per capita consumption as well.

In contrast to many endogenous growth models which emphasize con-
stant returns to accumulable factors, this model emphasizes the importance
of increasing returns to factors that can be accumulated (including labor).
The nonrivalry of ideas is an important feature in generating increasing
returns, but it is not sufficient, due to the presence of land as a fixed factor.
For the model to generate an industrial revolution endogenously, the nonri-
valry of ideas must be sufficiently strong so as to overcome the diminishing
returns implied by the fixed supply of land.

4. QUANTITATIVE ANALYSIS
4.1. The “Facts”

The model developed in the previous section will be analyzed quantita-
tively to help us understand growth over the very long run in both population
and per capita income. First, however, we pause to present the “facts” about
these two variables.

Cohen (1995) assembles data on world population from a number of
studies conducted during the last forty years and provides a brief overview
of the data. McEvedy and Jones (1978), the main source used by Kremer
(1993), appears to be the most thorough study, and | will rely on Kremer’s
data, as reported in Table 1.

Itis useful to appreciate both the extremely low rate of population growth
over most of history as well as the time scale over which this rate operates.
For example, using Kremer’s collection of world population data, the rate
of population growth, measured as the average annual change in log popula-
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TABLE 1.

Population Data
Average Annual
Population Growth Rate over
Year (Millions) Preceding Period
-25000 3.34
-10000 4 0.000012
-5000 5 0.000045
-4000 7 0.000336
-3000 14 0.000693
-2000 27 0.000657
-1000 50 0.000616
-500 100 0.001386
-200 150 0.001352
0 170 0.000626
200 190 0.000556
400 190 0.000000
600 200 0.000256
800 220 0.000477
1000 265 0.000931
1100 320 0.001886
1200 360 0.001178
1300 360 0.000000
1400 350 -0.000282
1500 425 0.001942
1600 545 0.002487
1700 610 0.001127
1800 900 0.003889
1900 1625 0.005909
2000 5333 0.011884

Note: The levels of population are taken from Kremer (1993),
who in turn takes his data from various sources. The population
growth rate is computed as the average annual change in the nat-
ural log of population over the preceding interval. Two changes
relative to Kremer are made. First, the year 1 A.D. is set equal
to the year 0. Second, the population in 1990 is used for the
population in the year 2000. These changes are made so that
the period length in the model can be set equal to 25 years. The
growth rates for a few periods are slightly different from those
in Kremer because he reports growth rates from his underlying
sources rather than based on the levels themselves.
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tion, was only 0.0000072 between 1 million B.C. and 1 A.D. Nevertheless,
over this period, the level of population increased by a factor of 1360: from
0.125 million people in 1 million B.C. to 170 million people in 1 A.D. A
second key fact about population growth apparent in the table, emphasized
by Kremer (1993), is that the rate of population growth is itself generally
increasing over time. This istrue not only in recent centuries but also dating
back to our earliest data.

Data on per capita GDP or per capita consumption are much harder
to come by, but the collection of evidence seems to support the following
stylized picture: there was relatively little net increase in standards of living
over most of history, say prior to the year 1500. Since then, per capita
growth has risen, and levels of per capita income are now substantially
higher than they were prior to 1500.

For example, Maddison (1982) estimates zero per capita income growth
in Europe between 500 and 1500. Lee (1980) finds that the real wage in
England in 1800 was nearly unchanged from its level in 1300; Hansen and
Prescott (1998) make use of some new data assembled by Gregory Clark to
reach a similar conclusion. Jevons (1896) uses detailed wage records from
Athens in 328 B.C. to argue that wages in ancient Greece were roughly the
same as those in Britain in the 15th century.® Schoenhof (1903) draws on
price schedules covering more than 1000 items compiled by Diocletian in
the year 302 A.D. to conclude that wages in ancient Rome were at least as
high as those in France in 1790.

Levels of world GDP per capita can be constructed from Tables 1 and
2 in Lucas (1998). Such calculations imply levels (in 1985 international
dollars) of $619 in 1750, $731 in 1850, $1764 in 1950, and $4257 in 1990.
Alternatively, Maddison (1995) reports an estimate of $565 (in 1990 dollars)
for the year 1500 and $5145 in 1992. DeLong (1998) reports values ranging
from $115 to $512 in 1500 and $5204 in 1990, depending on whether or
not an admittedly-coarse correction is made for quality change. Pritchett
(1997) makes a case that per capita income was generally close to a lower
bound of $250 for most of history.

Growth rates of world per capita GDP can be also be computed from these
sources, and the results from Lucas and Maddison are in rough agreement.
According to the numbers from Lucas (1998), the average annual growth

SCuriously, Clark (1940, p. 164ff) takes this calculation further to argue that the same
statement is true of “modern” Britain, i.e. apparently in the 1920s or 1930s.
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rate was 0.17 percent from 1750 to 1850, 0.88 percent from 1850 to 1950,
and 2.20 percent from 1950 to 1990. Using decadal averages, annual world
per capita GDP growth peaked in the 1960s at 3.10 percent per year before
falling to 2.12 percent in the 1970s and 1.31 percent in the 1980s.

4.2. Parameter Choices

To simulate the model, values for 19 parameters are required. We will fix
some of the parameter values ahead of time and then estimate others to fit
the population data as well as possible. One issue that arises immediately
is the distinction between consumption and GDP. This distinction is not
present in the model, and we will choose for convenience to match up ¢ in
the model with data on per capita GDP.

In general, parameter values are picked to be both somewhat reasonable
and to give the model its best chance of matching qualitatively the features
of the data. We do not claim, of course, that this is the true model that
generated the underlying data in the world. Rather, the goal is to produce
one model that can generate the kind of patterns observed in the data, and
to see what we learn from this model. For this reason, parameter choices
will be discussed only briefly, as summarized in Table 2. The parameter ¢
is set equal to 50, measured in 1990 dollars. If per capita consumption were
to fall to ¢ = 50, everyone in the economy would die immediately. The
parameter Ny is set equal to 3.34, corresponding to the world population
(in millions) in the year 25000 B.C., the first year of our simulation.

The parameter 3 is set equal to 2/3, so that the land share in an economy
with perfect competition and property rights would be 1/3. This is the value
chosen by Kremer (1993). The parameter o corresponds to the maximum
birth rate at any instant in time, and we set the value of this parameter to
1/10. Easterlin (1996) and Livi-Bacci (1997, p. 7) report that maximum
birth rates over history are about 0.05. With a = 1/10, this birth rate occurs
when one half of the individual’s labor endowment is devoted entirely to
raising children.

The parameters b and d correspond to the asymptotic birth rate and mor-
tality rate in the model (that is, as consumption goes to infinity). How many
kids would people like to have when consumption is infinite? We assume
b = 0, although one could make a case that this number should be positive.
We also assume that the mortality rate goes to zero, so that people eventu-
ally can live forever. These assumptions imply that population growth goes
to zero as consumption gets large.
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TABLE 2.
Baseline Parameter Values
Parameter Value Comment
c 50 Death with probability 1 atc = ¢
No 3.34 Population (in millions) in year 25000 B.C.
8 2/3 Land share = 1/3 (Kremer)
Q@ 1/10 Maximum fertility rate per period
b 0 Long-run fertility rate
d 0 Long-run mortality rate
o 1 Unidentified
A 3/4 Duplication of research
Period Length 25 Period length of 25 years
Ap 648.45 To produce no = 0 in 25000 B.C.
w1 18.220
w2 -0.082 Mortality function
w3 0.804
n .9844
5 .8141 Utility function
n .0250

Note: Parameters of preferences and the birth and death technologies are estimated
to fit birth and mortality rates, as described in the text.

For the elasticity of output with respect to new ideas, we set ¢ = 1.
There always exists a value of ¢ consistent with any value of & > 0 such
that the model produces observationally equivalent results for population,
consumption, and total factor productivity A?. These two parameters could
be distinguished with data on the stock of ideas, but absent this data, they
cannot be distinguished. We set o = 1 so that we measure ideas in units
of total factor productivity. The parameter ¢, then, is conditional on this
value, and would change (in a predictable fashion) for other values of o.

The parameter A is set equal to 3/4. If the population were instanta-
neously doubled, one suspects that the number of new ideas discovered
would increase by less than a factor of two because the same idea would
likely be discovered multiple times. This suggests an elasticity less than
one. Choosing a specific value for X is more difficult. Jones and Williams
(2000) suggest that a value of 3/4 seems reasonable based on estimates
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of social rates of return. In the simulations below, this value produces
plausible results.®

We assume a period length of 25 years, so that data on population are
only observed infrequently.” The initial condition Ay is chosen so that the
population growth rate in the first 25-year period is equal to 0, given all of
the values for the other parameters and assuming the initial value of = is
vanishingly small. This leads to a value of Ay = 648.45.

The remaining parameters which need values are related to the mortality
function and the utility function. Recall that the mortality function is given

by
di(z) = flz) +d, 2 =c/e—1. (22)

We assume that f (=) is the reciprocal of a polynomial: f(z) = 1/(w12%2+
wsz). These polynomial parameters, together with the parameters of the
utility function are estimated to fit the relationship between population
growth rates and per capita consumption as well as possible, as described
in Appendix A.3. Figure 3 plots the birth and mortality functions, together
with the population growth rates that these parameter choices imply. In this
and subsequent figures, “circles” will be used to denote data, corresponding
in this figure to population growth and consumption. This simple fertility
model performs well. The model generates a demographic transition and
broadly matches the features of the population and consumption data.

4.3. Simulating the Model without Shocks

Figures 4 and 5 report the results from simulating the model with the
parameter choices reported in Table 2 with a constant innovation share and
no productivity shocks. For this simulation, we set 7 = .005, § = .554
and ¢ = 1/2. These parameter values will be discussed further in the next
section; for the moment, just take them as an example.

S Alternative estimates are available. Kremer (1993) estimates a value of A greater than
one, at 1.2. From the standpoint of this paper, a problem with this estimate is that Kremer’s
regression specification omits a potentially important variable: the innovation share. To
that extent that the rise in population is correlated with an increase in the innovation share
over time, this omitted variable bias will lead to an overestimate of \. At the other end of
the spectrum, Kortum (1992) estimates a value of A of only 0.2 using data on productivity
and R&D in U.S. industries. We discuss the robustness of the results to changes in A below.

7 As the fertility and mortality parameters and the population growth rate itself are cali-
brated to annual rates, the law of motion for population used in the simulation of the model
is Nt+1 = (1 + n(at))%Nt.
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FIGURE 3. Birth Rates, Mortality Rates, and Population Growth
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Note: The circles in the right graph represent observed data on population growth and per
capita consumption. See Section A.3 and Table 8 in the appendix.

FIGURE 4. An Industrial Revolution
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Note: The circles denote the average annual rates of population growth reported in Table 1.
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FIGURE 5. Population and Per Capita Consumption
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Note: The circles in the left figure denote the population growth rates in Table 1. The circles

in the right panel are levels of per capita GDP from Maddison (1995) for 1500, 1820, 1900,
and 1990.

Figure 4 reports average annual growth rates for the data on population
(the circles) as well as the model’s simulated growth rates for population
and per capita consumption. Figure 5 displays the level of population and
the level of per capita consumption, both in the simulation and for the data.

These figures illustrate that the internal dynamics of the model are able to
replicate broadly the patterns observed in the data. The simulation exhibits
thousands of years of very slow growth, followed by a sharp rise around
the time of the Industrial Revolution. In levels, the model systematically
overpredicts the level of population but does an excellent job of matching
the data on per capita consumption. In particular, the level of consumption
is stable for thousands of years before rising sharply with the Industrial
Revolution.

The future predictions of the model are interesting even if they should not
be taken seriously. With b = d = 0, the long run growth rate of the model
is zero. Population growth falls to zero after the Industrial Revolution, as
the rise in consumption generates a demographic transition. Consumption
growth falls to zero gradually, but only after the level of per capita consump-
tion is well on its way toward infinity. Implausibly, the level of population
stabilizes at more than 400 billion!

5000
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5. CHANGES IN THE INNOVATION SHARE

With a constant innovation share, there exist values of «, ¢, and § that
fit the broad patterns of the history of world population and per capita con-
sumption. However, this simple model overpredicts the level of population
systematically, and one may wonder where these parameter values come
from. In this section, we add shocks to the allocation of resources to in-
novation 7; and to productivity so that the model fits the population data
exactly. In the process, some useful findings will be uncovered.

The solution proceeds as follows. We solve for a sequence of innovation
allocations 7; and productivity shocks e;, so that the model’s simulated lev-
els of population exactly match the actual levels. Both shocks are assumed
to be constant during the entire interval between successive observations
on the level of population (recall that a period is only 25 years and that we
therefore observe the level of population infrequently). If a positive shock
to the innovation share works, we shut off the productivity shock for that
interval (¢ = 1). On the other hand, if the level of population declines or
grows very slowly, it is possible that even a constant stock of ideas will
overpredict the subsequent level of population. In this case, we set the
innovation share 7 equal to zero to produce the constant stock of ideas over
the interval. We then find the value of ¢ < 1 such that the subsequent level
of population is matched exactly. The solution method is provided in more
detail in Appendix A.3.1.

Ideally, one would of course like to incorporate a richer pattern of shocks
— for example, by allowing for productivity shocks even when the shock
to the innovation share is positive. Given the limited nature of the data,
however, it is not possible to identify the shocks in such a specification.®

Finally, the value of 7 in the 20th century is set equal to 0.05; some
assumption like this is needed to pin down the value of 6. This value
implies that the world economy in the 20th century spends roughly five
percent of its output to compensate inventors and roughly five percent of
its labor works to produce new ideas. Ratios of R&D to GDP in advanced
countries are around three percent, but the definition of R&D implicitin this
statistic is much narrower than the notion of ideas in the growth literature.

8Itis possible to view the general procedure for estimating the shocks from a more formal
econometric standpoint. Each 7; and €; can be thought of as a parameter to be estimated,
together with u, ~, and n. The discussion in the text explains how these parameters are
estimated. Note that the number of parameters and data points is roughly the same in this
exercise.
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FIGURE 6. Innovation Shares for Different Values of ¢
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Note: The figure plots the sequence of innovation shares 7, needed to match the population
data for four different values of ¢. For each series, the value of 71900 is set equal to 0.05.
To make the figure easier to read, periods when the innovation share is zero are ignored;
see Table 3 for exact values. Also, the shocks for the years -25000 and -10000 are plotted
at the years -8000 and -7000, respectively.

In any case, the nature of the results is not particularly sensitive to this
parameter value.

Solving the model in this fashion, given the population data in Table 1,
leads to the sequence of innovation shares graphed in Figure 6. The model
is solved for four different values of ¢, reflecting our uncertainty about this
parameter value.

Regardless of the value of ¢, each sequence yields the result that the
value of the innovation share in the 20th century is significantly higher than
in the preceding thousand years and is orders of magnitude higher than
in 25,000 B.C. However, the different values of ¢ indicate very different
innovation shares over the period in between. In particular, for large values
of ¢, the model suggests that around 5000 B.C., as much as five percent
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of output may have been devoted to compensate inventive effort, a level
not reached again until the 20th century. Given what we know about the
history of institutions and innovation, this seems implausibly high. Based
on the results displayed in Figure 6, we will choose a value of ¢ = 1/2
in the simulations that follow.® For most of the subsequent results — the
main exception being the model’s predictions for the future — the results
are almost completely insensitive to the value of ¢ (in this range).

Table 3 reports the actual values of 7; and ¢; that are needed to fit the
population data exactly. Each type of shock will be discussed in turn.
Several remarks concerning the evolution of innovation shares are in order.
First, with ¢ = 1/2, the values of 7; suggest that innovation-promoting
institutions have been getting better on average over the 25,000 year period.
Just how much better can be seen in Table 4, which constructs some averages
across several intervals.

According to the table, the number of ideas produced per year (measured
in units of multifactor productivity) increased more than 110,000 times be-
tween the beginning of the simulation in 25,000 B.C. and the 20th century.
A factor of 108 of this increase is due to the fact that there is a larger pop-
ulation available upon which to draw: more people produce more ideas.
Interestingly, even with ¢ = 1/2, only a factor of about 4 of this increase is
associated with the rise in knowledge spillovers. Previous discoveries raise
the productivity of research in the future, but this effect is estimated to be
fairly small prior to the 20th century. The remaining factor of 245 is at-
tributed to improvements in innovation-promoting institutions. That is, an
important determinant of the technological advances that have made possi-
ble modern standards of living is the fact that the fraction of output devoted
to compensating inventive effort has risen substantially. This effect is par-
ticularly acute when the 20th century is compared to the preceding several
hundred years. Prior to 1900, increases in population and the innovation
share were roughly of equal importance in contributing to the production
of ideas. Itis in the 20th century that the shift in the allocation of resources
toward innovation becomes dominant.*©

9The corresponding value of § that leads to a value of = = .05 in the 20th century is
3.9923.

10This result depends somewhat on the value of A. If A = 1, toward the upper end of
plausible values, the increase in L accounts for a factor of 515 while the contribution of 7
is reduced to around 50. This result maintains ¢ = 1/2, however, which then implies too
large an innovation share in 5000 B.C. Reducing ¢ to 1/8 raises the contribution of 7 to
150, leaving the contribution of L at 515. On the other hand, taking the very small estimate
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TABLE 3.
Shocks: m; and ¢;

Year N Tt €¢
-25000 3.34 0.00003 1
-10000 4 0.00017 1

-5000 5 0.00367 1
-4000 7 0.00460 1
-3000 14 0.00140 1
-2000 27 0.00114 1
-1000 50 0.00472 1
-500 100 0 0.972
-200 150 0 0.957
0 170 0 0.986
200 190 0 0.929
400 190 0 0.971
600 200 0.00040 1

800 220 0.00174 1

1000 265 0.00707 1

1100 320 0 0.820

1200 360 0 0.712

1300 360 0 0.681

1400 350 0 0.946

1500 425 0.00442 1

1600 545 0 0.773

1700 610 0.00875 1

1800 900 0.00402 1

1900 1625 0.05000 1

2000 5333

Note: These shocks are computed for the case of ¢ = 1/2
and 6 = 3.99232.
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TABLE 4.

Producing Ideas: AA,, = dm}L}A?
New Ideas
Interval 7 L} A? Per Year
-25000 to -10000 1.0 1.0 1.0 1
-10000 to -5000 35 1.1 1.0 4
-5000 to 0 26.9 14 11 39
0 to 1000 6.9 19.1 2.0 267
1000 to 1500 16.9 26.7 2.3 1027
1500 to 1900 38.8 38.2 2.6 3834
1900 to 2000 244.7 107.8 4.2 110467

Note: All series are normalized to one in the first interval. 7' is computed as
the average value of 7 over the interval (using the data in Table 3), raised to the
power . L and Af are calculated using the population and stock of ideas at
the start of the interval.

This aspect of the simulation seems to be supported by historical evi-
dence. Institutional changes throughout the world, such as the develop-
ment of intellectual property rights, have surely raised the profits available
to entrepreneurs, luring an increasing fraction of the population to search
for new ideas.

The general rise in the allocation of resources to innovation occurs against
abackdrop of fluctuations. According to the results, between the years 5000
B.C. and 1 A.D., the world population was especially active in generating
ideas. The average value of 7, reaches a local peak during this interval at
just under 1/2 of one percent, a level that is not exceeded systematically
until recent times. Historically, this period marked the emergence of civ-
ilization in the form of cities. Key technological developments included
writing, the beginning of scientific observation, the widespread use of met-
als, and dramatic improvements in transportation capabilities through the
construction of ships and wagons. Whether or not these discoveries can
be related to an improvement in the ability of entrepreneurs to earn returns
is an open question that could be explored. This pattern fits with a view
that the world during the ascendency of the Mesopotamian, Egyptian, and

of A of 0.2 from Kortum (1992) implies contributions of 3.5 for L and more than 7500 for
7 for ¢ = 1/2. The robust result seems to be that increases in both 7 and L are important,
as conveyed in the table.
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Greek civilizations was more productive at generating ideas than during the
middle ages prior to the Enlightenment.

The productivity shocks may also be analyzed in this fashion. These
shocks are shown in the last column of Table 3 and play the following
role. The basic model contains forces that, at least until the demographic
transition occurs, imply an ever increasing rate of population growth. In
the data, in contrast, there are a number of periods during which population
growth falls or even becomes negative. To account for these periods, we
reduce productivity, which in turn reduces fertility and raises mortality.!

5.1. Simulation Results

With these shocks, our simulated economy is able to reproduce exactly
the time series for world population. Figure 7 displays the actual and
simulated data for population growth and consumption growth for the case
of ¢ = 1/2. After the year 2000, it is assumed that the allocation of
resources to innovation m; remains constant at its 20th century value and
that no productivity shocks hit the economy. Summary statistics for this
experiment are reported in Table 5.

That the simulation fits the population data exactly is in one sense not
surprising — the shocks were chosen exactly for this purpose. What is re-
markable, however, is that this fit is achieved with changes in the innovation
share and productivity that appear reasonable given the historical record.
For comparison, imagine the shocks that would be required for a standard
neoclassical growth model to fit these same facts.

Two additional features of Figure 7 are worth noting. First, the time
path of consumption growth broadly matches that outlined in our “facts”
section: per capita consumption growth is quite close to zero until recent
years, at which point it spikes up to nearly three percent per year. Second,
regarding the future of population growth and consumption growth, both

" The most obvious place where such shocks are required is between the years 1100
and 1400, where the model requires the economy to run at only 3/4 of its full productivity
potential. Significant shocks during this period include the genocidal Mongol invasions
under Genghis Khan and his successors (in which perhaps a third of the population of
China died) and the Black Death in Europe of the mid-14th century, which killed between a
quarter and a third of the European population. The model also requires a surprisingly large
productivity shock during the 17th century, in which productivity runs at only 79 percent.
Notable shocks in this period include the Thirty Years’ War in Europe, the Manchu conquest
in China, and the continuation of the mass annihilation of Native Americans, particularly
in Central and South America.
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FIGURE 7. Population (Actual and Simulated) and Consumption
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Note: The circles in the figure denote the data on population growth rates from Table 1.
The lines denote simulated values.

peak sometime shortly after the year 2000 and then decline, eventually to
zero since we have assumed that b = d = 0.

The simulation results in Table 5 show that the level of per capita con-
sumption rises slightly from 25000 B.C. until the year 0. In contrast, the
level of population rises from 3.34 million to 170 million, a 50-fold in-
crease. This is the long-run Malthusian consequence of the improvements
in technology shown in the first column.

The levels of population and consumption are shown in Figure 8. The
apparent constancy of consumption for most of history suggested in the
figure is an artifact of the time scale. Figure 9 plots the level of per capita
consumption from 1000 B.C. until 1800 A.D. to illustrate this point. From
an average level of $270 throughout most of time, per capita consumption
rises to $300 in 1000 B.C. and reaches a local peak of about $352 in 500
B.C. before falling back to $298 by year 0. Reasonably large swings in
consumption similar to this one continue through the year 1800, reflecting
the impact of shocks to the innovation share and to productivity.
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FIGURE 8. Population and Per Capita Consumption
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FIGURE 9. Per Capita Consumption: 1000 B.C. to 1800 A.D.
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TABLE 5.

Simulation Results
Average Average
Year A N Growth c Growth
-25000 648 3.34 270
-10000 690 4 0.00001 271 0.00000
-5000 747 5 0.00004 272 0.00000
-500 2686 100 0.00067 352 0.00006
0 2686 170 0.00106 298 -0.00033
1000 3371 265 0.00044 326 0.00009
1500 4335 425 0.00094 360 0.00020
1600 5450 545 0.00249 322 -0.00111
1700 5450 610 0.00113 402 0.00221
1800 8429 900 0.00389 559 0.00329
1900 11366 1625 0.00591 603 0.00076
2000 74446 5333 0.01188 3116 0.01643
2100 831051 25778 0.01576 25855 0.02116
2200 6203610 28065 0.00085 197275 0.02032
2300 7554072 27471 -0.00021 562216 0.01047

Note: Simulation results assuming ¢ = 1/2.

These fluctuations raise an interesting possibility. It has long been noted
that several civilizations such as ancient Rome or China in the centuries
following the previous millennium have witnessed spurts of growth and
technological progress, only to succumb eventually to the end of per capita
growth and even a decline in standards of living. How is this possible, and
why has this fate been avoided in more recent times?

The model provides one possible explanation, consistent with the discus-
sions of North and Thomas (1973), Jones (1988), Rosenberg and Birdzell
(1986), Baumol (1990), and Mokyr (1990). The establishment of institu-
tions that encourage the discovery and widespread use of new ideas can
lead societies to outstrip Malthusian forces. However, the removal of these
same institutions can allow the Malthusian forces to once again become
dominant. The technological frontier must be constantly pushed forward
in order to avoid the specter of diminishing returns associated with fixed
resources. The history of “growth recurring,” to use the evocative phrase
of Eric Jones, may reflect the establishment and then elimination of insti-
tutions such as property rights in various civilizations.
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Have we broken from this cycle? It is impossible to know, of course.
However, the model suggests one insight related to this question. With small
populations and few ideas, an increase in the fraction of resources devoted to
innovation has a small effect on rates of discovery and therefore on standards
of living: the Industrial Revolution is too far away for small changes to
make much of a difference. However, as the Industrial Revolution gets
closer in time, property rights themselves become more valuable: a shift
in the allocation of resources toward innovation can lead the era of modern
growth to occur sooner. The cumulative effect of thousands of years of
discoveries has been to raise the world population and stock of ideas to
levels at which the establishment of institutions such as property rights
could lead to large and rapid improvements in technology and standards of
living.

Returning to the broader pattern of population and consumption displayed
in Figure 8, one sees a rapid rise in consumption around the year 2000,
leading to the onset of the fertility transition. World population stabilizes
at slightly more than 25 billion around the year 2100.12

These patterns of population and consumption growth can be seen more
clearly in Figure 10, which focuses in on a 600 year period beginning with
the 20th century. Consumption growth peaks at more than 2.5 percent
around the year 2125. Recall that world per capita GDP growth seemed
to peak in the 1960s at around 3 percent per year. While the timing of
the peak is off (by more than a century), the magnitude is about right for
¢ = 1/2. Population growth peaks in the year 2025, coming much closer
to the actual peak in world population growth that seems to have occurred
during the 1960s.

6. WAS THE INDUSTRIAL REVOLUTION INEVITABLE?

The different papers briefly reviewed in the Introduction that have looked
into this question reach, sometimes implicitly and sometimes explicitly,
different conclusions. On the one hand, in the models in most existing
papers, especially Galor and Weil (1998) and Hansen and Prescott (1998),
the dynamics in place from the beginning of time suggest that something
like an industrial revolution was inevitable. On the other hand, the model in

12These values are quite sensitive to the value of ¢. For example, with ¢ = 0, consump-
tion rises more gradually, delaying the onset of the decline in fertility. As a result, world
population grows (implausibly) to more than 250 billion before stabilizing.
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FIGURE 10. Growth: The 20th Century and Beyond
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Note: The circles in the figure denote the data on population growth rates from Kremer
(1993). The lines denote simulated values.

Lucas (1998) explicitly requires an exogenous shock to the rate of return to
human capital accumulation in order to get the industrial revolution going.
From a theoretical standpoint, one might imagine that this is an undesirable
outcome, but from a historical standpoint — which might emphasize the
development of property rights and the advent of science-based research
— such a finding may be entirely appropriate.

The present paper is somewhere in between. A sensible working defini-
tion of an industrial revolution for this model is a substantial and rapid rise
in both the level and growth rate of per capita consumption accompanied
by a rise in population growth and followed by a demographic transition.
Based on this definition, the model suggests that an industrial revolution
was indeed inevitable, at least for the parameter values under consideration.
This was apparent in Figure 4.

But was the Industrial Revolution inevitable? If by the Industrial Revo-
lution we mean the onset of rapid population and per capita growth culmi-
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FIGURE 11. Growth and Consumption: No 20th Century Shock
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nating in the large increases in standards of living during the 20th century,
then the answer turns out to be no.

To see this, consider the following counterfactual experiment. Suppose
the large improvement in the 20th century in the institutions that promote
innovation had never happened. Specifically, suppose 7; remained at its
19th century value forever. The simulation results for this case are reported
in Figure 11. What we see from this experiment is that an industrial rev-
olution does indeed occur, but it is delayed by more than 300 years. The
shift in the allocation of resources toward innovation in the 20th century
therefore played a critical role in the timing of the onset of modern growth,
at least in the simulation.

7. CONCLUSION

First, a long-overdue caveat. The history of the world is obviously orders
of magnitude more complicated than this simple model suggests. Many
features of the history of growth are omitted and are undeniably important;
a far from exhaustive list would include physical capital, human capital,
endogenous property rights, a world of multiple regions, the diffusion of
ideas, the shift from agriculture to industry, etc. The goal of this paper has
been to provide one fully worked-out example of an economy that could
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have produced the basic patterns we think we observe. The hope is that
some of the insights gained from this exercise shed light on the incredibly
rich history of economic growth and will carry over into the next round of
analysis.

The model of growth in this paper suggests the following basic story.
A long time ago, the world population was relatively small and the pro-
ductivity of this population at producing ideas was extremely low, in part
because of the absence of institutions such as property rights. Once an idea
was discovered, however, consumption and fertility rose, producing a rise
in population growth. More people were then available to find new ideas,
and the next new idea was discovered more quickly. In the model, this
feedback leads to accelerating rates of population growth and consumption
growth provided the aggregate production technology is characterized by
increasing returns to accumulable factors.

Even in the absence of changes in the innovation share, this general feed-
back seems capable of producing something like an industrial revolution.
However, the quantitative analysis suggests that changes in institutions to
promote innovation are potentially extremely important. The rise and de-
cline of institutions such as property rights could be responsible for the
rise and decline of great civilizations in the past. And the establishment of
innovation-promoting institutions in the 20th century appears to have played
a critical role in generating the observed Industrial Revolution. Changes
in such institutions have the potential to shift the onset of modern growth
forward or backward in time. When the Industrial Revolution was hundreds
or thousands of years away, such changes did not have large payoffs, pro-
viding one possible explanation for why the adoption of these institutions
was so often temporary. Nevertheless, the cumulative effect of the discov-
eries in the past was to raise the population and stock of ideas to levels at
which the adoption of institutions favorable to innovation could generate
large increases in standards of living.
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APPENDIX

A.1l. EXISTENCE AND UNIQUENESS OF THE STATIC
EQUILIBRIUM

Proof:
The first order condition in equation (13) can be combined with the two
constraints in (3) and (4) to yield an implicit labor supply function ¢(w):

n_ ap (wily — )Y

(Oé(l—gt)—l_)) _1—,u w

(A1)

The wage is determined by the production function for consumption
goods. Rewriting equation (10) with Ly, = (1 — m;)¢;N; and recalling
that a; = (1 — m)? A7¢, /N, 7 yields

0

Equations (A.1) and (A.2) can be combined to get a single nonlinear
equation that characterizes the equilibrium value of ¢,. Dropping the time
subscripts, define
ap 1

~(al® — )b,

F(z);(a(l—ﬁ)—E)"—l_M

Then the equilibrium satisfies £'(¢*) = 0.

To see that there is a unique solution to this equation, first note that the
Inada-type conditions on the utility function guarantee that a solution, if it
exists, must satisfy ¢ > 0 and b > 0. In terms of ¢, these conditions imply
that £ > (¢/a)'/? and ¢ < 1 — b/a. Therefore, we require (¢/a)'/? <
1-— B/a in order for a solution to exist. Given the definition of «, this puts
restrictions on initial conditions.

Next, notice that F'(¢/a) > 0 and F(1 —b/a) < 0. Therefore, provided
F(¢) is monotonically decreasing within this range, the solution is unique.
The condition that F/(¢) < 0for (¢/a)'/? < ¢ < 1—b/«aisreadily verified.
Once ¢*(a) is determined, the remaining quantities in the proposition are
given inastraightforward fashion from equations (A.2), (3),and (4). Q.E.D.
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A.2. TRANSITION DYNAMICS

To analyze the stability properties of this economy, it is helpful to consider
asimpler economy. Assume for this section that the production of new ideas
depends on 7 /V; rather than on L 4, = wL;. This simplification does not
change the qualitative nature of the transition dynamics.

Consider two state-like variables, the productivity variable a; and a sec-
ond variable z; = 67N} /A; . That is,  is the growth rate of A,. The
dynamics of x; are given by

x
;—:1 = (1+n(a)/ 1+ )2 (A3)
Since a; = (1 — w)ﬁAgf/Ntl’ﬁ (again with ¢, = 1), the dynamics of this
state-like variable are given by

Sot = () /(1 () (A4)
In addition, 2o and ag are given by the initial conditions on Ag and Ny. For
interpretation, it is helpful to recall that ¢, is monotonically related to a;.

These two equations, together with the static equilibrium conditions that
determine n(a;), completely characterize the dynamics of the economy.
These dynamics can be examined in the discrete time version of a phase
diagram. Notice that the balanced growth path occurs when Az; = 0 and
a; = oo, SO that the analysis of this system is slightly different from the
traditional phase diagram analysis. Under the increasing returns assump-
tion that # > 0, the Axz; = 0 schedule lies “above” the Aa; = 0 schedule,
and the dynamics are characterized as in Figure 12.

As drawn in the figure, the dynamics are quite rich. The balanced growth
path is globally stable: if the economy begins at any point such that a; >
a®, it converges to the balanced growth path. However, we see that the
growth rate of A; will not generally be monotonic along the transition to
the balanced growth path. It is natural to think of the economy starting
from a point with a low ¢ — low consumption — and a low x — slow
technological progress. Then, the general pattern is for growth rates to rise
and then fall as the economy approaches the balanced growth path.

It is also easy to see the importance of the increasing returns assumption
that & > 0. If § = 0, so that the economy is characterized by constant
returns to accumulable factors, then the Axz; = 0 and Aa; = 0 curves lie
on top of each other. In this case, the dynamics of the economy move it
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FIGURE 12. Phase Diagram
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toward this curve, and the economy tends toward a situation in which a; and
x; — and therefore per capita consumption — are constant.® If § < 0, the
Aa; = 0 schedule lies “above” the Axz; = 0 schedule. In this case, there
exists a globally stable steady state at the pointa; = ™. Population growth
(eventually) falls toward zero and consumption falls to some Malthusian-
style subsistence level. In both of these cases, technological progress occurs
forever, and the population grows to infinity. However, the key point is
that technological progress does not translate into growth in per capita
consumption, and the economy never experiences an industrial revolution.

Returning againto the 6 > 0 case, we are ready to consider what happens
if shocks are added back into the system. Both the level of x and the level
of a can jump as a result of shocks. A productivity shock that reduces e
causes a to decline. An increase in 7 causes the level of  to jump upward
and the level of a to fall. However, apart from these jumps, the dynamics
of the economy are still determined as in Figure 12.

Finally, consider the effect of an exogenous increase in mortality, such as
the Black Death in 14th century Europe. Such a shock reduces IV, causing
a to jump to the right and x to jump down. The result is arise in the level of
the wage and the level of consumption in the short run, and a reduction in
the rate of technological progress. As discussed by Lee (1988), population
and per capita consumption can be negatively related in the short run even
though they are positively related in the long run.

1One has to be careful here. Because time is discrete, the economy could cycle around
such a point.
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TABLE 6.
Observations on Mortality Rates
“Data” Fitted
Per capita Mortality Mortality
Consumption Rate Rate Comments
100 .053 .053
250 .05 .051 Livi-Bacci (1997)
800 .04 .038
2000 .02 .022 Cohen (1995) for 1950-55
5000 .01 011 Cohen (1995) for 1985-90
20000 .007 .003 Canada, 1989
100000 .001 .001

Notes: The second and third data points are taken from rough guesses by Livi-Bacci (1997)
(p. 7) that average mortality rates range as high as four to five percent and makes an
educated guess that the mortality rate averaged something like four percent between 1
A.D. and 1750. The consumption numbers corresponding to these observations are simple
guesses that seem plausible given the analysis of Pritchett (1997) on minimum income
levels. The next two data points are taken from Cohen (1995, p. 68). Based on Maddison
(1995), I assume that these years correspond to per capita GDPs of 2000 and 5000 dollars.
Finally, the last number corresponds to the mortality rate in Canada in 1989 according to
the World Bank (1991), Table 27. The mortality rate for the United States in that year was
slightly higher, at 0.9 percent, while in Japan, Hong Kong, and Australia it was lower.

TABLE 7.
Parameter Estimates of the Mortality Function
Standard
Parameter Coefficient Error
w1 18.220 (0.951)
wo -0.082 (0.067)
w3 0.804 (0.153)

R? .996

A.3. PARAMETER ESTIMATES OF MORTALITY AND
PREFERENCES

We estimate the w; parameters in equation (22) using nonlinear least
squares to fit the observations given in Table 6. The last column of numbers
in Table 6 reports the fitted mortality rates; the coefficients themselves are
reported in Table 7. The equation fits quite well, with an R? of 0.996.
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TABLE 8.
Observations on Consumption and Population Growth
“Data” Fitted
Population Population
Per capita Growth Growth
Consumption Rate Rate Comment
250 0 -.0005
948 .008164 .0105 Year 1875-1900
2792 .020151 .0179 Year 1960-1970
4533 .018101 .0181 Year 1980-1990
20000 .007 .0077
50000 0 -.0004

Given the mortality function d(c), we turn to estimating the parame-
ters related to fertility. As with death rates, we have very little information
upon which to base our estimates of these parameters. The observations we
draw on are given in Table 8 and describe population growth and consump-
tion. The first and the last two observations in this table are rough guesses.
Motivated in part by Pritchett (1997), we assume that the Malthusian con-
sumption level at which births and deaths are equalized is something like
two hundred fifty dollars (in 1990 dollars). The next to last observation
corresponds roughly to per capita income and population growth in the
richest countries today. The intermediate observations are taken from two
sources. The consumption levels correspond to the world per capita GDP
levels reported by Maddison (1995) in Table G-3.2 The population growth
rates, corresponding to the years reported in the comment, are taken from
Kremer (1993).

Given the mortality function d(c) that we have already estimated, and
given o = .10, we estimate 1, y,and 7 to fit the population growth rate data
in Table 8 as well as possible. Specifically, we estimate these parameters
using nonlinear least squares to minimize the sum of squared deviations
between the observed population growth rate and the model’s predicted
population growth rate at the given levels of consumption. The results of
this estimation are reported in Table 9.

2Maddison does not report a value for 1875. | use the interpolated value from DeLong
(1998).
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TABLE 9.
Parameter Estimates of the Utility Function
Standard
Parameter Coefficient Error
© 9844 (.0012)
v 8141 (.0164)
n .0250 (.0299)

R? .986

A.3.1. Solving for ; and ¢;

Given the parameter values in Tables 2, 7, and 9, and given the population
data in Table 1, we solve for the sequence of innovation shares {7} and
productivity shocks {e,; } where t = 0 corresponds to the year 25000 B.C.,
and each unit increment to ¢ corresponds to an increment of 25 years. The
solution is obtained as follows:

1. We begin with an initial population, an initial stock of ideas, and an
observation for population some periods later. Let Num Periods denote
the number of periods between the two observations on population. For
example, if the first period corresponds to the observation in the year -2000
and the next is the year -1000, we have 1000/25+1 = 41 periods.

2. Solve for the constant value of the shock 7 such that the dynamics of the
model would lead population to grow from its level at the first observation
to its level at the second observation after NumPeriod periods, with a
percentage error less than or equal to 10~%. If such a value is found and
is “small” in the sense that it does not involve passing through the entire
demographic transition in one period, then we’re done with this step. Set
the productivity shock for period NumPeriod equal to one since it is not
needed.

3. With respect to the previous step, there are two things to note. First,
there are occasionally multiple values of the 7 shock that will work. We
choose the smallest value (so that we are on the pre-demographic transition
side of the population growth schedule as much as possible). Second, for
declines in the level of population, or for relatively small increases, it is
possible that no “small” shock will work. In this case, set the property
rights shock for the periods corresponding to 1 : (NumPeriods — 1)
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equal to zero, and solve for the reduction in productivity — the constant
value of e < 1 — such that the simulation matches the level of population
after NumPeriod periods, with a percentage error less than or equal to
1078,

4. Advance to the next population observation and repeat this process,
starting with step 1 above, until all population observations have been fit
by the model.
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