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Foreword

It is my pleasure and privilege to write the foreword for thisok, whose results |
have been following and awaiting for the last few years. Tinigograph represents
the outcome of an ambitious project oriented towards adagraur knowledge of
the way the human visual system processes images, and abouay it combines
high level hypotheses with low level inputs during patteznagnition. The model
proposed by Sven Behnke, carefully exposed in the followiages, can be applied
now by other researchers to practical problems in the fielcbafputer vision and
provides also clues for reaching a deeper understanditgdfitman visual system.

This book arose out of dissatisfaction with an earlier pzbjeack in 1996, Sven
wrote one of the handwritten digit recognizers for the maitting machines of
the Deutsche Post AG. The project was successful becausesitigines could in-
deed recognize the handwritten ZIP codes, at a rate of delerssand letters per
hour. However, Sven was not satisfied with the amount of éXpewledge that
was needed to develop the feature extraction and clasgific@gorithms. He won-
dered if the computer could be able to extract meaningfulifes by itself, and use
these for classification. His experience in the project toitd that forward compu-
tation alone would be incapable of improving the resultsady obtained. From his
knowledge of the human visual system, he postulated thgtatlo-way system
could work, one that could advance a hypothesis by focushiagttention of the
lower layers of a neural network on it. He spent the next feargeeveloping a new
model for tackling precisely this problem.

The main result of this book is the proposal of a generic &chire for pattern
recognition problems, called Neural Abstraction PyranNéP). The architecture
is layered pyramidal competitive andrecurrent It is layeredbecause images are
represented at multiple levels of abstraction. lteisurrentbecause backward pro-
jections connect the upper to the lower layers. ftyisamidalbecause the resolution
of the representations is reduced from one layer to the tieist.competitivebe-
cause in each layer units compete against each other, tryintassify the input
best. The main idea behind this architecture is letting deet layers interact with
the higher layers. The lower layers send some simple featarthe upper layers,
the uppers layers recognize more complex features andh#atnputation in the
lower layers. This in turn improves the input to the uppeelay which can refine
their hypotheses, and so on. After a few iterations the neétsettles in the best in-
terpretation. The architecture can be trained in supahasel unsupervised mode.
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Here, | should mention that there have been many proposaiscafrent ar-
chitectures for pattern recognition. Over the years we tiged to apply them to
non-trivial problems. Unfortunately, many of the propasadivanced in the litera-
ture break down when confronted with non-toy problems. &fege, one of the first
advantages present in Behnke's architectutbas it actually worksalso when the
problem is difficult and really interesting for commercialdications.

The structure of the book reflects the road taken by Sven kdetdlce problem
of combining top-down processing of hypotheses with bottgnprocessing of im-
ages. Part | describes the theory and Part 1l the applicatibthe architecture. The
first two chapters motivate the problem to be investigatetlidantify the features
of the human visual system which are relevant for the proghasehitecture: retino-
topic organization of feature maps, local recurrence wiititation and inhibition,
hierarchy of representations, and adaptation throughilegw

Chapter 3 gives an overview of several models proposed itagigyears and
provides a gentle introduction to the next chapter, whickcdbes the NAP archi-
tecture. Chapter 5 deals with a special case of the NAP aathite, when only
forward projections are used and features are learned insupervised way. With
this chapter, Sven came full circle: the digit classificatiask he had solved for mail
sorting, using a hand-designed structural classifier, weaigesformed now by an
automatically trained system. This is a remarkable resinite much expert knowl-
edge went into the design of the hand-crafted system.

Four applications of the NAP constitute Part Il. The firstlagagtion is the recog-
nition of meter values (printed postage stamps), the settentinarization of ma-
trix codes (also used for postage), the third is the recoottm of damaged images,
and the last is the localization of faces in complex scenks.ifage reconstruction
problem is my favorite regarding the kind of tasks solved ofnplete NAP is used,
with all its lateral, feed-forward and backward connecsiolm order to infer the
original images from degraded ones, the network must learthefs of the objects
present in the images and combine them with models of tygieg#adations.

| think that it is interesting how this book started from a geal inspiration
about the way the human visual system works, how then Sveaatatl some gen-
eral principles underlying visual perception and how hdiedghem to the solution
of several vision problems. The NAP architecture is whatNlkecognitron (a lay-
ered model proposed by Fukushima the 1980s) aspired toiseh# Neocognitron
gotten right. The main difference between one and the othéne recursive na-
ture of the NAP. Combining the bottom-up with the top-dowpmyach allows for
iterative interpretation of ambiguous stimuli.

I can only encourage the reader to work his or her way throbghtiook. It
is very well written and provides solutions for some techhfroblems as well as
inspiration for neurobiologists interested in common catagonal principles in hu-
man and computer vision. The book is like a road that will [deelattentive reader
to a rich landscape, full of new research opportunities.

Berlin, June 2003 Rall Rojas



Preface

This thesis is published in partial fulfillment of the regritents for the degree of
'Doktor der Naturwissenschaften’ (Dr. rer. nat.) at the Bement of Mathematics
and Computer Science of Freie Universitat Berlin. Prof.®atl Rojas (FU Berlin)
and Prof. Dr. Volker Sperschneider (Osnabriick) acted feseres. The thesis was
defended on November 27, 2002.

Summary of the Thesis

Human performance in visual perception by far exceeds th®imeance of con-
temporary computer vision systems. While humans are alperceive their envi-
ronment almost instantly and reliably under a wide rangeooifditions, computer
vision systems work well only under controlled conditiongdiimited domains.

This thesis addresses the differences in data structudealgarithms underly-
ing the differences in performance. The interface probletwben symbolic data
manipulated in high-level vision and signals processedollevel operations is
identified as one of the major issues of today’s computeorisystems. This thesis
aims at reproducing the robustness and speed of human fiercbp proposing a
hierarchical architecture for iterative image interptieta.

| propose to use hierarchical neural networks for représgithages at multiple
abstraction levels. The lowest level represents the imagelk As one ascends
these levels of abstraction, the spatial resolution of tivoensional feature maps
decreases while feature diversity and invariance incteéEse representations are
obtained using simple processing elements that interealiyo Recurrent horizontal
and vertical interactions are mediated by weighted linkeight sharing keeps the
number of free parameters low. Recurrence allows to intedrattom-up, lateral,
and top-down influences.

Image interpretation in the proposed architecture is peréad iteratively. An
image is interpreted first at positions where little ambigwixists. Partial results
then bias the interpretation of more ambiguous stimulisTéia flexible way to in-
corporate context. Such a refinement is most useful whemthge contrast is low,
noise and distractors are present, objects are partiathaded, or the interpretation
is otherwise complicated.

The proposed architecture can be trained using unsupdraise supervised
learning techniques. This allows to replace manual desigapplication-specific
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computer vision systems with the automatic adaptation céreegc network. The
task to be solved is then described using a dataset of ingptibexamples.
Applications of the proposed architecture are illustrateihg small networks.
Furthermore, several larger networks were trained to perfoon-trivial computer
vision tasks, such as the recognition of the value of postagier marks and the
binarization of matrixcodes. It is shown that image recarction problems, such as
super-resolution, filling-in of occlusions, and contrash@ncement/noise removal,
can be learned as well. Finally, the architecture was apgliecessfully to localize
faces in complex office scenes. The network is also able ¢& treoving faces.
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1. Introduction

1.1 Motivation

1.1.1 Importance of Visual Perception

Visual perception is important for both humans and computdumans are visual
animals. Just imagine how loosing your sight would effeatl yo appreciate its
importance. We extract most information about the worldiatbus by seeing.

This is possible because photons sensed by the eyes casrmnatfon about
the world. On their way from light sources to the photoreoepthey interact with
objects and get altered by this process. For instance, theleregth of a photon
may reveal information about the color of a surface it wasotdld from. Sudden
changes in the intensity of light along a line may indicaekdge of an object. By
analyzing intensity gradients, the curvature of a surfaag be recovered. Texture
or the type of reflection can be used to further charactetifiases. The change of
visual stimuli over time is an important source of infornoatias well. Motion may
indicate the change of an object’s pose or reflect ego-mafignchronous motion
is a strong hint for segmentation, the grouping of visuahsti to objects because
parts of the same object tend to move together.

Vision allows us to sense over long distance since lightetsathrough the air
without significant loss. It is non-destructive and, if naaibnal lighting is used, it
is also passive. This allows for perception without beinticeal.

Since we have a powerful visual system, we designed our@mvient to pro-
vide visual cues. Examples include marked lanes on the madigraffic lights. Our
interaction with computers is based on visual informatieniell. Large screens
display the data we manipulate and printers produce doctsnfi@rater visual per-
ception.

Powerful computer graphic systems have been developeddaier visual sys-
tem. Today’s computers include special-purpose procsgsorendering images.
They produce almost realistic perceptions of simulatedrenments.

On the other hand, the communication channel from the usemputers has a
very low bandwidth. It consists mainly of the keyboard anaanfing device. More
natural interaction with computers requires advancedfades, including computer
vision components. Recognizing the user and perceivingttier actions are key
prerequisites for more intelligent user interfaces.
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Computer vision, that is the extraction of information franages and image se-
quences, is also important for applications other than miocmmnputer interaction.
For instance, it can be used by robots to extract informdtam their environment.
In the same way visual perception is crucial for us, it is fatomomous mobile
robots acting in the world designed for us. A driver assistasystem in a car, for
example, must perceive all the signs and markings on the asadell as other cars,
pedestrians, and many more objects.

Computer vision techniques are also used for the analysitatit images. In
medical imaging, for example, it can be used to aid the im&tgpion of images
by a physician. Another application area is the automat&rpretation of satellite
images. One particularly successful application of corapusion techniques is the
reading of documents. Machines for check reading and mdihgare widely used.

1.1.2 Performance of the Human Visual System

Human performance for visual tasks is impressive. The huvigral system per-
ceives stimuli of a high dynamic range. It works well in thégbtest sunlight and
still allows for orientation under limited lighting condins, e.g. at night. It has been
shown that we can even perceive single photons.

Under normal lighting, the system has high acuity. We are &hperceive object
details and can recognize far-away objects. Humans carpaleeive color. When
presented next to each other, we can distinguish thousdrdton nuances.

The visual system manages to separate objects from othextslaind the back-
ground. We are also able to separate object-motion fronmegiien. This facilitates
the detection of change in the environment.

One of the most remarkable features of the human visualmyistés ability to
recognize objects under transformations. Moderate clsingéumination, object
pose, and size do not affect perception. Another invariamoduced by the visual
system is color constancy. By accounting for illuminatitiaiges, we perceive dif-
ferent wavelength mixtures as the same color. This infergmocess recovers the
reflectance properties of surfaces, the object color. Walareable to tolerate de-
formations of non-rigid objects. Object categorizatioamother valuable property.
If we have seen several examples of a category, say dogs,measdy classify an
unseen animal as dog if it has the typical dog features.

The human visual system is strongest for the stimuli thatraet important to
us: faces, for instance. We are able to distinguish thousahdifferent faces. On
the other hand, we can recognize a person although he or stagjbd, changed hair
style and now wears glasses.

Human visual perception is not only remarkably robust toarares and noise,
but it is fast as well. We need only about 100ms to extract Hstdxyist of a scene,
we can detect targets in naturalistic scenes in 150ms, arsdtenable to understand
complicated scenes within 400ms.

Visual processing is mostly done subconsciously. We do aeatgive the diffi-
culties involved in the task of interpreting natural stimiihis does not mean that
this task is easy. The challenge originates in the fact tisagy stimuli are frequently
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@ (b)
Fig. 1.1.Role of occluding region in recognition of occluded lettdeg letters ‘B’ partially
occluded by a black line; (b) same situation, but the ocdadine is white (it merges with
the background; recognition is much more difficult) (imagef [164]).
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Fig. 1.2. Light-from-above assumption: (a) stimuli in the middle woin are perceived as
concave surfaces whereas stimuli on the sides appear tortvex;zgb) rotation by180°
makes convex stimuli concave and vice versa.

ambiguous. Inferring three-dimensional structure from-tfimensional images, for
example, is inherently ambiguous. Many 3D objects corradpio the same image.
The visual system must rely on various depth cues to infetthivd dimension.
Another example is the interpretation of spatial changéstensity. Among their
potential causes are changes in the reflectance of an abgectace (e.g. texture),
inhomogeneous illumination (e.g. at the edge of a shadod/}fadiscontinuity of
the reflecting surface at the object borders.

Occlusions are a frequent source of ambiguity as well. Oswalisystem must
guess what occluded object parts look like. This is illustlaén Figure 1.1. We are
able to recognize the letters ‘B’, which are partially od#d by a black line. If the
occluding line is white, the interpretation is much morelgrging, because the
occlusion is not detected and the ‘guessing mode’ is not eyepl.

Since the task of interpreting ambiguous stimuli is not vpelsed, prior knowl-
edge must be used for visual inference. The human visuasysses many heuris-
tics to resolve ambiguities. One of the assumptions, thiesyeelies on, is that light
comes from above. Figure 1.2 illustrates this fact. Sineethrvature of surfaces can
be inferred from shading only up to the ambiguity of a convea @oncave inter-
pretation, the visual system prefers the interpretatiam ihconsistent with a light
source located above the object. This choice is correct ofdke time.
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Fig. 1.3.Gestalt principles of perception [125]: (a) similar stiimade grouped together; (b)
proximity is another cue for grouping; (c) line segmentsgnaiped based on good contin-
uation; (d) symmetric contours form objects; (e) closedt@ors are more salient than open
ones; (f) connectedness and belonging to a common regiGe caauping.
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Fig. 1.4.Kanizsa figures [118]. Four inducers produce the perceptyfite square partially
occluding four black disks. Line endings induce illusorytmurs perpendicular to the lines.
The square can be bent if the opening angles of the arcs ghtlgichanged.

Other heuristics are summarized by the Gestalt principiggeception [125].
Some of them are illustrated in Figure 1.3. Gestalt psyanpolemphasizes the
Pragnanz of perception: stimuli group spontaneouslytimcsimplest possible con-
figuration. Examples include the grouping of similar stinfske Part (a)). Proximity
is another cue for grouping (b). Line segments are conndsdedd on good con-
tinuation (c). Symmetric or parallel contours indicatetttieey belong to the same
object (d). Closed contours are more salient than open eée€g¢nnectedness and
belonging to a common region cause grouping as well (f).,llagtnot least, com-
mon fate (synchrony in motion) is a strong hint that stimwdidng to the same
object.

Although such heuristics are correct most of the time, somnet they fail. This
results in unexpected perceptions, called visual illusiddne example of these il-
lusions are Kanizsa figures [118], shown in Figure 1.4. Ingfftepart of the figure,
four inducers produce the percept of a white square in frbbtazk disks, because
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Fig. 1.5.Visual illusions: (a) Muller-Lyer illusion [163] (the vécal lines appear to have dif-
ferent lengths); (b) horizontal-vertical illusion (thertieal line appears to be longer than the
horizontal one); (c) Ebbinghaus-Titchener illusion (teetral circles appear to have different
sizes).

(b)
Fig. 1.6.Munker-White illusion [224] illustrates contextual effs®f brightness perception:
(a) both diagonals have the same brightness; (b) sameisitwgithout occlusion.

—
&

this interpretation is the simplest one. lllusory contoams perceived between the
inducers, although there is no intensity change. The midfilliee figure shows that
virtual contours are also induced at line endings perperali¢o the lines because
occlusions are likely causes of line endings. In the rigit p&the figure it is shown
that one can even bend the square, if the opening angles a@fr¢theegments are
slightly changed.

Three more visual illusions are shown in Figure 1.5. In thell®&-Lyer illu-
sion [163] (Part (a)), two vertical lines appear to haveatd#ht lengths, although
they are identical. This perception is caused by the diffetieree-dimensional in-
terpretation of the junctions at the line endings. The lek lis interpreted as the
convex edge of two meeting walls, whereas the right line app® be a concave
corner. Part (b) of the figure shows the horizontal-veriiaaion. The vertical line
appears to be longer than the horizontal one, although il the same length.
In Part (c), the Ebbinghaus-Titchener illusion is showne Perceived size of the
central circle depends on the size of the black circles smding it.

Contextual effects of brightness perception are illusttdty the Munker-White
illusion [224], shown in Figure 1.6. Two gray diagonals asetilly occluded by a
black-and-white pattern of horizontal stripes. The pemgibrightness of the diag-
onals is very different, although they have the same refieetarhis illustrates that
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Fig. 1.7.Contextual effects of letter perception. The letters inrttiddle of the words ‘THE’,

‘CAT’, and ‘HAT’ are exact copies of each other. Dependingtbe context they are either
interpreted as ‘H’ or as ‘A.

TTTTITTTT TT Q Q Q QQ QQQ Q
TTT TTIT T T Q Q Q QQ QQQ 0QQ
TOTTTT TTT Q QQ QQRQR QQRRQRQQ
TTITTTTTTT Q O Q QQ QQ Q QQQC
TTTTT TT TTT Q Q QQ QQ QQQ

Fig. 1.8.Pop-out and sequential search. The letter ‘O’ in the leftigrof ‘T’s is very salient
because the letters stimulate different features. It ishmore difficult to find it amongst
‘Q’s that share similar features. Here, the search timentipen the number of distractors.

the visual system does not perceive absolute brightnesgostructs the bright-
ness of an object by filling-in its area from relative brigtkds percepts that have
been induced at its edges. Similar filling-in effects can bseoved for color per-
ception.

Figure 1.7 shows another example of contextual effectse Hee context of an
ambiguous letter decides whether it is interpreted as ‘O The perceived let-
ter is always the one that completes a word. A similar top+dmfluence is known
as word-superiority effect, described first by Reicher [188e performance of let-
ter perception is better in words than in non-words.

The human visual system uses a high degree of parallel giogeJargets that
can be defined by a unique feature can be detected quicldgpiective of the num-
ber of distractors. This visual ‘pop-out’ is illustratedtime left part of Figure 1.8.
However, if the distractors share critical features with thrget, as in the middle
and the right part of the figure, search is slow and the deted¢iine depends on
the number of distractors. This is called sequential searamows that the visual
system can focus its limited resources on parts of the inegrsiimuli in order to
inspect them closer. This is a form of attention.

Another feature of the human visual system is active visiéa do not perceive
the world passively, but move our eyes, the head, or even ttwdebody in order
to to improve the image formation process. This can helpsardbiguate a scene.
For example, we move the head sideways to look around anadbsitad we rotate
objects to view them from multiple angles in order to faaiit 3D reconstruction.

1.1.3 Limitations of Current Computer Vision Systems

Computer vision systems consist of two main componentsgéeapture and in-
terpretation of the captured image. The capture part isliysuat very problematic.
2D CCD image sensors with millions of pixels are availabieelcameras produce
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Fig. 1.9.Feed-forward image processing chain (image adapted fraih [6

images of even higher resolution. If a high dynamic rangeeisded, logarithmic
image sensors need to be employed. For mobile applicafigas;ellular phones
and autonomous robots, CMOS sensors can be used. They dteisexpensive,
and consume little power.

The more problematic part of computer vision is the intetgtien of captured
images. This problem has two main aspects: speed and qoélibterpretation.
Cameras and other image capture devices produce large sdwlata. Although
the processing speed and storage capabilities of compoteesased tremendously
in the last decades, processing high-resolution imagewsided is still a challeng-
ing task for today’s general-purpose computers. Limitedgotational power con-
strains image interpretation algorithms much more for feaieial-time applications
then for offline or desktop processing. Fortunately, thetiooing hardware devel-
opment makes the prediction possible that these congraiifitrelax within the
next years, in the same way as the constraints for procelesaglemanding audio
signals relaxed already.

This may sound like one would only need to wait to see compgeive image
interpretation problems faster and better than humansutahis is not the case.
While dedicated computer vision systems already outperfoumans in terms of
processing speed, the interpretation quality does nohréaman level. Current
computer vision systems are usually employed in very lihtemains. Examples
include quality control, license plate identification, Zi&de reading for mail sort-
ing, and image registration in medical applications. Adigh systems include a pos-
sibility for the system to indicate lack of confidence, e.g.rbjecting ambiguous
examples. These are then inspected by human experts. Sttailpautomated
systems are useful though, because they free the expemtsifispecting the vast
majority of unproblematic examples. The need to incorgpaahuman component
in such systems clearly underlines the superiority of thedwuvisual system, even
for tasks in such limited domains.

Depending on the application, computer vision algorithmysd extract different
aspects of the information contained in an image or a videxast. For example,
one may desire to infer a structural object model from a secgi®f images that
show a moving object. In this case, the object structureesgmved, while motion
information is discarded. On the other hand, for the corgfohobile robots, anal-
ysis may start with a model of the environment in order to tméttevith the input
and to infer robot motion.

Two main approaches exist for the interpretation of imageom-up and top-
down. Figure 1.9 depicts the feed-forward image processivain of bottom-up
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Fig. 1.10.Structural digit classification (image adapted from [2Ijjormation irrelevant for
classification is discarded in each step while the classnmtion is preserved.

analysis. It consists of a sequence of steps that transfominsage representation
into another. Examples for such transformations are edtgetien, feature extrac-
tion, segmentation, template matching, and classificafitinough these transfor-
mations, the representations become more compact, maraeband more sym-
bolic. The individual steps are relatively small, but théuna of the representation
changes completely from one end of the chain, where imagesepresented as
two-dimensional signals to the other, where symbolic sckaseriptions are used.

One example of a bottom-up system for image analysis is tetatal digit
recognition system [21], illustrated in Figure 1.10. Itrtséorms the pixel-image of
an isolated handwritten digit into a line-drawing, usingeatorization method. This
discards information about image contrast and the widtiefliihes. Using struc-
tural analysis, the line-drawing is transformed into amilaited structural graph
that represents the digit using components like curves aopsl and their spatial
relations. Small components must be ignored and gaps mudbbed in order to
capture the essential structure of a digit. This graph ishet against a database
of structural prototypes. The match selects a specialitassifier. Quantitative at-
tributes of the graph are compiled into a feature vectorithelassified by a neural
network. It outputs the class label and a classification denfte. While such a sys-
tem does recognize most digits, it is necessary to rejectd faction of the digits
to achieve reliable classification.

The top-down approach to image analysis works the oppoiseetibn. It does
not start with the image, but with a database of object moélpotheses about the
instantiation of a model are expanded to a less abstraaseptation by account-
ing, for example, for the object position and pose. The mh#ttveen an expanded
hypothesis and features extracted from the image is checlarder to verify or re-
ject the hypothesis. If it is rejected, the next hypothesgginerated. This method is
successful if good models of the objects potentially pregetine images are avail-
able and verification can be done reliably. Furthermore,mnst ensure that the
correct hypothesis is among the first ones that are generedpetlown techniques
are used for image registration and for tracking of objectsriage sequences. In
the latter case, the hypothesis can be generated by prediaiihich are based on
the analysis results from the preceding frames.

One example of top-down image analysis is the tracking systesigned to
localize a mobile robot on a RoboCup soccer field [235], flated in Figure 1.11.
A model of the field walls is combined with a hypothesis abat tobot position
and mapped to the image obtained from an omnidirectionabcanfPerpendicular
to the walls, a transition between the field color (green) sredwall (white) is
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Fig. 1.11.Tracking of a mobile robot in a RoboCup soccer field (imagepsethfrom [235]).
The image is obtained using an omnidirectional camera.stians from the field (green) to
the walls (white) are searched perpendicular to the modis tveat have been mapped to the
image. Located transitions are transformed into local evodordinates and used to adapt the
model fit.

searched for. If it can be located, its coordinates are toamed into local world
coordinates and used to adapt the parameters of the moa@dballland other robots
can be tracked in a similar way. When using such a trackingraetfor the control
of a soccer playing robot, the initial position hypothesissinbe obtained using a
bottom-up method. Furthermore, it must be constantly chécihether the model
fits the data well enough; otherwise, the position must béalired again. The
system is able to localize the robot in real time and to previgput of sufficient
quality for playing soccer.

While both top-down and bottom-up methods have their mehisimage inter-
pretation problem is far from being solved. One of the mogbfgmatic issues is the
segmentation/recognition dilemma. Frequently, it is ragtgible to segment objects
from the background without recognizing them. On the ottarch many recogni-
tion methods require object segmentation prior to featuteaetion and classifica-
tion.

Another difficult problem is maintaining invariance to otfjigransformations.
Many recognition methods require normalization of commanances, such as
position, size, and pose of an object. This requires radiabgmentation, without
which the normalization parameters cannot be estimated.

Processing segmented objects in isolation is problematitskelf. As the ex-
ample of contextual effects on letter perception in Figuiedemonstrated, we are
able to recognize ambiguous objects by using their contgken taken out of the
context, recognition may not be possible at all.

1.1.4 Iterative Interpretation through Local Interaction s in a Hierarchy

Since the performance of the human visual system by far esctat of current
computer vision systems, it may prove fruitful to follow dgspatterns of the hu-
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bottom-up: top-down:
— data driven - hypothesis driven
— analysis — synthesis

— feature extraction — feature expansion

-
lateral: - grouping - competition - associative memory

Fig. 1.12.Integration of bottom-up, lateral, and top-down procegsinthe proposed hier-
archical architecture. Images are represented at difféaeels of abstraction. As the spatial
resolution decreases, feature diversity and invariangeatsformations increase. Local re-
current connections mediate interactions of simple pingselements.

man visual system when designing computer vision systeritisodgh the human
visual system is far from being understood, some desigepatthat may account
for parts of its performance have been revealed by researftoen neurobiology
and psychophysics.

The thesis tries to overcome some limitations of currentpater vision systems
by focussing on three points:

— hierarchical architecture with increasingly abstractiagaepresentations,

— iterative refinement of interpretation through integratid bottom-up, top-down,
and lateral processing, and

— adaptability and learning to make the generic architedask-specific.

Hierarchical Architecture. While most computer vision systems maintain multi-
ple representations of an image with different degrees sfrattion, these repre-
sentations usually differ in the data structures and therdlgns employed. While
low-level image processing operators, like convoluti@ms,applied to matrices rep-
resenting discretized signals, high-level computer vigisually manipulates sym-
bols in data structures like graphs and collections. Thasldeto the difficulty of
establishing a correspondence between the symbols anéytiess Furthermore,
although the problems in high-level vision and low-levedign are similar, tech-
niques developed for the one cannot be applied for the Oitileat is needed is a
unifying framework that treats low-level vision and high#l vision in the same
way.

In the thesis, | propose to use a hierarchical architectitrelacal recurrent con-
nectivity to solve computer vision tasks. The architectsisketched in Figure 1.12.
Images are transformed into a sequence of analog représasteith an increas-
ing degree of abstraction. As one ascends the hierarchypatal resolution of
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(a) (b) J:L (c)

Fig. 1.13.Iterative image interpretation: (a) the image is interpadirst at positions where
little ambiguity exists; (b) lateral interactions redugataguity; (c) top-down expansion of
abstract representations bias the low-level decision.

these representations decreases, while the diversityabfries and their invariance
to transformations increase.

Iterative Refinement. The proposed architecture consists of simple processing el
ements that interact with their neighbors. These intesastimplement bottom-up
operations, like feature extraction, top-down operatitiks feature expansion, and
lateral operations, like feature grouping.

The main idea is to interpret images iteratively, as illattd in Figure 1.13.
While images frequently contain parts that are ambiguowstimage parts can be
interpreted relatively easy in a bottom-up manner. Thigipoes partial represen-
tations in higher layers that can be completed using latetatactions. Top-down
expansion can now bias the interpretation of the ambigutimsik.

This iterative refinement is a flexible way to incorporateteahinformation.
When the interpretation cannot be decided locally, thegigeiis deferred, until
further evidence arrives from the context.

Adaptability and Learning. While current computer vision systems usually con-
tain adaptable components, such as trainable classifiest steps of the processing
chain are designed manually. Depending on the applicaliffierent preprocessing
steps are applied and different features are extracted.riéikes it difficult to adapt
a computer vision system for a new task.

Neural networks are tools that have been successfullyegptimachine learn-
ing tasks. | propose to use simple processing elements totamaithe hierarchy
of representations. This yields a large hierarchical Heng&vork with local recur-
rent connectivity for which unsupervised and supervisadiimg techniques can be
applied.

While the architecture is biased for image interpretatasks, e.g. by utilizing
the 2D nature and hierarchical structure of images, it Isggheral enough to be
adapted for different tasks. In this way, manual designpsaeed by learning from
a set of examples.
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1.2 Organization of the Thesis

The thesis is organized as follows:

Part I: Theory

Chapter 2. The next chapter gives some background information on ttmealnu
visual system. It covers the visual pathways, the orgaioizatf feature maps, com-
putation in layers, neurons as processing units, and sgaassadaptable elements.
At the end of the chapter, some open questions are discusskdling the binding
problem and the role of recurrent connections.

Chapter 3. Related work is discussed in Chapter 3, focussing on twocasod
the proposed architecture: hierarchy and recurrence.rageignal decompositions,
neural networks, and generative statistical models aiewed as examples of hier-
archical systems for image analysis. The use of recurrendis¢ussed in general.
Special attention is paid to models with specific types ofiremt interactions: lat-
eral, vertical, and the combination of both.

Chapter 4. The proposed architecture for image interpretation isothiced in
Chapter 4. After giving an overview, the architecture isiiatly described. To illus-
trate its use, several small example networks are preséftiegt apply the architec-
ture to local contrast normalization, binarization of hamiting, and shift-invariant
feature extraction.

Chapter 5. Unsupervised learning techniques are discussed in Chap#er un-
supervised learning algorithm is proposed for the sugdestehitecture that yields
a hierarchy of sparse features. It is applied to a dataseamd\uritten digits. The
produced features are used as input to a supervised clasEifee performance of
this classifier is compared to other classifiers, and it islwoed with two existing
classifiers.

Chapter 6. Supervised learning is covered in Chapter 6. After a gertisalus-
sion of supervised learning problems, gradient descehntques for feed-forward
neural networks and recurrent neural networks are revieseparately. Improve-
ments to the backpropagation technique and regularizatigthods are discussed,
as well as the difficulty of learning long-term dependengiggcurrent networks. It
is suggested to combine the RPROP algorithm with backpmatpagthrough time
to achieve stable and fast learning in the proposed redunierarchical architec-
ture.

Part II: Applications

Chapter 7. The proposed architecture is applied to recognize the \aflpestage
meter marks. After describing the problem, the dataset,smmde preprocessing
steps, two classifiers are detailed. The first one is a hieialblock classifier that
recognizes meter values without prior digit segmentafitve. second one is a neural
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classifier for isolated digits that is employed when the kloassifier cannot pro-
duce a confident decision. It uses the output of the bloclsiflasfor a neighboring
digit as contextual input.

Chapter 8. The second application deals with the binarization of matoides. Af-
ter the introduction to the problem, an adaptive thresimgidilgorithm is proposed
that is employed to produce outputs for undegraded imagéserarchical recur-
rent network is trained to produce them even when the inpagas are degraded
with typical noise. The binarization performance of thérteal network is evaluated
using a recognition system that reads the codes.

Chapter 9. The application of the proposed architecture to image r&icoction
problems is presented in Chapter 9. Super-resolution, livgfin of occlusions,
and noise removal/contrast enhancement are learned rdtiral recurrent net-
works. Images are degraded and networks are trained todepeahe originals
iteratively. The same method is also applied to image sexgsen

Chapter 10. The last application deals with a problem of human-compiater-
action: face localization. A hierarchical recurrent netkis trained on a database
of images that show persons in office environments. The tagkindicate the eye
positions by producing a blob for each eye. The network’éggerance is compared
to a hybrid localization system, proposed by the creatotbetlatabase.

Chapter 11. The thesis concludes with a discussion of the results anditiook
for future work.

1.3 Contributions

The thesis attempts to overcome limitations of current asterpvision systems by
proposing a hierarchical architecture for iterative imaderpretation, investigating
unsupervised and supervised learning techniques for itidtecture, and applying
it to several computer vision tasks.

The architecture is inspired by the ventral pathway of then& visual sys-
tem. It transforms images into a sequence of represensati@t are increasingly
abstract. With the level of abstraction, the spatial resmhuof the representations
decreases, as the feature diversity and the invariancartsformation increase.

Simple processing elements interact through local rentizennections. They
implement bottom-up analysis, top-down synthesis, aretdhbperations, such as
grouping, competition, and associative memory. Horizioatal vertical feedback
loops provide context to resolve local ambiguities. In théy, the image interpre-
tation is refined iteratively.

Since the proposed architecture is a hierarchical recuneural network with
shared weights, machine learning techniques can be appliedAn unsupervised
learning algorithm is proposed that yields a hierarchy afrse features. It is ap-
plied to a dataset of handwritten digits. The extracteduest are meaningful and
facilitate digit recognition.
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Supervised learning is also applicable to the architectui®proposed to com-
bine the RPROP optimization method with backpropagatiomuh time to achieve
stable and fast learning. This supervised training is aplgb several learning tasks.

A feed-forward block classifier is trained to recognize megtdues without the
need for prior digit segmentation. It is combined with a tidassifier if necessary.
The system is able to recognize meter values that are chaigfor human experts.

A recurrent network is trained to binarize matrix codes. @hsired outputs are
produced by applying an adaptive thresholding method tegratied images. The
network is trained to produce the same output even for imtgetshave been de-
graded with typical noise. It learns to recognize the celicttire of the matrix codes.
The binarization performance is evaluated using a recimgngdlystem. The trained
network performs better than the adaptive thresholdindghotefor the undegraded
images and outperforms it significantly for degraded images

The architecture is also applied for the learning of imag®mnstruction tasks.
Images are degraded and networks are trained to reprodeicgitfinals iteratively.
For a super-resolution problem, small recurrent networksshown to outperform
feed-forward networks of similar complexity. A larger nenk is used for the
filling-in of occlusions, the removal of noise, and the erte@anent of image con-
trast. The network is also trained to reconstructimages icequence of degraded
images. It is able to solve this task even in the presencegbfiindise.

Finally, the proposed architecture is applied for the talSkaoe localization.
A recurrent network is trained to localize faces of diffargrividuals in complex
office environments. This task is challenging due to the kaghability of the dataset
used. The trained network performed significantly bettanttimne hybrid localization
method, proposed by the creators of the dataset. It is ndtelihto static images,
but can track a moving face in real time.
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2. Neurobiological Background

Learning from nature is a principle that has inspired maohméal developments.
There is even a field of science concerned with this issugi¢cgoMany problems
that arise in technical applications have already beereddby biological systems
because evolution has had millions of years to search foluti®o. Understanding
nature’s approach allows us to apply the same principlethéosolution of technical
problems.

One striking example is the ‘lotus effect’, studied by Bésthand Nein-
huis [17]. Grasping the mechanisms, active at the micrdedaferface between
plant surfaces, water drops, and dirt particles, led to teeeldpment of self-
cleaning surfaces. Similarly, the design of the first ampkwas inspired by the
flight of birds and even today, though aircraft do not resentiitds, the study of
bird wings has lead to improvements in the aerodynamicsarigd. For example,
birds reduce turbulence at their wing-tips using spreathé&ra. Multi-winglets and
split-wing loops are applications of this principle. Anettexample are eddy-flaps
which prevent sudden drops in lift generation during stifiey allow controlled
flight even in situations where conventional wings wouldl fai

In the same vein, the study of the human visual system is avatwth for de-
veloping technical solutions for the rapid and robust iptetation of visual infor-
mation. Marr [153] was among the first to realize the need tsiter biological
mechanisms when developing computer vision systems. Haipter summarizes
some results of neurobiological research on vision to dieeréader an idea about
how the human visual system achieves its astonishing pedioce.

The importance of visual processing is evident from thettaat about one third
of the human cortex is involved in visual tasks. Since moshisf processing hap-
pens subconsciously and without perceived effort, mostsadne not aware of the
difficulties inherent to the task of interpreting visuahstili in order to extract vital
information from the world.

The human visual system can be described at different lefelbstraction. In
the following, | adopt a top-down approach, while focusimgloe aspects most rel-
evant for the remainder of the thesis. | will first describe tlisual pathways and
then cover the organization of feature maps, computatideyi@rs, neurons as pro-
cessing elements, and synapses that mediate the comniomicatween neurons.
A more comprehensive description of the visual system cafolied in the book
edited by Kandel, Schwartz, and Jessel [117] and in otheksvor
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Fig. 2.1.Eye and visual pathway to the cortex. (a) illustration ofdle’s anatomy; (b) visual
pathway from the eyes via the LGN to the cortex (adapted frbh7]).

2.1 Visual Pathways

The human visual system captures information about the@mvient by detecting
light with the eyes. Figure 2.1(a) illustrates the anatorhthe eye. It contains an
optical system that projects an image onto the retina. Wargare the eyes rapidly
using saccades in order to inspect parts of the visual fiekkecl Smooth eye move-
ments allow for pursuit of moving targets, effectively staing their image on the
retina. Head and body movements assist active vision.

The iris regulates the amount of light that enters the eyedpysting the pupil’s
size to the illumination level. Accommodation of the lensidees the optics to vary-
ing focal distances. This information, in conjunction witereoscopic disparity,
vergence, and other depth cues, such as shading, motidargesr occlusion, is
used to reconstruct the 3D structure of the world from 2D iezag

At the retina, the image is converted into neural activitwoTmorphological
types of photoreceptor cells, rods and cones, transdudemhimto electrical mem-
brane potentials. Rods respond to a wide range of wavelsn8ihce they are more
sensitive to light than cones, they are most useful in th&.daones are sensitive
to one of three specific ranges of wavelengths. Their sigaralsised for color dis-
crimination and they work best under good lighting condisioThere are about 120
million rods and only 6.5 million cones in the primate retiffde cones are con-
centrated mainly in the fovea at the center of the retinacH#eir density is about
150,000/mn4, and no rods are present.

The retina does not only contain photoreceptors. The nigjofiits cells are
dedicated to image processing tasks. Different types afamsiare arranged in lay-
ers which perform spatiotemporal compression of the im&bes is necessary be-
cause the visual information must be transmitted throughattic nerve, which
consists of only about 1 million axons of retinal gangliolise
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Complex
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Fig. 2.2.Simple and complex cells. According to Hubel and Wiesel [Kiple cells com-
bine the outputs of aligned concentric LGN cells. They resbtw oriented stimuli and are
phase sensitive. The outputs of several simple cells that tiee same orientation, but dif-
ferent phases are combined by a complex cell, which showsasepimvariant response to
oriented edges (adapted from [117]).

These cells send action potentials to a thalamic regiotectédteral geniculate
nucleus (LGN). Different types of retinal ganglion cellpresent different aspects
of a retinal image patch, the receptive field. Magnocell(@4y cells have a rela-
tively large receptive field and respond transiently to loawntrast stimuli and mo-
tion. On the other hand, parvocellular (P) ganglion cellssgh sustained response
to color contrast and high-contrast black-and-white dletai

The optical nerve leaves the eye at the blind spot and splitstivo parts at
the optical chiasma. Axons from both eyes that carry infaiomeabout the same
hemisphere of the image are routed to the contralateral L&N;an be seen in
Figure 2.1(b). In the LGN, the axons from both eyes terminatdifferent lay-
ers. Separation of P-cells and M-cells is maintained as. Wék LGN cells have
center-surround receptive fields, and are thus sensitigpdtiotemporal contrast.
The topographic arrangement of the ganglion receptivediesldnaintained in the
LGN. Hence, each layer contains a complete retinal maprdstiegly, about 75%
of the inputs to the LGN do not come from the retina, but oédgnin the cortex and
the brain stem. These top-down connections may be invotvgdnerating attention
by modulating the LGN response.

From the LGN, the visual pathway proceeds to the primaryalisartex (V1).
Here, visual stimuli are represented in terms of locallyeoiéd receptive fields.
Simple cells have a linear Gabor-like [79] response. Acegrdo Hubel and
Wiesel [105], they combine the outputs of several alignatteatric LGN cells (see
Fig. 2.2(a)). Complex cells show a phase-invariant resptimst may be computed
from the outputs of adjacent simple cells, as shown in Fi@2¢b). In addition to
the orientation of edges, color information is also repmése in V1 blobs. As in
the LGN, the V1 representation is still retinotopic — inf@tion from neighboring
image patches is processed at adjacent cortical locafitvestopographic mapping
is nonlinear. It enlarges the fovea and assigns fewer regeuo the processing of
peripheral stimuli.

Area V2 is located next to V1. It receives input from V1 andjpots back to it.
V2 cells are also sensitive to orientation, but have largeeptive fields than those
in V1. A variety of hyper-complex cells exists in V2. They det line endings,
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Fig. 2.3.Hierarchical structure of the visual system. (a) Fellemaah ¥an Essen’s [65] flat
map of the Macaque brain with marked visual areas; (b) widiagram of the visual areas.

corners, or crossings, for instance. It is believed that ®¥2rans play a crucial role
in perceptual grouping and line completion since they haentshown to respond
to illusory contours.

V1 and V2 are only the first two of more than 30 areas that poeissial infor-
mation in the cortex. A cortical map illustrates their agament in Figure 2.3(a).
Part (b) of the figure shows a wiring diagram. It can be seentliese areas are
highly interconnected. The existence of about 40% of alkjiads connections has
been verified. Most of these connections are bidirecti@sailhey carry information
forward, towards the higher areas of the cortex, and baaksyfirom higher areas
to lower ones.

The visual areas are commonly grouped into a dorsal streatrigds to the
parietal cortex, and a ventral stream that leads to thedtdarporal cortex [39], as
shown in Figure 2.4. Both pathways process different aspeatisual information.

The dorsal or ‘where’ stream focuses on the fast procesgipgripheral stim-
uli to extract motion, spatial aspects of the scene, anéaseopic depth informa-
tion. Stimuli are represented in different frames of refiers e.g. body-centered and
hand-centered. It works with low resolution and servestiea visuomotor behav-
iors, such as eye movements, reaching and grasping. Fanagstneurons in the
middle temporal area MT were found to be directionally stresivhen stimulated
with random dot patterns. There is a wide range of speedtsétg@and also selec-
tivity for disparity. These representations allow highariptal areas, such as MST,
to compute structure from motion or structure from stereopslso, ego-motion,
caused by head and eye movements, is distinguished frorotabgion.

In contrast, the ventral or ‘what’ stream focuses on fovéaiuli that are pro-
cessed relatively slowly. It is involved in form perceptiand object recognition
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Fig. 2.4.Dorsal and ventral visual streams. The dorsal stream asdeord V1 to the parietal
cortex. It is concerned with spatial aspects of vision (‘'vet)e The ventral stream leads to
the inferotemporal cortex and serves object recognitiht’) (adapted from [117]).

tasks. A hierarchy of areas represents aspects of the \&@gomlli that are increas-
ingly abstract.

As illustrated in Figure 2.5, in higher areas the compleaitg diversity of the
processed image features increases, as do receptive fielarsd invariance to stim-
ulus contrast, size, or position. At the same time spatisdltgion decreases. For
instance, area V4 neurons are broadly selective for a widetyaof stimuli: color,
light and dark, edges, bars, oriented or non-oriented, npwr stationary, square
wave and sine wave gratings of various spatial frequenaied,so on. One con-
sistent feature is that they have large center-surroungpiae fields. Maximum
response is produced when the two regions are presentediffihent patterns
or colors. Recently, Pasupathy and Connor [176] found éel\é4 tuned to com-
plex object parts, such as combinations of concave and gdmlers, coarsely
localized relative to the object center. V4 is believed tarbportant for object dis-
crimination and color constancy.

The higher ventral areas, such as area IT in the temporacate not neces-
sarily retinotopic any more since neurons cover most of teaal field. Neurons
in IT respond to complex stimuli. There seem to exist speedlmodules for the
recognition of faces or hands, as illustrated in Figure Zl&ese stimuli deserve
specialized processing since they are very relevant fosocial interaction.

Both streams do not work independently, but in constantactéeon. Many re-
ciprocal connections between areas of different streanss tiat may mediate the
binding of spatial and recognition aspects of an object togle percept.
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Fig. 2.6.Face selectivity of IT cells. The cell responds to faces aweike figures, but not
to face parts or inverted faces (adapted from [117].

2.2 Feature Maps

The visual areas are not retinotopic arrays of identicalieedetectors, but they are
covered by regular functional modules, called hypercolsimniV1. Such a hyper-
column represents the properties of one region of the vigelell

For instance, within every 1mhpatch in area V1, a complete set of local orien-
tations is represented, as illustrated in Figure 2.7. Nesuitbat share the same ori-
entation and have concentric receptive fields are groupeitaiy into a column.
Adjacent columns represent similar orientations. Theyaar@nged around singular
points, called pinwheels, where all orientations are agibésin close proximity.

In addition to the orientation map, V1 is also covered by al@gocular domi-
nance pattern. Stripes that receive input from the righthadeft eye alternate. This
makes interaction between the information from both eyesipte, e.g. to extract



2.2 Feature Maps 23

Ocular dominance
stripe

Pinwheel
N
71N

Blob

6C

C Orientation
5 column

LGN &
21 @)1C

Fig. 2.7.Hypercolumn in V1. Within 1mrh of cortex all features of a small region of the vi-

sual field are represented. Orientation columns are ardeageind pinwheels. Ocular dom-

inance stripes from the ipsilateral (1) and the contrakdtéC) eye alternate. Blobs represent
color contrast (adapted from [117]).

disparity. A third regular structure in V1 is the blob systéeurons in the blobs are
insensitive to orientation, but respond to color contrakeir receptive fields have
a center-surround shape, mostly with double color opponenc

Similar substructures exist in the next higher area, V2 eHeot columns, but
thin stripes, thick stripes, and interstripes alternate $tripes are oriented orthog-
onally to the border between V1 and V2. A V2 ‘hyperstripe’ eova larger part of
the visual field than a V1 hypercolumn and represents diftexgpects of the stimuli
present in that region. As illustrated in Figure 2.4, thedsl V1 send color infor-
mation primarily to the thin stripes in V2, while the orietitan sensitive interblobs
in V1 connect to interstripes in V2. Both thin and interséspproject to separate
substructures in V4. Layer 4B of V1 that contains cells daresio the magnocellu-
lar (M) information projects to the thick stripes in V2 andaiea MT. Thick stripes
also project to MT. Hence, they also belong to the M pathway.

These structured maps are not present at birth, but depetteeiodevelopment
on visual experience. For example, ocular dominance stiip&'1 are reduced in
size if during a critical period of development input fromeoeye is deprived. The
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development of the hierarchy of visual areas probably prdsdérom lower areas to
higher areas.

The repetitive patterns of V1 and V2 lead to the speculatian higher cortical
areas, like V4, IT, or MT contain even more complex interwofeature maps. The
presence of many different features within a small cortedth that belong to the
same image location has the clear advantage that they esadhtvith minimal wire
length. Since in the cortex long-range connections ardycaltis is such a strong
advantage that the proximity of neurons almost always iesghat they interact.

2.3 Layers

The cortical sheet, as well as other subcortical areasgsnized in layers. These
layers contain different types of neurons and have a cheniatit connectivity. The
best studied example is the layered structure of the reatinstrated in Figure 2.8.

The retina consists of three layers that contain cell bodibe outer nuclear
layer contains the photosensitive rods and cones. The imneear layer consists
of horizontal cells, bipolar cells, and amacrine cells. ghaglion cells are located
in the third layer. Two plexiform layers separate the nuclagers. They contain
dendrites connecting the cells.

Information flows vertically from the photoreceptors via thipolar cells to the
ganglion cells. Two types of bipolar cells exist that arbeitexcited or inhibited by

the neurotransmitters released from the photoreceptbey Torrespond to on/off
centers of receptive fields.
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Fig. 2.8.Retina. Spatiotemporal compression of information byridtand vertical interac-
tions of neurons that are arranged in layers (adapted framJ1
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Information flows also laterally through the retina. Phettaptors are connected
to each other by horizontal cells in the outer plexiform layiéne horizontal cells
mediate an antagonistic response of the center cell whesutieund is exposed
to light. Amacrine cells are interneurons that interactie inner plexiform layer.
Several types of these cells exist that differ greatly ie sird shape of their dendritic
trees. Most of them are inhibitory. Amacrine cells serventegrate and modulate
the visual signal. They also bring the temporal domain ity pn the message
presented to a ganglion cell.

The result of the vertical and horizontal interaction is aual signal which
has been spatiotemporally compressed and that is repeedeydifferent types of
center-surround features. Automatic gain control andiptied coding are achieved.
While all the communication within the retina is analog, gian cells convert the
signal into all-or-nothing events, the action potentialspikes, that travel fast and
reliably the long way through the optic nerve.

Another area for which the layered structure has been iigatetl in depth is the
primary visual cortex, V1. As all cortical areas do, the 2nlwick V1 has six layers
that have specific functions, as shown in Figure 2.9. The aaget for input from
the LGN is layer 4, which is further subdivided into four sayers. While the axons
from M cells terminate principally in layer 4¢ the P cells send their output to
layer 4C3. Interlaminar LGN cells terminate in the blobs present yrels 2 and 3.
Not shown in the figure is feedback input from higher cortaaas that terminates
in layers 1 and 2.

Two major types of neurons are present in the cortex. Pyralglls are large
and project to distant regions of the cortex and to othemis&ictures. They are
always excitatory and represent the output of the computatarried out in their
cortex patch. Pyramidal cells from layers 2, 3, and 4B of \djgut to higher corti-
cal areas. Outputs from layers 5 and 6 lead to the LGN and ethmrortical areas.

Stellate cells are smaller than pyramidal cells. They atreeeiexcitatory (80%)
or inhibitory (20%) and serve as local interneurons. Steltells facilitate the in-
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Fig. 2.9.Cortical layers in V1: (a) inputs from LGN terminate in diféat layers; (b) resident
cells of various type; (c) recurrent information flow (adapfrom [117]).
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teraction of neurons belonging to the same hypercolumnirnstaeince, the M and P
input from LGN is relayed by excitatory spiny stellate ceétidayers 2 and 3.

The pyramidal output is also folded back into the local dircixon collaterals
of pyramidal cells from layers 2 and 3 project to layer 5 pyidahcells, whose axon
collaterals project both to layer 6 pyramidal cells and btackells in layers 2 and
3. Axon collaterals of layer 6 pyramidal cells project baolayer 4C inhibitory
smooth stellate cells.

Although many details of the connectivity of such local gits are known, the
exact function of these circuits is far from being underdtdg@ome possible func-
tions could be the aggregation of simple features to morept@aones, as hap-
pens in V1 with the aggregation from center-surround todineriented to phase-
invariant oriented responses. Furthermore, local gaitroband the integration of
feed-forward and feedback signals are likely functionsughscircuits.

In addition to local recurrent computation and verticagénaictions, there is also
heavy lateral connectivity within a cortical area. Figure®shows a layer 3 pyrami-
dal cell that connects to pyramidal cells of similar origima within the same func-
tional column and with similarly oriented pyramidal cellsreighboring aligned
hypercolumns. These specific excitatory connections goplemented by unspe-
cific inhibition via interneurons.

The interaction between neighboring hypercolumns may atedixtra-classical
effects of receptive fields. In these cases, the responsea@i@n is modulated by
the presence of other stimuli outside the classical reeefitld. For instance, neu-
rons in area V1 are sensitive not just to the local edge featwithin their receptive
fields, but are strongly influenced by the context of the surding stimuli. These
contextual interactions have been shown to exert bothtitaity and inhibitory ef-
fects from outside the classical receptive fields. Both $yqfeénteractions can affect
the same unit, depending on various stimulus parametecgriReortical models by
Stemmlelet al.[220] and Somerst al.[219] described the action of the surround as
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Fig. 2.10. Lateral connections in V1. Neighboring aligned columns iafilar orientation
are linked with excitatory lateral connections. There soalinspecific local inhibition via
interneurons (adapted from [117]).
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a function of the relative contrast between the center dtimand the surround stim-
ulus. These mechanisms are thought to mediate such peateffects as filling-in
[237] and pop-out [123].

Lateral connections may also be the substrate for the petigegof activity
waves that have been observed in the visual cortex [208] dsawén the retina.
These waves are believed to play a important role for theldpwgent of retinotopic
projections in the visual system [245].

2.4 Neurons

Individual nerve cells, neurons, are the basic units of tagbThere are abouf!!
neurons in the human brain that can be classified into at etstusand different
types. All neurons specialize in electro-chemical infotioraprocessing and trans-
mission. Furthermore, around the neurons many more glla egist, which are
believed to play only a supporting role.

All neurons have the same basic morphology, as illustraié&dgure 2.11. They
consist of a cell body and two types of specialized exterssfprocesses): dendrites
and axons. The cell body (soma) is the metabolic center ofe¢lielt contains the
nucleus as well as the endoplasmatic reticulum, where ipgoéee synthesized.

Dendrites collect input from other nerve cells. They braoahin trees contain-
ing many synapses, where postsynaptic potentials areaedevhen the presynap-
tic cell releases neurotransmitters in the synaptic cléfese small potentials are
aggregated in space and time within the dendrite and coedtatthe soma.

Most neurons communicate by sending action potentials dbemxon. If the
membrane potential at the beginning of the axon, the axéwckilexceeds a thresh-

Basal dendrites Postsynaptioc.cells
Synapse

Apical dendrites

Nucleus Axon hillock

Axon with myelin sheath

3
Inhibitory

axon
terminal /

Excitatory axon terminal

Fig. 2.11. Structure of a neuron. The cell body contains the nucleusgares rise to two
types of specialized extensions: axons and dendrites. €hdriles are the input elements
of a neuron. They collect postsynaptic potentials, integthem and conduct the resulting
potential to the cell body. At the axon hillock an action ptial is generated if the membrane
voltage exceeds a threshold. The axon transmits this spikelong distances. Some axons
are myelinated for fast transmission. The axon terminatesany synapses that make contact
with other cells (adapted from [117]).
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old, a wave of activity is generated and actively propagéatedrds the axon ter-
minals. Thereafter, the neuron becomes insensitive tousitiuring a refractory
period of some milliseconds. Propagation is based on veltansitive channels
in the axon’s membrane. For fast transmission, some axensoxered by myelin
sheaths, interrupted by nodes of Ranvier. Here, the actitential jumps from node
to node, where it is regenerated. The axon terminates in rsyamgpses that make
contacts with other cells.

Only some neurons, that have no axons or only very short axiseghe graded
potential directly for neurotransmitter release at syeap3hey can be found, for
instance, in the retina and in higher areas of invertebratitsough the graded
potential contains more information than the all-or-nothsignal of an action po-
tential [87], it is used for local communication only sin¢alecays exponentially
when conducted over longer distances. In contrast, therapbtential is regener-
ated and thus is not lost. Action potentials have a uniforikesfike shape with a
duration of 1ms. The frequency of sending action potenéintsthe exact timing of
these potentials relative to each other and relative toghess of other cells or to
other sources of reference, such as subthreshold osmiléatir stimulus onset, may
contain information.

Neurons come in many different shapes as they form specifizonks with
other neurons. Depending on their task, they collect infdiom from many other
neurons in a specific way and distribute their action po#tdia specific set of other
cells. Although neurons have been modeled as simple lea&griators with a sin-
gle compartment, it is more and more appreciated that margpEx computation
is done in the dendritic tree than passive conductance ¢yuaptic potentials. For
example, it has been shown that neighboring synapses caanc# each other e.g.
in a multiplicative fashion. Furthermore, active spotsénaeen localized in den-
drites, where membrane potentials are amplified. Finalfgrination also travels
backwards into the dendritic tree when a neuron is spikitgs Tay influence the
response to the following presynaptic spikes and also bbstrsie for modification
of synaptic efficacy.

2.5 Synapses

While neurons communicate internally by means of electoieptials, communi-
cation between neurons is mediated by synapses. Two tysysapses exist: elec-
trical and chemical.

Electrical synapses couple the membranes of two cellsttlir&mall ions pass
through gap-junction channels in both directions betwberctlls. Electrical trans-
mission is graded and occurs even when the currents in treymaptic cell are
below the threshold for an action potential. This commutiaees very fast, but un-
specific and not flexible. It is used, for instance, to maketdlally connected cells
fire in synchrony. Gap-junctions play also a role in glia €elthere C&" waves
travel through networks of astrocytes.
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Action potential in Ca?* entry causes Receptor-channels open,
nerve terminal vesicle fusion and Na* enters the postsynaptic
opens Ca?*channels transmitter release cell and vesicles recycle

Presynaptic
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terminal
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Fig. 2.12.Synaptic transmission at chemical synapse. Presynagi@atézation leads to the
influx of Ca?™* ions through voltage gated channels. Vesicles merge wétmdmbrane and
release neurotransmitters into the synaptic cleft. Théiesd to receptors that open or close
channels in the postsynaptic membrane. Changed ion flowfiettie postsynaptic potential
(adapted from [117]).

Chemical synapses allow for more specific communicatiowé&eh neurons
since they separate the potentials of the presynaptic astdymptic cells by the
synaptic cleft. Communication is unidirectional from thregynaptic to the postsy-
naptic cell, as illustrated in Figure 2.12.

When an action potential arrives at a synaptic terminataga gated channels in
the presynaptic membrane are opened arfd @Gans flow into the cell. This causes
vesicles containing neurotransmitters to fuse with the brame at specific docking
sites. The neurotransmitters are released and diffusedhrthe synaptic cleft. They
bind to corresponding receptors on the postsynaptic memslihat open or close ion
channels. The modified ion flux now changes the postsynagimbnane potential.

Neurotransmitters act either directly or indirectly on idmannels that regulate
current flow across membranes. Direct gating is mediateadbgtiopic receptors
that are an integral part of the same macromolecule whiahgdhe ion channel.
The resulting postsynaptic potentials last only for fewlisglconds. Indirect gat-
ing is mediated by activation of metabotropic receptors #ra distinct from the
channels. Here, channel activity is modulated through arsmessenger cascade.
These effects last for seconds to minutes and are believplhyoa major role in
adaptation and learning.

The postsynaptic response can be either excitatory oritohjpdepending on
the type of the presynaptic cell. Figure 2.13 shows a prgsicaction potential
along with an excitatory (EPSP) and an inhibitory postsyicgpotential (IPSP).
The EPSP depolarizes the cell from its resting potentiaboti—70mV and brings
it closer towards the firing threshold eb5mV. In contrast, the IPSP hyperpolarizes
the cell beyond its resting potential. Excitatory syna@sesnostly located at spines
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Fig. 2.13. Electric potentials on a synapse: (a) presynaptic actiganial; (b) excitatory
postsynaptic potential; (c) inhibitory postsynaptic putel (after [117]).

in the dendritic tree and less frequently at dendritic shafihibitory synapses often
contact the cell body, where they can have a strong effechemgtaded potential
that reaches the axon hillock. Hence, they can mute a cell.

The synaptic efficacy, the amplification factor of a chemgalapse, can vary
greatly. It can be changed on a longer time scale by procesdlesl long term
potentiation (LTP) and long term depression (LTD). Thesdxlieved to depend on
the relative timing of pre- and postsynaptic activity. Ifr@gynaptic action potential
precedes a postsynaptic one, the synapse is strengthemiblifvs weakened when
a postsynaptic spike occurs shortly before a presynapéc on

In addition, transient modifications of synaptic efficacisgxhat lead to effects
of facilitation or depression of synapses by series of couthee spikes. Thus, bursts
of action potentials can have a very different effect on thetgynaptic neuron than
regular spike trains. Furthermore, effects like gain aardnd dynamic linking of
neurons could be based on the transient modification of sigrefficacy. This short-
term dynamics can be understood, for instance, in terms ofefsdhat contain a
fixed amount of a resource (e.g. neurotransmitter) whichbmaeither available,
effective, or inactive.

2.6 Discussion

The top-down description of the human visual systems steps, lat the level of
synapses, although many interesting phenomena exist pedkels, like at the
level of channels or at the level of neurotransmitters. ®ason for this is that it is
unlikely that specific low-level phenomena, like the getieraof action potentials
by voltage sensitive channels, are decisive for our rentdekasual performance,
since they are common to all types of nervous systems.

For the remainder of this thesis, these levels serve as #ratébthat produces
macroscopic effects, but they are not analyzed further.¢¥ew one should keep in
mind that these deeper levels exist and that subtle chamgjes microscopic level,
like the increase of certain neurotransmitters after thesemption of drugs, can
have macroscopic effects, like visual hallucinations getesl by feedback loops
with uncontrolled gains.
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The visual system has received much attention in neuradpodmd psycho-
physics. In fact, more research has been done for visionftivaall other senses
together. Many details about the organization of the visyatem are known at the
various levels of description. However, as of today, thecfiom of the system has
not been understood completely.

For instance, there is debate about the neural code usecetyraim. One of
the questions is whether cortical neurons are mainly driwethe average firing
rates of presynaptic neurons or by temporally coherentfiewents. It is likely that
both coding schemes are used in situations where they aremjaie. In this sense,
Tsodyks and Markram [230] argue that the code depends orateeof synaptic
depression and that a continuum between rate codes andrigrapdes exists.

Another open issue is the so called binding problem. Howfrimation about
color, motion, depth, and form, which is carried by separsaronal pathways,
organized into cohesive perceptions of objects? Sinceréift features of a vi-
sual scene are represented by the activity of specializecbne that are distributed
through the visual system, all aspects of an object must cnegitt temporally into
association.

Treismanet al. [229] and Jualesz [114] have shown that such associatiens
quire focused attention. They found that distinctive eletagy properties, such as
brightness, color, and orientation of lines, create disithe boundaries that make
objects preattentively salient. They suggest that in a finstse of perception, all
features of the visual field are processed in parallel in &boup way. In their
model a spotlight of attention highlights the features ofiwidual objects in a serial
manner after the initial analysis. This reflects the effeft®p-down attention. The
spotlight of attention requires a master map that combie¢sild from individual
feature maps which are essential for recognition.

Another view on the effect of attention was recently propldsg Reynolds and
Desimone [190]. They assume that attention acts to inctbassompetitive advan-
tage of the attended stimulus so that the effect of attergiom shrink the effective
size of a neuron’s receptive field around the attended stispals illustrated in Fig-
ure 2.14. Now, instead of many stimuli with different chaeaistics, such as color
and form, only one stimulus is functionally present in theagtive field.

A different approach to the binding problem has been praphbgeSinger and
Gray [216] and Eckhormt al. [59]. They found that when an object activates a
population of neurons in the visual cortex, these neurong te oscillate and to
synchronize their action potentials. To bind togetheradéht visual features of the
same object, the synchrony would extend across neuronffénatit visual areas.

Another puzzling problem is the role of the recurrent cotioas, ubiquitous
in the visual system, with respect to conscious visual égpee. Visual perception
is usually explained in the context of the feed-forward mMadeisual processing.
This model starts from the anatomical hierarchy of cortamadas, with areas V1
and V2 at the lowest levels and the inferotemporal and ftaadex at the highest
stages. Selectivity of a neuron at a given stage is assumesstidt from the or-
ganized convergence of feed-forward inputs from neurocatéd at lower stages.
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Fig. 2.14. Binding by shrinkage of receptive fields to attended stima$i proposed by

Reynolds and Desimone [190]. The orientation selectivearevesponds to a vertical bar
anywhere in its classical receptive field while the colorssire neuron responds to any dark
bar, regardless of its orientation. Thus, when attentiodrésvn away, the response of the
neurons to the two objects is ambiguous since both are attivntrast, when attention is
directed to one of the two stimuli, both neurons respond aslif the attended object were
present.

Because of this connectivity rule, neurons at low leveldhefhiierarchy have small
and relatively simple receptive fields, whereas neuronbahtghest stages have
large and very specialized receptive fields. Activity of rems at the highest stages
of the hierarchy is important for conscious vision, as sstgg by the results of
imaging studies in humans and recordings in monkeys witlalblis visual stimuli.
Although this model explains a large number of observatinongsual perception,
it fails to account for the very dense network of feedbacknemtions that connect
cortical areas in the reverse direction.

Superet al.[222] investigated what goes wrong when salient stimuli stimes
go undetected. They showed that figure/ground contextudluiaton in V1 [130]
is influenced strongly by whether stimuli are either ‘seen’'rmt seen’. The fig-
ure/ground contextual modulation not only makes V1 neurespond better, but
this enhancement is spatially uniform within the figure. IBatetected’ and ‘non
detected’ stimuli evoke similar early neuronal activity.doth cases, the visual in-
put reaches V1 and produces a clear neural response. Ontptibextual modula-
tion reflects in a qualitative manner whether the stimuluslieen processed up to
the level of ‘detection’. They conclude that this perceplenel is situated between
purely sensory and decision or motor stages of processing.

In line with these findings, Leet al. [139] present neurophysiological data,
which shows that the later part of V1 neuron responses reftegher order percep-
tual computations, such as figure/ground segmentatiory. flopose that, because
of V1 neurons precise encoding of orientation and spatfatimation, higher level
perceptual computations that require high resolutionildefane geometry and spa-
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Fig. 2.15.1llustration of the model of Leet al. for the role of V1. Image segmentation, fig-
ure/ground, shape computation and object recognitionignftamework occur concurrently
and interactively in a constant feed-forward and feedbaok Ithat involves the entire hier-
archical circuit in the visual system. Signals of higherlexisual representations, such as a
2.5D surface sketch, 3D model or view-based object memaoeylikely reflected in the later
part of V1's activities. (Adapted from [139]).

tial precision would necessarily involve V1 and be refledtethe later part of its
neurons activities. This is illustrated in Figure 2.15.

This model is supported by the report of Doningerl. [54], who found that
electric potentials reflecting closure have a latency ofi29When incomplete pat-
terns must be recognized. Since higher ventral areas avatactmuch earlier, this
initial activity does not produce a coherent percept of tiewmimplete object. They
suggest that the objects must be first completed by feedafaiffeedback interac-
tions with lower visual areas before they can be recognilzkrtiulated activity in
lower areas may reflect these interactions.

Furthermore, a recent report by Pascual-Leone and Walg}j {sihg transcra-
nial magnetic stimulation (TMS) suggests that activatibfeedback connections
to the lowest stages of the hierarchy might be essentialdns@ious vision. They
stimulated area V5/MT and area V1 asynchronously and iigetsd how the in-
teraction of both stimuli affected perceived phosphenesving flashes of light).
They found that TMS over V1 with a latency of 5 to 45ms after TM&r V5 dis-
rupted the perception of the phosphene, while neitherezambr later V1 stimuli
nor a conditioning V5 stimulus did affect the percept.

Based on these findings, Bullier [37] proposed that areasndiM2, instead of
simply transmitting information, might act as ‘active lthoards’ that integrate the
results of computations performed in higher order aredsaat for the early stages
of processing. This would be an efficient way to solve the [@wlof computations
that involve interactions between features which are neggmt in neighboring neu-
rons in any one cortical area.
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While the exact role of the feedback connections is not yly funderstood,
it can be safely stated that there is strong evidence thatnat connections are
crucial for the performance of the visual system. This isalious when probing it
with isolated, high contrast stimuli which can be processedsingle feed-forward
sweep. However, in the regular mode of operation, natuslalistimuli contain
much ambiguity, e.g. due to occlusions, low contrast, ansiendn these situations,
feedback is used to bias low-level decisions based on attesuhd on the context of
partial scene interpretations. It seems that only aftentatch between higher-level
models and the low-level visual stimuli, a visual percepi®relayed to prefrontal
areas and becomes conscious.

2.7 Conclusions

In Chapter 4, an architecture for computer vision will beaduced that is motivated
by the ventral pathway of the human visual system. It resesitgy features of that
system, such as:

— computation by simple processing elements arranged imdaye

— retinotopic organization of interwoven feature maps,

— local recurrent connection structure with specific exwtatind unspecific inhi-
bition,

hierarchy of representations with increasing feature derity, receptive field
size, invariance, and number of features,

iterative refinement of image interpretation,

integration of top-down, bottom-up, and lateral influeneesl

adaptation to the statistics of visual stimuli through ieag.

Not all aspects covered in the previous chapter will be useléa remainder of
the thesis. For instance, the proposed architecture fearsthe ventral processing
stream and does not reflect the dorsal processing. Furthereg@e movements, the
log-polar mapping between the retina and V1, and color [gsing are not investi-
gated, although they are important for the performanceehtiman visual system.
The reason for this restriction is that coverage of all theesgects would compete
for the available resources with the in-depth discussiagh@felected aspects.

Itis also important to note that the degree of biologicaliseain the remainder
of the thesis will only be very limited. The aim of the propdsgchitecture is not to
model neurobiological data, as is done in computationatessience, but to solve
computer vision problems based on inspiration from the huwisual system.



3. Related Work

In the previous chapter, we saw that object recognition énithman visual system
is based on a hierarchy of retinotopic feature maps withl lexaurrent connectiv-
ity. The following chapter reviews several applicationgte concepts of hierarchy
and recurrence to the representation, processing, angietation of images with
computers.

3.1 Hierarchical Image Models

The world is hierarchical and so are images of it. Objects=bof parts and these
of subparts. Features can be decomposed into subfeatlites why down to pixel
intensities. Thus, a visual scene can be represented atatiffdegrees of abstrac-
tion.

Marr [153] was one of the first to propose analyzing visuahsti at different
levels of abstraction. He proposed using local image opes#b convert a pixel im-
age into a primal sketch. He suggested, for example, to eseetto-crossings of the
smoothed intensities’s second derivative as edge detéetiglarr’s approach to vi-
sion, the detected edges are grouped according to Gestatlifghes [125] to produce
the full primal sketch. Adding other features, such as conttexture, stereopsis,
and shading, yields a%D sketch. This representation is still viewer-centered and
describes properties of surface patches, such as curyvptsigon, depth, and 3D
orientation. Finally, a 3D representation is obtaineds Ibbject-centered and con-
sists of volumetric primitives, generalized cones, orgadias a hierarchy. Marr's
computational theory of vision has considerably inspirechputer vision research.
However, its utility in practice has been limited by the u$symbolic representa-
tions which do not reflect ambiguities inherent in visuahstii.

In the following sections, some subsymbolic hierarchiozge representation
approaches are discussed. | group the different methoalgémteric signal decom-
positions, neural networks, and generative statisticalets

3.1.1 Generic Signal Decompositions

Some techniques decompose signals into a hierarchy ofigdaatures, which are
efficient to compute and can be inverted. These decompusitice applicable to
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Fig. 3.1.Image pyramids: (a) Gaussian pyramid, representing ordyseostructures at the
higher levels; (b) Laplacian pyramid, containing the difeces between Gaussian levels
(amplified for better visibility).

a wide range of signals, including images, but offer onlyitéd adaptability to a
specific dataset.

Image Pyramids. A widely used tool in image processing and computer graphics
are multiresolution representations called image pyramid an image pyramid,
the image is not only represented at the given high resaiutig, but through a
sequencéry, Gy, . .., Gy of 2D pixel arrays with decreasing resolutions.

A reduce operation computes the next higher levgl,; from the levelG;
using only local operations. Most common is the dyadic Gaagsyramid, where
a pixel G;4+1(4,7) is computed as the weighted average of the pixels around the
corresponding positio&; (2i + %, 25+ %) in the lower level. Each step reduces the
image resolution by a factor of two in both dimensions. Fig8rl(a) shows such
a Gaussian pyramid for an example image. Its total sizegbthji less tharl% the
size ofGy.

While image details are visible only in the lower levels cf thaussian pyramid,
the higher levels make larger objects accessible in smallews. This allows one
to design coarse-to-fine algorithms [196] for image analySuch algorithms start
to analyze an image at the coarsest resolution that can lmessed quickly. As
they proceed to the finer levels, they use coarse resultsamthe finer analysis.
For instance, when searching for an object, a small numbbhypbtheses can be
established by inspecting the coarse resolution. The fesmlutions are analyzed
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@ (b)

(©) (d)
Fig. 3.2.Image compression using pruned pyramids: (a) original avafa letter; (b) reso-
lution used after pruning (darker shading correspondsgbériresolution, the compression
ratio is 150:1); (c) reconstructed address region; (dediifice of the reconstruction to the
original (amplified for visibility).

only at the corresponding positions to verify and to refireettiipotheses. This saves
computational costs, compared to a high-resolution search

Burt and Adelson [38] proposed the use of differenégsLi, ..., Li_1 be-
tween the levels of a Gaussian pyramid as low-entropy reptason for image
compression. The set @f’s is called a Laplacian pyramid. ThHg are computed as
pixel-wise differences betwed®; and its estimat&r; = expand(G;1), obtained
by supersampling+;+, to the higher resolution and interpolating the missing &alu
Fig. 3.1(b) shows the Laplacian pyramid for the exampleettamposes the image
into a sequence of spatial frequency bands. Perfect recetish of G is possible
whenGy and Ly, Ly, ..., Li_1 are given by using the recursian, = G; + L;.
Since for natural images the values bf are mostly close to zero, they can be
compressed using quantization. The reconstruction pdsdee top-down fashion.
Thus, progressive transmission of images is possible withstheme.

Since the pyramid has a tree structure, it can be pruned tewesits size. This
method works well if the significantimage details are cordinéthin small regions.
Figure 3.2 shows an image of a letter with size 2,948112. Most of the area can
be represented safely by using only the lower resolutioelé&gwvhile the higher
resolutions concentrate at the edges of the print. Althqarghing compresses the
image by a ratio of 150:1, the address is still clearly reselab

Another application of image pyramids is hierarchical klotatching, proposed
by Bierling [31] for motion estimation in video sequenceisicg the higher levels of
the pyramid are increasingly invariant to translationsagia motion is estimated in
the coarsest resolution first. The estimated displacenestbxs are used as starting
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points for block matching in finer resolutions. This makes thatching process
faster and more reliable, compared to matching in the higlesslution only.

Wavelets. Inimage pyramids, the image is represented by a singlerizayypically
the smoothed intensity, at a certain resolution. Two-disi@mal discrete dyadic
wavelet analysis is a way to construct invertible multiscahage representations
that describe an image location with typically three feasyper level.

A wavelet is a square-integrable functigrwith zero average:
ff;o ¥ (x)dx = 0, which is dilated with a scale parametgrand translated by:

u,s(T) = ﬁw(m;“). These functions are localized in the space-frequencyeplan
with a space spread proportional¢@and a frequency spread proportionalltts.
Thus, the product of space and frequency localization istamon, which corre-
sponds to the Heisenberg principle of uncertainty [93]. Wawelet transform of

a functionf at a scales and positioru is computed by correlating with a wavelet
atomepy, s: W (u, 8) = [ f(@)thu s (x)da.

By critically sampling the parametess= 27 andu = s - n ((j,n) € Z?), some
wavelets form an orthonormal basis bf(R). The simplest orthonormal wavelet
is the function proposed by Haar [88] that has a value of ortherintervall0, 1),
minus one in[%, 1), and zero elsewhere. Daubechies [49] showed that smooth or-
thonormal wavelets with compact support exist as well. Mastelets have an as-
sociated scaling functiogy, which is used to generate them. It has an integral of one.
The scaling function of the Haar wavelet has a value of onkeriritervall0, 1) and
is zero elsewhere.

Mallat [151] proposed a fast algorithm for computing a catly sampled dis-
crete wavelet transform (DWT). The high-resolution disersignal is convolved
with two quadrature mirror kernels of compact support arfisampled by a factor
of two to separate it into an approximation and a representaf the details. The

C HORS R o

Fig. 3.3. Discrete wavelet transformation (DWT): (a) original ima@e) DWT decomposi-
tion after application to two levels. Each application sapes the image into smaller scale
horizontal &), vertical (), and diagonal x) detail images as well as a subsampled intensity
image for which the DWT can be applied recursively.
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approximation is produced by a low-pass kerhéhat is associated with the scaling
function¢, while the details are produced by a high-pass kefhelssociated with
the wavelet). Perfect reconstruction of the signal is possible by swgrepding the
approximation and the details and convolving with reveisadels.

For two-dimensional signals, such as images, the decotiois applied con-
secutively to both dimensions, e.g. first to the rows and tbethe columns. This
yields four types of lower-resolution coefficient imagdse tapproximation pro-
duced by applying two low-pass filterd, L), the diagonal details, computed with
two high-pass kernelsH H), and the vertical and horizontal details, output of a
high-pass/low-pass combinatioh # and H L). This is illustrated in Figure 3.3.
The low-resolution approximation of the signal can be degosed recursively by
applying the same procedure. The resulting representahtisithe same size as the
inputimage with% of the coefficients describing the details of the finest netsamh.

One of the major applications of wavelets is image compoessind denoising.
It relies on the fact that most natural images are repredesptarsely in wavelet co-
efficient space. Furthermore, additive zero mean i.i.d.gSiam pixel noise spreads
uniformly over the coefficients. Thus, setting small coédfits to zero and keeping
only the few significant ones yields compression and suge®f noise. Donoho
and Johnstone [55] showed that such a wavelet shrinkagedpopriate basis can
be a nearly optimal non-linear estimator for noise redunctio

Wavelet representations are also used for other compugiemviasks. For in-
stance, local maxima can be tracked through multiple réisoisi to extract edges
robustly [152]. Since many functions can be used as wayéetshoice of the basis
can be targeted to the application at hand. Coifreial. [43] proposed to further
decompose not only the approximation side of the coeffisjdnit also the details.
This yields a nested sequence of wavelet packet decongosiées that all form
an orthonormal basis of the signal if the wavelet itself €honormal.

Fourier Transformation. The size of a level in the wavelet-representation de-
creases exponentially with height. Thus, the represemaltpower also decreases.
Higher levels of the wavelet decomposition represent dmdydoarse image struc-
ture, but it can be desirable to have a complete representatithe signal at each
level of the hierarchy. One way to hierarchically transfamne complete represen-
tation into another is the fast Fourier transformation (Rftroduced by Cooley

and Tukey [44].
A finite-energy signaf can be decomposed into a sum of sinusgids®} , cg:
flx) = & [T fw)e™*dz, where f(w) = [T2° f(z)e~™*du is the Fourier

transformation off. The amplitude off(w) describes, how much the sinusoidal
wavee™?® contributes to the sign4l.

For a discrete signal of lengtN = 27, it suffices to sample the frequency
N times to form an orthonormal basis. The discrete Fourigrsfiamation (DFT)
is then: F(k) = -k 3350 e /N () = 0,..., N — 1). It can be computed
efficiently by decomposing & -point DFT into two DFTs ofN/2 points that pro-
cess the even samplgs(n) = f(2n) and the odd sampleg,(n) = f(2n + 1)
separately:
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Fig. 3.4.Coverage of the space-frequency plane by the coefficietteatpresentations used
in the fast Fourier transformation. The transformation snajgpace-localized representation
step by step into a frequency-localized representatioe. sike of the representation is not
changed, since the number of cells and the area of a cell ctagsant.
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Fig. 3.5. Two-dimensional fast Fourier transformation. The absoldlues of the first five
hierarchy levels for two example images are shown on a ltgait scale. White corresponds
to zero.

FFTN(k, f) = FFTnj(k, fe) +Tn(k)FFTy /o (k, fo);
FFTN(k+N/2,f) = FFTyjp(k, fo) — Tn(k)FFTn/o(k, fo);
k=0,...,N/2—1; Ty (k) = e”2mk/N,

These smaller DFTs can be decomposed recursively, untiluheber of pixels de-
creases to two, where the DFT is trivial. To compute an FFTfiogent, only two
coefficients of the lower level need to be accessed. Infaomd#lows in a butterfly
graph from all pixels in the signal to the FFT coefficients.

Figure 3.4 illustrates the coverage of the space-frequplanye by the coeffi-
cients of the representations used in the FFT. The transfiismmaps a represen-
tation localized in space into a representation localiretthé frequency domain in
log(N) steps. All intermediate representations describe the teimgignal that can
be reconstructed perfectly from each level. Thus, opearatibat are local in space
can be applied in the space representation, while operdlibd@al in frequency can
be applied in the frequency domain.

The FFT can be generalized to two-dimensional signals (@spglgy applying it
to each dimension separately. Figure 3.5 shows the firstttys ©f the 2D-FFT, ap-
plied to two 256<128 images which contain handwritten digit blocks. One @ s
how the energy that is concentrated at the lines in the slpaedized representation
is distributed by the transformation as the representdigoomes more localized
in the frequency domain. The produced intermediate reptagens are useful for
operations that are local in space as well as in frequenceyinBtance, one can use
the fact that the magnitudes of the FFT coefficients becommeasingly invariant
to translations in space.
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The success of Gabor filters [79] also shows that the inteiateecepresentations
are interesting. These filters are localized in space atd in frequency af with
Gaussian envelopes

gu,&(x) = g(l‘ - u)ei&:; gu,&(w) = g(w - 5)671‘“0076)'

Gabor filters resemble properties of V1 simple neurons imhtirean visual system
and are very useful for texture discrimination [231], foaeple.

3.1.2 Neural Networks

The hierarchical image representations discussed sodardrg few, if any, param-
eters to adapt to a specific set of images. Neural networksmdtre free parameters
have been developed that produce representations whichecamed to a dataset
by learning procedures. These representations need netitwvértible since they
are used, for instance, for classification of an object preisethe image.

Neocognitron. One classical example of such adaptable hierarchical imgue-
sentations is the Neocognitron, proposed by Fukushimafpfigit recognition.
The architecture of this network is illustrated in Figuré.3t consists of several
levels, each containing multiple cell planes. The resotutif the planes decreases
from the input towards the upper levels of the hierarchy. @déleplanes consist of
identical feature detectors that analyze a receptive fteldted in the input.

The size of the receptive fields increases with height, ashddrivariance to
small translations and the complexity of the features. Télés dn the first level
of the network analyze only a small input region and extralcfeefeatures. Cells
located at the second level receive input from the edgerfeatand extract lines and
corners. Increasingly complex features, such as digisparé extracted at the third
level. Feature detectors at the topmost level react to ttieeémage and represent
digit classes.

S1 c1 S2
/' 5
I~

@ 1
Input
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Level O
. &)
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Fig. 3.6. The Neocognitron proposed by Fukushima [77]. Digit featwgincreasing com-
plexity are extracted in a hierarchical feed-forward nenedwork.
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Each level consists of three layers that contain differefittgpes. The S-layer
is the first layer of a level. It contains S-cells that recedxeitatory input via ad-
justable weights from small windows centered at the cooedmg position in all
C-planes of the layer below. S-cells in Level 0 access thatiimpage directly. Not
shown in the figure are V-cells that provide inhibitory inpaithe S-cells. V-cells
are excited by all C-cells of the corresponding positiorhia bower level and com-
pute a smoothed activity sum to control the gain of S-celfe Gutputb(ﬁ -1)
of an S-cell depends on the total excitatigrihe total inhibitioni, and a selectivity
parameter-. It is passed through a rectifying functignthat is zero for negative
activations. The weights and the selectivity are choseh ¢t the S-cell activ-
ity is very sparse. An S-cell reacts to features that reserntblspecific excitatory
weight matrix. All S-cells of a plane share the same weights thus extract the
same feature at different locations.

Invariance is produced in the network by the connectionsftite S-cells to the
C-cells, which reside in the second layer of a level. Thesztabory weights are
not adjustable. They are prewired in such a way that a C-esfiands if any of the
S-cells from a small window in the associated S-plane atdheesponding position
is active. Hence, C-representations are blurred copiesatfti8ities that are less
variant to input distortions.

The Neocognitron is trained level by level, starting at tlogtdm of the hier-
archy. The adaptable excitatory weights of the S-cells aatrdined either in a
unsupervised mode or with supervision. For unsuperviseditrg, the S-cells of a
layer that correspond to similar positions first competestict to an input pattern.
The winning cell is then updated, such that it will react metrengly the next time
the same pattern appears. In the supervised training m8fl&[liuman operator se-
lects the features that a cell should respond to and the ¥esdgl updated according
to a Hebbian rule that is multiplied with a Gaussian windowgitce the features in
the center of the receptive field an advantage. Inhibitiahextitation are increased
simultaneously to make the cells more and more specific.

Although the network is able to learn to recognize distogatterns from rela-
tively few training examples, training has been reportedeaather difficult [147]
due to the sensitivity of the network’s performance to theioh of parameters like
the S-cell selectivity. It was recommended to chose a high selectivity in the lower
levels and to decrease it towards the top of the hierarchy.

HMAX Model of Object Recognition. A modern version of a hierarchical fea-
ture extraction network is the HMAX model, proposed by Rigsger and Pog-
gio [192]. The architecture of the network is sketched inuFéy3.7. Similar to the
Neocoghnitron, it consists of alternating S-layers and y&4a. The S-layers contain
feature extracting cells that compute a weighted sum of thputs, followed by a
rectifying transfer function. S-cells receive their inpfitom C-cells at correspond-
ing positions in the next lower layer. C-cells are used tol pagroup of S-cells that
share some parameters, but differ in one or more other paeasnd@hey compute
the maximum of the activities of these S-cells. Hence, Cresponses are invariant
to the parameters spanned by their associated S-cells.
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Fig. 3.7.HMAX model of object recognition proposed by Riesenhubet Boggio. The net-
work consists of alternating S-layers and C-layers thatekfeatures of increasing complex-
ity, size, and invariance. S-cells extract features by tatepmatching while C-cells produce
invariance by pooling of S-cells with a maximum operatorgga from [192]).

Again, when going up the hierarchy, the receptive field size@feature detec-
tors is enlarged, the feature complexity rises, and theoresgs become more and
more invariant to input transformations, such as shiftsodations. Cells in layer
S1 correspond to V1 simple cells. They analyze thexXIB80 input image and ex-
tract oriented features at different positions, scaled,@ientations. Space is sam-
pled at every pixel, 12 scales are used, and four orientatom extracted, yielding
1,228,800 cells. The huge number of S1-cells is reducedyier &1 to 46,000 by
pooling cells with the same orientation, similar positiand similar scale. C1 cells
correspond to V1 complex cells that detect oriented imagettre invariant to the
phase. S2 cells receive input from 2 neighboring C1 units of arbitrary orientation,
yielding a total of almost three million S2 cells of 256 diffat types. They detect
composite features, such as corners and line crossingseldlof a certain type are
pooled to a single C2 cell that is now totally invariant tavailus position. At the
top of the hierarchy reside view-tuned cells that have Gandsansfer functions.
They receive input from a subset of typically 40 of the 256 €ldsc

Almost all weights in the network are prewired. Only the wegjof the view-
tuned cells can be adapted to a dataset. They are choserhatiehview-tuned unit
receives inputs from the C2 cells most active when the aattiobject view is
presented at the input of the network.

Riesenhuber and Poggio showed that these view-tuned eslisgnoperties sim-
ilar to the cells found in the inferotemporal cortex (IT).€jhalso demonstrated that
view-invariant recognition of 3D paper clips is possiblednmbining the outputs
of units tuned to different views of an object. In additiome tmodel was used re-
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cently for categorization tasks, such as the distinctioimafges showing dogs and
cats. Riesenhuber and Poggio argue that in such an arciédbe binding prob-

lem might not be as severe as originally perceived [192]c&itine lower levels

of the hierarchy contain retinotopic representationsufies of spatially separated
objects do not interact and hence are bound by spatial pityxiFeatures in the

higher levels are complex combinations of simple featus&sce there are many
such combinations, it is unlikely that the features of twgects can be combined to
a valid third object. However, the experiments showed thabgnition performance
decreased slightly when two non-overlapping objects wezsent, but recognition
was impaired severely if the two objects overlapped.

The HMAX architecture was designed to recognize a singlecaibjp a feed-
forward manner. The use of the maximum operation for poatiadses the cell re-
sponses invariant to input transformations and also sgppsenoise. The response
of a C-cell that reacts to a feature is not changed by neartlitecl as long as the
strongest S-cell response to the feature is stronger traB-ttesponses to the dis-
tractor. However, a C-cell cannot tell the difference betwene or more instances
of the same feature within its receptive field.

Convolutional Networks. The creation of features by enumeration of all possi-
ble subfeature-combinations is easy, but computationadificient. For practical
applications, such as optical character recognition (O&R) the interpretation of
handwritten text, the network size plays an important roleesreal-time conditions
must be met for the network recall.

If more of the network parameters can be adapted to a spexsfkcsmaller net-
works suffice to extract the relevant features. One exanff@duly adaptable hier-
archical neural network is the convolutional network pregaby LeCuret al.[133]
for the recognition of isolated normalized digits. A recestsion of such a network,
which is called LeNet-5 [134], is illustrated in Figure 3.8.

The network consists of seven layers and an input plane taains a digit. It
has been normalized to 2@0 pixels and centered in the 832 frame. The input
intensities are scaled such that the white background beseiin1 and the black

C3: 16@10x10
C1: feature maps S4:16@5x5

INPUT
30432 6@28x28

S2: f. maps
6@14x14

Gaussian
Full connection connections

Convolutions Subsampling Convolutions ~ Subsampling Full connection

Fig. 3.8. Convolutional neural network LeNet-5 developed by Le@ural. [134] for digit
recognition. The first layers compute an increasing numbdeature maps with decreas-
ing resolution by convolution with 5 kernels and subsampling. At the higher layers, the
resolution drops to 1 and the weights are fully connected (image adapted frod]]13
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foreground becomek 175 to obtain inputs with approximately zero mean and unit
variance.

The first five network layers are alternating convolutior@) &nd subsampling
(S) layers that contain an increasing number of feature nfapenvolutional layer
computes local image features by convolving the previopeesentation with 55
kernels. These layers decrease in size since only suctspotelhich the receptive
field lies entirely in the previous layer are computed. If pinevious representation
consists of multiple feature maps, multiple feature windadescribing the same
image location are combined to compute a more complex feafor C1 and C5 all
S-features of the previous layer are used, while C3 feaagesss different subsets
of at least three S2 features. The size of the feature mapstisef reduced by
the subsampling layers that compute the average<@ ®indows of an associated
feature map in the nextlower C-layer. They have a single adiégparameter which
determines how this average is scaled.

The upper two layers of the network have full connectivitghathe previous
layer. Layer F6 has a size ok42 and represents the desired output in a distributed
code which is an icon that looks like an idealized digit. Tiés the advantage that
similar patterns are represented by similar icons, fatilig postprocessing if these
patterns are confused. The neurons in the first six layerseohetwork pass their
activations through a sigmoidal transfer functiffa) = atanh(Sa) that limits the
output values td—a, +a(a = 1.7159, 8 = 2, such thatf(1) = 1, f(-1) = -1
and|f”(a)| is maximal atl and—1). In contrast, the 10 output units in the topmost
layer compute the difference between their weight vectar the F6 activity and
pass it through a Gaussian transfer function. Hence, theyaatial basis function
(RBF) units that signal the class of the digits in a 1-outtdfeode.

While the weights of the RBF-units are fixed to represent thom iassociated
with the class, all other weights are trained by gradienteles The gradients of
the weights with respect to a loss-function are computedhbybiackpropagation
method [193]. Since shared weights are used, the gradiétiie aveight instances
must be averaged when updating a weight. The degree of waigling is high in
the lower levels of the network. This also allows for shaidfigxamples since many
small windows are contained in a single digit. However, &rtthe relatively large
number of about 60,000 weights present in the upper layettseafietwork, a large
number of examples is needed. This can be seen by obserahththtest error
on the MNIST database [132] decreases from 1.7% to 0.95% titeesize of the
training set is increased from 15,000 to 60,000. Adding 8d0 digits with random
distortions decreases the error further to 0.8%.

When trained with a high amount of salt-and-pepper noiséy(d0the pixels
inverted), the same network becomes quite invariant tatiaris in size, slant, as-
pect ratio, and stroke width of the digits. Figure 3.9(aptiigs the response of the
network to three different versions of the digit four.

While the performance of the network for the recognitiorsofated normalized
digits is impressive, in real-world situations it is difflcto segment the digits reli-
ably. Explicit segmentation can be avoided by sweepingagm®izer along an input
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Fig. 3.9. Convolutional neural network activities: (a) isolated ithigof different sizes and
orientations can be recognized with LeNet-5; (b) digitscheet to be segmented, but can be
recognized in context by a larger SDNN network (images athfstom [134]).

string, but this is computationally expensive. A horizdigtanlarged version of the
LeNet-5 network, called space displacement neural net(®BKNN), has been de-
veloped that also transforms the last two layers into featoaps. It is trained to
recognize digits in their context. Since the digit posiiand sizes are needed to
generate the desired outputs, artificial three-digit béoakd blanks flanked by two
digits were used for training. Figure 3.9(b) shows the respoof the SDNN net-
work to an example that is not easy to segment. The outpuleafétwork indicate
the presence of digits. A postprocessing step is needed itgemmeultiple outputs
for the same digit and to suppress spurious detections.

3.1.3 Generative Statistical Models

The feed-forward feature extraction used in the previousise is not the only
way to implement discrimination. Since the distributiorinnfiges is far from being
uniform, itis also possible to model the probability deiesiof certain object classes
in image space and use the Bayes rule for inferring the claaa object from an
observation and a generative model [57]. Generative mareisalso be used for
purposes other than discrimination. For instance, thegrdaf systematic way to
deal with missing data. Furthermore, generative image msdoeguently produce
compact image descriptions that allow efficient transmissind storage.

In the following, three examples of hierarchical generiinage models are
reviewed: Helmholtz machines, hierarchical products gfegts, and hierarchical
Kalman filters.

Helmholtz Machine. The Helmholtz machine, proposed by Daydral.[50], is il-
lustrated in Figure 3.10(a). It consists of several laydrgtvcontain binary stochas-
tic processing units. These units are turned on with a prithalP(s;, = 1) =
o(a;) = H% Two sets of weightsp and, connect adjacent layers. Recogni-
tion weightsg,; drive a unitj from the activitiess; of the units: in the next lower
layer. These weights are used in the so called wake-modesafdtwork to com-
pute higher level representations from the input. Generateightsd,; work in the
opposite direction. A uni is driven from the unitsg in the next higher layer in
the so called sleep-mode. In this mode, higher-level remtesions are expanded to
lower-level ‘fantasies’:
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Fig. 3.10.Helmholtz machine, proposed by Dayehal. [50] for discovering hierarchical
structure in data: (a) sketch of the architecture (imagetadiafrom [50]); (b) illustration of
the bars problem.

(wake] q; =0(> sidij + ;)i pi=0(>_ skOk; +00;) [sleep].
i k

To estimate network parameters, Hinteinal. [98] proposed the wake-sleep algo-

rithm. The recognition weights are trained in the sleep mode to reproduce the

higher-level representations from the generated fargaSgmmetrically, the gen-

erative weightd) are trained during the wake phase to produce fantasies fiem t

higher-level representations that match the current si1put

[wake]  Aby; = esk(s; —p;); Agij = esi(s; —q;j)  [sleep].

Freyet al.[75] showed that this algorithm is able to discover hierarahstruc-
ture from data. They used the bars problem, illustrated guf@ 3.10(b). Data is
generated as follows. First, it is decided randomly if thetigal or the horizontal
orientation is used. Next, the lines or the columns of a 16 image are turned on
with P = 0.25, depending on the chosen orientation. Finally, indivichizéls are
turned on with a probability o = 0.25. The authors used a three-layer network
with 36 units in the middle layer and 4 units in the top layey.énhforce a solu-
tion where individual bars are added to the image, the mittlleottom weights
were constrained to be non-negative. The generative hidses middle units were
initialized to —4 to facilitate a sparse representation.

After running the wake-sleep algorithm, the generativeghts of 32 middle
units resembled vertical or horizontal bars. Furthermone, of the top units indi-
cated the orientation by exciting the vertical bar units auibiting the horizontal
bar units in the middle layer. Hence, the network discoveheddata generation
mechanism. However, if the non-negativity constraint was used and the bias
was initialized to zero, the network did not find the optimallusion and modeled
the data in a more complicated way.
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Hierarchical Products of Experts. Another approach that makes the learning
of multi-level statistical image models possible, is thedarcts of experts (PoE)
method that Hinton [97] recently proposed. Each expertifips@ probability dis-
tribution p,,,(d|6,,) over the visible variabledl and then experts are combined
by multiplying these distributions together and renormiali: p(d |01, ...,0,) =
[L,. 2w (d]0m)/ > 11, Pm(c|fm), wherec enumerates all possible vectors in data
space. The motivation for multiplying the experts is tha tdombined distribution
can be much sharper than the individual expert models. Fample, each expert
can constrain only a small subset of the many image spacendiores and the prod-
uct will constrain all of them if the subsets cover the diniens. Furthermore, the
PoE construction makes it easy to infer the values of theta@riables of each ex-
pert because the latent variables of different experts@mditionally independent,
given the data.

One expert type for which this inference is tractable aréricted Boltzman
machines (RBM) [218]. These networks consist of one viddgler and one hidden
layer. They have no intralayer connections. The verticaneetions between the
binary stochastic units are symmetrical. Each hidden amitee viewed as an expert
since the probability of the network generating a data vestproportional to the
product of the probabilities that the data vector is gemeraty each of the hidden
units alone [74].

Because it is time-consuming to train RBMs with the standaottzman ma-
chine learning algorithm, Hinton proposed to minimize rie¢ Kullback-Leibler
divergence°||Q*, between the data distributiap® and the equilibrium distri-
bution of fantasies over the visible unis, but to minimize the difference, called
contrastive divergence, betwe@fl|| Q> andQ!||Q>°. Q! is the distribution of one-
step reconstructions of the data that are produced by fitsihg hidden states
according to their conditional distribution, given the alaand then choosing bi-
nary visible states, given the hidden states. For imagetistéeads to the learning
rule: Aw;; o« <pipj>Q0 - <pipj>Q1,Whel’epi are the pixel intensities that have been
scaled to [0,1]p; = 1/(1 + exp(— >, wi;p;)) is the expected value of the hidden
units, and(.>Qk. denotes the expected value aftemetwork updates.

Since the hidden-unit activities are not independent, tayalso be viewed as
data generated by a second PoE network. The hidden unitssafe¢bond network
will then capture some of the remaining structure, but malyhgtve dependencies
which can be analyzed by a third PoE network. Mayraz and Hift&4] applied
this idea to the recognition of handwritten digits. Theyrteal a separate hierarchy
of three PoE networks for each digit class using the MNIST2[Iataset. After
training, they observed that the units of the first hidderetdad localized receptive
fields, which described common local deviations from a ghstotype. They used
L, »m(d|f,,) as log-probability scores to measure the deviation of & dligm
a class-model. All 30 scores were fed to a linear classifigchvtvas trained on a
validation set. When 500 hidden units were used in each lay&st set error rate
of 1.7% was observed.
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Hierarchical Kalman Filters. If one does not use binary stochastic processing
units, but the generation model is a weighted sum of basistifums with added
Gaussian noise, inference is tractable as well. The Kalnitan fL16] allows to in-

fer the hidden causes from data, even if the causes changedratcording to a
linear dynamical system. Rao [186] proposed using Kalmgerdilto learn image
models. Segmentation and recognition of objects and imageences was demon-
strated in the presence of occlusions and clutter.

To account for extra-classical receptive-field effectshia ¢arly visual system,
Rao and Ballard [187] combined several simplified Kalmaetfdtin a hierarchical
fashion. In this model, static imagésre represented in terms of potential causes
r: | = Ur + n, wheren is zero mean Gaussian noise with varianéeThe matrix
U contains the basis vectot that mediate between the causes and the image. To
make the model hierarchical, the causese represented in terms of higher-level
causes™: r = r*d 4 ntd wherertd = U"rP is a top-down prediction af andntd
is zero mean Gaussian noise with variange

The goal is now to estimate, for each hierarchical level ciefficientsr for a
given image and, on a longer time scale, learn appropriats vactord);. This is
achieved by minimizing:

E=L(0-UnT(1-Ur) + —(—r)T@ 1) 4 g(r) + h(U).

g Utd
whereg(r) = o) ,rf andh(U) = A, ;U7 are the negative logarithms of
the Gaussian prior probabilities efand U, respectively. The two first terms &
describe the negative logarithms of the probability of taeadgiven the parameters.
They are the squared prediction errors for Level 1 and Leyelelghted with the
inverse variances.

An optimal estimate of can be obtained by gradient descentfowith respect

tor:

dr k‘l OF - EUT k‘l td

ar | — L
dt 2 Or o2 (I=Ur) + o2, (r

= —r) — kar,
wherek; is a positive constant. This computation is done in the pted estimator
(PE) module, sketched in Figure 3.11(a). It combines th&oboup residual error
(I — Ur) that has been passed through with the top-down errofrtd — r) to
improver. Note that all the information required is available logat each level.
A synaptic learning rule for adapting the weightgan be obtained by perform-
ing gradient descent off with respect tdJ after the estimate becomes stable:
au ko OF ko T
— = = = (- _
dt 590 — gzl Unr — kAU,
wherek, is the learning rate. This is a Hebbian [91] type of learnirithwveight
decay.
Rao and Ballard applied this optimization to the three-tagenetwork sketched
in Figure 3.11(b). In Level 0, three ¥4.6 image patches enter the network which
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Fig. 3.11.Hierarchical Kalman filter proposed by Rao and Ballard [18&] predictive esti-
mator (PE) module that integrates top-down predictidifsand a feed-forward error signal
(I—Ur) to an estimate of the causes of an imagematrixU mediates between the image and
the causes; (b) general architecture of the system: localdP&Ecombined by a higher-level
PE (images adapted from [187]).

OEEFE DR

Fig. 3.12.Hierarchical Kalman filter receptive fields: (a) Level 1 rpttee fields resemble
Gabor-like responses of simple cells; (b) Level 2 recefiriels cover a larger area and are
more complex (images from [187]).

have been passed through a center-surround filter and havewssghted with a
Gaussian window. They are extracted from adjacent imagdaws that have an
offset of 5 pixels horizontally. Level 1 contains three ideal PEs that maintain
with 32 neurons. On Level 2, a single PE receives input frdrthede local PEs and
represents® with 128 neurons. Its receptive field has a size ok 26 pixels.

Some of the receptive fields that emerge when the networkiisetd on natural
image patches are shown in Figure 3.12. The Level 1 neuraes®abor-like recep-
tive fields that detect local orientation. These responsssmble V1 simple cells.
Level 2 neurons have more complex receptive fields that aegreddl by combining
Level 1 features.

Rao and Ballard demonstrated that Level 1 neurons displdystpping be-
havior that is explained by predictive coding. Since longgented lines are more
probable in natural images than short lines, an orientag@active cell responds
stronger to a short line inside its classical receptive fietoh to a longer line, which
can be predicted by a higher-level module. Since the celedigonly the difference
between this prediction and the input, it is less active.

Such a predictive coding scheme could be an efficient way ranaenicate be-
tween the levels of the visual system. It removes redundaecguse only those
parts of the signal that are not already known to the receiresent. Several mech-
anisms in the visual system can be viewed from this persgedienter-surround
receptive fields in the retina and the LGN compute the diffeesbetween the cen-
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ter's intensity and its prediction from the surroundingBa$ic responses of cells
indicate a difference between the actual input to a cell engdrediction from past
values. Color-opponent channels might reflect predictagingg in the chromatic
domain since the wavelength-response profiles of the troee types overlap. Ev-
idence for predictive coding in higher visual areas like MJAT also exists.

While some of these predictions can be computed locallyusigg lateral con-
nections, it might well be that a hierarchy of PEs explaires filmctional role of
reciprocal feed-forward/feedback connections in thealisystem.

3.2 Recurrent Models

Although it was not the focus of the previous section, thedrighical Kalman filter
already used the concept of recurrent computation to irflekem causes from obser-
vations. While feed-forward networks transform an inpirtto an outpuyy = f(x),
recurrent networks respond both to the input and their oatie sin the discrete-time
case this can be described by;1 = f(yt, ).

Such iterative computation is common in mathematics arehsific computing
for problems where closed-form solutions cannot be foundrertoo expansive
to compute. One of the best known examples of iterative dlguos is Newton’s
method [167] for computing the root of a function. The gehiglea is to provide an
initial guess for the root and to apply a simple method forithprovement of the
approximation that is applied repeatedly, until the soluis good enough.

Recurrent computation is much more powerful than feed-fmdxcomputation.
While feed-forward neural networks with a single hidderelagan approximate any
continuous function over a compact domain, they may needrexqtially many hid-
den units to solve this task. In contrast, recurrent newetddarks of finite size can
emulate a Turing machine in linear time [211]. One strikingraple that demon-
strates the advantages of the use of recurrence is the panrittion with many in-
puts. Feed-forward networks with a single hidden layer ltffieulties learning the
parity problem for two inputs and neé2™) hidden units fom inputs. Recurrent
networks that process the inputs in a serial fashion neetbte snly a single bit
representing the current sum of the input bits modulo twanil&r recurrent circuits
are widely used in VLSI designs.

On the other hand, the increase of computational power camasost. First,
each processing element must not only be computed oncen lewery time step.
This may slow down simulation of recurrent networks on asdeniachine. Second,
the non-linear dynamics, described by the recurrent ndétvean produce rich be-
haviors that do not necessarily reflect the intentions ofrhigvork designer. Care
must be taken to avoid runaway activity, convergence toterasting attractors,
oscillations, and chaotic behavior if they are not desired.

Despite these difficulties, recurrent neural networks Hsaen used for a wide
range of applications. Associative memories store pattarrd allow content ad-
dressable information retrieval with noisy and incompldéta [172]. Recurrent
networks have also been used for spatio-temporal patteiyss, e.g. for speech
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recognition [173]. In addition, small recurrent neuro-ttofiers [175] have been
designed that solve non-trivial control tasks. In the lasdrg, it has been realized
that Pearl’s belief propagation algorithm [177] can be egapto graphical proba-
bility models that contain loops [76]. These message-pgssthemes have been
used successfully for the decoding of error-correctingesod 55]. Last, but not
least, recurrence has been successfully applied to cotobiglaptimization prob-
lems [217].

The concepts of attractors and energy functions have bedgrateo the theory
of recurrent neural networks. Hopfield [101] investigatgchmetrically connected
networks with binary units that were asynchronously updiatee showed that each
update does not increase an energy funchios —% Zij w;;5;5;, whereSy, is the
state of unitt andw;; is a weight connecting unitsand;. This yields monotonic
convergence of the network’s state towards an attractérhies a locally minimal
value of the energy.

The deterministic Hopfield network might get trapped in lonaima of the en-
ergy function. To avoid this, stochastic neural units haserbintroduced. This leads
to the Boltzman machine that samples the states of the nieemording to their
Boltzman probability distribution [1]. To adapt the distition of the visible units
of a Boltzman machine to a desired distribution, a simplenieg algorithm [2] is
available. It performs gradient descent on the divergeet@den the two distribu-
tions. Although learning is slow, hidden units allow Bolammachines to capture
the higher order statistics of a data distribution.

Because fully connected recurrent networks have too magygarameters to
be applicable to image processing tasks, in the followinggets that have specific
types of recurrent connectivity are reviewed: lateralriattions, vertical feedback,
and the combination of both.

3.2.1 Models with Lateral Interactions

Lateral interactions are the ones that are easiest to ecalithe cortex, since they
require only short links between neighboring neurons withfeature map. Hence,
it is likely that the neurons of the visual system have beeanged such that the
most intensive interactions can be realized with laterdtdi Lateral interactions
have also been used in some image processing algorithms.

For instance, the compatibility between a recognized primand its neighbor-
hood is the basis for relaxation labeling [195] techniqdé® compatibilities define
constraints for the interpretation of image patches whiehsatisfied iteratively us-
ing stochastic label updates. Relaxation labeling has heetied to edge linking
and to segmentation problems.

Another example for the use of lateral interactions in imagecessing is
anisotropic diffusion [178]. Here, the image is smoothealjffusion process that
depends on the local intensity gradient. Thus, smoothirmyirsctangential to an
edge, but not in the direction orthogonal to the edge. Anigi¢ diffusion is a ro-
bust procedure to estimate a piecewise constant image frmisg input image.
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Models that involve lateral interactions can be found inriraral networks lit-
erature as well. In the remainder of this section, some cfdimeodels are reviewed.

Linear threshold networks with local excitation and globalinhibition. Among
the simplest models of lateral interaction are models withal inhibition. Global
inhibitory networks can, for instance, implement a wintedee-all dynamics. Hahn-
loser [89] analyzed networks with excitatory linear thr@shunits and a single in-
hibitory unit that computed the sum of excitatory activilyhen the excitatory units
implement a perfect autapse, a unit that maintains itsigchy self-excitation, only
network states with a single active neuron are stable. Téusan is the one that re-
ceives the strongest external input. All other units haveatput of exactly zero
because the global feedback lowers the activity below trestiold of the transfer
function.

The behavior of the network is more complex if the excitatonjts interact
directly. Hahnloseet al. [90] designed a chip consisting of a ring of neurons with
local excitatory connections. A single neuron computedaberage activity and
provided global inhibitory feedback.

The analysis of the network demonstrated the coexistenckgahl selection
and analog sensitivity. The authors identified two types efron subsets in the
network. The activity of forbidden sets is not stable, whikrsistent activity of a
permitted set can be maintained by the network. It was shtvanall subsets of
permitted sets are also permitted and all supersets ofdfdeli sets are forbidden.

Local excitatory connections widen the set of active umita winner-takes-all
dynamics from a single unit to a patch of consecutive unis llave a blob-shaped
activity. In the network, a linear relation between the atnge of the blob and the
level of uniform background input exists.

If more than one unit receives external input, the netwoaces the blob at the
location of the strongest stimulus. The network also shdweteresis behavior. An
already selected stimulus wins the competition althougHfardnt unit receives a
slightly larger input. If the difference between the twarsiii exceeds a threshold,
the activity blob jumps to the stronger stimulus.

Neural Fields. Amari [7] was among the first to analyze networks with laterai-
nectivity. He simplified the analysis by using a linear tii@d activation function
f(z) = max(0,z). Amari generalized the discrete neurons to a continuous. fiel
The simplest case of such a model is a one-dimensional fieldigting of one
layer:
ou(z,t)
ot

whereu(x) is the membrane potential at positionandh < 0 determines the

resting potential. Amari assumed space-invariant synimédteral connectivity

w(z,z*) = w(|lz — z*|). For constant inpu(z) he proved the existence of five
types of pattern dynamics:

——ut [wlea) a4 b sl

— monostable field in which all excitations will die out,
— monostable field which is entirely excited,
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Fig. 3.13.Neural field dynamics: (a) vanishing and stable activitynierger and coexistence
of activity blobs; (c) spiral wave in a two-layered neuraldiémage adapted from [239]).

— explosive type bistable field in which localized excitaBamp to a certain range
spread out without limit over the entire field, but vanisthié range of excitation
area is too narrow,

— bistable field in which initial excitations either becomeatized excitations of a
definite length or die out; localized excitations move iredtion to the maximum
of the inputs, and

— field showing spatially periodic excitation patterns degieg on the average
stimulation level.

Most interesting is the coexistence of several stable bbstivity that is achieved
when the connectivity is positive in the center and negdtivea larger neighbor-
hood.

The complexity of the network’s behavior increases if ondsaa second layer
to the field. In this case, one can further detect oscillafmaiterns and traveling
waves. The dynamics of neural fields is closely related tatale media [156],
which have the ability to propagate signals without dampgch models have
been used to describe a wide range of natural phenomena.

Wellner and Schierwagen [239] investigated the behavioreoiral fields using
simulations that were discrete in space and time. Figuishaws interesting cases
of the field dynamics. Initial activity vanishes if it is toare or stabilizes if it fits
the excitatory region of lateral interaction. If two smablogs of initial activity are
close together, they are merged to a single blob of sustaiotty. However, if
they are fare enough apart both blobs coexist.

Neural fields have been applied to several problems arisimgeiception and
control. For instance, Giese [82] applied them to motiorception tasks. He used



3.2 Recurrent Models 55

temporally asymmetric Mexican hat shaped lateral int@ast Stable solutions
were traveling pulses that followed a motion sequence. @texdl dynamics was
used to integrate activity over time. Vijayakuntral. [234] used neural fields as
saliency map to control attention and to generate saccagicv®vements for a
humanoid robot.

Cellular Neural Networks. While continuous neural fields facilitate analysis, they
must be discretized to be applicable in practice. Chua arstt&[t1, 42] proposed
a simplified model that represents space with discrete, ¢biscellular neural net-
work (CNN). This network has a strictly local connectivify.cell communicates
e.g. to the cells within its 8-neighborhood. The space+iaveaweights are described
by templates. A cell is computed as follows:

dl‘ij 1

o (t) = *Eﬂfij(t) + Aijryr(t) + Bijrur () + 25 yrr, up € N(27),

whereA describes the influence of neighboring celbsis the receptive field on the
inputu, andC and R determine the time-constant of a cell. Parametdetermines
the resting potential. The outpyt; = o(z;;) of a cell is a non-linear functioa
of its statex;;. Frequently, a piecewise linear function that saturateslaand1 is
used. While above equation is used for continuous timeetae¥ also discrete-time
CNN variants.

The actual computation of the continuous network dynansicoine by relax-
ation within a resistor-capacity network. It is supplensghtvith logic operations
and analog image memories in a universal CNN machine, usethéme process-
ing purposes. Low-level image processing operations, asacpatiotemporal filters,
thresholding, and morphologic operations, have been im@hted in this frame-
work.

The CNN cells can also be combined with photosensors to ai@idottle-
necks. Analog VLSI implementations for focal plane progggsip to a size of
128x128 [143] have already been realized. The massively pamalthitecture
achieves a throughput that would require a supercomputheitame operations
were realized with general-purpose CPUs.

The CNN approach has been applied to areas other than imagesging. For
instance, it has been used for the control of a walking hest@pobot [9] with 18
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Fig. 3.14.Cellular neural network model of Chua and Roska [41, 42]p(aefessing elements
are arranged in a grid and connected locally; (b) core celbotinuous time analog CNN.
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degrees of freedom. A reaction-diffusion system is impletae for gait generation
and altitude control. The gait is induced by a central pattgnerator. Waves of
activity propagate in a ring of cells. Individual legs re@movement commands at
different times. Local sensors can change the locomotittea e.g. if a joint sat-
urates. The produced gait is a function of the sensory stifmarh the environment
and the intended movement.

Recently, vertical interactions have been added to the Qldidwork. For in-
stance, Roska and Werblin proposed a ten-layered netwosknagdel for retinal
processing [197]. This model has been implemented with a CIMN

Model of Contextual Interaction in V1. The retina is only the first computational
module in the human visual system. Lateral interactionsareial in higher areas
as well, like in the primary visual cortex. Recently, Li [14droposed a model for
lateral feedback in visual area V1. Its architecture isstilated in Figure 3.15.

The model consists of a single sheet of columns. Each col@mresents ori-
ented stimuli by several excitatory neurons that have wffe preferred orienta-
tions. The excitatory neurons are connected monosynégticaxcitatory neurons
of similar orientation in their neighborhood if they aregaled on a straight line or
an arc segment.

N
~

N

Model

3 | e
= () Inhibitory : ’
2 #imerneurons | D€ I e — 2= FEHE
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Fig. 3.15.Model of contextual interaction in V1 proposed by Li [141h¢h position is rep-
resented by several orientation-selective cells. Exaiyaand inhibitory neurons form pairs
that are reciprocally connected. Local lateral interact®omediated by monosynaptic exci-
tatory connections and disynaptic connections via inbrigiinterneurons according to the
connection pattern shown. Aligned cells of similar ori¢iata excite each other, while non-
aligned cells of similar orientation have inhibitory costiens. The model’s response to three
different input images is also shown. The model performtutexsegmentation, contour en-
hancement and perceptual pop-out (images adapted from142]).



3.2 Recurrent Models 57

Because the excitatory neurons cannot inhibit each othrectty, each exci-
tatory cell is accompanied by an inhibitory interneuroneThits in such an E-I
pair are reciprocally connected. The lateral connectidtepato the interneuronsis
such that similar orientations in columns that are not &tare suppressed. While
the excitatory neurons have a transfer function which sésrfor high inputs, the
transfer function of the inhibitory neurons does not saturdence, if the network’s
activity becomes too high inhibition exceeds excitatiod Envers the activity again.

Initially, the network’s activities are determined by th&edt visual inputs
within the classical receptive fields of the units. As theatek dynamics evolves,
the activities are quickly modulated by contextual influes\mediated by the recur-
rent lateral connections. Li analyzed the network dynaraits demonstrated that
the network performs the tasks of texture segmentatiortpconhancement, and
perceptual pop-out. This is also illustrated in the figure.

Li [142] recently proposed that the contextual interactiam this V1 model,
which make consistent stimuli more salient, representlottip attentional effects.
This mechanism discards inconsistent stimuli and focusedimited resources of
the higher visual system to the most salient objects.

Networks with Spiking Neurons. Lateral coupling of spiking neurons can be used
to produce coherent firing. For instance, Hopfield and Brddy2[ 103] proposed
a network where different features that belong to the sanecbére laterally cou-
pled. The coupling uses balanced excitation and inhib#iod thus has little effect
on firing rates. In this network, synchronization occurf€é features have approxi-
mately the same activity. The synchronized firing of neunaugs is recognized by
a neuron in a higher layer that has short integration timesaats as a coincidence
detector. Time-warp invariant recognition of real-worfokech data was demon-
strated in the network. However, Hopfield and Brody used &éidnvocabulary of
only ten words.

A similar idea was applied by Henkel [94] to the problem ofeterision. He
used arrays of local disparity estimators with slowly ciaggarameters. Neigh-
boring cells are coupled laterally. In this network, smodttnges of disparity pro-
duce coherent firing that represents dense disparity maysal lambiguities are
resolved and noise is filtered out by the lateral interastion

3.2.2 Models with Vertical Feedback

While horizontal connections mediate lateral interactianthin an area, vertical
connections link areas of different degrees of abstracfldre connections from
lower areas, that are closer to the visual input and reptésencomplex features,
to higher areas are called feed-forward or bottom-up lifilkey serve feature ex-
traction purposes. The connections in the reverse direetie called top-down or
feedback links. They expand abstract representationsscalestract ones.

In the following, some models that involve vertical feedbace reviewed.
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Fig. 3.16.Non-negative matrix factorization: (a) architecture of tietwork; (b) reconstruc-
tion of a face from its hidden representation; shown are tls@xtracted basis vectors and
the activities of the hidden units (images from [137]).

Non-negative Matrix Factorization. Lee and Seung [137] recently introduced a
generative data model that can be interpreted in terms ¢icaefeedback. They
decompose a x m non-negative matri¥” approximately into non-negative matrix
factors:V ~ W H. Them columns ofVV consist ofn-dimensional data vectors.
The r columns of W contain basis vectors of dimension Each data vector is
represented by a column @f that containg- coefficients. This corresponds to a
two-layered neural network which represents the data vétta visible layer and
the coefficients in a hidden layer. The mat¥ix describes the weights that connect
both layers. This situation is illustrated in Figure 3.06(a

One measure of the factorization quality is the square oEthgidean distance

|A—BJ||> = 32,;(Aij — Bi;)* betweerV and its reconstructioW H. ||V — W H |2
is minimized by the update rules:
(WIV)ay (VH")ia
Hop — Hopreoman 3 Wia — Wia o —-
n aj (WTWH)O,# — (WHHT)M

Another measure is the divergent¥A||B) = 3_,.(A;; log ;‘,Z — Aij + Byj).
D(V||W H) is minimized by:

Zi Wia‘/i;t/(WH)iu . Z;t Ha#v;#/(WH)i#
Zk Wka ’ ZV Hay )

Lee and Seung [138] proved that these update rules find loiraina of the re-
spective objective functions. Each update consists of dipfiohtive factor that is
unity if V' = W H. The multiplicative update does not change the sigi/obr H.
Hence, if they are initialized to positive values no furthenstraints are necessary
to enforce their non-negativity.

The model was applied to a dataset that contained 2,429 tineddaces. The
frontal views were hand-aligned in a £29 grid. Pixel intensities were linearly
scaled such that their mean and standard deviation equa2&dadd were then
clipped to the intervalo, 1], where a value of zero corresponds to white. The ma-
tricesW and H were initialized randomly. The basis vectors that weregmeafter
500 iterations of the update rule (minimizing the diverggnare shown in Fig-
ure 3.16(b). They consist of localized patches of high \abhat resemble typical

Hau — Ha;t Wiq +— Wia
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dark regions of facial images, such as the eyes and the shaflthve nose. The
figure also shows the encodinhgf a face and its reconstruction. Because both the
weights and the coefficients éfcontain a large number of vanishing components,
the encoding is sparse. The reason for this is that the msaelly allowed to add
positively weighted non-negative basis-vectors to themstruction. Thus, different
contributions do not cancel out, as for instance in prinaipanponents analysis.

Although the generative model is linear, inference of thadlbin representation
h from an imagev is highly non-linear. The reason for this is the non-negistiv
constraint. It is not clear how the best hidden represamtatould be computed
directly from W andv. However, as seen abovie,can be computed by a simple
iterative scheme. Because learning of weights should amtarmuch slower time-
scale than this inferencél’ can be regarded as constant. Then only the update-
equations for remain. When minimizindglv — Wh||?, h is sent in the top-down
direction through¥. Wh has dimensiom and is passed in the bottom-up direction
throughW 7. The resulting vectoW 7 W h has the same numberof components
ash. Itis compared t&V v, which is the image passed in the bottom-up direction
throughW ™. The comparison is done by element-wise division yieldingear of
ones if the reconstruction is perfeet= W h. In this caseh is not changed.

When minimizingD(v||Wh), the similarity ofv and its top-down reconstruc-
tion Wh is measured in the bottom-layer of the network by elemesewivision
v;/(Wh);. The n-dimensional similarity-vector is passed in the bottomeinec-
tion throughW'”, yielding a vector of dimension Its components are scaled down
with the element-wise inverse of the vector of ones passedghiV” to make the
update factors fok unity if the reconstruction is perfect.

This scheme of expanding the hidden representation to 8ieleilayer, mea-
suring differences to the observations in the visible lagentracting the deviations
to the hidden layer, and updating the estimate resemblespin@tion of a Kalman
filter [116]. The difference is that in a Kalman filter deviais are measured as
differences and update is additive, while in the non-negatiatrix factorization
deviations are measured with quotients and updates ar@tinaitive. Because the
optimized function is convex for a fixeld’, the iterative algorithm is guaranteed to
find the optimal solution.

Learning Continuous Attractors. In most models of associative memories, pat-
terns are stored as attractive fixed points at discreteitotain state space, as

(a) (b)
Fig. 3.17.Representing objects by attractors: (a) discrete attraotpresent isolated patterns;
(b) continuous attractors represent pattern manifoldagis after [209]).
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Fig. 3.18.lterative pattern completion proposed by Seung [209]: (ehitecture of the net-
work (two layers are connected by vertical feedback loofig)learned receptive fields (to-
pographic feature map); (c) iterative pattern completiorafjes adapted from [209]).

sketched in Figure 3.17(a). For patterns with continuousbdity, such discrete
attractors may not be appropriate. Seung [209] proposedpesent continuous
pattern manifolds with attractive manifolds of fixed poirtsntinuous attractors, as
illustrated in Figure 3.17(b). These attractors are patarized by the instantiation
or pose descriptors of the object. All instantiations hawdlar low energy, such
that a change in pose can be achieved without much effortngbefronted with
an incomplete pattern, the network dynamics quickly evetegvards the closest ob-
ject representation. Thus, the incomplete pattern is ptejeorthogonally against
the manifold and hence completed to a pattern with the sarse po

Seung suggested using a neural network with vertical fegddtmlearn such
continuous attractors, as shown in Figure 3.18(a). The ar&twonsists of two
16x 16 sheets of neurons that compute a weighted sum of theitipfmliowed by
a rectification nonlinearity. Both layers are connected k¥ focal receptive fields.
The sensory input is initialized to the incomplete patterd rained to reconstruct
the original pattern after two iterations. Normalized iraa@f the handwritten digit
two that have been degraded by setting@®®atch, placed at a random location, to
zero are used as incomplete patterns. By training with gradiescent on the com-
pletion error, the weights shown in Figure 3.18(b) emerdeyTform a topographic
map of localized oriented features. Figure 3.18(c) illatgts the reconstruction pro-
cess for an example. One can see that the network is indeetbdbl-in the missing
image parts. Note that this is not as difficult as it seemgesthe network knows
a-priori that the target image will be a normalized digit te#ss two.

Somato-Dendritic Interactions Integrating Top-Down and Bottom-Up Signals.
Siegelet al. [210] proposed a model that involves vertical feedback betwtwo
areas, as sketched in Figure 3.19(a). Both areas are reaifyraonnected by ex-
citatory axons. The excitatory neurons have two sites oégtio integration. The
apical dendrite integrates top-down influences, whiledyottip projections termi-
nate in the basal dendritic tree. The areas also contaibitnhy neurons that project
to all excitatory neurons.

Each area is modeled as a one-dimensional array. Both arected by local
retinotopic links. The neurons are simulated using a cotashee-based model with
active sodium and potassium conductances for spike gémer&ynaptic conduc-
tances are implemented for glutamergic and two types of gaatransmission.
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Fig. 3.19.Integrating top-down and bottom-up sensory processingobyaso-dendritic in-
teractions proposed by Siegetl al. [210]: (a) areas A and B reside at different hierarchical
levels and are reciprocally connected (each area con$istsitatory and inhibitory neurons;
inhibitory neurons project to all neurons within an areaittory neurons from both areas
are connected by bottom-up and top-down projections);db)ato-dendritic interaction and
burst generation (if excitatory input of top-down projecis @ is strong enough and bottom-
up input @) initiates an action potential that propagates back intoathieal dendrite?), a
dendritic calcium spike is triggere@ that in turn causes a burst of action potenti@3
(images adapted from [210]).

The model reflects recently discovered physiological prig® such as the back-
propagation of action potentials into the apical dendnite #he generation of slow
dendritic calcium spikes that drastically lower the thi@dHor burst generation.

Siegelet al.[210] propose a functional interpretation for these sortbgodritic
interactions. In the presence of a backpropagating actitengpial, the subthreshold
top-down input at the apical dendrite can trigger a deracitilcium spike leading
to a burst of axonal action potentials, as illustrated inuFég3.19(b). This burst
signal is much more robust to noise than the total number tidrapotentials. It
indicates a match between bottom-up and top-down stimh&. authors also found
that priming an interpretation of the bottom-up stimulusdalditional input to the
higher area leads to faster and more reliable recognitiehbgases processing if
multiple stimuli are present.

The model accounts for the asymmetry of bottom-up and tapadsathways
where feed-forward inputs mainly drive the activity of selwhereas feedback has
rather modulatory effects on the total spike counts. N&ebess, the integration
of top-down and bottom-up information leads to a robust tsignal. The authors
propose that this bursting pattern could be a basis for theitg of corresponding
high-level and low-level features.

3.2.3 Models with Lateral and Vertical Feedback

Neither lateral interactions nor top-down/bottom-up reeat interactions alone are
sufficient to explain the performance of the visual systeecdise both types are
presentin the cortex, models that incorporate horizostalall as vertical loops are
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ing orientation in V1 is excited in the center, while all atlmeientations in the surround are

inhibited; (c) grouping of fragmented shape by corticoticat feedback processing (images

from [166]).

good candidates for achieving fast and robust interpretatf visual stimuli. In the
following, two such models are reviewed.

Recurrent V1-V2 Interaction. Neumann and Sepp [166] recently proposed a
model for boundary processing in the early visual systene flodel consists of
two layers, V1 and V2, with local recurrent lateral connéttithat are connected
retinotopically by vertical loops. The orientation seleetprocessing elements in
V1 are sketched in Figure 3.20(a). They detect local orabotatrast, are modulated
by top-down feedback, and interact laterally in an on-céotesurround pattern.
This divisive interaction occurs in the space-orientatiomain and implements a
shunting inhibition. It amplifies salient features and s@spes noise.

Similar processing occurs in V2, where cells have two laopes that act as cur-
vature templates. A V2 cell becomes active only if both Icdresexcited by aligned
V1 features. This is achieved by multiplicative combinatdd the individual lobe’s
activations, yielding a nonlinear ‘AND’-gate. V2 cells alsompete laterally via
center-surround interactions. The most active cell, lgctdeds back to the lower
layer. In the center of its receptive field V1 neurons with paiible orientations are
strengthened. This excitatory feedback is modulatoryait amplify existing V1
activity, but cannot create V1 activity by itself. All otherientations in the larger
V1 neighborhood are inhibited. This vertical V1-V2 intetiaq is illustrated in Fig-
ure 3.20(b). It leads to the representation of illusory oand in V2 that enhance
compatible V1 features and suppress incompatible ones.

The network’s response to a fragmented input pattern is slm®igure 3.20(c).
The line-segments defining the contour of an object are grdupgether into a
ring of coherent activity. The model is biologically plablg and was successfully
used to reproduce psychophysical data. However, apicat real-world prob-
lems seems to be difficult, since all connections in the sysiee prewired and it
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Fig. 3.21.Grouping and attention in the LAMINART model proposed by &iioerg [84]:
(a) architecture of the system (feed-forward, feedbachH, faorizontal interactions within
and between LGN, V1, and V2; open symbols indicate excitatitpsed symbols represent
inhibition); (b) top-down attention and bottom-up stiminlieract (the attention spreads along
the illusory contour); (c) perceptual grouping (left: \@unput; right: V1 response; top:
vertical grouping; bottom: horizontal grouping) (imageanfi [183, 85]).

is not clear, how to extend the model to represent more confpétures in higher
visual areas.

LAMINART Model. Grossberg [84] proposed a model for the laminar circuits in
V1 and V2 that he called LAMINART. This model accounts for gegptual effects,
such as grouping, orientation contrast, and attentios.lhased on lateral and verti-
cal feedback connections that have been found in the cdartexarchitecture of the
model is sketched in Figure 3.21(a).

Three visual areas are arranged in a hierarchical fashiGN Is connected to
V1 via vertical feedback loops. The same connectivity patexists between V1
and V2. On-center/off-surround type interactions betwadjacent layers imple-
ment an ART-like resonance [40] between features of diffecemplexity. Corre-
sponding features strengthen each other, while inconmpdéhtures are inhibited.

Within an area, horizontal connections facilitate peraapgrouping of collinear
cells that have the same orientation. The range of theseections is larger in V2
than in V1. Figure 3.21(c) shows the grouping results of twwmwi. While in the
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upper part of the figure two vertical bar segments are grotgegather, this grouping
is prevented in the lower part of the figure by a horizontad lirf distractors, which
are grouped horizontally. In each case, grouping credtesoily contours. These
contours form the basis for surface-oriented computatisush as the filling-in of
color.

The vertical interactions also mediate attentional effefeigure 3.21(b) shows,
how top-down spatial attention and bottom-up visual stirate integrated in layer
2/3 of V1. In this layer, the isolated collinear line-segriseare grouped together.
Attention flows along this illusory contour and biases thérerobject.

Many perceptual effects have been modeled with varianthisfarchitecture.
The model is biologically plausible and it suggests microdules that could be
repeated to model higher visual areas. On the other handyaldel's architecture
is rather complex and it remains open, how the system pesgfevhen confronted
with natural visual stimuli.

3.3 Conclusions

A review of related work can never be comprehensive. Manyagghes to image
interpretation exist in the literature that were not coddsecause the focus of this
chapter was to make the reader familiar to the concepts ditiey and recurrence,
which are central to the thesis.

While many models describe isolated aspects of human vimrédrmance on
different levels of abstraction, so far no model is avagahiat is biologically plau-
sible, involves horizontal and vertical recurrent inteéi@ts, and can be adapted
efficiently to perform different visual tasks.

Thus, there is clearly a need for further research. Neutogponeeds to find
out details of the neural circuitry that leads to the impikesperformance of the
human visual system. Computational neuroscience mustupeogeneric models
that capture the essential mechanisms without unnecedstai. Psychophysics
can investigate properties of the visual system predictethbse models to test
them. Computer vision finally has the possibility to tramsfeese models to real-
world applications to validate their utility.



4. Neural Abstraction Pyramid Architecture

The last two chapters reviewed what is known about objecigeition in the human
brain and how the concepts of hierarchy and recurrence heam dpplied to image
processing. Now it is time to put both together.

In this chapter, an architecture for image interpretat®defined that will be
used for the remainder of this thesis. | will refer to thishitecture as the Neu-
ral Abstraction Pyramid. The Neural Abstraction Pyramidhiseurobiologically
inspired hierarchical neural network with local recurreahnectivity. Images are
represented at multiple levels of abstraction. Local catiaas form horizontal and
vertical feedback loops between simple processing elesn&hts allows to resolve
ambiguities by the flexible use of partial interpretatiosuiés as context.

4.1 Overview

Before going to the details, this section gives an overviethe proposed architec-
ture. It covers the hierarchical network structure, the afsdistributed representa-
tions, local recurrent connectivity, and the idea of itematefinement.

4.1.1 Hierarchical Network Structure

As the name implies, the Neural Abstraction Pyramid has aafdhical net-
work structure. It is sketched in Figure 4.1. The networksists of several two-
dimensional layers that represent images at differentedsgof abstraction. Each
layer is composed of multiple feature arrays that contaoréite cells, called feature
cells. When going up the hierarchy, the number of featuieyarper layer increases,
while the spatial resolution decreases.

Unlike most neural networks that have no spatial orgaronatiithin the layers,
layers in the Neural Abstraction Pyramid have a two-dimeamsi organization that
corresponds to the 2D nature of images. This is motivatedhéyobservation that
correlations between image locations that are close tegatie higher than correla-
tions between locations that are far-apart. This simpleisgarewired in the network
structure in the same way as it is prewired in the retinotopi@nization of cortical
areas in the human visual system (compare to Chapter 2).

The hierarchical network architecture resembles the tibyaof areas in the
ventral visual pathway (see Section 2.1). The idea of a stdcD layers with
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Fig. 4.1. Neural Abstraction Pyramid architecture. The network @ieof several layers.
Each layer is composed of multiple feature arrays that dortescrete cells. When going
up the hierarchy, spatial resolution decreases while timebeun of features increases. The
network has a local recurrent connection structure. It pced a sequence of increasingly
abstract image representations. At the bottom of the pytasignal-like representations are
present while the representations at the top are almostaionb

decreasing resolution has been used before, e.g. in imagenjgs and wavelet
representations (see Section 3.1.1). In these archies;tthhe number of feature
arrays is constant across all layers. Hence, the repremerabpower of the higher
layers of these architectures is very limited. In the Neuyastraction Pyramid,
this effect is avoided by increasing the number of featuraysrwhen going up the
hierarchy.

In most example networks discussed in the remainder of #sighthe number
of cells per feature decreases frdnx J in layerl to I/2 x J/2in layer (I + 1)
while the number of features increases fréimo 2 K. Figure 4.2 illustrates this.

The successive combination of simple features to a largabeun of more com-
plex ones would lead to an explosion of the representatimitit were not coun-
teracted by an implosion of spatial resolution. This priteiis applied also by the
visual system, as is evident from the increasing size ofptaeefields when going
along the ventral pathway. The dyadic reduction of resoluts natural to an im-
plementation with binary computers. It allows one to mapradses into adjacent
layers by simple shift operations. Of course, the concepteageneralized to any
pyramidal structure.

It may be desirable that the number of feature cells per laigrs constant, as
in the fast Fourier transformation described in Section13.This is only possible
with reasonable computational costs, if the number of aase® the activities of
other feature cells when computing a feature cell is kegival constant. If access
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Fig. 4.2. As the spatial resolution decreases, when going up therbigrathe number of
feature arrays increases. Different grayscales reprefféetent features. In the lower layers
few grayscales are available at many locations while in thhdr layers many variations of
shading can be accessed at few positions.

to all feature arrays of a layer is required to compute a featsll, the total number
of connections rises by a factor of four when increasing timlmer of features to
4K, instead of 2K, in laye(l + 1). The choice of 2K features leads to a constant
number of total connections within each layer and to thectdn by a factor of two

in representation size when going up one layer. Hence, incdise the size of the
entire pyramid is less than double the size of its lowestrlape the total number of
connectionsis linear in the number of layers and in the nummldeottom-layer cells.
Since the size of the representation decreases with heigttd|l details of an image
can be represented in the higher layers. Thus, there is swaetive in discovering
image structure that can be used to efficiently encode theagbgsepresentations.

4.1.2 Distributed Representations

The feature cells in the Neural Abstraction Pyramid consainple processing el-
ements that make a single value, the activity, availablethe@rocells. The activ-
ity of a cell represents the strength of the associated feattia certain position.
This resembles the computation by neurons in the brain. Sunhssively parallel
approach to image processing requires millions of prongssiements for high-
resolution images. Thus, it is necessary to make the indatigrocessors simple
to keep the costs of simulating these on a serial machine pleimenting them
in VLSI hardware within reasonable bounds. No complex datectires are used
in the architecture. The communication between procesdegments only requires
access to cell activities via weighted links.

Figure 4.3 magnifies one layéof the pyramid. All feature cells that share the
same locatiofi, j) within a layer form a hypercolumn. A hypercolumn describes a
aspects of the corresponding image window in a distribupedse representation.
Neighboring hypercolumns define a hyper-neighborhood.

This definition is motivated by the interwoven feature mapespnt in cortical
areas, like in the primary visual cortex (compare to Sec#d). All feature cells
that describe the same image location at the same level whatisn are accessible
within close proximity. This facilitates interaction beten these cells. Such inter-
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Fig. 4.3.A feature cell with its projections. Such a cell is addredsgits layerl, its feature
array numberk, and its array positiortz, j). Lateral projections originate from the hyper-
neighborhood in the same layer. Forward projections cowma the hyper-neighborhood of
the corresponding positidi2s, 2;) in the next lower layefl — 1). Backward projections start
from the hyper-neighborhood at positiéiy2, j/2) in layer (I + 1).

action is not only necessary between neighboring cellsinvéfeature array, but
also across arrays since the code used is a distributed one.

The use of distributed codes is much more efficient than tleeofidocalized
encodings. A binary local 1-out-a¥ code can provide at mokig N bits of infor-
mation while in a dense codeword of the same lengthjits can be stored. The
use of sparse codes lowers the storage capacity of a codefdmilitates decoding
and associative completion of patterns [172]. Sparse cadesiso energetically
efficient since most spikes are devoted to the most actitarieaetecting cells.

One important idea of the Neural Abstraction Pyramid agttitre is that each
layer maintains a complete image representation in an afraypercolumns. The
degree of abstraction of these representations increaseseaascends in the hi-
erarchy. At the bottom of the pyramid, features correspondd¢al measurements
of a signal, the image intensity. Subsymbolic represenntatilike the responses of
edge detectors or the activities of complex feature celispgesent in the middle
layers of the network. When moving upwards, the featuresaelpond to image
windows of increasing size, represent features of incngasbmplexity, and are in-
creasingly invariant to image deformations. At the top & gyramid, the images
are described in terms of very complex features that resjpmadiantly to large im-
age parts. These representations are almost symbolid)ydyuate still encoded in a
distributed manner.

This sequence of more and more abstract representaticamivées the abstrac-
tion hierarchy found along the ventral visual pathway. B\&ep changes the na-
ture of the representation only slightly, but all stepsdaithe same direction. They
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move away from localized measurements of a signal towatisaes of the pres-
ence of complex features. One can compare this to the fasiefaransformation
that modifies a spatially localized representation stefstbp into a representation
that is localized in frequency.

If the Neural Abstraction Pyramid is used for classificatiam output layer may
be added to the network that contains a single cell for eaa$sdb represent the
classification result in localized code. This final step eftitansformation makes the
class-information explicit. The localized code facil@ataccess to the classification
result because itis easier to interpret than a distributelé dout it is not biologically
compatible. Note that such an output layer would not be reaegsf the pyramidal
perception network would be followed by an action networkwthe shape of an
inverted pyramid that expands the abstract represensasiep-by-step to concrete
motor commands.

4.1.3 Local Recurrent Connectivity

Retinotopic projections mediate between the layers of ther&l Abstraction Pyra-
mid. Three types of projections are used in the network topgma cell at position
(i,4) in layer!:

— Forward projections originate in the adjacent lower layér— 1). These pro-
jections have access to all features of the hyper-neiglioaricentered at the
corresponding positiofRi, 25) and are used for feature extraction.

— Lateral projections stay within a layer. They access all featurg®sitions close
to (i, ) and make feature cell activities within a hyper-neighbadhoonsistent
to each other.

— Backward projections come from the hyper-neighborhood centeredsitipn
(i/2,7/2) of the next higher layefl + 1). They expand abstract features to less
abstract ones.

This local recurrent connection structure resembles thzdmtal and vertical
feedback loops found in the cortex. The restriction to allcoanectivity is neces-
sary to keep computational costs down [140]. Compared toadmgtic number of
possible connections, a local connection structure is nhesh expensive since it
is linear in the number of cells. In the hierarchical netwtitis advantage is most
obvious in the lower layers, where the hyper-neighborhd@daell contains only a
small fraction of all cells of a layer. Towards the top of thegmid this advantage
is less striking, since the ratio between the number of aelishyper-neighborhood
and the total number of cells in a layer approaches one.

There are more advantages of a local connection structaretkie low humber
of connections alone. Local connections require only shimgts when implemented
in hardware. They also facilitate the distribution of labetween parallel machines
with distributed memory. Even when simulating such netwark serial machines,
locality of memory access patterns is an advantage, simueré@ases the probability
of cache hits.
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A local connection structure is sufficient for image intefation tasks. Fea-
ture cells at corresponding positions in adjacent layensmanicate via reciprocal
forward and backward projections. The vertical connectiorediate between the
layers and capture the correlations between complex fesfnd their correspond-
ing lower-complexity subfeatures. Because the image winttat is covered by
a hyper-neighborhood increases with height in the pyrafatdral interaction be-
tween distant image parts is possible in the higher layeth@fpyramid. While
lateral projections in the lower layers of the network capttorrelations of nearby
low-level features, lateral connections in higher layeaptare correlations of far-
apart abstract image features.

If correlations between far-apart low-level features anpartant, they must be
mediated through a hierarchy of abstract features for therrrediate positions.
This is efficient since it involves onlg(log D) steps if the cell-distance between
the low-level features i®.

Such detailed long-distance correlations are frequerdgtyimportant. This is
indicated by the fact that the human visual system is ofteablemto detect long-
distance correlations of low-level stimuli. One exampletfas is how difficult it is
to detect a marginal difference between two similar imapatare presented side-
by-side. In contrast, when both images are overlaid, tHerdifices are very salient,
since the corresponding low-level features are now clogether.

4.1.4 lterative Refinement

The Neural Abstraction Pyramid has been designed for thatiite interpretation
of images. The refinement of initial image interpretatiom®tigh local recurrent
vertical and horizontal interactions of simple proces@tements in a hierarchy is
the central idea of the architecture.

Such a refinement is needed to resolve ambiguities. In Héatnemes, local
ambiguities are common. For example, the contrast betweebjact’s surface and
the background may be very low at parts of the object’'s boyndxcclusions may
hide other object parts. Non-homogeneous lighting andobbjensformations, like
scaling and rotation, are further sources of ambiguity.&aowver the 3D structure
of objects from 2D images is an inherently ambiguous problem

The human visual system resolves such ambiguities fastediadblly. It does so
by focusing on those features which are most reliable in &iresituation and by
the flexible use of contextinformation. This is exactly wthet iterative image inter-
pretation does. The interpretation of ambiguous stimutidstponed until reliably
detected features are available as context. Horizontabariid¢al feedback loops al-
low contextual influences between neighboring image looatand between repre-
sentations in adjacent layers, respectively. Informaflimm is asymmetric: reliable
features bias the unreliable ones. This can happen in aggtidin. Lateral neighbors
have the same reliability a-priory. Only the current stinedlecides which locations
cannot be interpreted without contextual bias. The bottgnilow of information
is most common, since the function of the ventral visual wathis to recognize
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objects from images. However, one must not overlook thedimpn direction of in-
formation flow. It serves attentional purposes and the matdtigher-level object
models with detected abstract features biases the condsmplow-level feature
detectors. This is evident from edge-detecting neuronisdrptimary visual cortex
that respond to illusory contours [185].

Iterative image interpretation has the features of an armg/algorithm. Usable
partial image interpretations are available very earlpatop of the hierarchy, start-
ing when the first feed-forward wave of activity arrives. lmitial response may
even be perfect, e.g. if the image does not contain ambéguilihe rapid informa-
tion processing in the human visual system within the firfdr§ after stimulus
onset [226] may correspond to this mode of operation. Thigifeed-forward in-
terpretation may trigger a behavioral response to ambigstimuli in situations
where reaction time is precious, e.g. when spotting a daugenimal. However,
this rapid information processing bears the risk of misimteting visual stimuli
since there is no time to resolve ambiguities. The readerme@ember situations
where an object that appeared to be harmful at first sighgerigd a reaction, but
turned out to be harmless when inspected more closely.

Because in most situations the correct interpretationmifidiis more important
than pure reaction time, the iterative refinement of initisérpretations is an effec-
tive way to improve the interpretation quality. It increaske chances for correctly
interpretation of ambiguous stimuli tremendously at matkeicosts of additional
computation time for these stimuli.

4.2 Formal Description

The general concept of the Neural Abstraction Pyramid waediced above. Let
us now turn to a more formal description of the architecture.

4.2.1 Simple Processing Elements

The computation of a feature cell at positi¢h)j) for feature arrayk in layer!
is illustrated in Figure 4.4. The basic processing elemensists ofP,; projection
units and a single output unit. The activitf;,, € R of the cell at timet is computed

as follows:
P

a’ﬁjkl = wkl(z v;]:l bffkl + Ugl)- (41)
p=1
The output unit computes a weighted sum of the projectioerpitalsbg.’kl eR
with the weighting factors described by, € R. A bias value ofv)) is also added
to the sum before it is passed through the output transfetifumyy,; .
The computation of the individual projection potentialsléscribed by:

*

kl
t' ¢ 0
bifkl = ’21(2 whi Qe jogerpx T+ why ). (4.2)
g=1
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Fig. 4.4.Processing element that computes a feature cell. It cansig®,; projection units
and one output unit that produces the acti\a'tykl. The output unit computes the weighted
sum of the potentialsjfkl of the individual projections and passes this sum througarester
function ;. Each projection unit computes the weighted sum of featetkactivities and
passes it through a transfer functigf),. Bias weights of the projection units and the output
unit connect to a node with the fixed activity one.

Each projection computes a weighted sum of activi&té?kk*l* with the weighting

factors described by} € R. The number of contributions to a projectipris

P . In addition, a bias value af?; is added before the sum is passed through the

projection transfer function?,.
The address*j*k*[*t* of a source feature cell is described by:

= ThH(t); (4.3)
* = Lil; (4.4)
kKt = K,flq; (4.5)
jt o= JR0) = Yue () + B (4.6)
it = I]flq(i) =Ty~ (4) + IZ(II' 4.7)

T}, (t) determines if the source activity is accessed in a direct atiuffered mode.
L7, describes the layer of the souré€; addresses the feature array within layer
Jy(j) andI}} (i) describe the source location within the arkdyas a function of
the destination locatiofy, j). The source is accessed relative to the corresponding
position (13- (i), Y+ (j)), where?y;« (z) maps coordinates from layérto layer
I* and (17}, J7]) describes the source offset relative to the correspondisgion.
Details of the addressing will be discussed later.

The choice of the basic processing element as feed-forveancghnetwork with
a hidden layer of projection units and a single output un@ivated as follows. It
is simple enough to be computed quickly and it is powerfulugrioto compute the
activity of a feature cell as a non-linear function of featwell activities.

Many aspects of biological neurons are not modeled by the Ipscessing
element. For instance, the discrete-time computation t¥igcis only a coarse



4.2 Formal Description 73

Table 4.1.Notation used for the basic processing element shown irr€ig.

Al — activity after iteratiort of featurek in layer/ at position(7, 7)

bzgkl — potential of projectiomn that contributes ta;?j )

Vil — transfer function for featurk in layer!

- — transfer function for projectiop of featurek in layer!

vy — weight ofpth potentialbjfkl that contributes to activity;,,

whi — weight ofgth activity aﬁi sk~ that contributes to potentiaffkl

P — number of potentials that contribute to activa'zﬁg Kl
Tr(t) — source access mode of projectidp: direct of buffered

Ly, — source layer of projectiohlp

K7! - source feature index of weightpg
JEA(j) — source row of weightlpg, depends on destination row
Il(i) — source column of weiglitlpg, depends on destination colurin
Yu~(x) — mapping of coordinates from lay&to layer!*

e —  row offset of weightkipq

1nd — column offset of weighkipg

approximation of the continuous-time dynamics of neurdxrether example is

the modeling of synapses by a single multiplicative weigistcompared to a dy-
namical system that describes facilitation and depressidhe synaptic efficacy.

Furthermore, in contrast to cortical neurons that prodetieapotentials, the basic
processing element outputs a graded response. Thesefgiatjgihs were made to
make network simulations feasible, despite the fact thgitl Neural Abstraction

Pyramid networks will contain thousands to millions of sgebcessing elements.
More complex processing elements might be more powerftithay induce higher

computational costs and need more parameters for theiriggsn.

The basic processing element is already quite powerfuk ¢ain be seen from
the success of feed-forward neural networks with a singlleldn layer. When
equipped with a large-enough number of projection unitsthse sigmoidal trans-
fer functions it can approximate, with arbitrary accuraayy continuous function
of its inputs [48]. However, in typical networks the numbépaojection units will
be small and the computed functions will be simple. The wisig¢iat determine the
behavior of the network can be changed through learningpelfttansfer functions
Y andgy, are differentiable, partial derivatives of the output efxith respect to
a weight can be computed by backpropagation and gradiec¢detechniques can
be applied to adjust the weights.

4.2.2 Shared Weights

Where do the inputaﬁij*k*l* to a projectiornp of a feature celijkl come from?
All weights of a projection originate in the same layer. Tomirce layer is called
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I* and it is determined by the inde;, that depends on the feature arradyand
the projection index, but not on the cell positiof, j) within its feature array.
Since the connections have to be local, they originate eitheame layel.}, = |
for lateral projections or in an adjacent layef, = [ + 1 for forward/backward
projections.

The feature index* of the feature cell accessed by a weighdf projectionp
is determined by the indek}/ € {0,..., K;- — 1}, whereK;- is the number of
feature arrays in the source layér Hence, access to any feature is allowed.

The position of the accessed feature cell depends on th&quo§i, j) of the
computed cell. A functio;- () maps positions from layédrto layeri*. If the
resolution of the two layers differs by a factor of two it isaputed as follows:

2¢ : I*=1-1 I[forward]
T (x) = x =1 [lateral] . (4.8)
/2] : I*=1+4+1 [backward]

In case that the source layEr consists of only a single hypercolumn at position
(0,0), all positions inl are mapped to this hypercolumly;- () = 0. The hyper-
column of the accessed feature depends also on the weidtrt offset (177, J77)

is added to the corresponding positith;- (), 7 (j)). These offsets are usually
small and access only® x N hyper-neighborhood dfYy;- (i), 1+ (j)). For for-
ward projections, the offsets are usually chosen suchlthand N are even since
the offsets (0,0), (0,1), (1,0), and (1,1) describe the @minypercolumns that cor-
respond to a higher-level hypercolumn when the resolusochianged by a fac-
tor of two between the layers. Common are#forward projections that overlap
with eight neighboring projections. For lateral projeagoodd dimensions of the
neighborhood are used to produce a symmetric connectioctste. A 3<3 lateral
neighborhood is common.

All feature cells of a feature arrayl share the same forward and lateral projec-
tions. This weight sharing is motivated by the success ofalotional neural net-
works (see Section 3.1.2). While it is not biologically mihle that distant weights
are forced to have the same value, it is likely that similemsli that occur at differ-
ent positions of a feature map lead to the development ofairf@ature detectors.
This translational invariance of feature detection thasthe learned by cortical
feature maps is prewired in the Neural Abstraction Pyramithigecture. It is ap-
propriate for the processing of images since low-level glintike edges and lines,
are likely to occur at several positions in the image.

Weight sharing leads to descriptions of the processing eesnwith templates
that have few parameters. It also allows for a sharing of gt@srsince a single im-
age contains multiple small windows with different instasof low-level features.
Both few parameters and example sharing facilitate geimatiin. The degree of
weight sharing is high in the lower layers of the network ardrdases towards the
top of the pyramid. Low-complexity features are describgddw weights, while
many parameters are needed to describe the extraction giewnfeatures. Hence,
the network is able to learn low-level representations fretatively few examples,
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but it needs a larger number of examples to determine thergdeas of more ab-
stract representations.

In the dyadic case, where the resolution between the layeesliiced by a factor
of two in both dimensions, four hypercolumns correspondsmgle hypercolumn
in the next higher layer. To make specific backward projectigossible, each of the
four lower-level hypercolumns has to maintain its own baaidvprojection. Thus,
in this case the backward weights are shared with only ométfofithe feature cells.
This connection structure can be viewed as distributecgtof a single larger pro-
jection that is computed in the reverse direction. For imstawhen a reversed back-
ward projection has a size 0f<2, it covers all lower-level hypercolumns without
overlap. Such a projection is realized as four differertllbackward projections
with offsets (0,0) that are distributed between the22corresponding lower-level
hypercolumns.

A special case for the forward/backward projections is ttopaf resolution to
1x1 hypercolumns at the top of the pyramid. Here, the offsetaiaually chosen in
such a way that a complete connection structure betweewpnedst layer and the
layer below it is achieved. No weight sharing is possibléhis tase.

4.2.3 Discrete-Time Computation

The activities of the feature cells are computed at disgretetst of time. They are
accessed either directly or as a buffered copy. The celliiet must be initialized
and can be clamped to input values. Care must be taken toehbodler effects.

Update Order. All feature cells are computed in a predetermined orderal\gu
the update of the activities proceeds layer by layer in adbottip manner. This is
done to speed up the forward flow of information. Within thedies, the features are
sometimes assigned to groups. For instance, excitatoryndiitaitory features can
constitute two different groups. The fixed update order csuie that all features
of one group are updated before the first feature of anothengis updated. This
makes fast lateral interactions, like fast inhibition, gibte.

Direct Access. All weights of a projection access activities from the samep
of time ¢*, described by the functiofiy, (¢). For direct access, activities that have
already been computed in the same time step are U3gd) = t. This is pos-
sible only if the earlier update of the sources can be ensured direct access
is commonly used for forward projections and for fast ldterajections, like the
ones from excitatory to inhibitory features. This fast lition prevents a delay
between monosynaptic excitation and disynaptic inhibitiéast inhibition is bio-
logically plausible since inhibitory synapses typicallyntact neurons mostly near
to the soma or even at the soma, while excitatory synapsesitlypconnect to more
distant parts of the dendritic tree which induces some delay

Buffered Access. Of course, not all projections can be realized with direcess.
It is also possible to access the activity of a feature celinfithe previous time
step:T},(t) = t — 1. This buffered access is used for backward projections and f



76 4. Neural Abstraction Pyramid Architecture

delayed lateral connections, e.g. from inhibitory feasuieexcitatory ones. It can
also be used for forward projections, e.g. to compare detd/of two consecutive
time instances in order to detect activity change.

Initialization. At the beginning of the computations whee= 0, it is not possible
to access the activities of the previous time step. For #d@saon, the activities must
be initialized before the iterative update starts. Thedh#ation of a feature-array
k in layerl is done uniformly. All its feature cells are set to the adyivi?,. Thus,
the uniform initialization adds only a single parameteth® template that describes
the computation of featurkl.

Network Input. To presentinput to the network some of its cells are not cdatpu
by basic processing elements, but are clamped to staticraandig inputs. In this
case, predetermined components of the input vector aredapithe cell outputs.
In general, different feature cells of an input array wilteese different activities.
The input cells are accessed in the same way as all other cells

Due to the recurrent network connectivity, inputs can oatwamy layer. Signal-
like inputs, such as images, are presented at the lowerd@je¢he pyramid, while
higher-level feature cells can be clamped to abstract festsuch as class indica-
tors.

Network Output. Analogously, any feature cell can serve as a network output.
Outputs are not treated differently during the update ofvoet activities. In par-
ticular, their activity is fed back into the network and irdhces other feature cells
and hence the output activities at later instances of tinndp@ cells play a special
role for supervised learning when predetermined compa&d target vector are
compared to the activity of output units.

Feature cells which are neither input nor output play the afl hidden pro-
cessing elements. They maintain intermediate represemsatnd mediate between
inputs and outputs.

Border Handling. The computation of the source hypercolumn’s address may
yield positions that are outside the feature arrays. To teeskandling of such bor-
der effects, the arrays are framed with a border, such thategdhts have a source
that is either a valid feature cell or part of the frame. Theévdyg of frame cells is
determined after all feature cells of its feature array Hzaen computed. Different
update modes are implemented. The easiest mode is to seathe fo a constant
value, e.g. to zero. In this case, it must be ensured thatsuwniinuity is created
between the feature cells and the frame cells. Another camupdate mode is to set
the frame cell activities to copies of feature cell actesti For instance, the feature
cells can be copied such that cyclic wrap-around border iiond are achieved.
In this case, it must be ensured that no discontinuities rogetween the opposite
sides of the feature array. Other less common possibitifieerder updates are the
fade-out of activity with increasing distance from the teatcells or the copying
with reflection at the border. The frame cells are accesse¢ldeirsame way as all
other cells.
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4.2.4 Various Transfer Functions

Both the projection units and the output units of the basoressing element are
equipped with transfer functions;, and,;, respectively. These functions deter-
mine the interval of possible projection potentials and aefivities. They are also
the only source of nonlinearity in the Neural Abstractiomagid.

The simplest transfer function is the identitfi () = =. Itis used if no non-
linearity and no scaling is desired. Since it does not litsibutput values, the iden-
tity transfer function is frequently used for the projeatianits only. The choice of
#h, = fia reduces the basic processing element to a sipgfenit. In this case, the
weights of the individual projections are treated as if theyld contribute directly
to the weighted sum of the output unit.

Common choices for the output transfer functign are functions that limit the
activities to a finite interval. For instance, the functions

0 : z<—«

1
fat(@) = 3+ £ : —a<z<a and f4(z) = —H
Oi T >« 1+ePe
limit the outputs to the intervd0, 1] and the functions
-1 < —« 9
fonsat(z) = z —a<zr<a and fosig(r) = ——— —
Oi T >« Lte i

limit the outputs to the range-1, 1]. The graphs of these functions are drawn in
Figure 4.5. While the piecewise-linear saturation funwigs,; and fyn_sat have

a derivative of zero outside the intervate, o], the sigmoidal functiongs; and
fon_sig have a derivative that is nonzero everywhere. This propentyportant when
an error-signal must be backpropagated.

The use of such nonlinear functions is crucial for the siighbdf the network
dynamics. When the activity of a unit is driven towards sation, the effective gain
of the transfer function is reduced considerably. Thisdsthe explosion of activity
in the network.

75

f(x)
o

f(x)

.25

€Y (b)
Fig. 4.5. Saturating transfer functions: (a) limiting the activitito the interval0, 1] (fsat:
a =2; fig: B = 1); (b) limiting the activities td—1, 1] (fon_sat: @ = 2; fon_sig: B = 1).
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Fig. 4.6.Rectifying transfer functions: (a) without saturatiofi(a = 1; f«: 8 = 2); (b)
with saturation fp_st: @ = 2; fosig: 8 = 1).

Furthermore, nonlinear units are needed to make decisBetause the linear
combination of linear units yields a linear function of tmputs, decisions cannot
be made with linear units alone.

Another important class of transfer functions are the fg@atj functions, shown

in Figure 4.6(a):
fulz) = { and fu() = %

The linear threshold functiolfi. has derivative zero for negative arguments and a
constant derivative: for positive arguments. A smooth approximation to this func
tion is fy. Its derivative is nonzero everywhere. Such rectifyingclions are used
in models that resemble the nonnegative activity of spikiagrons. These models
assume that the growth of activity is limited by strong reeat inhibition and that
the functionally important nonlinearity of biological n@ms is not the saturation of
the firing rate for high input currents, but the muting of spikneurons when the
net input is inhibitory.

Another possibility to limit the growth of activity is to usaturation for high
input values. The saturating rectifying functions

fp_sat(fw = max(O, fpn_sat) and fp_sig(x) = maX(O, fpn-sig)

are shown in Figure 4.6(b). They limit their output valuegte intervall0, 1].

If not only half-rectification is desired, but the full engrgf a signal is required,

a combination of square transfer functifig,(z) = 2 for the projection units and
square rooffsq(z) = /x for the output unit can be used. These transfer functions
are illustrated in Figure 4.7(a). They are applied in someeatsof complex cells,
where two orthogonal orientation-sensitive projectiors eombined to a phase-
invariant orientation-sensitive response.

Another special-purpose pair of transfer functions, shawRigure 4.7(b), is
the logarithmic functionfi,s(z) = log(x), used in the projection units, followed
by an exponentiafe,,(x) = e” in the output unit. Here, it must be ensured that the
argument of the logarithm is positive. These transfer fiomstlead to the conversion
of the output unit into § [-unit that multiplies powers of the projection sums:

0 : =<0
ar : x>0
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Fig. 4.7.0ther transfer functions: (a) square and square root; {f@rithm and exponential.
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Such} []-units resemble the alternating operations of the sumproalgorithm
that implements Kalman filters, hidden Markov models antiFasirier analysis in
factor graphs [129]. For that reason, it is important thatiihsic processing element
can implement products of sums.

The transfer functions discussed above are not the onlylpeshoices. Never-
theless, they illustrate the possibilities to create repméations with different prop-
erties and network dynamics with different behavior in thehal Abstraction Pyra-
mid framework.

4.3 Example Networks

To illustrate the possible use of the Neural AbstractionalRyd architecture, the
following section presents some small example networkswieee designed manu-
ally.

4.3.1 Local Contrast Normalization

The first example focuses on horizontal and vertical intéwadn a hierarchy, but
does not yet increase the number of features when decrehasimgsolution. It im-
plements local contrast normalization in the Neural Alatics Pyramid.

Contrast normalization helps to overcome the limited dyicanange of linear
image sensors. Typical sensors measure the local inteviglityan accuracy of 8 bits
per pixel. This leads to problems if very high and very loweimdities are present
simultaneously in an image. Figure 4.8(a) shows such a @nodtic image, taken
with an entry-level digital still camera. The foregroundésy dark, while the back-
ground, visible through the window, is very bright. The lied dynamic range of
the camera impairs the visibility of details. Global normation of brightness does
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20x 15
40x30

80x60

160x120

(b)
Fig. 4.8.Local contrast normalization: (a) Gaussian pyramid; (b}tiscale result after 15
iterations of a Neural Abstraction Pyramid.

not help in such a situation, since it would either discar fitreground, or the
background details.

The human visual system easily handles such a difficultihigtgituation. One
of the reasons is the logarithmic scaling of perception ilesd by the Weber-
Fechner law [236, 64]R = k log(I/Iy), whereR is the perceived stimulus
strengthk is a constant] is the stimulus intensity, anfj is the perception thresh-
old. Such a logarithmic transfer function results in a higimaimic range of per-
ception. Intensities are not measured absolutely, buivelt their surround. This
is evident from the just-noticeable intensity differenté that is a multiple of the
surround intensity4% = k.

The human visual system uses local normalization of contoaachieve the
desired dynamic range [35]. Contrast is related to the geel@cal contrast. This
leads to facilitation effects. In regions where contrafivg local deviations are am-
plified. Another property produced by local contrast noiimalon is masking. The
threshold for contrast detection is increased in the Migioi high-contrast edges.

The result of such a local contrast normalization in mudtiptales with interac-
tions between the scales is shown in Figure 4.8(b). In thigyEenmuch more details
are visible. The 8-bit linear dynamic range is not wastecefresent the intensity
level, but it is used to represent local contrast. In the alimystem, such a nor-
malization not only increases information transfer, babateeps the firing rates of
neurons within a physiologically plausible range.
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Gl—l

Fig. 4.9.Local contrast normalization. View of layér= 2. The contrast’]li is divided by
the local contrast leved;. See text for a more detailed explanation.

The normalized image was computed by a Neural Abstractioar®ig that was
iterated 15 times. The network consists of five layers wiiohations from 32& 240
decreasing to 2015. It computes subsampled versidahs of the high-resolution
inputGy. In each layer, local contrast is detected using®enter-surround kernels
and divided by the smoothed squared contrast. The norrdal@&rast is combined
in a top-down fashion.

Figure 4.9 illustrates the iterative operation of a singéwork layer. In the
following, the templates used for the computation of théedént features are de-
scribed in detail. The feature arrays are updated in thedlistrder. If not stated
otherwise, the forward and lateral projections are diraect the backward projec-
tions are buffered. The projections have only one input ftbenoffset(0, 0) with
the weight one and are summed by the output unit. The units laear transfer
functions and zero bias. The activity of the cells is inidatl to zero. The intervals
indicate the scaling of activities used in the figure.

e G| —intensity[0, 1]

— contains shrunken versions of the original image
— has only a single forward projection that average® 2vindows ofG;_
e Ci* — contras{0, 1]

— contains local contrast, separated by sign

— lateral projection has center-surround input fréin(DoG 5x5 - 3x 3) and linear
threshold transfer functiofi;

— buffered lateral projection receives input from corresfing cell inDllL
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1 2 4 7 1
Fig. 4.10.Local contrast normalization. The high-resolution outRdtis shown over time.

e (); — squared contradt, 1]

— contains local energy
— two lateral projections fron®* with square transfer functiofiq,

¢ S — smoothed contragi, 2]

— lateral projection computes smoothed versiod)piising 5<5 binomial kernel
— forward projection froms;_; that averages:22 windows with total weigh©.5
— backward projection frons; ; that expands to22 cells ofS; with weight0.5
— bias weight of output unit.1

e Dif —normalized contrase, 0.5]

— lateral projection frornClﬂE and logarithmic transfer functiofiog
— lateral projection fromf; and logarithmic transfer functiofiog

— weight from smoothed contrast projection to output sum is

— output unit has exponential transfer function and compﬂ‘fé;ésl

e R; —result{—0.5,0.5]

— lateral projection subtract®,” from D;"
— backward projection froni; 1, that expands to 22 cells of R; with weight0.5

The central operation of the network is the divisi@ﬁ/Sl. It is implemented
with two features,D;,” and D;, since the arguments of the logarithmic transfer
function fi,; must be nonnegative. Another property of the implememntatidhat
the smoothed contrast lev§] is not only computed within a scale, but that contrast
present at adjacent scales incredged his extends the lateral competition to a com-
petition between scales and produces masking effects ia. S@mall high-contrast
details can mask larger-scale contrasts and vice versa.

Figure 4.10 displays the development of the high-resaldigputR, over time.
After the first iteration, only small-scale contrast is @neisin the output since the
backward projection is not effective yet. During the foliogiterations, larger-scale
contributions arrive. The change of the network’s actizigcreases monotonically
after the initial iterations. The network dynamics conergjuickly towards the
attractor shown in Figure 4.8(b).
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4.3.2 Binarization of Handwriting

In the previous example, we have seen that local interaatiarhierarchy can im-
plement globally interesting computations. However, gygresentational power of
the network used for contrast normalization was limited¢sithe constant number
of features per layer did not counteract the decrease olutgmotowards the top of
the pyramid.

In the second example network the number of features inesdag a factor of
two when going up one layer, as described in Section 4.1.&.ificreasing num-
ber of features is used to build a hierarchical model of haitihg for the task of
binarization. Figure 4.11 shows some examples from thesdatesed for the exper-
iments. The original images were extracted by Siemens A faoge-sized letters,
called flats, for the purpose of automated mail sorting. Té@ytain handwritten
German ZIP codes on a relatively dark background.

Binarization of these images is one step towards the retogmf the ZIP
codes. It assigns the pixels to one of two classes: the fouegror the background.
The goal is to assign the pixels belonging to the strokes efdigits to the fore-
ground class, and all other pixels to the background. Bra#inn discards variance
that is not relevant for recognition, such as brightnessefighting and the struc-
ture of the paper and keeps recognition-relevant aspeath, as the shape of the
lines. This task is non-trivial due to different sources ofse and variance. For in-
stance, the line thickness varies considerably becauseatit pens have been used
to write the digits. Next, the image contrast is sometimeshbecause of the dark-
ness of the paper and the weakness of the writing deviceh&umnbre, the structure
of the paper and background clutter are sources of noisallfsidue to the height
of the letters, some images have been captured outside oathera’s focal plane
which leads to unsharp line borders.

Histogram-based thresholding techniques are among thepuapslar binariza-
tion methods described in the literature [122]. They aspigals to the two classes
based on the intensity alone. Pixels that are darker thamealtbld are assigned
to the foreground and all other pixels to the backgroundsclHghe intensity his-
togram of the image is bimodal, the two peaks corresponcetfotfeground and the
background pixels. One can search for a local minimum in theched histogram
between the two peaks to determine a binarization threskajdre 4.11(b) shows
thresholded versions of the original images. It can be ofaskthat thresholding
breaks weak lines into pieces and also assigns small datkicta the foreground.

L eFeg A0 (0443 gazse

Fig. 4.11.ZIP code binarization dataset: (a) original grayscale iesagb) binarized using
thresholding.
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Fig. 4.12. ZIP code binarization — network architecture. The NeuraktAdction Pyra-
mid consists of three layers. The bottom layer represergsirttage in terms of fore-
ground/background features. The middle layer containsctigts for horizontal and vertical
step edges. In the top layer, the lines are represented bgcthvities of eight orientation
selective line features.

This behavior is not ideal for recognition. The structureligiits is altered consider-
ably by broken lines and additional foreground pixels map ahislead recognition
especially if they are close to the lines.

The reason for these binarization problems is the limitesl afscontext infor-
mation in the thresholding method. Only global context Wi intensity histogram
is used to determine the binarization threshold, but thalloontext of a pixel is
not considered for the binarization decision. In the follogy a Neural Abstraction
Pyramid is described that makes this decision based on tlaédontext. The idea
motivating the network’s construction is to detect the dimed use them to bias bi-
narization. A pixel belonging to a line should be assignethforeground class,
even if it is not much darker than its neighborhood. On theottand, dark pixels
should be assigned to the background if they are not suppbyte line.

The network’s architecture is sketched in Figure 4.12. tiststs of three layers
that represent the image at three levels of abstraction:

e Layer O contains the inputimage, two excitatory feature arraysriaresent the
foreground/background assignment, and one inhibitoryfearray that contains
the sums of the foreground and the background features.

e Layer 1 contains four feature arrays that represent horizontalventical step
edges. One inhibitory feature contains the sum of the edges.

e Layer 2 contains eight excitatory feature arrays that represeeslin different
orientations. Two inhibitory feature arrays compute thmswf the more hori-
zontal and the more vertical lines, respectively. One iitbiip feature array sums
lines of all orientations.
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I O O O «— framed input with mean 0.5

input: H4.osﬁ*1 .08

F O O O IateraIH.SS.*F + .14%%%1;

backward © ©© «— inverse of forward proj. fronEdges
input:m H4.03H*I +0.75

B Iateral <—.41'>«<B + .1oﬁ*sm

backwardm «— inverse of forward proj. fronEdges
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Fig. 4.13.ZIP code binarization — Layer O features. The image is represl in terms of
foreground ¢) and backgroundR) features. The activities of the feature arrays as well as
the potentials of the contributing projections are showre Weight-templates are scaled such
that the weight with the largest magnitude is drawn in blackavhite.

The resolution of the layers decreases from:226 to 120<48 to 60x 24 hy-
percolumns, as the image-patch corresponding to a singlerbglumn increases
from 1x1 to 2x2 to 4x4 pixels. All three layers are surrounded by a three-pixel
wide border that is updated using wrap-around copying. Téster functions of
all projection units are linear, as are the transfer fumgiof the inhibitory output
units. In contrast, the output units of the excitatory feasthave a transfer function
fosig (B = 2, see Section 4.2.4) that is zero for negative inputs ando@gpes one
for large inputs. Hence, inhibition grows faster than ext@in if the network’s ac-
tivity increases. All bias values in the network are zeral Hre projection weights
to the output units are one if not noted otherwise. Inputgutpns and forward
projections to excitatory features as well as projectianshibitory features are
computed with direct access to avoid unnecessary delaysrdlgprojections and
backward projections to excitatory features need buffaegss since they receive
input from features that are updated later.

The separation of excitatory and inhibitory features ferte network designer
to use specific excitatory and unspecific inhibitory prdfats. This, together with
the nonnegative transfer function of the excitatory outmits, makes the activity
of most feature arrays sparse. The design of the networkisexivity is motivated
by the Gestalt principles, discussed in Chapter 1. In padicthe principle of good
continuation plays an important role for grouping alignedtfires to objects. In the
following, the design of the individual layers is descritieanore detail.
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Layer 0: Foreground/Background. Figure 4.13 summarizes the templates used
for the processing elements of the pyramid’s bottom layatuies and shows the
stable response of the network to a test pattern consistithgee circles.

The input arrayl is set to a version of the input image that has been shifted in
intensity to make the mean value equal to 0.5. Furthermioegntage was reduced
in size by a factor of two if it did not fit into a 23288 window, and then smoothly
framed to match the array size of 2496.

The input projections to the forward featureand the backward feature have
a center-surround structure. They have been set to diffesdmetween833 and 7 7
binomial kernels. The central weight has an amplitudé.@$1 and the projections
have a DC part oft1.5. This is offset by a bias df.75 to the background input
projection. The foreground bias is set-t®.8, suppressing responses to intensities
that are slightly larger than average. Hence, the forwatemiils of the foreground
react best to a dark center that is darker than its neighloadrifa line), and the
forward potentials of the background react best to a brighter that is surrounded
by dark lines (a loop center).

Lateral projections to the two excitatory features haveextis excitatory and
an unspecific inhibitory part. Excitation comes from the33neighborhood of the
same feature and inhibition from ax5 window of the sumSgg of the two fea-
tures. The feature cells do not excite themselves but inttieimselves vigtr .
Hence, the lateral connectivity favors blob-like actiedtithat extend over multiple
neighboring pixels and suppresses isolated active cefis.ldteral excitation for
the background is stronger than the one for the foregrouhd.dpposite applies
to the inhibition. Thus, the lateral competition betweea tio features favors the
background. Initial foreground responses are removeckif Hre not supported by
neighboring foreground pixels or by edges detected fronetay

Top-down support comes from the backward projections whiehthe inverse
of excitatory forward projections to the edge-featureseyléxpand the edge repre-
sentation to the higher-resolution foreground/backgdoepresentation. Unspecific
backward inhibition comes from the sum of the ed§es

Layer 1: Edges. The middle layer of the binarization network is summarized i
Figure 4.14. Four features detect step eddggsresponds to the top edge of hori-
zontal lines and< to their bottom edge. The left and right edges of verticaddin
exciteE;, andEr.

The specific excitatory weights of thiex6 forward projections resemble the
oriented foreground/background double line that is charestic for step edges in
Layer 0. Unspecific forward inhibition comes fra$iz 5 weighted with a & 6 bino-
mial kernel. The forward projections have a bias weight 6f05 to prevent reaction
to spurious edges. The sum of the edge features is computgg.by

Lateral projections mediate cooperation between aligugg® of same or sim-
ilar orientations by %3 excitatory kernels and unspecific competition via»ab5
binomial kernel, folded withSg. Since edge cells do not excite themselves, they
must be supported by other edges or line features to sutvévedmpetition.
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The backward projections to the edge features expand teefdimtures from
Layer 2 using the inverse of their excitatory forward wegghinspecific backward
inhibition comes fromSy..

Layer 2: Lines. The top layer of the binarization network is illustrated iig+
ure 4.15. Eight excitatory featurds), L1, ..., L7 detect lines of different orienta-
tions. They receive 86 specific excitatory input from parallel oriented step exige
Unspecific forward inhibition weightSg with a 6x6 binomial kernel. The forward
projections have a bias weight 60).05 that prevents responses to spurious lines.

Using 3x 3 specific excitatory weights to aligned lines of same or lsingrien-
tations, line cells cooperate. Competition between lirsdLiees is mediated by two
inhibitory featuresSy andSy. They sum the more vertical and the more horizontal
lines, respectively, and inhibit them again. This congdtacrestricts competition
to lines of similar orientation. Since there is no competitbetween horizontal and
vertical lines, crossings of two such lines can be represknithout the need to
suppress one of them.
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Fig. 4.14.ZIP code binarization — Layer 1 features. The image is remtes in terms of
horizontal and vertical step edges.
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Fig. 4.15.ZIP code binarization — Layer 2 features. The image is remtes in terms of ori-
ented lines. The lateral competition via two inhibitorytig@s allows horizontal and vertical
lines to coexist at the same position. This is useful for #Er@sentation of line crossings.
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Network Dynamics. In the preceding figures, the steady-state response of the bi
narization network to a test pattern was shown. In contfagtjre 4.16 shows the
network activity over time when an example ZIP code imageres@nted at the
input array. One can see that the initial response of theifeatetectors after the
first iteration is relatively weak. In subsequent iterasigthe features cooperate and
compete with each other until the hierarchical represemaémains stable.

While the binarization of the lines and theirimmediate héigrhood is decided
quickly, the network needs some more iterations to decidelttations far-away
from the lines belong to the background. This is visible nebsérly in the lower
right corner of the image where non-uniform lighting crebdecontrast between the
dark paper and the added frame.

Figure 4.17 shows the stable foreground feature resportbe wifficult exam-
ples from Figure 4.11(a). Some additional input/outputnepkes of the network’s
operation are shown in Figure 4.18. One can see that the retsvable to solve
the binarization task much better than the thresholdindouktlt is able to assign
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Fig. 4.16.ZIP code binarization — activity over time. The initial resige to the image is
weak. Features on different hierarchical levels coopematecompete until a stable represen-
tation remains. Most difficult is the assignment of locasidar-away from the lines to the
background.
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10409 1802 (0943 90336

Fig. 4.17.ZIP code binarization — network output. The network’s stdioreground feature
responses to the examples from Figure 4.11(a) are shown.

L AVAS 59379 Jo43g o AasH

Fig. 4.18.ZIP code binarization — results. (a) network input; (b) Eabreground feature
response.

line pixels to the foreground, although they are not muckelathan their neighbor-
hood. Also, small clutter and serifs are removed from thedoound and assigned
to the background.

This kind of binarization improves the recognition of the®Ztode. In [24] |
showed that a similar network increases the acceptancefratéIP code recogni-
tion system significantly without decreasing its relialili

4.3.3 Activity-Driven Update

In Section 4.2.3 it was stated that the update of the celleérNteural Abstraction
Pyramid occurs in a predetermined order: layer by layer iateon-up manner and
group by group within a layer. The following experiment istigates the effects of
relaxing the constraint of a predetermined update order.

This is motivated by the work of Thorpe al.[226]. They found that the human
visual system is capable of rapid object categorizatiohiwil50ms. Thorpe and
Gautrais [227] proposed using a rank-order code, where @ne&umits at most one
spike to achieve such rapid feed-forward processing. Uirgframework, Van-
Rullenet al. [232] showed that contour integration is possible even wieurons
fire asynchronously at most one spike. Integration of sfimilless active neurons
is influenced by spikes emitted from more active neuronss ¢an facilitate or sup-
press the response to less salient stimuli.

The interpretation performance of the Neural Abstractigrafid depends on
the update order of its feature cells as Fig. 4.19 illussrating a simple example. It
shows how the activity in a one-dimensional feature arragligs in three different
update modes. The initial cell activities are set to the igtunulus, shown in the
front of the figure. It resembles a plateau that increasghtyfifrom the edges (0.5)
towards the middle (0.56). The successive iterations show the cell activities
develop over time under a dynamics described by:
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Activity
1

€Y (b (©
Fig. 4.19.Different update methods: (a) buffered, (b) unbufferejlativity-driven.
at_, +at. 1
al™ = max <O,min 1al + % 5| (4.10)

wheret* denotes the time the source activity was updated: eitheérdrptevious
stept or in the same stefr + 1). Neighboring cells are connected by excitatory
links and the activity is mapped 10, 1] using a negative bias and saturation. The
update modes differ in the handling of the activities of héigring cells.

o Buffered update is conservative. All cells of the array have to be computed in
time stept before the resulting activities can be used in gtep 1). This makes
the result independent of the update sequence within a tiepe All cells can be
computed in parallel since no dependencies exist. On thex bdnd, the buffered
dynamics is relatively slow because information travelszumtally with a speed
of only one cell per time step.

e Unbuffered update computes the cells in a predetermined order, here from left
to right. The resulting activity:! ™1 of a cell is used immediately to compute
the activityafrl of its right neighbor. The unbuffered dynamics convergesimu
faster since information travels the full array length frtaft to right within the
same time step. However, the information flow from right tfi le still slow
which results in an undesired asymmetric response of thersys

e Activity Driven Update uses the same unbuffered strategy to speed up conver-
gence. It prevents undesired asymmetric responses by gqékénupdate se-
quence dependent on the array activity. The cells are ugdatéhe order of
their activity from the last time step with the most activdl c@dated first. Fast
communication occurs now from the more active to the lesseagpiarts of the
cell array. Since the activities represent confidencesaitife presence in image
interpretation tasks, the image parts that are easy topirgeare updated first,
which in turn biases and speeds up the interpretation of thre mmbiguous im-
age parts. If multiple interpretations compete, the onéfitst receives support
from the context is likely to win the competition.

Activity-driven update also speeds up computation becae#ieactivities that
become zero will not get active again and hence do not neezlupdiated any more.
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If the representations are sparse, the vast majority o eell become inactive
quickly. The network design must ensure that cells becometive only if they are
not needed for further computation.

Ordered update does not require global communication.téfgiate-and-fire
neurons are used as processing elements, those cellsdbatera salient stimulus
that fits their receptive field will fire earlier than cells tiget a suboptimal stimulus.
The firing cells trigger their neighbors via excitatory Il the neighboring cells
are already close enough to the firing threshold. This leadstavalanche effect
that produces a fast traveling wave of activity. The wavectsvaly propagated un-
til it either collides with a wave from the opposite directior it reaches locations
that have too low activity to be triggered. If the cells happr@ximately the same
refractory time, all cells that participated in the wavelwinchronously become
sensitized for a new trigger event again.

The ordered update of cells effectively converts the resutateral connectivity
into a feed-forward network where the graph structure dépem the relative ac-
tivities. In [23] | applied the activity-driven update to ahrization network similar
to the one described in the previous section. | demonstthtgdinarization using
activity-driven update improved ZIP code recognition periance as compared to
the buffered update mode.

Although the activity-driven update offers some advansageer buffered up-
date, it will not be used in the remainder of the thesis. Thesoa for that deci-
sion are the computational costs involved with implememtire activity-driven up-
date on a serial machine. However, if the basic processergeits were chosen to
be integrate-and-fire neurons implemented with an evesegdaimulator, activity-
driven update would occur naturally. In this case, the dndewould be done using
a priority queue for the events.

4.3.4 Invariant Feature Extraction

The last example of this chapter demonstrates that invaigature extraction is

possible in the Neural Abstraction Pyramid architectuneSkction 2.1, we saw
that the ventral stream of the human visual system extreetsifes which are in-

creasingly invariant to object transformations. One eXearnpthe supporting neu-

robiological evidence was published by kb al. [108]. They found invariance of

neural responses to object size and position in the infenpteal cortex (IT). Such

invariance is useful for object recognition since transfations, such as translation,
rotation and scaling, do not alter the identity of an object.

However, perfect invariance to such transformation is resirdble. If rotation
invariance were perfect, the digits 6 and 9 could not berdistished and if scale in-
variance were perfect, a model car could not be distingdi§toen its full-size orig-
inal. There is neurobiological evidence that only limiteddriance is implemented
only for familiar stimuli in the human visual system. For exale, Logothetiset
al. [146] found view-tuned cells in area IT that responded to plex stimuli and
showed limited invariance to several transformations.iNazd O’Regan [165]
and Dill and Fahle [53] found evidence against invarianecgdodom dot patterns.
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Learning at one position did not help recognition at anofiesition. These results
support the view that feature detectors are pooled in theal/system to produce
invariance. This invariance does not transfer to unfampiatterns for which no
specialized feature detectors exist.

Although the human visual system shows invariance to sktraressformations,
in the following, only invariance to translations is dissead to simplify the discus-
sion. Generalization to other transformations should tzgttforward.

When implementing invariance to retinal position of a stiasy one must not
forget that the retinal stimulus position depends on eyeam®nts. Saccades and
smooth pursuit movements are able to center the object efestt at the fovea.
Thus, the neural circuitry has only to implement limitechskational invariance for
the recognition of objects that are away from the fixatiompoi

Inthe Neural Abstraction Pyramid architecture, the degf@®ssible invariance
to translations increases with height. The reason for thiké fixed topographical
mapping of positions between the representations at diftehierarchical levels.
Assuming that the resolution of the layers decreases bytarfattwo for each step
in height, the following behavior can be observed: a shifthef original image by
eight pixels in Layer O corresponds to a shift of Layer 1 repreations by four
cells. Representations in Layer 2 and Layer 3 are shifteadvbycells and one cell,
respectively. Higher-level representations move onlyrbgtions of the cell size.

Total invariance to translations is only possible at thedbghe pyramid, where
the resolution drops to a single hypercolumn. For example average intensity
of an image could be represented there, as it is totally iamato translation. This
feature is not computable in a single step using local caioreonly. However, it
can be computed by a hierarchy of local averaging and sullsagrgperations, as
in image pyramids (see Section 3.1.1).

The reduction in resolution alone does not ensure invagidadinear trans-
formations, because the higher-level representation rhagge significantly when
moved by sub-cell amounts. This aliasing effect is one ofntost serious limi-
tations of orthogonal wavelet representations. The afisampling of their basis
functions causes a redistribution of the signal's energyben the levels of the
representation. To avoid this effect, Simoncetlial. [214] introduced the concept
of shiftability. Intermediate coefficients of a shiftabtatisformation can be written
as a weighted sum of the transform’s coefficients, computedfexed number of
positions only. As a consequence, the sum of the energy afaiicients does not
change when the signal is shifted. The price one must payhitiability is gener-
ally an increase of the sampling rate as determined by theuisiqgriterion [168],
e.g. to twice the critical rate.

The discrete Fourier transformation, discussed in Secdidnl, is shiftable
by design, but computes global features. When its sinukbikis functions are
weighted with Gaussian envelopes, Gabor functions areyoegtithat are optimally
localized in space and in frequency. For the extraction df-givariant features, |
use a discrete approximation to Gabor filters.
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Table 4.2.Invariant feature extraction — filter design. Two sinusdiust have a wavelength
of 4 and a phase shift of 1 are weighted with a binomial kerfiédregth 8. To make the DC
response of the filters zere: of the binomial is subtracted.

Offsetq H -3 ‘ -2 ‘ -1 ‘ 0 H 1 ‘ 2 ‘ 3 ‘ 4
Binomial Bg 1 7 21 35 35 21 7 1
Qs = sin(L4) 1 0 -1 0 1 0 -1 0
Qc = cos(Li) 0 -1 0 1 0 -1 0 1
Rs = QsBs 1 0 —21 0 35 0 -7 0
Re = QcBs 0 -7 0 35 0 —21 0 1
Ss = Rs — %Bs 0.9375 [—0.4375|—22.3125(—2.1875]| 32.8125| —1.3125 |—7.4375|—0.0625
Sc = Re — %Bg —0.0625(—7.4375| —1.3125 | 32.8125||—2.1875|—22.3125|—0.4375| 0.9375

Yo

Fig. 4.20.Invariant feature extraction — basic decomposition. Theingpone-dimensional
signal I is folded with the filter mask%Ss and 3%SC and subsampled to produce the
responsessin andScos, respectively. The local energy of these high-frequensieemputed
by adding the squared responses and taking the square tustlotal energyCy has a
relatively low spatial frequency. Foldingwith ﬁBg and subsampling yields a sign@k,

of low spatial frequency that represents the low frequenofe/. Both Cy andC can be
decomposed recursively.

Table 4.2 summarizes the filter design. Sinusoids with vemgth 4 and a phase
shift of 1 cell @s = sin(Zi) andQ¢ = cos(Z 1)) are weighted with a binomial
kernel Bg of length 8. This yields symmetric filter®s and R¢ that have a coeffi-
cient sum of 8. To make the DC response of the filters z%.ng is subtracted from
the filters. The resulting filterSg and.S¢ are scaled byg% and used as weights for
simple-cell like projection unit$;,, andS..s. Figure 4.20 shows the filters as well
as the responses of the projections to a moving input sifjimeits upper left part.

The vertical one-dimensional input sigrnfalvas produced by cyclically shifting
a 64 pixel wide signal with a speed of one pixel per step, fodld by subsampling
to 16 pixels. The horizontal axis is used for the time dimensi he 64 steps shown
correspond to a complete motion cycle. The 16 input cell§raraed at the bottom
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—_——— —

Layer 0 (16x1) Layer 1 (8x2) Layer 2 (4x4) Layer 3 (2x8)
Fig. 4.21.Invariant feature extraction — hierarchical decompositidwo moving signals
are transformed hierarchically by recursive applicatibthe basic decomposition (see Fig-
ure 4.20). With height the number of features and their iavexe to translation increases.
The different input patterns yield different invariant repentations.

and at the top by 16 border cells, updated using wrap-aroopgireg of activities.
All other feature arrays of the figure have a vertical resotubf eight cells, framed
by an eight cell wide border. The filter responggs, andS..s are squared, added
together, and passed through the square root transferidanat the output unit
Cpy. Its response represents the local energy of the high-émxyucomponents of
1. This feature is complemented by a featdrg, representing the low-frequency
components of . It is produced by setting the projection weightsgf to the low-
pass filterl—éng, as illustrated in the lower part of the figure.

Both the high-frequency energyy and the low frequency patt;, lack high
frequencies. They move with half the speed/cdind intermediate responses can
be interpolated easily from the responses of the 8 cells @ibl@iin the diagonal
line structure. The one-dimensional invariant featureaetion can be generalized
to two dimensions in the same way as two-dimensional wavelethe 2D DFT are
constructed.

As shown in Figure 4.21, the basic decomposition into twaiiant features can
be applied recursively. This yields a sequence of repratens with decreasing
resolutions and increasing invariance to translations.figure shows the response
of the invariance hierarchy to two different moving inputtpans. The eight Layer 3
responses of length two are almost constant as the patteresmout change con-
siderably between patterns. This shows that the high-featlres not only have
a high degree of invariance to translations, but also pedsigth representational
power.
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4.4 Conclusions

The previous chapter introduced the Neural Abstractiorafyd architecture and
presented some simple examples for its use. The examplbighited different
features of the architecture, like its ability to implemémtal normalization, the
cooperation and competition of features on different higrizal levels, the effects
of the update order, and the extraction of invariant feature

All these examples were designed manually. No learning wad 8o far. The
following two chapters discuss, how unsupervised and stiges learning tech-
nigues can be applied in the Neural Abstraction Pyramid éwsark.



5. Unsupervised Learning

The example networks presented so far were designed manadiighlight dif-
ferent features of the Neural Abstraction Pyramid architec While the manually
designed networks are relatively easy to interpret, thidityis limited by the low
network complexity. Only relatively few features can beigeed manually. If mul-
tiple layers of abstraction are needed, the design contglexplodes with height,
as the number of different feature arrays and the number tefnpial weights per
feature increase exponentially.

Hence, there is no choice but to use machine learning teghgitp automati-
cally design the network’s connectivity from a dataset ttesticribes the application
at hand. Generally, three types of machine learning arandisished [159]:

e Supervised Learning: A sequence of input/output paifg1,y1), (x2,y2), .-,
(xn,yn~) is given to the learning machine. Its goal is to produce theecd
outputy; if it is confronted with a new inpux;.

e Unsupervised Learning: The machine sees only the input sequexgcexs, . . .,
xy. Its goal is to build representations that can be used feomag, decision
making, predictions, communication, and other tasks.

e Reinforcement Learning: The learning machine is now a situated agent that can
produce actionsi, as, . . ., ay Which affect the state of the world around it and
hence the later inputs. The agent receives rewards, s, ..., ry and has the
goal to maximize them in the long term.

Reinforcement learning [223] requires an agent actingiwétworld. It is much
more general than the other two types of learning but cammapiplied to a percep-
tion network alone. If the Neural Abstraction Pyramid wecenplemented by an
inverse pyramidal network that expands abstract decis@mosncrete actions, rein-
forcement learning would be a promising technique for trejrthat agent.

Supervised learning is covered in the next chapter. Theiretarof this chap-
ter discusses how unsupervised learning techniques capiediin the Neural
Abstraction Pyramid framework. The chapter is organizetbdsws: In the next
section, | briefly discuss several technigues for unsupedviearning. Then, an al-
gorithm for learning a hierarchy of sparse features in tharhlleAbstraction Pyra-
mid is proposed. In Section 5.3 this algorithm is applied tataset of handwritten
digits. The emerging features are used as input for a sugehdigit classifier in
Section 5.4.
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5.1 Introduction

Unsupervised learning [16] techniques are applicable &kapervised learning is
not: if desired outputs for the learning machine are unatsgl, one can still try to
discover the structure underlying a dataset. Since datdeatways interpreted in
many different ways, some bias is heeded to determine wisiglcs of the input’s
structure should be captured in the output of the learninghine.

In general, unsupervised learning has the goal of findinfulisepresentations
of the given data, for example, by:

— grouping examples to clusters,

— reduction of data dimensionality,

— discovering hidden causes of the data, or
— modeling the data density.

If unsupervised learning is successful, the produced sepitations can be ap-
plied to tasks, such as data compression, outlier deteciassification or to make
other learning tasks easier.

The last application refers to the preprocessing step ¢épatecognition sys-
tems. One of the most important problems in pattern recimgniss the extraction of
meaningful features from input signals. To compute synthafiormation, such as
the class of an observed object, it is often useful to aggesgwracteristic aspects
of the observation into a feature vector that is presenteddiassification system.
This generally reduces the dimensionality of the data aailitites generalization
by discarding aspects of the signal that correspond toveemnot relevant for clas-
sification or to noise.

A variety of feature extraction methods exist, e.g., for greblem of hand-
written digit recognition [242]. Some methods use the ndized pixel image as
input for a powerful statistical or neural classifier [22}th@rs use features having
a medium degree of abstraction, such as moments [204] ofidesfs of the KL-
transformation [86]. The most abstract features are ebetddny methods that use the
digit's structure for recognition [21]. All these featunesually need specific tuning
towards the task at hand. This makes the transfer to othdicappns difficult. For
this reason, it would be desirable to construct abstradtifea from a dataset of
example images by means of unsupervised learning techsique

The Kalman filter and non-negative matrix factorizationamsupervised learn-
ing methods that have already been discussed in Chapter 3.

Clustering. One of the best known methods of unsupervised learning idsthe
means algorithm [145] for clustering of input vectors. Italso known as LBG
method [144] for vector quantization. The algorithm asssithat the data vectoks
can be grouped int& clusters and replaced by the mean of the assigned cluster
¢; without much loss of information. Th&E -means algorithm optimizes iteratively
a squared error criterion:

N

Z ”XZ — Me;

i=1

2, (5.1)
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The centroidg:; are initialized arbitrarily, e.g. to randomly chosen exéspEach
iteration consists of two steps:

o Stepl: Assign the data vectors to the closest centepig: argmin ||x; — ;|-
1<j<K

o Step2: Move the centroids to the mean of the assigned example= (x;)

ci=3"

In a probabilistic framework, theé<{-means algorithm is a special case of the
expectation-maximization (EM) algorithm [52] applied toxtare density estima-
tion. Since each step decreases the quantization errbthatissignment does not
change any more, th& -means algorithm finds a local minimum of the error func-
tion 5.1. The quality of the approximation depends on the lmemof centroids and
on the initialization. One can start with a low number of thus that are split re-
cursively to avoid initialization problems and to determihe number of clusters
needed.

Competitive Learning. The algorithm described above can be viewed as compe-
tition between the centroids to respond to the data vec®insilar competition is
achieved in winner-takes-all (WTA) networks. These nenedvorks consist of an
input layer and a layer of laterally connected processiegiehts which assess the
similarity between the current data vecigrand their weight vectow ;. The assess-
ment can be done using a distance functigr;, w;), as in self organizing maps
(SOM) [126], or by computing the scalar produgt w ;. If the weight vectors and
the inputs are normalized, the scalar product equals therecofthe angle spanned
by both vectors.

The unit with the smallest distance or the largest scaladybis called the
winner. Its output is set to one, while the outputs of all othgts are setto zero. This
operation requires global information about the simiiesit It can be implemented
by lateral inhibition.

Competitive learning [201] in WTA networks can be achievgdapting only
the weight vectow,, of the winning unitk. One possibility is to add a fraction of
the current data vectordw;, = nx;, wheren is a learning rate that decreases over
time, followed by a renormalization of the weight lengthj, «— wy,/||wy]|. This
leads to a redistribution of weight strengths from the wesglonnecting to inactive
input components to the weights connecting to active ingdénce, the unit will
respond more strongly if the same input is presented agamwiight vectors of
the units loosing the competition remain unchanged.

It is also possible to use the difference between the weigbtiov and the input
to make the weights similar to the inputdw;, = n(x; — wy). If the network has
a topological structure, such as in the SOM, neighborintsuran be moved in the
same direction to produce a topological feature map.

Principal Component Analysis. One of the key ingredients of unsupervised learn-
ing methods are Hebbian [91] weight updatdsy; = nx;y, wherez; is the activity

of the presynaptic unit ang = >, w;z; = w - x is the activity of the postsy-
naptic unit. The Hebbian learning rule can be stated infélynees: ‘Neurons that
fire together — wire together.’ If the inputs are zero meargfitures the correlations



100 5. Unsupervised Learning

C;; = (z;z;) between the input unitgAw) = nCw. The correlation matri can
be viewed as linear transformation of the weight vectorhimlong run, the eigen-
vectore with the largest eigenvaluewill dominate the weight chang€e = JXe.

If the Hebbian rule is combined with normalization, the wegydevelop towards
the principal component of the data.

Generic Hebbian learning is unstable since the weights gvitkwout limits. To
avoid this effect, Oja [169] proposed adding a weight-deéeay to the update rule:
Aw; = ny(z; — yw;). It implements a self-normalization of the weight vector.
The unit's outputy represents the orthogonal projection of a data vectonto the
weight vectorw. Its variance(y?) is maximized by the learning rule.

If more than the first principal component is desired, theonstructionr =
ywT = wxw’ of the data vector that is based grcan be subtracted from to
produce new examples = x — r, which can be analyzed by a second unit to
extract the second principal component. Another possgiifito extend the learn-

ing rule for a multi-unit network taAw,. = ny, (x — ng ysws) as proposed

by Sanger [203]. The principal component analysis (PCAyogt decorrelates its
outputsy;, and hence removes linear dependencies from the input. Betlae num-
ber of output units can be chosen smaller than the numbepat somponents, the
linear PCA transformation can be used to reduce the dimealip of the data with
minimal loss of variance.

Independent Component Analysis.Another unsupervised learning technique is
called independent component analysis (ICA) [115, 26]gdtal is to find a linear
transformation of the data vectoxsthat produces a representatipn= Wx with
components which are not only uncorrelated, but statiticadependent. This is
motivated by the assumption that the data vectors have heguged as a linear
mixture x = As of independent sources. If this is the case, ICA can be used
to separate the sources by estimating an unmixing ma&fix= A~!, a problem
known as blind source separation.

ICA is applicable if at most one of the sources has a Gaussstibdition. Prin-
cipal component analysis and whitening are usually reduasepreprocessing steps
to remove second order correlations from the data vectbis.discards information
about sign and amplitude of the sources.

Some ICA methods use the fact that if two souregsndss are independent,
then any nonlinear transformatiopés;) and h(sz) are uncorrelated. Thus, they
perform nonlinear decorrelation to separate the sources.

According to the central limit theorem, sums of nongaussemdom vari-
ables are closer to a Gaussian than the original ones. Thised in ICA meth-
ods that maximize the non-gaussianity of the output compisn&o measure non-
gaussianity, cumulants of higher-order moments, sucheag&uhosis, the normal-
ized form of the fourth central moment measuring the pea#sslof a distribution,
are used.

Because the estimation principles discussed above usqureratic functions,
the computations needed usually cannot be expressed usiptedinear algebra.
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Numerical optimization methods, e.g. gradient descerti@fiked-point algorithm
called FastICA [106], are employed to estimdié

Other Unsupervised Learning Technigues.Because the goals of unsupervised
learning can vary greatly, there exist many different uesuised learning tech-
nigues that have not been discussed so far.

One example is slow feature analysis (SFA), recently pregdry Wiskott and
Sejnowski [244]. This method focuses on finding representathat change only
slowly as input examples undergo a transformation. SFA mapahe input sig-
nal non-linearly and applies PCA to this expanded signaliemtime derivative.
The components with the lowest variance are selected asfslanures. Tempo-
ral smoothing of the network’s output is also the basis ofrtteghod proposed by
Foldiak [69] for the learning of invariant features.

Another example of unsupervised techniques is the leawfisgarse features.
Sparse representations can be viewed as generalizatiba todal representations
generated by WTA networks. While in local representatiotac#dy one unit is ac-
tive, in sparse representations multiple units can be @chut the ratio between
the active and the inactive units is low. This increases épeasentational power
of the code, facilitates generalization, allows for coléinference, increases the
capacity of associative memories, implements fault toleea and allows for the
simultaneous representation of multiple items by supétipof individual encod-
ings [70]. There is substantial evidence that the humaravsgstem utilizes sparse
coding to represent properties of visual scenes [215].

A simple local unsupervised algorithm for learning suchrespntations in a
nonlinear neural network was proposed by Foldiak [68].sks1Hebbian forward
connections to detect non-accidental features, an a@siptigshold to keep the ac-
tivity ratio low, and anti-Hebbian decorrelating lateralnmections to keep redun-
dancy low. It produces codes with few active units for fragfygatterns, while less
probable patterns are encoded using a higher number oéasntits.

Other algorithms for the learning of sparse features adjoshection weights
by explicitly maximizing measures of sparseness, sucalggiroducing V1 sim-
ple cell-like features [170]. This class of algorithms ies#ly related to ICA since
sparse distributions are also non-Gaussian.

Beyond sparseness, another interesting property of aseqtagion is the inter-
pretability of encodings. While a randomly chosen codewrardld only signal the
presence of an item, Barlow [15] suggested that the cortghmmise sparse codes
where the individual units signal the presence of meanirfghtures in the input.
In this scheme, items are encoded by combinations of feature

In the following section, | introduce an unsupervised l@agnalgorithm for
the forward projections of the Neural Abstraction Pyrantiids based on Hebbian
weight updates and lateral competition and yields a segueitmore and more ab-
stract representations. With increasing height, the ap@t$olution of feature arrays
decreases, feature diversity increases and the repréeaathecome increasingly
sparse.
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5.2 Learning a Hierarchy of Sparse Features

In order to make the Neural Abstraction Pyramid approacimiagie interpretation
work, a sequence of increasingly abstract models of thengiatémage content is
needed. In the last chapter, such models were designed tyahu&ection 4.3.2,
for instance, the Gestalt approach was used to construghtvegmplates for the
extraction of foreground/background features, step edges oriented lines. The
feature cells in that network cooperated and competed t@eelinarization of
handwritten digits.

In the previous section, several unsupervised learningpodstwere discussed.
They produced new representations from a set of data vedtbesrepresentations
found by the different methods have various propertiesshatetimes are contra-
dictory. For example, while PCA tries to preserve variari8EA focuses on the
least variant features. All methods discussed so far aggesstep transformations.
In contrast, the Neural Abstraction Pyramid representéntiagie content on differ-
ent levels of abstraction. Hence, a sequence of transf@nsat needed to extract
features which become increasingly abstract.

One way to produce such features is by repeated applicatimmensupervised
learning technique. This imposes a constraint on the lagrmethod: Its output
must be admissible as input for the next stage of learningncEleunsupervised
learning methods that drastically change the nature ofépeesentation cannot be
used for this task. Another constraint is that featuresiwigHevel should be treated
equally. This excludes methods which produce an orderadeseg of features.

In the following, | present an unsupervised learning metthad produces rep-
resentations with the following desired properties:

— CompletenessAll salient features of the input image should be represknte

— SparsenessThe value of a feature should be zero at most positions arfddiig
only a few positions.

— Fairness:All feature arrays of a layer should contribute approxiryaegjually
to the representation.

The proposed method is based on Hebbian weight updatestenal keompeti-
tion. It can be applied repeatedly to learn a hierarchy ofspteatures.

Training starts at Layer 1 of the pyramid that analyzes swialtlows of Layer O
representations. It proceeds upwards from layer to laysindJthe topmost repre-
sentation on layefl — 1) as input, it learns weight templates for the forward projec-
tions of feature cells that reside on layeSince the number of layers is logarithmic
in the image size, only a few steps are needed to train theedmérarchy.

5.2.1 Network Architecture

Figure 5.1 illustrates the architecture of the network ikaised for the unsuper-
vised learning of a hierarchy of sparse features. It is a AleAbstraction Pyramid
(compare to Chapter 4) with six layers. Each layeonsists of4 - 2! excitatory

feature arrays and a feature sum array. All but the bottoerlalgo contain an array
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Fig. 5.1.Learning a hierarchy of sparse features — network architecThe Neural Abstrac-
tion Pyramid consists of six layers. Only forward projensare used. Excitation is specific
while unspecific inhibition is mediated by the subsampledatimed feature sums.

that represents the subsampled sum of the features in teedajow. This feature
is inhibitory.

Patterns are presented to the input feature array locatiéekibottom layer of
the network. The input is analyzed by four excitatory featarays of Layer O that
compute center-surround features. They each have a satghall projection with
direct access to the input array. The weights of these giojechave a difference-
of-Gaussian structure with two different scales and twaptés. Fine and coarse
foreground and background features are detected. Thecfiorjaunit has a linear
transfer function and contributes with weight one to thepatitunit which has a
saturating rectifying transfer functiofy .. (¢« = 1, see Section 4.2.4) that limits
the activities to the intervgD, 1]. This transfer function is also used for the output
units of the excitatory feature cells in the higher layers.

The feature sung; has only a single lateral projection with direct access o al
excitatory features of a layer. It weights the 3 neighborhood of its hypercolumn
with a binomial kernel that is scaled with a gain factor. Tlangdecreases with
height, such that the central weight decreases from 0.1R&yer 0 to 0.015625 in
Layer 5. Both the transfer function of the projection unitiahe one of its output
unit are linear. On the next higher layer the inhibitory teatarrayS; computes the
average of a 22 window of S;.

The basic processing elements used for the excitatoryriessain Layer 1 to
Layer 5 have two projections. One is the specific excitatorwérd projection that
directly accesses overlapping4 windows of all excitatory feature arrays in the
layer below. The other is the unspecific inhibitory projentthat accesses the sub-
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sampled feature suis; with weight—1. The transfer functions of both projections
are linear.

In the following, the weight from the specific excitatory Ection to the output
unit of featurekl is called&y;, and the weight from the inhibitory projection is called
7. Both gain factors determine, how specific a feature cellndct to stimuli. If
the excitation is large, compared to the inhibition, thd medcts unspecifically to
many stimuli that partially match its excitatory projecticOn the other hand, if
inhibition is large the cell is sharply tuned to the stimdiat exactly match the
specific weights of its excitatory projection.

5.2.2 Initialization

The weightsw?; of the excitatory projections are initialized unspecifigal.arger
positive weights are used in the center and weaker weigbtsised towards the
periphery of the receptive field window. The weights have radoam component
and are normalized to a sum of one. This normalization of teaitatory weight
strength is maintained during learning. The excitatoryghts are not allowed to
become negative.

The excitatory gairfy,; is initialized to 2.0, while the inhibitory gaif; is ini-
tialized to zero. Hence, initially the excitatory featuvedi react very unspecific to
all stimuli present on the lower layer.

The bias weights of all projection units and output unitsseeto zero and not
changed during learning.

5.2.3 Hebbian Weight Update

A combination of winner-takes-all learning and Hebbiangtupdates [91] is used
to make the excitatory weights specific. The idea is to chémgeveight template of
the locally most active feature cell such that it becomesaspecific to the current
input. This means it will react more strongly to the same stira and react less
strongly to other stimuli.

For each training step, an image is chosen randomly fromateesdt. It is loaded
into the input feature array at bottom layer of the pyramidj &he activities of all
feature cells are computed in the appropriate order.

The following learning rules are applied only at positiorteane the subsampled
feature sunﬁ(l,l) of the inputs and the smoothed sum of the outpltre nonzero.
This avoids learning when there is nothing to learn.

Furthermore, the subsampled input S@Y@LI) must have at most two larger
values in its 8-neighborhood. This focuses the featureegpand mostly to local
maxima and ridges of the input sum.

For the hypercolumn@, j) of layer! meeting the above criteria, the most active
featureknax and the featuré... with the second highest activity are determined.
The gth weightw}? ; of the excitatory projectiop of the winning featurémay is
changed as follows:
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pq _
Awy ' = Gin - Gout, (5.2)
H . _ pq pq .
W|th Ain = H(Ikmaxl’ kaaxl) . G/L*J*k*l’ﬂ
Qout =  Qijkpal — Aijkeecl-

A weight is increased by an amount that is proportional taptteeluct of the scaled
input activity a;, and the amount,,; by which the activity of the winning feature
cell exceeds the one of the second best feature. The use difteence of the
two most active features instead of the cell activity hasadelating effect on the
features. They are forced to respond to different stimubwtthe address*j*k*1*
of the source feature cell is determined is explained iniGedL2.2.

Because more example windows are available to determirnewss-layer fea-
tures than for the higher-layer ones, the learning raiecreases with height, e.g.
m = 0.001 K, whereK] is the number of excitatory features in layer

The scaling factof{(I;? ;,J;? ;) used for the input activity depends on the
offset of a weight relative to the positiqf(y;- (i), Y~ (j)) in the source layel* =
(I — 1) that corresponds to the positidf j) in layer!. H is one in the center of
the window and descends to zero towards the periphery. Tightireg enforces a
centered response of the feature cells. This is done benanseentered stimuli can
be represented by neighboring feature cells.

The Hebbian term (5.2) makes the excitatory weights laffeprevent unlim-
ited weight growth, the sum of the excitatory weights is kafpa value of one by
scaling down all weights by a common factor. The net effethefnormalized Heb-
bian update is that the weights receiving strong input ateeesed and the other
weights are decreased.

5.2.4 Competition

The normalization of the sum of the weights of excitatoryj@getions, described
above, is a form of competition. The weights compete to weceilarge portion of
the projection’s constant weight sum.

In addition, competition between th€; excitatory features of layéris needed
to achieve the desired properties for the produced reptats@m Care must be taken
that a learning rule enforcing one constraint does not fiaterwith another rule
enforcing a different constraint.

To fulfill the fairness constraint, the winning frequencyatiftemplates should
be about the same. In order to achieve this, a feature’sitohjbgain Zy; is in-
creased each time it wins the competition; otherwise, iteisrdased. This makes
features whose winning frequency is above average lesseamntid more specific.
Consequently, these features will not win too frequentlhia future. On the other
hand, features that win less often become more active asdgspexific and there-
fore now win more often. The change is done by adding a smalsl;ttAflf to
711, such that the net effect for a feature that has an averagangiirequency is
zero:

Nf k= Fkmax [winning]

A =
kl *ﬁ‘_ﬁ ik # kmax  [notwinning]

(5.3)
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wherer; is a constant.

To achieve a complete representation, the features aredéocreact to all sig-
nificant input stimuli by constraining the smoothed stipof the features in layer
to be equal to the subsampled sy of the input features from layet — 1):

Ne A
A = KLZ aijkt (Sija—1) — Sijt), (5.4)
A = -af

wheren, is a constant. If the activity of the features is too low, tikei@tory gains
of the active features are increased, and they are distediat the same time. The
opposite behavior applies when the features are too active.

To enforce sparseness, the activity of a winning feature tmusade large, e.g.
toV =0.75:

Es __ ns(v - aijkmaxl) k= kmax [Winning]
A = { 0 : k#kmax [notwinning] ’ (5.5)

wheren; is a constant. If the activity of the winner is too small, ilciatory gain
is increased; otherwise, it is decreased.

If adding A@f and AZf to Z;; makes the inhibitory gain negative, its weight is
added tay,;, andZy; is set to zero. Vice versa, {f; should become negative from
addingAZs and A%} itis set to zero, and its weight is addedZg.

The efficacy of the constraint enforcing rules, describexvabcan be controlled
by the learning constants. One possible choice couldpe: 7. = n, = 0.1;. The
rules are designed such that their net effect goes to zdre Iearned representation
has the desired properties. Then the templates describengdmputation of the
features become stable, and the training can be stopped.

The number of training images needed to determine the weigfithe weight
templates for a layer increases with the height of that layece the number of
examples per image decreases and the number of weights/peiriareases.

Because the emerging representations are sparse, mo& wetbhts will be
close to zero after training and can be pruned away with@mifstant loss. This
speeds up the computation and saves memory.

5.3 Learning Hierarchical Digit Features

The properties of the described unsupervised learningigigo can be illustrated
by applying it to a dataset of handwritten digits. Here, @igire used which have
been extracted by Siemens AG from German ZIP codes writtdarga-size letters.

The available examples are partitioned as follows: 44,68@Rsdconstitute the
training set (TRN), 5,379 digits are available for testihg performance of a recog-
nition system and to stop training (TST), and 6,313 digitsused for final valida-
tion (VAL).
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Table 5.1.Learning a hierarchy of sparse features — emerging repeeTs.

‘ layer H name H feature arrays| hypercolumns| feature ceIIsH input size

5 digits 128 1x1 128 32x32
4 curves 64 2x2 256 16x16
3 strokes 32 4x4 512 8x8
2 lines 16 8x8 1024 4x4
1 edges 8 16x16 2048 2x2
0 contrasts 4 32x32 4096 1x1

Since the digits show a high degree of variance, some prepsot steps are
necessary prior to presentation to the pyramid. Preprogessnsists of binariza-
tion, size and slant normalization. The images are scal@dt®4 pixels and are
centered into the 3232 input array at the bottom layer of the pyramid.

The Neural Abstraction Pyramid is initialized at the lowkestel (I = 0) with
contrast detectors. These have a center-surround typptinecéeld that analyzes
the intensities of the input image. Four different featuaes used: center-on/off-
surround and center-off/on-surround in two scales, reymtigg the fine and coarse
details of the foreground and the background, respectiVédig feature arrays are
surrounded by a border of the same width that is set to zero.

Repeated application of the unsupervised learning mettiescribed above,
yields following representations (compare to Table 5.1):

— Edges:Vertical, horizontal, and diagonal step edges are detexttedyer 1.

— Lines: At Layer 2 short line segments with 16 different orientati@ne detected.

— Strokes:Larger line segments that have a specific orientation anecifgpcur-
vature are detected at Layer 3. Detectors for line endindsspecific parallel
lines emerge as well.

— Curves: The feature detectors at Layer 4 react to typical large sudtstres of
digits, such as curves, crossings, junctions, etc.

— Digits: The feature cells at the topmost Layer 5 see the entire digitsequently,
detectors for typical digit shapes emerge.

Figure 5.2 shows in its upper right part a preprocessed idigitt On the upper
left, the activities of the contrast detectors are showreyTprovide input to the
edge features via the specific weights of the excitatoryget@ns. On the left side
of the figure, the activity of the edge feature arrays is shdtvoan be seen that
the feature cells detect oriented step edges. For instdme&ature in the first row
detects edges on the lower side of horizontal lines. It vesdghput from foreground
features in the upper part of its projection and from backgdfeatures in the lower
part of the projection. The right side of the figure shows the best stimuli of the
training set that excited the features maximally. In theteeof these stimuli, the
2x2 area of responsibility of Layer 1 features is shown in thigioal contrast. Its
neighborhood is shown with a lower contrast.
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Fig. 5.2.Learning a hierarchy of sparse features — edge featurewrSdre from left to right:
activity of the feature arrays for a digit (Input "0"), exatory weights to contrast features,
excitatory and inhibitory gain, stimuli that caused thehgist winning activity. There are pairs
of step-edges for horizontal, vertical ang ¢iagonal lines. The diagona|)is represented by
a single feature only. The feature in the last row detectkdracind and reacts most strongly
to the inner part of small loops.
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All learned edge features are different. There are pairspfbantal, vertical, and
lower-left to upper-right diagonal step edges. The uppéitd lower-right diagonal
is represented by only one feature that responds to theragfritee line. This is no
surprise since lines of this orientation are less frequehaindwriting. The feature
in the last row serves a special purpose. It is excited byecedtbackground and
responds most to the inner part of small loops.

The edge features are not very specific. Since the inhibgamy is small, they
respond also to suboptimal stimuli. Only the last featusgrisngly inhibited by the
sum of the contrast features to avoid responses to foredroun

On the next higher level, Layer 2, the 16 features responéhes lof differ-
ent orientations. The line detectors show a sharper otientauning than the edge
features. Four line features that detect approximatelizbotal lines are shown in
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Fig. 5.3.Learning a hierarchy of sparse features — line features. éfdhe 16 features were
chosen that respond to approximately horizontal lines.dther features respond to lines of
other orientations.

Fig. 5.4.Learning a hierarchy of sparse features — stroke featutesvi$are the eight best
stimuli of eight features that detect horizontal strokethwlifferent curvature. The upper part
of the figure shows the sparse activity of all 32 stroke fesgtur

Figure 5.3. They receive input mostly from the pair of honitad step edges. The
lower horizontal edge feature is accessed by the lower panecforward projec-

tions, while the upper horizontal edge is accessed by thenyast of the projection.
Step edges of other orientations contribute less to hotddine features. The ac-
cess to the Layer 1 background feature that is done by ther apethe lower row

of projection weights is also interesting.

The 32 stroke features at Layer 3 are not as easy to describe lise features.
They react to different local line shapes. Figure 5.4 shdwesedight best stimuli
for eight of the stroke features that react to approximatelyzontal lines. In addi-
tion to the orientation preference, some of the stroke featare also sensitive to
line curvature. Others seem to react to line endings. Thieifean the lower right
corner is stimulated optimally by two parallel horizontilds. It responds to the
background between the lines. The figure also shows in iterypgt the activity of
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Fig. 5.5.Learning a hierarchy of sparse features — curve featuresvishare the eight best
stimuli of the 16 first features. They respond to typical digirts. The upper part of the figure
shows the sparse activity of all 64 curve features.

all stroke features when the input from Figure 5.2 is presg:td the network. One
can see that the representation is already quite sparse.

Figure 5.5 shows the eight best stimuli of the first 16 of thecdve features
that reside on Layer 4 of the pyramid. They detect typicait gigrts, such as open
and closed loops, line crossings, and major strokes. It eavbberved that for most
curve features all of the best stimuli belong to the same digss. The activity of the
curve features is sparse since not all typical configuratafrstrokes are contained
in a single digit.

The best stimuli of some of the top-layer digit features &@s in Figure 5.6.
For the left side of the figure, digit features that react tbesine of the ten digit
classes were selected. The right side shows digit featuats/ere selected because
they react to examples from different classes. They seeottesfon some aspect of
the digit, such as to the presence of a vertical line or to aacteristic curve. One
must ask the question: ‘What do the best stimuli have in con#hio find out what
a specific feature cell detects.

The emerging feature detectors do not represent all pessdrhbinations of
substructures, but only the typical ones. The more freqoemibinations of lower
level features are represented by multiple similar featuvith greater detail than
the less frequent ones. When going up in the hierarchy oesgmtations, the cor-
relation of feature activities with the digit class increasThis is remarkable since
no class information has been presented to the system so far.
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Fig. 5.6.Learning a hierarchy of sparse features — digit featuresw8hare the eight best
stimuli. For the left column features were chosen that smoed to a single class. The right
column shows features that focus on some other aspect oita dig

5.4 Digit Classification

In the following experiments, the usefulness of the leasEatse features for digit
recognition is investigated. First, only two layers of thggmid are constructed.
The resulting representation is based on features thagsept oriented lines. It
has the same total size as the input image. Table 5.2 showsetfemance of a
KNN classifier and two feed-forward neural networks (FFNNattwere trained
with backpropagation using the digit's gray values and tkteaeted lines as fea-

Table 5.2.Learning a hierarchy of sparse features — classificatioovefiével features. Zero-
reject substitution rates of different classifiers.

features Gray Lines
classifier TST | VAL || TST | VAL
KNN 15 298| 287 | 453 | 4.36
FFNN1024 — 10 582 | 648 | 2.04| 214
FFNN1024 —64 — 10 || 249 | 265 | 1.90| 2.04
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Table 5.3.Learning a hierarchy of sparse features — classificatiomstract features. Zero-
reject substitution rates of different classifiers thauinitve upper four layers of the learned
hierarchy of sparse features.

classifier H TST ‘ VAL ‘
KNN 15 3.59 3.64
FFNN 1920 — 10 1.71 1.66

FFNN1920 — 16 — 10 199 | 1.77

FFNN 1920 — 32 — 10 1.71| 1.73

FFNN 1920 — 64 — 10 1.67| 1.68

FFNN1920 — 128 — 10 || 1.65| 1.49

tures. One can see that the performance of the neural netwedoktter for the more
abstract features.

In the second experiment, the top four layers of the feedrdiod pyramid are
fed into a1920 — 128 — 10 FFNN to classify the digits. After 120 epochs of online-
training with a learning rate af = 0.01, a zero-reject substitution rate of 1.65%
on the test set and a rate of 1.49% on the validation set wasr\ais Table 5.3
shows the results for different numbers of hidden units, eB as for a network
without hidden units and a KNN classifier. These rates comfmrorably to the
results published in [21] for the same dataset. One can @jeotrambiguous digits
by looking at the two best classes. The substitution ratpsh®0.55% when 2.52%
of the validation set are rejected and to 0.21% for 7.9% tgj€égure 5.7 shows the
substitution-reject curve of this classifier compared ®dtructural classifier and a
time-delay neural network (TDNN) classifier [21]. Cleardlye classifier that uses
the features extracted by the Neural Abstraction Pyramitbpas about as well
as the combination of the other two classifiers. The figure slows the results
when the new classifier is combined sequentially [22] with dther two. Now the
zero-reject substitution rate drops to 1.17%. The suliigtitwate can be reduced to
0.30% with 3.60% and to 0.11% with 9.20% rejects. These tesné the best the
author knows for this dataset.

5.5 Discussion

This chapter presented an unsupervised learning algoffitihrthe design of the
forward projections in the Neural Abstraction Pyramid. HBigorithm was applied
to a dataset of handwritten digits to produce a sequencecoéasingly abstract
digit representations. The emerging feature detectorsra@ningful and can be
interpreted in terms of detected combinations of digit swuilosures. This leads to
a hierarchical image description that is distributed aratsg When looking at the
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Fig. 5.7.Learning a hierarchy of sparse features — performance fefrdift digit classifiers:
(a) test set; (b) validation set.

best stimuli for the feature detectors, one can see that treqot similar in terms of
a simple pixel-based distance measure, but in terms ofriairsive decomposition
to substructures. Hence, the pyramidal digit represamtdiecomes increasingly
invariant against distortions when going up in the hiergrch

The extracted features facilitate recognition of the digivhen used as input to
an FFNN-classifier, the recognition performance observasl very satisfactory. It
outperforms any single classifier that has been tested ardétaset and is about
as good as the combination of the TDNN and the structurat digognizer. When
combined with these two classifiers, the recognition penéorce improves further.
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6. Supervised Learning

In the last chapter, supervised learning has already beshtaglassify the outputs
of a Neural Abstraction Pyramid that was trained with unsuviged learning. In
this chapter, it is discussed how supervised learning iqales can be applied in
the Neural Abstraction Pyramid itself.

After an introduction, supervised learning in feed-fordiaeural networks is
covered. Attention is paid to the issues of weight sharindjtae handling of net-
work borders, which are relevant for the Neural Abstractynamid architecture.
Section 6.3 discusses supervised learning for recurrénionkes. The difficulty of
gradient computation in recurrent networks makes it nezgs$s employ algorithms
that use only the sign of the gradient to update the weights.

6.1 Introduction

Supervised learning is more precisely defined than unsigeghlearning. Given
a training set of input/output vector paifs;,y;), the goal of supervised learning
is to produce for unseen inputs (generated from the same distribution) outputs
o; which are as close as possible to the desired outpputst does not suffice to
memorize the training set since generalization to new exesnp desired.

Two supervised learning problems can be distinguished:

¢ Classification: Here, the output vectgr represents the class of an object to rec-
ognize. The examples are assigned to a discrete numbeissésldf the classifi-
cation system is also able to produce a classification canf&lehis quantity can
be used to reject ambiguous examples.

e Function approximation: This problem is also known as regression. Here, the
input/output examples are samples from a funciog f(x). The output of the
learning machine is continuous.

Classification can be viewed as a special case of functioroappation. For
example, an approximation to the characteristic functiba get can be used to
classify whether or not examples belong to the class destily the set.

6.1.1 Nearest Neighbor Classifier

One particularly simple supervised classifier is the neareghbor (NN) classi-
fier [46]. It assigns an input vectes; to the class, of the training vectok,, that is
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closest to it according to some distance mead(xe, x;). While the NN classifier
achieves perfect performance on the training set, gemat@n on a test set might
not be satisfactory. Better generalization is generalhiea®d if not only the clos-
est training vector is considered, but the classificatiocigien is based on th&
nearest neighbors. If the majority rule is used for the degighis system is called
KNN classifier.

The KNN classifier stores all examples of the training setilgthis requires
no training time, it is frequently advantageous to inveshedime for learning in
order to extract the essence of a dataset for later use agndai. This speeds up
the recall and improves generalization.

6.1.2 Decision Trees

Several supervised learning techniques have been projiosked literature. One
example is decision trees. Breimatal.[36] proposed classification and regression
trees (CART) for supervised learning problems. Here, tpetivector components
represent attributes of the examples. The inner nodes dfidedrees use one at-
tribute at a time to recursively split the input space. Dejxeg on the node’s deci-
sion, one of its child nodes is visited until a leaf node icchesl. The leaves store
the output of the tree. The order in which the individualiatttes are queried is
important for the performance of decision trees. Sevegaridhms have been pro-
posed for the top-down inference of decision trees from asdt One example is
the ID3 algorithm, proposed by Quinlan [181] for classificat It asks the question
first that is most informative about the class. Decisiondiesn learn any consistent
dataset perfectly, but this may not be desirable. For ttdsor, ID3 has been ex-
tended to the C4.5 algorithm [182], which uses a Shannowogyuriterion for the
pruning trees. Another possibility to limit the tree sizéagrow a tree only until ad-
ditional splitting of nodes produces no significant infotioa gain. The preference
for small trees is motivated by the principle of Occam’s rrg82] which prefers a
simpler explanation of a dataset over a more complicated one

Decision trees work well if the input attributes are disereind the dimension-
ality of the input vectors is not too large. However, the slbsundaries produced
by decision trees are axis-parallel to the dimensions ofrthat space. This may
cause difficulties if the true class boundaries are nomatig

6.1.3 Bayesian Classifier
The theoretically optimal classifier is based on Bayes’ theoof conditional prob-
ability. It is described by the Bayesian classification rule
¢(x) = argmaxp(H;|x) = argmax p(H,) - p(x|H;),
J J
wherep(Hj ) is thea-priori probability of classj, p(x|H;) describes the distri-

bution of the examples from clagsn the input space, andx) is the classification
produced.
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The Bayesian classification rule is optimal but difficult {gpdy in real-world
situations. The reason for this is that neithéF ;) nor p(x|H;) are known. While
estimation ofp(H,) from the dataset is straightforward, it is difficult to modeé
example distributions(x| H;) if the dimensionality of the input space is large.

This problem is known as 'the curse of dimensionality’ [2T] for instance, a
grid-based representation is used to estimate a diswifputie number of grid cells
grows exponentially with the dimension of the space wherréiselution for each
dimension is kept constant. Furthermore, in high-dimamaispaces the distance of
randomly chosen points tends to be constant for any distaweesure [29]. Finally,
sets of points that cannot be separated linearly in a lonedsional space may
become linearly separable when transformed into a spadgloéhdimension.

6.1.4 Support Vector Machines

The last property of high-dimensional spaces is exploite#drnel methods. The
idea behind kernel methods is to transform data vectorsifeature space that usu-
ally has a huge or even infinite dimensionality. The kerriektallows for working
in that feature space without expressing it explicitly. ktidgimensional dot products
are computed by kernels as functions of the original datéovec

If multiple linear separations of data vectors are possikléch one of the sepa-
rations should be chosen? This question is considered lilgeloey of structural risk
minimization. While empirical risk minimization focusea good performance for
the training set only, structural risk minimization tri@sfind the learning machine
that yields a good trade-off between low empirical risk amék capacity.

The principle of structural risk was proposed by Vapnik aheé®@onenkis [233].
According to this principle the number of training exampiasst be large compared
to the degrees of freedom of a learning machine. The capafcitjearning machine
is measured by the VC dimension. It is defined as the size dathest set of points
that can be split by the learning machine into two subset poasible ways.

Large-margin classifiers are one application of structus&lminimization. The
idea is that a linear separation that has a large margin twaating examples is
preferred against a separation with a small margin. Thigavgs generalization
since it reduces the degrees of freedom of the classifier.

In the last years, support-vector machines (SVM) [47] haseome popular
classifiers. They express the classification decision fonah terms of a subset of
the training examples which are close to a decision bounttagysupport vectors.
Using the kernel trick and structural risk minimizationgyhseparate the classes in
high-dimensional spaces with large margins. Powerfuhoizition techniques have
been developed for support-vector machines [207].

6.1.5 Bias/Variance Dilemma

All supervised learning systems face the bias/varianaadita [81]. The error of
such a system can be divided into three components:
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e Bias: systematic component of approximation error, measuringdiose the av-
erage classifier produced by the learning algorithm willdthe target function;

e Variance: sensitivity of approximation to the finite size of the traigisample,
measuring how much each of the learning algorithm’s guesdlésary with
respect to each other;

e Intrinsic target noise: due to the noise of the training sample, measuring the
minimum classification error associated with the Bayesnagiticlassifier for the
target function.

A tradeoff between the bias component and the variance coemof the sys-
tem must always be made. While reducing the degrees of freerfa learning
machine lowers the variance error, the restriction of fmssiolutions increases the
bias error. For this reason, it is important to ensure thasgicted learning system
is still appropriate for the task to be learned. In the coméihe Neural Abstraction
Pyramid architecture, such restrictions include hieri@almetwork structure, local
connectivity, and weight sharing. In Chapter 4 it was diseds why such restric-
tions are appropriate for image interpretation tasks.

In general, it is hard to assess the generalization of a ile@msystem using
the training set alone. For this reason, one may hold bacle satamples of the
dataset from training to test generalization [238]. One teayestrict the degrees
of freedom of a learning system trained with an incremenigdrithm is to use
early stopping [179]. This terminates the training if thefpemance on a test set
starts to degrade. Another way to assess generalizatighdeols-validation [205]
which uses different subsets of the training set to traintiplel classifiers. If ran-
dom subsamples of the training set are used instead of syubsemethod is called
bootstrapping [60].

6.2 Feed-Forward Neural Networks

Artificial neural networks are popular tools for supervisedrning. Feed-forward
neural networks (FFNN) compute complex functions in diedcacyclic graphs of
primitive functions. Usually, the nodes of the graph araaged in layers. The prim-
itive functions computed by the nodes access other nodegeighted links. For ex-
ample,>_-units compute a weighted sum of their inputs. This sum is@ashrough
a transfer function that may be non-linear.

The first trainable neural network was proposed in 1958 byeRlolsitt [194].
The classical perceptron is a multilayer network that cdiddrained to recognize
patterns on a retina. The processing units, perceptrongueted weighted sums of
their inputs, followed by a threshold nonlinearity.

The model was simplified and analyzed by Minsky and Paper8][1bhey
showed that the perceptron learning algorithm can solealily separable prob-
lems, but cannot learn all possible boolean functions. Téssllt applies to any
feed-forward neural networks without hidden units. Fomegge, the XOR function
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cannot be computed by such networks. Later, it was showrfekedtforward net-
works with enough nonlinear hidden units can approximayecantinuous function
over a compact domain [104].

6.2.1 Error Backpropagation

Key to the success of feed-forward neural networks was gnadiased learning.
Gradient-based learning algorithms minimize a cost fumcti by gradient descent.
Frequently, the quadratic approximation error is used asfooction:

1 N
=52 lloi = will?, (6.1)
=1

whereo; is the output of the network when tlih examplex; is presented to it, and
y; is the desired output for that example.

In a gradient descent method, a parameté& modified according to the partial
derivative of the error functio’ with respect to it:

OF
ana
wheren > 0 is the learning rate. i is chosen small enough, the repeated applica-
tion of (6.2) lowersE, until a local minimum is reached.
The simplest example of gradient descent learning is tha ddl. It is applica-
ble for linear networks without hidden units®) = wx;. For the weightsu; of the
network’s output unit, the learning rule (6.2) can be retsritas:

Aw = (6.2)

Awj = -1 Z —yz (6.3)

wherem] is the jth component of the input vectasts;.

In order to make the gradient descent idea work, differbigiansfer functions
are needed. In the example above, the transfer functioningerland hence could
be omitted from the analysis. In multi-layered networksisihecessary to have
nonlinear transfer functions for the hidden units, to mdia more powerful than
networks without hidden units One frequently used noedirtransfer function is
the sigmoido = fiz(€) = 1+e —— that has already been discussed in Section 4.2.4.
Its derivative can be expressed in terms of its outpiyt(s) = o(1 — o).

For the gradient computation in multi-layered networks, ithea of backprop-
agation of an error signal was introduced e.g. by Rumebtaat. [200]. The error
backpropagation technique is an efficient method to comigt@artial derivative
of a cost function with respect to a weight, in the same wayhatdered update
of the network activity in the feed-forward mode is an effitienethod to compute
the network output. As the name suggests, backpropagasits the nodes of the
network in the opposite order of the feed-forward step.
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Because the cost function (6.1) sums the error contribsdimdividual exam-
ples, its partial derivative with respect to a weighi, from unitj to unitk is a sum

of componentégf% that can be computed for each exampteparately. The key
idea of backpropagation is th%% can be expressed in terms of a backpropagated
errord{) and the source activity'’ present at the weight:

E® ; ,
OF" _ o\ 6. (6.4)

a’wjk

The backpropagated errég) of a hidden unit is a weighted sum of the errors
5}’) of all units/ receiving input from unit, multiplied with the derivative of the
transfer functioryy, producing the output!” = £, (¢! of unit k:

509 :%Zwk@(“ [hidden unit], (6.5)
k l

with £ = 3 w;0l"” describing the weighted sum of the inputsito
If unit & is an output unit, its error component can be computed djrect

5,(;) = i(]:)(o,(j) - y,(;)) [output unit], (6.6)
dg,,
wherey,(j) is the component of the target vectarthat corresponds to unit

The backpropagation technique can be applied to the Nelostréction Pyra-
mid architecture. Since the basic processing elementyibesidn Section 4.2.1,is a
two-layered feed-forward neural network, directed acyglaphs of such process-
ing elements form a large feed-forward neural network witared weights.

A simple modification is needed for the update of shared weighe sum of all
weight-updates, which have been computed for the individstances of a weight,
is added to it. By replacing the weight-instances with npliltative units that re-
ceive an additional input from a single unit which outputs tlalue of the shared
weight, one can show that this indeed modifies the weight éndihection of the
negative gradient [193].

When implementing error backpropagation in the Neural fstasion Pyramid,
one must also take care to handle the border effects corrétté simplest case
is when the border cells of a feature array are set to a cangsdure. Since the
derivative of a constant is zero, the error component agidt these border cells
does not need to be propagated any further. In contrastg i&thivity of a border
cell is copied from a feature cell, the error component arghat it must be added
to the error component of that feature cell.

Because the weights of a projection unit are stored as awces list in the
template of the unit, it is easiest to implement the sum indfign 6.5 by accumulat-
ing contributions from the units receiving inputs from its fhe network is traversed
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in reverse order, each unit multiplies its accumulatedrexith the derivative of its
transfer function and increments the accumulators of itgs®units by this quan-
tity, weighted with the efficacy of the connection. This rizgs the same address
computations as the forward-step that computes the aetiwf the network. In the
same loop, the weight modifications can be computed sincediheee activity can
be easily accessed. It is also useful to store in the forwairsot only the outputs
of the units, but also their weighted input sums that havebeen passed through
the transfer function since they may be needed for the caatipatof the derivative.

The choice of the learning raigis also important for the convergence of gra-
dient descent. It should be chosen inversely proportianété square root of the
degree of weight sharing [135] since the effective learmatg is increased by shar-
ing the weight. Hence, the learning rate is low in the lowgela of the pyramid
and increases with height.

6.2.2 Improvements to Backpropagation

Since the training of neural networks with backpropagat@mbe time-consuming,
several improvements to the basic method have been dedtloppeed up training.

Online Training. On example of such improvements is online training. In thg-or
inal formulation, the contributions for the weight updaterfi all examples of the
training set must be computed before a weight is modifieds Ticalled batch
training. If the number of training examples is large, thigynbe computationally
inefficient. Online training updates the weights after guexample presentation.
To avoid oscillations, the examples must be presented im@oraized order. On-
line training is only an approximation to gradient descélavertheless, due to the
noise introduced by the randomized example presentatinaytescape small local
minima of the error function and even improve generalizatibthe network [30].
If the training set contains much redundancy, online tragrman be significantly
faster than batch training since it estimates the gradient Subsets of the training
set and updates the weights more often.

Momentum Term. Another modification to speed up gradient descent is the-addi
tion of a momentum term:

E
Aw® = —na— + aAwD), (6.7)
ow

with 0 < o < 1. It adds a fraction of the last weight update to the curreufiaigp.
The momentum term makes gradient descent analogous tolpartioving through
a vicious medium in a force field [180]. This averages outltzmns and helps to
overcome flat regions in the error surface.

Advanced optimization methods have been developed fouhersised training
of neural networks [135]. They include conjugate gradisatond order methods,
and adaptive step size algorithms.
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Conjugate Gradient. The main idea of conjugate gradient [66, 161] is to find a
descent direction which does not disturb the result of tlegipus iteration. It picks

a descent direction, e.g. the gradient, finds a minimum athisgdirection using

a line-search, and moves into the conjugate direction wthergyradient does not
change its direction, only its length. Conjugate gradieat be viewed as an ad-
vanced way of choosing the momentum. It requires fewertitara than generic
gradient descent. However, each iteration is more expeyeind it can only be used
for batch training since an accurate line search must beaed.

Second Order Methods. Second order methods [18] consider more information
about the shape of the error function than the mere graditaetly use a quadratic
approximation to estimate the curvature of the error fumctQuasi-Newton meth-
ods, for example, attempt to keep a positive definite esérobthe inverse Hessian
directly, without the need for matrix inversion. They areséd on gradient informa-
tion only but require a line search. One popular algoriththésBFGS method [67]
that use€) (V) operations for an iteration and needs to stofé>aNV matrix, where
N is the number of weights.

Another popular second order method is the Quickprop algwri proposed
by Fahlman [63]. It uses a one-dimensional quadratic appration to the error
function for each weight, yielding the learning rule:

(6.8)

()
O _ A, (1) Vi E
Aw;yt = Awy; Vi, EC) —V ED’

whereV,;; E® denotes the partial derivati\%i(—_t,). Quickprop can be initialized
2

using a gradient descent step. Care must be taken to avoithtngidates that are

too large.

Adaptive Step Size.The choice of the learning ratds crucial for both the stability
and the convergence speed of gradient descent. One camttgpoa global learning
rate automatically [202], but this is difficult when the arfanction has different
properties in different dimensions.

For this reason, several methods have been developed thiama local learn-
ing rate for each weight. The algorithm proposed by Silvaantkeida [212], for ex-
ample, increases the learning rate if successive weigtgtapdjo in the same direc-
tion and decreases it otherwise. Another example is therSéealgorithm [228]
that combines the adaptive learning rate with a momentum.ter

One of the fastest and most robust methods for training heetevorks is the
resilient propagation (RPROP) algorithm, proposed by Ri#dr and Braun [191].
It uses only the sign of the gradieRt;; E*) and an adaptable step sizé;) to
change the weights:

7Az('§) , f VijE(t) >0
Aw! =3 4D v E® <o - (6.9)
0 , else
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The weight is modified only if successive gradients do noingeathe direction:
Vi, E¢Y . v, ;E® > 0. The step size is modified according to:

nt ALY iV ECD v EG > 0
45?: pm ALY EVGECD .V E® <0 (6.10)
A=Y , else

J

It is increased by a factoy™ if successive updates go in the same direction and
decreased by multiplying it witly~ if the gradient direction changes. In the latter
case,V;; E® is set to zero to avoid a step size update in the next iteratidhe
algorithm. The factors comply with < = < 1 < n*. Recommended values are
n~ = 0.5 for fast deceleration angi™ = 1.2 for cautious acceleration of learning.
The step sizes are initialized uniformly 1,. It is ensured that they do not leave
the intervall Anin, Amax]. The RPROP algorithm has been shown to be robust to the
choice of its parameters [107]. It is easy to implement agdires only the storage

of two additional quantities per weight: the last gradiemd ¢he step size.

Mini Batches. RPROP as well as other advanced optimization techniqudstech
methods because they need an accurate estimate of thergradebe real-world
tasks, the training set is frequently large and containsynsanilar examples. In
this case, it is very expensive to consider all training eplesbefore updating the
weights.

One idea to overcome this difficulty is to only use subsetsettaining set, so-
called mini batches, to estimate the gradient. This is a comfse between batch
training and online learning. The easiest way to implement batches is to update
everyn examples. Another possibility is to work with randomly cansubsets of
the training set. Mgller [162] investigated the effect @lining with mini batches.
He proposed to start with a small set and to enlarge it as dlivdnig proceeds.

For the RPROP algorithm, the gradient estimate must not loalgiccurate but
stable as well. Because the signs of successive gradielntatiens determine the
adaptation of the learning rates, fluctuations of the gradistimate may slow down
the convergence.

For this reason, | used RPROP with slowly changing randoreetstof the train-
ing set. A small working set of examples is initialized randy In each iteration
only a small fraction of the set is replaced by new randomlyseim examples. As
training proceeds, the network error for most of the exaspi# be low. Hence, the
size of the working set must be increased to include enoughirative examples.
The last few iterations of the learning algorithm are donwie entire training set.

Such an approach can speed up the training significantlg st iterations of
the learning algorithm can be done with only a small fractibthe training set. In
addition, the ability of the network to learn the task canumiged quickly because
during the first iterations, the working set is still small.
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6.2.3 Regularization

As already discussed in Section 6.1, the capacity of a legrniachine must be
appropriate for the task to ensure generalization. One wagstrict the capacity of
a neural network is to use few adaptable parameters. Thibeaone by keeping
the network small or by sharing weights.

Another way is to lower the capacity of a high-capacity maehby regular-
ization. Regularization constrains the parameters swattotily smooth approxima-
tions to the training set are possible.

It was already mentioned that early stopping has a regidgridfect. The rea-
son for this is that weights of a neural network are still tiegy small when the
training is stopped early. This limits the nonlinearity bétnetwork since the trans-
fer functions are almost linear for small inputs. Limitechlinearity yields decision
functions that smoothly approximate the training set.

Weight Decay. Another possibility to regularize a neural network is weidacay.
Krogh and Hertz [128] proposed adding a term to the cost fandt that penalizes
large weights:

1
Ed=E+§Azk:w,z, (6.11)

where)\ is a parameter that determines the strength of the perfajtadient descent
is used for learning, the penalty leads to a new terhwy, in the weight update:

oFE oF

Awy, = —n—d =-n (— + )\wk) . (6.12)
awk Wi

The new term would decay weights exponentially if no foreceatfthe cost function

E were present.

Low-Activity Prior. It is also possible to include terms in the cost function that
enforce properties of the representation present at hiddas. For instance, one
can force units to have a low average activity, e.g= 0.1:

E.=FE+ %A zk:(<ok> —a), (6.13)

where (o) denotes the expected value of the activity of uniGradient descent
yields the additional term\({o;) — «) that must be multiplied with the deriva-
tive of the transfer function of unit and added to its error component A low-
activity prior for hidden units, combined with a force thabgduces variance, can
yield sparse representations.

6.3 Recurrent Neural Networks

So far, the function graph describing the neural networkaeyglic. If the graph of
primitive functions contains cycles, it is called recutraaural network (RNN). In
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Section 3.2 it was discussed why RNNs are more powerful tHas¥iNs. Another
motivation for the use of RNNs is the fact that the brain is a-tinear dynamical
system with recurrent connectivity.

In the following, the supervised training of discrete-tiRBINs will be cov-
ered. RNNs do not map isolated input vectgfgo output vectors;, but respond

to a sequence of input vectors” , x{" ... x{") with a sequence of activities

0”0V ... o™ at their output units. This must be considered by the cost-fun
tion:
Loy ® _
E=2% > wlloy —y."II”, (6.14)
=1 t=0
wherey!” vy y") is the desired output sequence, andveights the error

of time stept. Both the input and the desired output may be constant. fnctise,
the RNN is trained to converge towards an attractor thatoid@s withy; for the
output units of the network.

Training recurrent networks is difficult due to the non-Anelynamics of the
system. Although methods for supervised training of RNNistetkat do not use
gradient information [8], most training methods for RNNs gradient based [11].
Two basic methods have been developed for the computatidhneofradient in
RNNSs: backpropagation through time (BPTT) and forward pgaiion, also called
real-time recurrent learning (RTRL). Both methods will beadissed in the follow-

ing.

6.3.1 Backpropagation Through Time

The basic idea of BPTT, proposed e.g. by Werbos [240], is ganple. It is il-
lustrated in Figure 6.1. Part (a) of the figure shows a smalNRhat has weights

000
—
t=T

N N
(a) QD) (b) t=0 t=1 t=2

Fig. 6.1.Backpropagation through time. (a) recurrent network, theases indicate buffered
access with a time delay of one step; (b) network unfoldedhile t The buffered links now
go from one time step to the next. This produces a large FFNN stiared weights.

)
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with direct and weights with buffered access. All units gpeated in each time step
in top-down order. Only units that have been updated eaatiersources of direct
access weights.

The computation done in the RNN is equivalent to the one of dNFEhat has
been constructed by unfolding the RNN in time. Part (b) offigare shows the
unfolded network. The units and the direct-access weiglete wopied for each
time step. The buffered-access weights now connect unit in time stept with
unitj in step(t + 1).

Since the unfolded network is a directed acyclic graph, thereéackpropa-
gation technique can be applied. It propagates error coprgerin reverse update
order and hence backwards in time. Two simple modificatioriee generic back-
propagation algorithm are necessary for BPTT.

First, the output units of FFNNs used to be sinks of the grapth no units
accessing their activity. This is different in RNNs, where activity of output units
is fed back into the network. Hence, the error compoﬁé’ﬁf of an output unitk
for examplei not only depends on the direct contributigfi”’ = v, (0! — ")

from the cost function (6.14) for timg but the backpropagated errpi, wklél(”*)
arriving from nodeg accessing it must also be considered. The source#infar
the error components is either the same gtéphe unit is accessed directly or the
next step(t + 1) for buffered access. Both contributions must be added befar
combined error can be multiplied with the derivative of ttensfer functionfy:

G dfk (i,t) (i,8%)
Sy = ( +Zw by ) (6.15)

wheref,(j’t) denotes the net activity of unitfor example; at timet.

The second modification needed for BPTT was already usedh&red weights
in FFNNs. BPTT produces additional weight sharing becawseight is replicated
for each time step. As before, the weight updates computatidandividual weight
instances must be added to compute the update for the sharghitw

Since BPTT propagates the error backwards through timé iundaches the
initial time stept = 0, it can not only be used to adapt the weights of the network,
but also to modify the initial activities of the units.

6.3.2 Real-Time Recurrent Learning

The BPTT algorithm, presented above, is very efficient, maggionly O(1) oper-
ations per weight instance, but it is a batch-method thati®¢ée store the entire
history of the recurrent computation for the error backpgation.

Williams and Zipser [241] proposed computing the gradidrthe cost func-
tion (6.14) using forward propagation. The resulting aildpn is called real-time

recurrent learning (RTRL).
(7 t)

(&) —— that represent the sensitivity of a unit

RTRL maintains quantme:s o
Wit
J with respect to a weight from unitto unit/. They are initialized to zero far= 0
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1) = 0. Parallel to the update of the unit's activities, the sevitiiés are updated

as well:

i df; i i i
T = S ST Wl w )+ ool (6.16)

- dgj(i,t) - J J
whered,; denotes the Kronecker delta function. Gradient descendtesdn the
weights are then achieved by the learning rule:

Al = @1
J

RTRL does not need to go back in time. Hence, it can be apptieshionline
fashion. However, it is computationally more expensiventB®TT sinceO(n*)
operations are needed per time step, wittepresenting the number of units in the
network. If the network is fully connected, this correspsit@O(n?) operations for
each weight per time step. It also ne€2s:®) memory cells to store the sensitivities
Tkl -

6.3.3 Difficulty of Learning Long-Term Dependencies

Although the above algorithms for training RNNs have beeovikmas long as the
backpropagation algorithm for FFNNs, RNNs are used lesndéir real-world ap-
plications than FFNNs. One of the reasons might be thatitr@iRNNs is difficult.

Since RNNs are nonlinear dynamical systems, they can expacaohtract the
gradient flow. If in a network the magnitude of a loop’s gaiaigyer than one for
multiple consecutive time steps, the gradient will explegponentially. In contrast,
if the magnitude of a loop’s gain is smaller than one the gnailivill decay expo-
nentially.

The gain of aloop in a RNN depends on the magnitudes of thehigeigvolved,
and on the derivatives of the transfer functions. Since #tevorks are frequently
initialized with small weights and use sigmoidal transfardtion with small deriva-
tives, most of the gradients decay in time.

This affects the learning of long-term dependencies, wireteng sequences
early inputs determine late desired outputs. Beegil. [28] showed that the gradi-
ent decay is the reason why gradient-based learning digusiface an increasingly
difficult problem as the duration of the dependencies to Ip¢urad increases. They
showed that it is either impossible to store long-term méesaor that the gradient
is vanishing. Learning with vanishing long-term gradiestdifficult since the total
gradient, which is a sum of short-term and long-term gradiemponents, will be
dominated by the short-term influences.

Long Short-Term Memory. Several proposals have been made to overcome this
difficulty. One is the use of long short-term memory (LSTMjoposed by Hoch-
reiter and Schmidhuber [100]. This algorithm works in natkgothat include
special-purpose units, called memory cells, that are uséatch information. The
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memory cells are linear units that have a fixed self-conoacfihey enforce a con-
stant, non-exploding, non-vanishing error flow.

Access to memory cells is controlled by multiplicative gatéts. Input gate
units learn to protect the constant error flow within a menwatyfrom perturbation
by irrelevant inputs. Likewise, output gate units learn totect other units from
perturbation by currently irrelevant memory contents.

Learning is done by a gradient method that is a combinati@R¥T and mod-
ified RTRL. The LSTM algorithm has been applied to severaltriuial problems.
For instance, it has been used to learn the structure of rfe8ficAnother applica-
tion was classification of natural language sentences asmatical or ungrammat-
ical [131].

Hierarchical Recurrent Networks. Another possible approach for learning long-
term dependencies was proposed by El Hihi and Bengio [96y Tibserved that
the problem of vanishing gradients only occurs becausetieng dependencies are
separated by many time steps. RNNs already utilize the sgigieature of time by
using the activities of one time step as input for the nexetstep.

Hierarchical RNNs are based on the additional assumptianléimg-term de-
pendencies are robust to small local changes in the timirgyefits, whereas de-
pendencies spanning short intervals are allowed to be nemistive to the precise
timing of events. This motivates the use of multiresoludilorepresentations of the
state information. Long-term context is represented bydndstate variables which
are allowed to change very slowly, whereas short-term eotigerepresented by
hidden state variables that change faster.

The authors compared the performance of hierarchical ahdeitairrent net-
works for learning tasks involving long-term dependencfeseries of experiments
confirmed the advantages of imposing a hierarchical netaucture.

The concept of representing time-dependencies at apptepevels can be ap-
plied to the Neural Abstraction Pyramid architecture. Ivésy similar to the dis-
tributed representation of space-dependencies, wherersinge dependencies are
represented at lower layers and long-range dependeneieeiesented at higher
layers of the network. If the higher layers of the pyramid rape on slower time-
scales than the lower layers, they can learn to represegéieime dependencies.
Slowing down higher layers can be done either by less-frequedates or by the
use of larger time-constants for fading memories.

The usefulness of such a time hierarchy has also been codfinmke field of
reactive control of mobile robots [25]. While flat reactiweseems face difficulties
when required to consider long-term context, a hierarchyattive behaviors can
provide longer temporal context for lower-level behaviasithout large computa-
tional costs. Such a hierarchy can handle a high degree opleaity. It was suc-
cessfully applied to the problem of controlling a team ofcareplaying robots [20].

6.3.4 Random Recurrent Networks with Fading Memories

To avoid the difficulties involved with training recurrergural networks, recently,
the use of random recurrent neural networks was proposegémdiently by two
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groups [148, 109]. Memory traces of an input sequence revatdin a randomly
connected neural network, and the states of this networknagped by a feed-
forward network to the desired outputs.

Echo State Networks. The echo state approach to analyzing and training recur-
rent neural networks was proposed by Jaeger [109]. He usethi-time recurrent
networks with large numbers of inhomogeneous units. Thes wliffer in type and
time-constants and have random connectivity where the imatgof gains in loops
is smaller than one. Since the network dynamics has a caimigaaffect on the state,
the units implement fading memories. The effect of startitaje differences van-
ishes as the network runs.

The state of the recurrent network can be viewed as a dynas@rvoir of
past inputs. This reservoir is accessed by linear read dtg.@nly the weights
of these units are trained to minimize a cost function by apipnating desired
outputs. This assumes that the desired input-output mgpain be realized as a
function of fading memories. Furthermore, since the randecarrent connections
of the dynamic reservoir are not trained, it is assumed tmafeatures needed to
compute the output will be among the many random featureaabed by the units
of the reservoir.

Echo state networks have been applied to several nonttiagies. They include
periodic sequence generators, multistable switchesptarieequency generators,
frequency measurement devices, controllers for nonlipéarts, long short-term
memories, dynamical pattern recognizers, and others.

For many of these tasks, feedback from output units to therves was neces-
sary. Since, initially, the outputs do not resemble therddsbutputs, the activity of
output units was clamped to the target values during trgiriior testing, the outputs
were clamped to the desired outputs during an initial phfsféer this phase, the out-
puts ran free, and the test error was evaluated. When apgpdyich a scheme, one
must take care, not to give the network, during the initigdgdy information about
the outputs desired in the free running phase. Otherwisen¢twork can learn to
store the desired outputs in a delay-line and to replay treeretting.

Liquid State Machine. A similar approach was proposed by Maassl.[148]. It
is called liquid state machine (LSM) since a large pool ofi@nly connected units
with contracting dynamics acts like a liquid that reverbesgast stimuli. The units
used in LSM networks are biologically more realistic. Cantius time is modeled,
and the units emit spikes. Furthermore, dynamic synapskgramsmission delays
resemble properties of biological neurons. The cells ofitheéd are chosen as di-
verse as possible and connected randomly. Feed-forwapdiogtworks receive
inputs from all units of the liquid. Only these networks am&@iried to produce de-
sired outputs.

The main focus of the LSM approach is the analysis of the caatjmnal power
of such networks. It is shown that the inherent transientadyios of the high-
dimensional dynamical system formed by a sufficiently laage heterogeneous
neural circuit may serve as a universal analog fading menRagdout neurons can
learn to extract in real-time from the current state of sumturrent neural circuit
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information about current and past inputs that may be nefkxteliverse tasks. Sta-
ble internal states are not required for giving a stable wigmce transient internal
states can be transformed by readout neurons into stalglet tautputs due to the
high dimensionality of the dynamical system.

Again, it is assumed that the features needed for the cortiqutaf the desired
output are already present in the pool of randomly genefatgdres. This is com-
parable to two existing approaches: first, the liquid codddplaced by exponential
delay lines that represent the input history. Second, teeofisandom connectivity
for hidden units is analogous to the classical perceptréd][iwhere random fea-
tures were extracted from a retina and only the weights eflirthreshold output
units were trained with the perceptron learning algoritormiatch desired outputs.
While such an approach is effective if enough random featare used, when the
backpropagation algorithm became available, it turnedtloat the adaptation of
hidden weights allowed solving the same tasks more effigievith much smaller
networks by learning task-specific hidden representations

6.3.5 Robust Gradient Descent

It was discussed above why supervised training of RNNSs fedif. Fortunately, in
the Neural Abstraction Pyramid approach to image integpiat, not all the prob-
lems occur at their full scale.

For instance, long-term dependencies are not needed fantdpretation of
static images since this task can usually be completedmétliéw iterations of the
network. Hence, the BPTT algorithm can be applied to comthéexact gradient
of the cost function, without the need to truncate the hystor

Furthermore, the hierarchical network structure fad#isathe hierarchical rep-
resentation of time through the extraction of invariantdieas. While low-level fea-
tures change quickly as the input undergoes a transformatie outputs of higher-
level feature cells change more slowly.

Balancing Excitation and Inhibition. The decay/explosion of error flow has been
identified as the main problem in training RNNs. If the netkvizr designed such
that balanced excitatory and inhibitory effects cancelasd consequence the net-
work’s activity changes slowly, the decay/explosion of #reor flow has a long
time-constant as well. Hence, it is less harmful.

Balanced effects of excitation and inhibition can be achiehby using transfer
functions for inhibitory feature cells that grow faster thine ones of excitatory
features. For instance, inhibition could be linear, whiteig@tion saturates for high
activities. Such an arrangement stabilizes activitiesre/legcitation and inhibition
cancel. If the network is too active, inhibition will be striger than excitation and
will lower its activity. On the other hand, if the network @atinactive excitation is
far from being saturated and leads to an increase of activity

Combining BPTT and RPROP. Still, the magnitudes of the backpropagated er-
rors may vary greatly. For this reason, it is very difficultdetermine a constant
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learning rate for gradient descent that allows for bothlstéarning and fast con-
vergence.

Since the RPROP algorithm does not use the magnitude of #ukegnt, it is not
affected by very small or very large gradients. Hence, ithagable to combine this
algorithm with BPTT. This training method for RNNs provedheximentally able
to avoid the stability problems of fixed-rate gradient descehile at the same time
being one of the most efficient optimization methods.

Learning Attractors. When analyzing static input with a Neural Abstraction Pyra-
mid, the desired network output is usually static as wello@oals must be com-
bined by the cost function (6.14). First, aftEriterations, the final approximation
to the desired output should be as close as possible. Settendetwork’s output
should converge as quickly as possible to the desired autput

Hence, it is not sufficient to include only the final approxtioa error into the
cost function. The error weightg for intermediate time steps< 7" must be non-
zero as well. Depending on the importance of above two gtiaéserror weights
must be chosen appropriately.

Constant weighting of the error components, &;g= 1, does not pay much at
tention to the final approximation. It may well be that therféag algorithm prefers
a coarser approximation if it can be produced faster.

Experiments showed that increasing the error weightsiineag.~, = t gives
the later error components a large enough advantage ovexattier error com-
ponents, such that the network prefers a longer approxamathase if the final
approximation to the desired output is closer.

This effect is even stronger when a quadratic weighting,®8.g= t2, is used,
but in this case the network may produce a solution that mz@mthe output dis-
tance for the last training iteratich at the cost of increasing this distance for later
iterations which are not trained.

6.4 Conclusions

This chapter discussed gradient-based techniques fordsge training of feed-
forward and recurrent neural networks. Several improveaierthe basic gradient
descent method were covered. Some of these will be used ieth&nder of the
thesis for supervised training of Neural Abstraction Pyidsn

The RPROP algorithm is used in combination with mini batdbespeed up the
training. Low-activity priors are employed to enforce sgarepresentations.

For the case of recurrent pyramids, the BPTT method for cdimgpthe gradient
is combined with RPROP to ensure stable and fast trainirgpitéelarge variances
in the magnitude of gradients. If the desired output is cmtsthe weighting of the
output error is increased linearly to quickly achieve a gapgdroximation. In this
case, attractors are trained to coincide with the desirgouts!
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7. Recognition of Meter Values

The remainder of the thesis applies the proposed Neurat@digin Pyramid to sev-
eral computer vision tasks in order to investigate the parémce of this approach.

This chapter deals with the recognition of postage metereslA feed-forward
Neural Abstraction Pyramid is trained in a supervised fasho solve a pattern
recognition task. The network classifies an entire digitkland thus does not need
prior digit segmentation. If the block recognition is nohéident enough, a second
stage tries to recognize single digits, taking into acctli@tblock classifier output
for a neighboring digit as context. The system is evaluated large database.

7.1 Introduction to Meter Value Recognition

Meter stamps are commonly used in many countries to magc¢efthey are printed
by a postage meter that is part of a mailing machine. The gesteeter prints the
stamp usually with red ink in the upper right corner of thedetat the location
where otherwise adhesive stamps would be placed. In adddithe postage value
the stamp usually contains the identification number of thstgge meter, the date
and location of sending, and possibly some advertiseméttie gender. The sealed
postage meter keeps track of the postage used and must bdrizbim the postal
company when the stored postage has been used. Figure w4 sbme historical
meter stamps from different countries.

The first meter machines were installed in Scandinavia amtlttited States of
America in the beginning of the 20th century. Figure 7.2 shtive Pithey Bowes
Model M postage meter from 1920 which was the first to be liedrtsy the U. S.
Post Office Department. Nowadays, about half the mail in thitdd States is me-
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Fig. 7.1.Historical meter stamps from different countries (coneeio grayscale).
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(b)
Fig. 7.2.Pitney Bowes Model M postage meter: (a) drawing by inventdhér H. Pitney; (b)
original postage meter from circa 1920; (c) original Modeah&iling machine, which housed
the postage meter (pictures adapted from [10]).

tered, representing the largest single source of postagaue. More than a million
postage meters are being used by large and small quantityruaifrs in business,
industry, and other categories.

During automatic mail processing, not only the letter’'sradd is read for sort-
ing, but also the stamps are recognized. This is necessanyglér to compare the
postage value of the stamp to the weight of the letter for kingdf the postage is
sufficient. It is desirable to apply the same check to metktbers.

For a successful recognition of meter values, first, the mstenps must be
detected. Next, the exact location of the meter value mustebermined. Finally,
the value must be read.

In the following, a system is described that covers only #st Etep, the ac-
tual recognition of the isolated meter value. The systemaimable to recognize
the entire meter value, without prior digit segmentatidns Ibased on the Neural
Abstraction Pyramid architecture. If this block classift@nnot make a confident
decision, single digit classifiers are combined with itsihss

7.2 Swedish Post Database

For the following experiments, a database of Swedish Pogemmearks is used
which was collected by Siemens ElectroCom PostautomatimibtE It contains
5,471 examples that were assigned randomly to a trainingfssre 4,372 and a
test set of size 1,099. Figure 7.3 shows some example imegedliis dataset. As
can be seen, the recognition of the meter value is not an aakyThe images are
of low resolution and low contrast. Typically, digits havsize of only 10<4 pixels.
High variance of print, lighting, and background complée&agcognition further.
Frequently, the meter values are difficult to read even fondus.

On the other hand, the meter values are not arbitrary coribirseof digits, but
come from a set of standard postage values. Table 7.1 sheviGtmost frequent
values that account for 99.2% of the dataset. The meter sates not uniformly
distributed. The five most frequent values cover almost 90%l@xamples. Fur-
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Fig. 7.3.Some examples of the Swedish Post database (converted/szagie). While some
meter values are clearly readable, others are challengieg for experienced human ob-
servers.

Table 7.1.Most frequent meter values of the Swedish Post databasel@ kalues shown
account for 99.2% of the dataset.

H 4.60 ‘ 4.40 ‘ 9.20 ‘ 3.90 ‘ 4.10 ‘ 3.80 ‘ 8.80 ‘ 7.00 ‘ 3.50 ‘ 6.00 ‘ 8.20 ‘ 5.00 ‘ 13.00 ‘ 12.00 ‘ 7.80 ‘ 8.00

#(|3176 534 | 522 | 341|319 | 98 | 91 | 82 | 78 | 64 | 42 | 19 18 16 14 | 14

% | 58198 |95|62|58|18|17|15|14|12)|.77 | .35| .33 29 | .26 | .26

thermore, one can observe that it suffices to read the twasdigixt to the point
separator in order to uniquely identify the meter value.

In addition to the RGB-image and the meter value, an autaagtidetermined
rectangular region is given for each example that shoulthdothe digits belonging
to the meter value and nothing else.

7.3 Preprocessing

Before an example can be given to the block recognizer, samgrqgressing is

needed to make its task easier. The goal of the preprocassaigduce the variance
of the examples by color filtering and by increasing the imagdrast, such that the
print becomes black and the background becomes white, androyalizing slant

and position of the meter value.

7.3.1 Filtering

Segmenting the print from the background is not an easy saste the image qual-
ity of the Swedish Post database is quite low. Noise shoutlidwarded, while at the
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same time, the lines of meter value should be enhanced t@irapeadability. The

filtering methods described in the following were develofveth a low-level model

of the print that includes line width, line color, ratio ofréground to background
area, and typical noise.

Color Filtering. Because the meter stamps are printed with red ink, it is aisJWio
use the color as a key to segment the print from the backgrdirelRGB-images
were captured with a two-line camera. One sensor line crai®nly green pixels,
while in the other line blue and red pixels alternate. Thias Mertical resolution of
the green color is twice as high as the resolution for therdthe color channels.

Since the lines of the print are only about one pixel widegfiently they cover
only parts of a pixel's sensor area. This leads to color devia. The red lines then
appear to be orange or magenta.

Figure 7.4(a) shows the original rectangular regions afétexamples from the
Swedish Post database. Parts (b-d) display the three &3t&lor components of
these images. One can observe that the print is best visiltheigreen component,
as this is the complementary color to red. A lower contrastred version of the
print appears in the blue component. The red componentiosramost no differ-
ences between the print and the background since the reifigébir red light of the
red color is about as high as the one of the paper.

A pixel-based filter extracts the red colored lines as foflow

v = min(255, max(0, 24 + 2r + 0.125b — 2.25g )), (7.1)
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Fig. 7.4.Color filtering: (a) original image (converted to graysga(b-d) red, green, and blue
components of original image; (e) red color filtered versbthe input (shown inverted); (f)
output image produced using center-surround filtered geeemponent combined with red
neighborhood mask.
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wherew is the filter output, as shown in Fig. 7.4(e), and, b are the color com-
ponents. The output of the red-filter is used in the followéisga mask to suppress
dark lines of other colors.

Figure 7.4(f) shows the result of the color filtering. Thisige is based on the
green component that has been convolved with<@ 8enter-surround kernel to
amplify high image frequencies. If the maximal red-filtespense of a pixel’s 83-
neighborhood does not exceed the average red-filter resjynat least a value of
eight, then a value of 32 is added to the filter output. Thus,pittels close to the
red lines appear darker than the background.

Contrast Enhancement. The next step of the preprocessing is to enhance the im-
age contrast. This is done by stretching the pixel intesslthearly from an interval
[9mins 9max) 10 [0, 224]. All intensities lower thary,i, are set to 0 (black). All in-
tensities larger than,.« are set to 255 (white), the background value.

The lower threshold.,;, is determined using the intensity histogram shown in
Figure 7.5(a) for the three examples from Fig. 7.4. Becausgeaannot perceive
a clear distinction between the intensities of the print tredbackgroundgm,i, is
chosen as the minimal intensity that has at least 32 darkefspin the histogram.
The upper thresholg,,.x is initialized similarly by setting it to the minimal in-
tensity value that hagl28 + a/16) darker pixels in the histogram, wheses the
total number of pixels. It is modified to lie in the closestdbminimum of the his-
togram in order to minimize the segmentation error betwbemackground and the
brightest foreground pixels. The described method of cingabe interval borders
ensures that, after contrast stretching, some black péséds and that most pixels
are assigned to the background.

In Figure 7.5(b) the results of this contrast stretchingsdm@wn. The readabil-
ity of the meter values has improved greatly. On the othedhane can observe
that some isolated pixels which correspond to noise wenmsated as foreground.
Furthermore, some adjacent lines are merged to singlerfuwag blobs. To address
these problems, a countelis computed for the 8-neighborhood of each pixel. It
counts the foreground pixels. Dark pixels with an intensityaller than 128 are
counted twice.

Y Y Y
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Fig. 7.5.Contrast enhancement. For the examples from Fig. 7.4 aveaslia) histogram with
marked minimal and maximal gray values; (b) contrast dted¢(c) isolated pixels removed
and blobs weakened.
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A foreground pixel is removed when this counter is small, pared to its inten-
sity. Isolated pixels are always removed. Pixels with a teuaf one are removed
only when their intensity is greater than 64. Pixels with arger of two are removed
only when their intensity is greater than 128. Similarlyweaken the inner part of
blobs, the intensity of a pixel is increased half the way tals®55 if the counter is
large, compared to its intensity.

Figure 7.5(c) shows the resulting images. While the remafigblated pixels is
quite obvious, the weakening of blobs is most visible in thvedr parts of the digits
four and in the three horizontal lines at the start of thetlastblocks.

7.3.2 Normalization

The automatically determined regions of interest contgjwligits of the meter value
have a variable size, while the block classifier is a neuralork with a fixed input
size. Hence, a mapping must be computed from filtered regdotie input image.
This mapping normalizes digit position and slant in ordesitoplify recognition. If
the normalization did not occur, the network would also htaMearn translated and
slanted variants of the meter values. The size of the digitlbls not normalized
because the image resolution is so low that an arbitraryrgralould produce sig-
nificant blur. In addition, it would require a reliable segmtegion of the digits from
other objects, e.g. from the curved line delimiting the meatark that is sometimes
included in the region of interest.

Slant Normalization. Due to misalignments of letters relative to the stamp dur-
ing metering, and relative to the camera during capture esoter values appear
slanted in the rectangular region of interest. The slantnadization step estimates
this slant and corrects for it.

To estimate the slant, the center of mass of the dark foregrmicomputed in
the first step. It divides the image into a left and a right pBine centers of mass of
these two parts are computed next. They define a line thagégmonds to the slant
estimate. Figure 7.6(a) illustrates this for three example

To correct for the slant, a vertical sheer transformatiarsied that makes the line
approximately horizontal. The sheering keeps the positféhe center constant and
shifts columns only by an integer number of pixels to avoigartihg. Figure 7.6(b)
shows the resulting deslanted images for the three exanidés that this normal-
ization has no effect if the estimated slant is relativelyaBm
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Fig. 7.6.Slant normalization: (a) contrast enhanced image of steetamples with markers
at the center of gravity, as well as at the left and the rightexe (b) result of vertical sheering
that removes the slant.
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Position Normalization. The block recognizer, described below, has an input size
of 32x16. A window of this size must be cut from the region of intér&nce the
block recognizer has to read the two digits directly to tHe dad to the right of
the point or space delimiting kronor from ore, the windowplaced such that the
gap between these two digits is centered horizontally.rfeigu7 (b) illustrates how
the space between the second and the third digit from thé isglound using a
smoothed occupancy index that is computed for each column.

The occupancy index is the sum of two components: the colsifenéground
sum and its top index, as shown in Fig. 7.7(a). To determieddp index, a col-
umn'’s foreground values are accumulated, starting fromdpmost row, until the
sum exceeds 128. The top index is proportional to the heighi®first occurrence
of significantly dark foreground decreased by three. Thimants for the delimiting
point that is usually located in the lower three rows, whibbwdd not cause high
top indices.

The occupancy index is smoothed with a binomial kernel af Sizo reduce the
number of local minima. Each digit should now correspond gingle maximum
while each space between digits should correspond to aedmeal minimum. Start-
ing from the right, the beginning of the digits is localizedthe occupancy vector.
The search then proceeds to find the first and the second locahum between
the digits (see marked columns in the figure).

0920 0460 044
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Fig. 7.7. Position normalization. For the examples from Fig. 7.5 drews: (a) top index
(upwards) and column sum (downwards); (b) region of intewéth smoothed occupancy
index (the start column at the right, as well as two local miziand the vertical center of
mass are marked); (c) 326 window cut from the region of interest; (d) window with &l
borders.
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Fig. 7.8.Preprocessing of meter values. For ten randomly selectui@es of the Swedish
Post database, the original region of interest (converdegkdyscale) and the result of the
preprocessing are shown.

The second minimum is used to center thex38 window horizontally. Its ver-
tical center is chosen to be the vertical component of théecaf foreground mass,
indicated by the horizontal lines in Figure 7.7(b) for thee@mples.

Figure 7.7(c) shows the windows cut from the three examflbs.two digits
of interest have been centered successfully. Becausehbedigits, as well as the
pixels near the upper and the lower window edge, are lessrianpdor recognition,
image contrast is faded towards the borders of the windois. dlko reduces border
effects in the block recognizer.

Figure 7.7(d) displays the final result of the preproces&imghe three exam-
ples. In Figure 7.8 the original regions of interest and #®ilt of the preprocessing
are shown for ten randomly selected examples. The two difitsterest are quite
salient, centered, and most of them are readable.

7.4 Block Classification

The task of the block classifier is to recognize a meter valom fa preprocessed
image. Although the preprocessing discarded some of thanees present in the
examples and increased their readability, the probleniligisallenging.

As can be seen in Figure 7.8, the print varies considerathlg. digits come
in different sizes and different fonts with varying spacesaeen them. Some ex-
amples contain a delimiting point, while others do not. Sahthe loops enclose
background pixels, while others only have some brightezdosund pixels in the
center. Furthermore, noise is still present in the images.
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Fig. 7.9. Problematic preprocessed examples from the Swedish Pdiad®. In some ex-
amples the digit segmentation is difficult, while in othére tecognition of isolated digits is
hard.
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Fig. 7.10.Network architecture for meter value recognition. It is addorward version of
the Neural Abstraction Pyramid with specific excitation amdpecific inhibition in the inner
layers. The activities of the trained network for a test egknare shown. The output feature
cells signal the classes of the two digits of interest inkg22out-of-10) code @’ and ‘5’ for

a meter valug.50).

One could now try to segment the digit block into single digiecognize them,
and combine the digit classifier outputs to a meter values @pproach would re-
quire reliable digit segmentation and a reliable digit sifisation system. Both re-
quirements are not easy to meet. It is fairly hard to segniendligits, and it is also
difficult to read isolated digits reliably, as is evidentrfrd-igure 7.9 which shows
some problematic preprocessed meter values.

For these reasons, a block classifier was developed thagnmzes the two digits
of interest simultaneously within the context of the neigtibg digits. Unlike a digit
classifier that can only use the a-priori distribution ofgdéndigits, this classifier is
able to take advantage of the non-uniform meter value Higidn, summarized in
Table 7.1.
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7.4.1 Network Architecture and Training

The architecture of the Neural Abstraction Pyramid netwas&d for the recogni-
tion of entire meter values is sketched in Figure 7.10. Itfiseal-forward network
consisting of five layers.

Layer 0 at the bottom of the hierarchy has a resolution of B2 It only contains
the input feature array. The resolution of the feature ardscreases from layer to
layer by a factor of two in both dimensions, until Layer 3 feega size of only 42
hypercolumns. Similarly, the width of the border that isteetero decreases from
16 to 2. At the same time, the number of excitatory featusesrirom 4 in Layer 1,
to 16 in Layer 2, and to 32 in Layer 3.

The network contains 20 output feature cells in the toprmayatd which encode
the meter value. The output code used is composed of twamsedtiat indicate the
identity of the two digits of interest in a 1-out-of-10 code.

The projections of output feature cells receive their isglitectly from all po-
sitions of all feature arrays of Layer 3. Their weights alevaéd to change sign.
The potential of these projections is passed through a saahtvansfer function
fsig (B =1, see Fig. 4.5(a) in Section 4.2.4), which saturates at zedt@ae.

In contrast, the cells of excitatory features located indray to Layer 3 are
driven by specific excitation and unspecific inhibition. Maeights of their specific
excitatory projections originate from overlapping4windows of the feature arrays
in the layer below them. Unspecific inhibitory projectiors/h a single weight to
the smoothed and subsampled sum of these features. Bo#tiiwos have linear
transfer functions. The transfer functigig s (6 = 2, see Fig. 4.6(b)), which is
used for the output units is a rectifying function that sates at activities of one.
This ensures that the network learns sparse represergatiohe digit block since
the activity becomes exactly zero if inhibition exceedsitexion.

The feature sums and their subsampled versions, needdgfanspecific inhi-
bition, are computed as described in Section 5.2.1. Thearktis initialized using
the unsupervised learning of sparse features, describ&hapter 5. Supervised
training is done with gradient descent on the squared owpat until the perfor-
mance on the test set does not improve any more.

The training enforces the desired signs of the weights. [fexific excitatory
weight becomes negative, it is set to zero, and the unspédfibitory weight is
changed instead. This leads to sparse excitatory weigitds,sifter training, many
of them have a value of exactly zero and can be pruned awaputitbss.

7.4.2 Experimental Results

The trained Neural Abstraction Pyramid network is able tdgren the recognition
task quite well. After deleting 21 examples from the tragnset that could not be
centered successfully or that were not readable for an estpeyd human observer,
there are only 11 substitutions left. All but one of them carnrdjected easily.

The test set has not been modified. In Figure 7.11 some tesipas are shown
that are difficult, but were recognized successfully, alaitlpy some examples for
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Fig. 7.11.Block recognition examples from the test set. The inputsi¢ohierarchical block
classifier, its outputs, and the interpretation of the ougpe shown for: (a) examples that
were recognized successfully; (b) examples for which reitimg failed.

which recognition failed. Analysis of the problematic exaes reveals that recogni-
tion failure is mainly caused by missing image parts or blufaito center the digits
of interest during preprocessing. Such errors in digit ssgation occur more often
when the region of interest includes foreground structuresldition to the digits,
as in the example in the second and the third row of the figure.

One can observe that for most ambiguous examples, the rieisvable to indi-
cate its uncertainty by producing outputs that deviate ftbendesired 1-out-of-10
pattern. This makes it possible to compute a meaningfusifleation confidence
as follows. For both digits, the difference between the maioutput activity and
the second largest one is taken as confidence. Since thesabtlong to the inter-
val [0,1], the digit confidence has a value of one when a singlput is one and
all other outputs have zero activity. If more than one outgas high activity or all
output activities are low, the digit confidence has a low galu

Both digit confidences are combined into a block confidendmking the aver-
age. If one digit confidence is below a reject paramgter the block confidence is
below the block reject parameter= 1 — (1 — p)? which is more strict, the example
is rejected.

Figure 7.12 summarizes the test performance of the hidcaldilock classifier.
About 2% of the examples are substituted when the rejectpeteap = 0 is used
and all outputs are accepted. By rejecting 2.4% of the exesnphllf of the substi-
tutions can be avoided. To reduce the substitution rat@édurt larger fraction of
the examples must be rejected.
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Fig. 7.12. Performance of the meter value block classifier on the tas{agflat classifier
compared to hierarchical classifier; (b) recognition asnefion of the reject parametgrfor
the hierarchical classifier.

For comparison, several fully connected three-layered-feeward neural net-
works with sigmoidal activation functions were trained be same data. The net-
works had 16, 32, 64, 128, or 256 hidden units. They weredrthirsing gradient
descent on the squared output error until the test set peafoce did not improve
any more. The recognition performance of the best flat nétwehich had 32 hid-
den units, is also shown in Figure 7.12(a). It substitute833B3%) of the 1,099 test
examples in the zero-reject case. For higher reject raeefiahnetwork is outper-
formed by the hierarchical network as well.

Since the rejections necessary for reliable recognitidnece the acceptance rate
of the classifier, the next section describes a second rémrgsystem that tries to
verify the examples rejected by the hierarchical blocksifaes.

7.5 Digit Recognition

Because the block recognition system described in the quevéection is not a
perfect classifier, it is complemented by a digit recognitagystem as illustrated
in Figure 7.13. A separate digit classifier is used for thedefl the right digit of
interest since they have different a-priori class distitms and are embedded in
different context. Both digit classifiers receive the outpiithe block classifier for
the other digit as contextual input in addition to the prepssed digit.

The digit recognizers are queried only if the block classifienot confident
enough and rejects an example. Digit recognition considtsree steps: digit pre-
processing, digit classification, and combination of thggtdiutputs with the results
of the block classifier.

7.5.1 Digit Preprocessing

The image of the preprocessed meter value cannot be givecatlgito the digit
classifier. Some digit-specific preprocessing is necedsafgcilitate recognition.
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Fig. 7.13.Sketch of the combined meter value recognition system.tDégognition is only
necessary if the block classifier rejects an example.

The digit needs to be segmented from the other digits, asahibimalized to a fixed
size.

Segmentation. The goal of the segmentation step is to determine a mininctdmne
gular region of the 32 16 meter value image that contains the digit to be recognized
and nothing else. This is illustrated in Figure 7.14(a) fine examples.

The vertical extension of this rectangle is determined devis. Starting from
the topmost row and the bottom row, the rectangle’s bordersmved towards the
center, until the row sum of foreground intensity exceedsrashold. The thresh-
old used is the maximal row sum, divided by 16. Thus, all rona tontain non-
negligible foreground pixels are contained between theesuppd the lower border,
as can be seen in the figure.

Horizontal segmentation is done using an occupancy indakishcomputed
similarly to the one used to center the digits of interesizwortally in the 316
window (see Section 7.3.2). Here, analysis is done onlyimitie segmented rows.
The occupancy index is smoothed with a smaller binomial édeofi length five
to keep more local extrema. The smoothed occupancy indetxoisrs above the
examples in Fig. 7.14(a).

To locate a digit horizontally, a local maximum is searchedri the occupancy
index array, starting with an offset of four pixels from thenter of the digit block.
The maximum indicates the digit's center. It is marked by erskertical line in
the figure. The left and the right borders of the digit are ceeal for, starting with
an offset of two pixels from the digit center. The borders mi@ved away from
the center, until a local minimum is found, or the occupammek falls below a
threshold. The threshold used is the sum of the occupanmeisdt the digit centers
divided by 16. If there are no foreground pixels in that rowd &ime distance to the
center exceeds two, the border is moved one column backdsewe center. Hence,
the segmented digit has a width of at least five pixels. Inf&gul4(a) the horizontal
digit segmentation is indicated by vertical lines.

Size Normalization. The segmented rectangular region of a digit has a variable
size, but the digit classifier expects an input image of fixed. Hence, the digit
needs to be scaled to normalize its size. This discards thiesdiize variance. An
array of 8<15 pixels is used to represent the normalized digit.
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Fig. 7.14. Segmentation and size normalization of meter value digisdigit block with
occupancy index and segmentation of the left and the rigiit df interest; (b) segmented
regions interpolated to higher resolution; (c) digits nalized to 8<15 pixels.
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Because the segmented region usually contains fewer phaaishe normalized
digit, the resolution of the image is doubled in a first steprserting interpolated
rows and columns. The valueof an interpolated pixel is computed from the values
vy andws of its neighbors as follows: = (v; + vo + max(v1,v2))/3. This makes
pixels next to the dark lines darker than simple averagirge fiigher resolution
variants of the digits are shown in Figure 7.14(b). The valagéthe normalized
digits are set now to the response of a3binomial filter at the corresponding
position in the high resolution image.

Finally, the contrast of the normalized image is increasigtitty by multiplying
the intensities with..25, subtracting one fourth of the average pixel value, and clip
ping the values to the intervil, 1]. This darkens the lines and sets the background
pixels to exactly zero (white). Figure 7.14(c) shows thdtdigfter normalization
and contrast enhancement. Preprocessing worked well dsetbxamples because
the digits were tightly framed by the segmentation and wezarly readable.

Some more problematic examples are shown in Figure 7.16(@af the figure
contains examples that were segmented successfullyuglisegmentation was not
easy. Note that even if a digit is broken into parts, thesés@ae grouped together
and placed at the correct position in the normalized digiagen Part (b) shows
some examples for which segmentation failed to select tlvedigits of interest.
This may have been caused by additional foreground strestas in the example
in the second row. Another problem is the miscentering ofemealues that leads
to the selection of the wrong digit, as in the first and thedtihdw of the figure.

7.5.2 Digit Classification

A three-layered feed-forward neural network is used foitditassification. It is
sketched in Figure 7.16. The network’s input layer contéiesnormalized digit to
recognize. In the second layer, 32 hidden units detect fligttires. They are fully
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Fig. 7.15. Digit preprocessing for problematic meter value examp{ay:successful digit
segmentation; (b) segmentation failure.

connected to the 120 input pixels. Ten context units, whiehsat to the outputs of
the block classifier for the other digit, are also locatedhem$econd layer. The third
layer consists of 10 output units that are fully connecteth&se context units as
well as to the hidden units. They signal the digit’s class Ir@ut-of-10 encoding.
The hidden units and the outputs 2reunits that compute a weighted sum of their
inputs, followed by a sigmoidal transfer function.

The network is trained to produce the desired outputs ugsiadignt descent on
the squared output error. Training is done until the perforoe on the test set does
not improve any more. A separate classifier is trained fotdfiand the right digit.

After training, the performance on the training set is altrpesfect. While all
left digits of the 4,351 training examples can be recogninatly two of the right
digits are substituted. They can be rejected easily usiaglifference between the
activities of the most active and the second most activeut@tp confidence.
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Fig. 7.16.Sketch of the digit classifier network. The network has a&teshe output of the
block classifier for the other digit as context to the normedi digit.

From the test set 4 (0.36%) of the left digit examples aretstubesd when none
are rejected. To achieve a substitution rate of 0.25% of teeted left digits, the
acceptance rate must be lowered to 99.64%.

15 (1.36%) of the right test digits are substituted whenxaheples are accepted.
Lowering the acceptance rate to 98.52% reduces the sulsiitate to 0.25%. The
right digit is obviously more difficult to recognize than tleft one since there is a
greater variance in the distribution of right digit labede¢ Table 7.1).

Figure 7.17 shows some example inputs and outputs of thedigh classifier.
In Part (a) of the figure, some examples are shown that areasgtte recognize but
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Fig. 7.17.Digit classification for problematic right digit exampl€Ehe output of the block
classifier for the left digit, the normalized right, and thegiticlassifier output are shown. The
index of the most active output and the confidence label thgubwector. (a) successful digit
recognition; (b) recognition failure with desired class.
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are recognized with high confidence. Part (b) shows exanvgiese recognition
failed. Segmentation problems seem to be the most freqeason for substitu-
tions. If the digit is not tightly framed and some additiofi@teground structure
is present in the normalized image, it deviates from theciphppearance and is
therefore difficult to recognize. Missing digit parts alsonplicate recognition. Un-
usual context may as well cause substitutions, as in the gheaimthe second row
of the figure. Here, the left digit has been correctly recegdias! by the block rec-
ognizer, but the right digid occurs only very rarely next to4in the dataset. The
digits 6, 4, and1 are much more common in this context. Consequently, theidigi
recognized a8 with medium confidence. While in this particular example, tise
of the context information does not seem to be beneficial gimegal it facilitates
recognition, as can be concluded from the following corgsgleriment.

The same network was trained with a context vector that wde gero. Without
access to the context information, the classification perémce degrades. The best
test performance for the left digit has now a substituticte 1&f 1.91%. The best
right digit classifier substitutes even 7.25% of the testgasawhen all examples
are accepted. These figures show the importance of contetlidaecognition of
isolated digits.

7.5.3 Combination with Block Recognition

Digit recognition is not done for all examples, but only itblock recognizer is
not confident enough. If its classification confidence for ohthe digits is below
a thresholdp, this digit is preprocessed and presented to the digitifilsdVhen
p = 0.9 is chosen, 134 (12.2%) blocks are rejected from the 1,09%®kesnples.
82 (61%) left digits and 101 (75%) right digits are ambiguous

The outputs of the digit recognizer need to be combined vhighdnes of the
block classifier. This is done by computing the average dutpu= (v + v4)/2,
wherev, denotes the output vector of the digit classifier apds the correspond-
ing section of the block classifier output. The digit's cogfide is again set to the
difference between the most active and the second moseamdinbined output. It
does not exceed the higher one of the two digit confidences.

Figure 7.18 illustrates some typical cases of output coathin. If both classi-
fiers are confident and agree on the class, the combined dsitportfident. If both
classifiers disagree on the class, the output is not confidemte classifier is silent,
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Fig. 7.18.Combination of outputs from block classifier and digit clfies (a) both classifiers
agree; (b) both classifiers disagree; (c) one classifierigtive, while the other is confident;
(d) one classifier is undecided between two classes, whelettier is confident.
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then the other classifier determines the output. If oneifiass undecided between
two classes, the output of the other one can strengthen dhe ofasses and weaken
the other class.

The performance of the combined classifier on the trainibgsd@most perfect.
Only one of the 4,351 examples is not recognized. It has areeeymeter value of
4.80 that is substituted for the most frequent va4Lig0.

The test set performance is also good. If no examples aretedjeonly 10
(0.91%) of the 1,099 examples are substituted. Most sulistits can be rejected
easily by using as block confidence the minimum of the left aght digit confi-
dences. The substitution rate can be lowered to 0.45% if@6K% of the examples
are rejected. Rejecting 3.55% of the examples reducesiséision rate to 0.18%.

Figure 7.19 summarizes the test set performance of the cealulassifier and
compares it to the performance of the block classifier aleling the digit clas-
sification stage to verify the examples rejected by the btdaksifier improved the
recognition performance significantly.

Figure 7.20 illustrates the combined recognition for sonabfematic examples.
Part (b) of the figure shows the five substitutions from the¢ ¢es that are most
difficult to reject. One reason for these substitutions & the meter value is not
present in the training set or is very rare, as in the exaniplt first and the last
row. Other substitutions arise from failures to center the digits of interest during
preprocessing. These failures may be caused by some additivokes, as in the
third row, or by a missing digit, as in the fourth row of the figuFinally, low image
contrast may also be a reason for substitutions, as in thaean the second row.

On the other hand, Part (a) of the figure contains some exanfptenvhich
the person labeling the meter values did not assign a vdiel.l&lthough these
examples are fairly hard to read, they were successfulygrized by the combined
classifier.
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Fig. 7.19.Performance of the combined meter value classifier on theg¢eqa) substitutions
vs. rejects; (b) recognition as a function of the reject paatrp.
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Fig. 7.20. Problematic examples for combined meter value classifiee driginal region
of interest (converted to grayscale), the preprocessetk tdtong with the block classifier
output, the preprocessed digits for which digit recognitis queried along with the digit
classification, and the combined classifier output alondn Wit recognized label and the
confidence are shown for: (a) some examples for which thepdabeling the meter values
did not assign a valid label; (b) the five substitutions of et set that are most difficult to
reject.

7.6 Conclusions

This chapter described a meter value recognition systenhthibauthor developed
in close cooperation with Siemens ElectroCom Postautam&mbH. The system
consists of two stages: block recognition and digit rectgmi

The block classifier, which is based on the Neural Abstracigramid archi-
tecture, recognizes two digits of interest simultaneoustijin their context. It per-
forms significantly better than a flat neural classifier.

If block recognition cannot make a confident decision, theteay focuses its
attention on the ambiguous digits by presenting them to & dagsifier. This digit
classifier has access to the block classification outpuhfmother digit as context.

The system was evaluated using a database of Swedish Pestvaletes. The
combined system performs well. If the given region of ing¢i@ntains a readable
meter value, it can be recognized with high accuracy. Evaeemvalues challenging
for trained humans can be read.

The analysis of problematic test examples revealed thakeitwgnition perfor-
mance could be improved further if the training set weredgrguch that rare labels
were better represented, and if the region of interest awedaonly the digits of the
meter value and no additional objects.
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8. Binarization of Matrix Codes

In this chapter, the binarization of matrix codes is invgatied as an application
of supervised learning of image processing tasks using @nea version of the
Neural Abstraction Pyramid.

The desired network output is computed using an adaptiestimiding method
for images of high contrast. The network is trained to iigedy produce it even
when the contrast is lowered and typical noise is added tnthe.

8.1 Introduction to Two-Dimensional Codes

Two-dimensional codes are an extension to one-dimensiarabdes, which have
been used for many years to mark items with machine readaiohbers. In one-
dimensional codes the bits are represented by verticaf blaghite bars of variable
width. Figure 8.1(a) shows Code 39 [5], an example of a twdthvcode.

The first truly two-dimensional bar code was developed byi®#Hais at In-
termec Corporation in 1987 for space applications. As casdes in Fig. 8.1(b),
Code 49 [6] is a stacked barcode with multiple rows. Paritg,kds well as check
characters at the end of a line and the end of the code ensiatgdealecoding. At
most 49 characters can be stored in one symbol.

Figure 8.1(c) shows an example of the Data Matrix [4] codeeligped in the
late 1980s by International Data Matrix (USA). Data Matsxai two-dimensional
matrix symbology containing dark and light square data nesiut has a finder
pattern of two solid lines and two alternating dark and liiyits on the perimeter
of the symbol. Larger codes contain additional finder pagtevithin the symbol.

*1234567F*

@) (b) (c)
Fig. 8.1. Different codes: (a) Code 39: one-dimensional two-widthcbde; (b) Code 49:
stacked barcode; (c) Data Matrix: matrix code.

lrl
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Fig. 8.2. Different meter marks: (a) Meter impression design used bapada Post; (b)
Stamplt design used by Deutsche Post AG.

00.48

Data Matrix is designed with a fixed level of error correctmapability using the
Reed-Solomon [188] method. Reconstruction of the contepbssible if less than
one quarter of the bits have been destroyed. Data Matrix@stpmdustry standard
escape sequences to define international code pages aiml speoding schemes.
It is used for small item marking applications using a wideetg of printing and
marking technologies. The code size is variable. Up to 2/83&ll-characters can
be stored in one symbol.

8.2 Canada Post Database

For the experiments described below, a variant of the DataidMeode is used that
was selected for the electronic letter franking method Wiiscoffered by Canada
Post as an alternative to postage meter machines and stBigpse 8.2 shows an
example of such a meter mark, along with a Stamplt meter msekl by Deutsche
Post AG. Both contain human-readable fields, as well as aMatex symbol.

The meter mark can be printed either directly on the letteshghat it is visible
through the address window in the envelope, or it can bequtioh the envelope
at the upper right corner where the stamp would be placedwit® In this case,
it is printed using fluorescent red ink to allow for automatperight placement of
letters. Some examples of the address window variant arershoFigure 8.3(a).
They have a relatively high image contrast. The symbol atsisif four quadrants
with 22x22 bits each, framed by black or alternating finder pattefhss allows
for the storage of 1,936 raw bits. Figure 8.3(b) shows exanmphges from the
red ink variant of Canada Post meter marks. Here, each quaciasists of only
18x18 bits. These images are considerably brighter and havech lower contrast
compared to the address window code variant.

The code matrix contains information about:

— the meter value along with cryptographic key to ensure itglid

— the date of sending,

— the sender, such as the serial number of the meter machuhe, an
— the addressee, such as the zip code and a short form of thesaddr

Automatic reading of the Data Matrix code requires localizand binarizing
the symbol, locating finder patterns, reading the bits,eximg for errors, and vali-
dating the result.

Here, the focus is on the binarization step only. Becauseigendifficult light-
ing, printing errors, and the low-contrast of red ink on dpdper, this problem is



8.3 Adaptive Threshold Binarization 157

)

., 3 I-;:
(b) i J E {*’q

Fig. 8.3.Canada Post Data Matrix original images: (a) high-contddtress window variant;
(b) low-contrast red ink variant.

challenging. The purpose of the experiments is to demaesthat the structure
present in the image of the code can be learned and used &izztion.

A database for training and testing the binarization neltweas provided by
Siemens ElectroCom Postautomation GmbH. It consists @BlgPay-scale images
of size 216<216 containing a Data Matrix each. 515 of the images belortdo
high-contrast address window variant (see Fig. 8.3(a)J, @¥ low-contrast ex-
amples have been printed with red ink (see Fig. 8.3(b)). Tigk-bontrast images
can be binarized using simple thresholding methods, whaebinarization of the
low-contrast images is more difficult.

8.3 Adaptive Threshold Binarization

So far, simple global threshold techniques have been udeidaoize the Data Ma-
trix images. However, due to non-uniform lighting for someages it is difficult to
determine a single global threshold that separates blagkspirom white pixels.
One such example can be seen in Figure 8.4(a), where theroacidjin the upper
right corner is much darker than in the rest of the image. Toeot for this, the in-
tensity of the backgroun®(i, j) is estimated for each locatidn, j) by computing

Bl.j) = max [T+ 805 +4) ~ (Al @)

wherel (i, j) is the intensity of the original image, and radius- 15 determines the
smoothness of the estimate. Figure 8.4(b) shows the estirbackground intensity
for the example.

The estimated background is used to correct the image ityens

C(i,j) = min(255, max(0, 1(i, ) + 128 — B(i,§)/2)). (8.2)

The corrected example imag¥:, j) is shown in Fig. 8.4(c).
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Fig. 8.4.Background correction: (a) original image with non-unifolighting; (b) estimated
background intensity; (c) corrected image.
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Fig. 8.5. Threshold estimation: (a) histogram of background coedinage and smoothed
histogram with estimated threshold, as well as backgroadd@eground intensity; (b) con-
trast enhanced image.

Figure 8.5(a) shows the intensity histogram of the corkateage, as well as
a smoothed version of it. Smoothing was done by repeatediiyizg a binomial
1/4 (1 2 1) kernel until the number of local minima reduced to one. Thaeinof
the remaining local minimum is now used as a thresligldhe two local maxima
represent the intensities of the foregroundand the background,. Both are used
to determine a rangg + u where the contrast is stretched linearly:

u = (Ib - If)/lo,
= min(255, I} + u),
b = max(0,I; —u),

0 : C(i,5)<b
S(i,j) = 255 : C(i,j) >w . (8.3)
(C(i,j) —b)x255/(w—10) : else

The resulting image5 (4, j) is shown in Figure 8.5(b). As can be seen, most
pixels are either black or white, but some pixels at bordeta/ben cells have been
assigned intermediate gray values, representing unesrtai

Figure 8.6 shows the contrast stretched versions of thegmfrigm Fig. 8.3. In
general, these images are a good approximation to the desitput, a black and
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(b)
Fig. 8.6. Contrast stretched images (originals in Fig. 8.3): (a) froigh-contrast address
window variant; (b) from low-contrast red ink variant of tBata Matrix codes.
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Fig. 8.7.Problems with adaptive thresholding (shown are a part obtlggnal image as well

as the corresponding part of the contrast stretched iméajeyertical dark line; (b) vertical
bright line; (c) high noise.

white version of the original Data Matrix. However, closespection of the contrast
stretched low-contrast images reveals some probleméysisdited in Fig. 8.7. Most
problematic outputs are either due to printing errors {garidark or bright lines)
or due to noise caused by the paper of the envelope. These waseant further
attention.

8.4 Image Degradation

The learning of image processing tasks is based on the ideartk can use the out-
put of a simple method for unproblematic examples as desingulit for a network
that is trained to produce them even if the unproblematiergtas are degraded.
In the case of binarization of Data Matrix codes, a Neuraltfgadion Pyramid is
trained to produce the output of the adaptive thresholdiethod not only for the
original images, but for degraded versions of them as welgrAdation is done by:

adding vertical dark and bright lines,

adding a smoothly varying background level,
lowering contrast, and

adding pixel noise.

These degradations are illustrated in Figure 8.8. The numbeertical lines is
uniformly drawn from the interval, 99]. They are positioned uniformly and have



160 8. Binarization of Matrix Codes

(@) . (b) (c) .

Fig. 8.8.Image degradation: (a) vertical light and dark lines; (b)kagmound level; (c) pixel
noise.

(a) =

Fig. 8.9.Degraded images (originals in Fig. 8.3(a)): (a) with randiegradations; (b) output
of the adaptive thresholding for the degraded images.

a length between 21 and 121 pixels. The intensity of a linerpalates linearly
between the original gray value at the ends, and the estihetekground or fore-
ground intensity in the center, as can be seen in Fig. 8.8(ed background level,
shown in Part (b) of the figure, is computed as sum of a horat@md a vertical si-
nusoid. Their random amplitudes can reach the differentedsn the background
and the foreground intensity. The phases are distributédranly and the wave-
lengths are chosen uniformly between 63 and 1420 pixelsgéncantrast is low-
ered t0[0.1, 0.6] times the original level. The amplitude of the uniform pirelise
depends linearly on contrast and can reach the value of 84 8F(c) shows an
example of such pixel noise.

In Figure 8.9(a) the degraded versions of the images from&&fa) are shown.
Part (b) of the figure displays the output of the adaptiveshodding for the de-
graded images. It can be seen that the outputs are of much tpyvadity than the
onesin Fig. 8.6(a) which were produced from the undegradedés. In particular,
the vertical lines cannot be removed by a pixel-based method



8.5 Learning Binarization 161

8.5 Learning Binarization

If one wants to develop a binarization method that outperfoadaptive threshold-
ing, one has to utilize the structure present in the dataeMpecifically, one can
expect a method to perform well that recognizes the DataiMegls and assigns
white or black to an entire cell, and not to single pixels. @ficse, one could de-
velop manually an algorithm that works in this way, but thegmse of the following
experimentis to demonstrate that it is possible to solvgthblem without the need
to think about an application-specific algorithm.

The approach followed is to use a general-purpose tool, thedl Abstraction
Pyramid introduced in Chapter 4, and adapt it to the speeifik by learning from
input-output examples. The generalization performanctheftrained network is
tested and compared to the adaptive thresholding method.

The architecture of the Neural Abstraction Pyramid netwes&d for binariza-
tion is sketched in Figure 8.10. It has four layers with arréasing number of
feature arrays and decreasing resolution. Layer 0 contlagnsput image and two
additional feature arrays of size 21816. The number of feature arrays doubles,
while their resolution is halved when going to the next layatil Layer 3 is reached,
where 16 feature arrays of size 227 are present. A two pixel wide border sur-
rounds the feature arrays. The activities of the bordes @l copied from feature
cells using wrap-around.

The network’s processing elements contain output-unitts asigmoidal trans-
fer function fs, (8 = 1, see Fig. 4.5(a) in Section 4.2.4). They receive input from
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Layer 0 (216x216) Layer 1 (108x108) Layer 2 (54x54) Layer 3 (27x27)

Fig. 8.10. Architecture of the Neural Abstraction Pyramid network duger learning the
binarization of Data Matrix codes. The network consistsafrflayers shown from left to
right. As the number of feature arrays increases from lagdayer, the resolution of the
layers decreases.
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forward, lateral, and backward projections with lineansfer functions. Forward
projections come from %44 windows of all feature arrays in the layer below. Lateral
projections originate from thex& hyper-neighborhood in the same layer and back-
ward projections access a single cell of all feature arraythé layer above. The
weights can have positive or negative values and are alldavetiange their sign
during training. The network has a total of 11,910 differeeights. Most of them
are located in the top layer since the few weights in the |dexgers are shared far
more often than the ones in the higher layers.

The version of the Neural Abstraction Pyramid network teatded for binariza-
tion has relatively few feature arrays. The reason for thédriction was the need to
limit the computational effort of simulating the pyramid arPC. Due to the rel-
atively high resolution of the input images, the iterativednization of one Data
Matrix code required about two seconds on a Pentium 4 1.7GHz P

The undegraded Data Matrix images as well as their degragisibwns are pre-
sented to the network without any preprocessing. One ofdhtufe arrays in the
bottom layer is used as network output.

The target values that are used as the desired output foupesdsed training
are computed using the adaptive thresholding method foutidkegraded images.
The network is trained to iteratively produce them not owlythe original images,
but for the degraded versions of these images as well. Thisoaph has the ad-
vantage that the effort for producing a desired output fartpality images is not
necessary. If one wanted to produce a desired output forapeaded images with-
out relying on the original versions, one would need to useiconsuming manual
labeling which is avoided by using the adaptive threshgdor the undegraded
originals.

The 515 high-contrast images were partitioned randomty &4 training im-
ages (TRN) and 181 test examples (TST). For each exampleggnaded version is
added to the sets. The network is trained for ten iteratiattsadinearly increasing
error-weight using backpropagation through time (BPT19 RPROP, as described
in Section 6.

8.6 Experimental Results

After training, the network is able to iteratively solve thiarization task. Fig-
ure 8.11 displays how the activities of all features evolverdime for one of the
degraded test examples. It can be seen that the lower lagmmessent the cell struc-
ture of the code, while the higher layers are dominated byessmtations of the
background level and the local black-and-white ratio. Ceneftirthermore observe
that the network performs an iterative refinement of anahgblution with most
changes occurring in the first few iterations and fewer ckangwards the end of
the computation. In fact, the activities of iteration 7 aridate hardly distinguish-
able.

In Figure 8.12, the activities of the two Layer O feature wsrare displayed
in more detail. The upper row shows the development of theuwiutn the first
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Fig. 8.11.Recall of network trained for binarization of Data Matrixdes. The development
of all feature array activities is shown for one of the degrhtest examples.

few iterations, the non-uniform background level causesuiper part of the code
to have higher activity than the lower part. This inhomoggrie removed during

refinement. Furthermore, the output is driven from interi@edgray values that
signal uncertainty towards black and white, which is chemastic of the desired
output.

In the lower row of the figure, the only hidden feature arrayhef lowest layer
is displayed. Here, a representation of the cell structarerges. Bright areas of
the input image are broken into a discrete number of cellsekoh bright cell, an
activity blob rises and remains stable. Adjacent blobs ammected either vertically
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Fig. 8.12.Recall of network trained for binarization of Data Matrixd=s. The development
of the feature array activities at Layer 0 is shown for onehefdegraded test examples.
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Fig. 8.13.Recall of network trained for binarization of Data Matrixdgs. Shown are ac-
tivities for parts of a degraded test image after 11 iterstiga) original image; (b) hidden
feature array; (c) output feature array.

or horizontally, depending on the prominent local orieintabf the corresponding
bright area. If such a local orientation cannot be deterthiedy. in bright areas that
have a larger width as well as a larger height, the blobs foloosely connected
matrix.

Figure 8.13 zooms at the lower left corner of the code andalysghe activities
after 11 iterations to illustrate this behavior. It is evitlthat the hidden feature array
represents discrete cells, covering aboutidixels, rather than single pixels. The
blobs inhibit the output feature cells. Hence, network leasried that the output of
a cell must be coherent. This suppresses thin vertical &ndgixel noise.

To understand the emergence of the blobs, one can look atotiteibutions
made by input, lateral, and backward weights, as shown in &ij. The weak
weights of the input projections detect contrast at the uppe right border of a
bright area. The contributions of lateral projections htie blobs through a center-
center excitation and a center-surround inhibition. Here typical blob distance of
about four pixels is enforced. Finally, the backward pro@@ts excite or inhibit
entire areas, not discrete blobs. Thus, at Layer 1 a coapessentation of black
and white areas must exist.
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(a) =
Fig. 8.14.Contributions to the activity of the hidden feature from .R8dL3(b) (bright shading
represents inhibition, dark shading represents excitati@) via input projections; (b) via
lateral projections; (c) via backward projections.
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Fig. 8.15.Recall of iterative Data Matrix binarization over time: @)erage squared output
change; (b) average squared output difference to desitpditou

After analyzing the network’s behavior for a single examitteperformance for
all examples of the high-contrast dataset is measuredrdé-gu5(a) displays the
average squared output change over time. In the first iberstthe output changes
considerably. The changes decrease quickly until itendti®and remain low after-
wards. Thus, the network dynamics is stable even wheniigravice as long as
it was trained for. The small average changes at highettiveimindicate that the
network converges to an attractor for almost every example.

In Figure 8.15(b) the average squared difference to theatbsutput is shown
over time. One can observe that the average error decregsdby/rduring the first
iterations. It reaches a minimum at about iteration 8 andeim®es again slowly.
Hence, the network’s attractors are not identical to thérdésutputs.

This is not surprising since the network was trained to peedhe desired out-
put only for ten iterations. When iterated further, the dyits evolves into stable
attractors that resemble the cell structure of the Dataiklatrdes. This cell struc-
ture was not used to produce the desired outputs. In conthestlesired outputs
were computed by a pixel-based adaptive thresholding, sitled in Section 8.3.

The desired outputs are not necessarily the ideal outputsriiy approxima-
tions to the best recognizable ones. Thus, a deviation frendésired outputs does
not necessarily indicate a decrease in output quality, assaored in recognition
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Fig. 8.16.Recall of iterative Data Matrix binarization. Shown are fid@nce versus squared
output error for the original and the degraded images: &itrg set; (b) test set; (c) average
confidences and squared errors.

performance of Data Matrix codes. If one wanted to produaegédr decrease of
the average difference to the desired output, one couldyaltvain the network for
more iterations. This was not done here since ten iteraieam to be sufficient to
solve the binarization task.

Both parts of Figure 8.15 display data for the training setvadl as for the
test set. Since both curves are almost indistinguishabéan be claimed that the
network generalized the binarization task well.

The output of the network approaches an attractor that isackerized by black
and white cells, represented by activities of one and zespactively. Intermediate
activities indicate uncertainty. Of course, the network®ertainty is maximal at
the start of the computation and decreases as the networ&sntBdcisions about
the output. As described above, the network has not reaclséabe attractor for
all examples at iteration 10. In addition, even at an attrathe output can remain
undecided if the input is ambiguous. To measure the netwaeksinty, for each
output activitya, a confidence is computed from the minimal squared distance to
one of the extreme values:

d() = (0 — a)2 = a2,
d1 = (]. — a)2,
¢ = 1—4-min(do,d;). (8.4)

Sincea is in the interval[0, 1], ¢ is in [0, 1] as well. The confidence of an entire
image is the average confidence of all output feature cells.
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Fig. 8.17. Data Matrix test set recognition. (a) confidence versusgeition error; (b)
squared output distance versus recognition error.

In Figure 8.16 the confidence of all training and test examptateration 10 is
shown versus the squared distance to the desired outpwd, Bl@tear distinction
between the original images and the degraded images becumisis. For the
original undegraded images, outputs with higher confidamcklower distance are
produced by the network than for the degraded images. Inrfaok of the originals
has a lower confidence than any of the degraded images.

Again, the plots for the training set and the test set as welhair average
confidences and output errors, summarized in Fig. 8.16(e)yvery similar. One
can also observe that the confidence is anti-correlatedetotiput error and can
hence be used to reject ambiguous examples that could leaddgnition errors.

For all examples, the output of adaptive thresholding a$ agethe output of
iterative binarization has been presented to a Data Matdggnition engine. This
evaluation was done by Siemens ElectroCom PostautomatioloHs It produces
for each recognized example the percentage of error cmreased. This value
will be referred to as recognition error. It is set to one ifeample could not be
recognized at all.

Both methods recognized 514 (99.8%) of the 515 original eas The de-
graded images were harder to recognize. From the adapteshibiding output 476
(92.4%) images could be recognized, while the system razedd82 (93.5%) ex-
amples when the iterative binarization method was usedtdraparison, the system
could only recognize 345 (70.0%) of the 515 degraded exasripéesimple global
thresholding method was used for binarization.

Figure 8.17 shows for the iterative binarization method,rcognition error of
all test examples plotted against the confidences and a¢faénsquared distances to
the desired output. In both cases, the relation betweemithguantities is not obvi-
ous. The degraded images that could be recognized do notrteghler percentage
of error correction than the original images. However, gdiraples that could not be
recognized are degraded images having a relatively low @emnde and a relatively
high distance.

In Figure 8.18(a) the recognition error of the adaptiveshméding and the iter-
ative binarization method are compared for the test setpEnfrmance of the two
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Fig. 8.18.Data Matrix test set recognition: (a) recognition errortefative binarization ver-
sus adaptive thresholding; (b) average recognition errors

: (b
Fig. 8.19.Most difficult Data Matrix code. Shown is the only test exaenftilat could neither
be recognized using adaptive thresholding nor using iteratnarization: (a) degraded input
image; (b) output of adaptive thresholding; (c) output efative binarization.

methods is not much different for the original images sirfeernetwork has been
trained to resemble the behavior of adaptive thresholdingdch images.

In contrast, for most degraded images, the recognition erfower when using
the iterative binarization method than when adaptive tiokbng is used. The aver-
age recognition error for iterative binarization (0.0%4riuch lower than the one of
adaptive thresholding (0.176), as summarized in Fig. 8)18hus, the use of itera-
tive binarization substantially lowers the need for ermnrection in the recognition
engine.

Further, it can be seen in the Figure 8.18(a) that most of theedt examples
which could not be recognized when using one method coulébegnized when
using the other method. Only one test example (0.55%), showigure 8.19, was
rejected by the recognition engine in both cases. It is diffidue to its rotation,
the non-uniform background, and the large number of vdrtinas. Hence, the
combination of both methods could lower the rejection rétéhe system by an
order of magnitude, compared to each method alone.
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(b)
Fig. 8.20.Low-contrast degraded images (originals in Fig. 8.3(tg) with random degrada-
tions; (b) output of the improved adaptive thresholdingtfer degraded images.

So far, only results for the high-contrast address windowaw of the Data Ma-
trix codes have been reported. In the remainder of thisagatésults of binarizing
the low-contrast red ink code variant are described.

The 694 images were partitioned randomly into a trainingpésize 467 and a
test set of size 227. Since these images differ in brighfreesgrast, and cell size
from the address window code variant, a retraining of thevagt was necessary.

Again, for each image a degraded version was produced. ifésthe images
were degraded only moderately since the image quality waaay low. Only up
to nine vertical lines were added, and the amplitude of tliidpaund level as well
as the amplitude of the pixel noise was reduced by a factowvof Figure 8.20(a)
shows degraded versions of the images from Fig. 8.3(b).

The desired outputs were produced using an improved aeaftresholding
method that smoothed the image horizontally by applyirig4(1 2 1) binomial
kernel prior to contrast stretching. This reduced the ¢dfet the vertical dark and
bright lines present in the images. Figure 8.20(b) showsitha&rized output of this
method for the degraded images.

The network was trained to iteratively reproduce the ddsmetputs not only
for the original images, but for their degraded versions aB. fter training, the
network’s behavior was very similar to the behavior of thewwek trained to bina-
rize the high-contrast address window variant of Data Matddes. The network
develops a stable representation of the cell structurelwikiased for binarization.

Figure 8.21 shows the average squared output changes aad-tfage squared
difference to the desired output over time. The network eoges quickly to an
attractor and stays there even when iterated further thaneth iterations it was
trained for. This attractor is close to the desired outpen&alization is good since
the curves for the training set are virtually identical te tast set curves.

The binarized outputs were evaluated by Siemens Electro@astautomation
GmbH. For this experiment the recognition engine was qdezisecond time with
different parameter settings when an example was rejecténeifirst run. Table 8.1
summarizes the recognition performance for the entiresgtdt can be seen that
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Fig. 8.21.Recall of iterative low-contrast Data Matrix binarizatiomer time: (a) average
squared output change; (b) average squared output diffeterdesired output.

adaptive thresholding iterative binarization

original degraded original degraded
firstrun || 672 (96.8%) | 435 (62.7%) || 678 (97.7%) | 673 (97.0%)
second run 19 (2.7%) 13 (1.9%) 16 (2.3%) 20 (2.9%)
sum || 691 (99.6%) | 448 (64.6%) || 694 (100%) | 693 (99.9%)

Table 8.1.Low-contrast Data Matrix recognition performance: Numbgrecognized code
images.

the second run is able to reduce the number of rejected in@esderably. For

example, all 20 original examples binarized using the ftegdinarization method

which were rejected by the first run can be recognized in tigersgrun. In the

sum of both runs the iterative binarization performs sligbetter on the original

images than the adaptive thresholding, yielding perfecbgeition, compared to
0.4% rejects. On the degraded images its performance is brttdr than the one
of the adaptive thresholding method. Only one example éctefl, compared to 246
rejects.

Figure 8.22(a) plots the recognition error of iterativedsination against the one
of the adaptive thresholding method. One can observe that ik some potential
for combining both methods since there are examples wherenathod has a high
recognition error while the other has a low one.

As summarized in Fig. 8.22(b), the recognition error ofdtee binarization is
lower for the original images than the one of adaptive tho&tihg. It is much lower
for the degraded images where the recognition errors diffexr factor of more than
twenty.

Thus, while the iterative binarization method performsyatightly better on the
original images than the adaptive thresholding methodHerréd ink low-contrast
variant of the Data Matrix codes, it outperforms adaptivesholding dramatically
on the degraded images.
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Fig. 8.22. Low-contrast Data Matrix test set recognition: (a) rectigni error of iterative
binarization versus adaptive thresholding; (b) averagegeition errors.

8.7 Conclusions

In this chapter, it was shown that a non-trivial image prsoagtask can be learned
by an instantiation of the Neural Abstraction Pyramid amatture. An adaptive
thresholding method was developed that is able to sucdbsfimarize high-
contrast images of Data Matrix codes. Its results were usedkaired output for
a Neural Abstraction Pyramid that was trained to iteragiyebduce them not only
for the original images, but also for degraded versions efith

The network learns to recognize the cell structure of theaDdatrix and to
use it for binarization. The performance of both methods exuated using a
Data Matrix recognition system. The trained network perfemlas well as adaptive
thresholding for the original images, but outperforms it degraded images. The
combination of both methods was able to lower the rejectia significantly.

For the low-contrast red ink variant of the Data Matrix cqdae advantage of
iterative binarization is more obvious. It performs bettean adaptive thresholding
for the original images and outperforms it dramaticallytfoe degraded images.
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9. Learning Iterative Image Reconstruction

Successful image reconstruction requires the recognitfam scene and the gen-
eration of a clean image of that scene. In this chapter, | show to use Neural
Abstraction Pyramid networks for both analysis and synshesimages. The net-
works have a hierarchical architecture which represenégés in multiple scales
with different degrees of abstraction. The mapping betwbege representations is
mediated by a local recurrent connection structure.

Degraded images are shown to the networks which are tradmedonstruct the
originals iteratively. Through iterative reconstructjipartial results provide context
information that eliminates ambiguities.

The performance of this approach is demonstrated in thigtehay applying it
to four tasks: super-resolution, filling-in of occludedtsanoise removal / contrast
enhancement, and reconstruction from sequences of degradges.

9.1 Introduction to Image Reconstruction

Frequently, digital images of real-world scenes do not len@ugh quality for the
application at hand since the images have been degradechansay. These degra-
dations arise in the image formation process (e.g. fromusamhs) and from the
capturing device (e.g. due to low resolution and sensoejois

The goal of the image reconstruction process is to impraxqttality of the cap-
tured images, e.g. by suppressing the noise. To separake finom objects, models
of the noise and the objects present in the images are negdeeéne can then be
recognized, and a clean image of it can be generated.

Freeman and Pasztor [72] recently proposed a learning apiprio low-level
vision that they termed VISTA. It models images and scenggyldarkov random
fields. The parameters of their graphical models can beddaia.g. for a super-
resolution task. The demonstrated performance of the mystémpressive. How-
ever, the models have no hidden variables, and the inferdadeelief propagation
is only approximate.

A common problem with image reconstruction is that it is difft to decide the
right interpretation of an image part locally. For examjglenight be impossible to
decide in a digit binarization task whether or not a pixebbegls to the foreground
by looking only at the pixel's intensity. If contrast is lom@ noise is present, it
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could be necessary to bias this decision with the output efexdetector for that
location.

In general, to eliminate such local ambiguities, more cxrikeneeded. Feed-
forward models that cover such large context have many faegnpeters. They are
therefore expensive to compute and difficult to train.

Here, | propose to iteratively transform the image into adriehical representa-
tion. The image is interpreted first at locations wheredligmbiguity exists. These
partial results are used as context to bias the interpoetati more ambiguous re-
gions. The reconstruction problem is described using elesmgd degraded images
and desired output images, and then a recurrent neural rietivsuitable structure
is trained to solve the problem.

In order to investigate the performance of the proposedagmpr for iterative
image reconstruction, a series of experiments was condlugth images of hand-
written digits. The reasons for choosing digits were thegdadatasets are publicly
available, and that the images contain multiscale streotrich can be exploited
by the learning algorithm. Clearly, if there were no struetio learn, training would
not help. The digits were degraded by subsampling, occofyatants, or adding noise,
and Neural Abstraction Pyramid networks were trained tomstruct the originals.

9.2 Super-Resolution

Super-resolution is the process of inferring high-resotutetail from low-resolu-
tion images. It is a typical image reconstruction probleat thas been investigated
by many researchers since it is needed for applicationk,asienlarging consumer
photographs or converting regular TV signals to HDTV. Diffiet complementary
approaches exist to increase the perceptual resolution imhage, as illustrated in
Figure 9.1.

The first idea is to sharpen the images, by amplifying exgstilgh-frequency
image content. This is a dangerous operation since noiséevdmplified as well.
The next approach is to fuse multiple low-resolution imaties have been cap-
tured at slightly different positions. Fusion is based andbnstraint that the super-
resolution image, when appropriately warped and down-$zair(to model the im-
age formation process), should yield the low-resolutigpuis. This is feasible if

[0} [0} [ R
E s -
= = .
£ £ R
© © ‘\
—_—
(a) spatial frequency (b) (C) spatial frequency

Fig. 9.1. Complementary approaches to increase the perceptualtiesobf an image: (a)
amplifying existing high frequencies; (b) combining mplé displaced low-resolution im-
ages; (c) estimating image details.



9.2 Super-Resolution 175

such image-sequences are available. However, Baker arati€dh2] have shown
that there exist fundamental limits on the reconstructioality, even if infinitely
many low-resolution images are used. More specificallygesihe constrained vol-
ume contains many solutions, a smoothness prior is usus#igl to select one of
them. This leads to overly smooth reconstructions.

One would like to have an intelligent method for expanding tesolution of
an image. It should keep edges sharp, which are implicitscdeed in the low-
resolution image, and it should make intelligent guessesatahe details of textures.
A natural solution to this problem is to estimate the missingge details using the
non-uniform distribution of images. Since some image $tm&s, such as edges
and lines, are more likely than others, a super-resolutiethod can be biased to
reconstruct them.

To make this approach work, a training set of aligned higtol@ion and low-
resolution images is needed to estimate the prior. The npaefic this training set
is, the sharper the prior will be. Three of such informed supsolution methods
have been recently proposed.

Baker and Kanade describe in [12] a system that ‘hallucstgh-resolution
faces from low-resolution images. They use a database ofalaed faces and find
from it the image patch most similar to the low-resolutiopuhpatch. To measure
similarity they use multiscale derivative features capj@agent structure vectors [34].
The method is also applied to images of text.

Freemanret al. [71] proposed example-based super-resolution as a siatplifi
and faster method, compared to an earlier proposed Markmonewhich works
iteratively by applying Belief Propagation [73]. They pead in scan-line order to
match contrast normalized overlapping patches of the itgpaidatabase of training
images. Thus, spatial consistency between patches iscedfts the left patch and
to the previous line only. To measure similarity, the-norm is used.

Hertzmanret al.[95] applied a supervised filter design method that they ¢efm
'image analogies’ to the super-resolution task. The methoiks also in scan line
order, but uses a multi-scale image synthesis approacl.uleea distance measure
that enforces spatial consistency. The approach is ald@aple to texture transfer
tasks and to generate artistic image filters.

All of the above three methods generate plausible imageil detan low-
resolution images. Although they build data structureshss trees, from the train-
ing set, the models used are very complex and thus need mucitomeo store
many free parameters and require intensive computatiofirscahe best matching
training example.

In the following, | show how to condense the information gr&sn the training
examples into the few parameters of a hierarchical rectneural network through
supervised learning. The effort of training the network payf during the recall
phase.
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Fig. 9.2.Some digits from the NIST dataset. Shown are: (a) centeradésin the original
resolution (64 64); (b) subsampled to 2616 pixels (pixelized); (c) bicubic interpolation to
original resolution (blurred).

(b)

9.2.1 NIST Digits Dataset

The first reconstruction experiment is done using the oalgiiST images of seg-
mented binarized handwritten digits [80]. They have bedraeted by NIST from
hand printed sample forms. The digits are contained in ax128 window, but
their bounding box is typically much smaller. For this reagbe bounding box was
centered in a 6464 window to produce the desired output Figure 9.2(a) shows
some centered sample images from the NIST dataset. The Mpotthe network
consists of subsampled versions of the digits with resmiutiéx 16, shown for the
examples in Fig. 9.2(b), which were produced by averagirg #ixels. Part (c)
of the figure demonstrates that bicubic interpolation isarohdequate method to
increase the resolution of the NIST digits since it produaiasred images.

9.2.2 Architecture for Super-Resolution

The network used for the super-resolution task is a verylsnsihnce of the Neural
Abstraction Pyramid architecture. Besides the input aedotitput feature arrays,
determined by the task, it has additional features only énttidden layer. Such a
small network was chosen because it proved to be sufficietihéstask.

The architecture of the network is illustrated in Figure . t2onsists of three
layers. The rightmost Layer 2 contains only a single featuray of resolution
16x16. The activities of its cells are set to the low resolutimput image.

Layer 1 has resolution 3232. It contains four feature arrays that produce a hid-
den representation of the digit. The leftmost Layer 0 corsta@inly a single feature
array that is used as network output. It has the resolutiot6d4

The feature cells of the output feature have lateral andwaxkprojections. The
weight matrix of the lateral projections has a size af33 The 2«2 different back-
ward projections each access a single feature cell of eattréearray in Layer 1.
This corresponds to the inverse of non-overlappir@ 2orward projections for the
four Layer 1 features.

Feature cells in Layer 1 have all three types of projectiosward projections
access 22 windows of the output feature array in Layer 0. Lateral ctipns
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originate in the X3 hyper-neighborhood of a feature cell in the same layerkBac
ward projections receive input from a single cell in the Imgolution input array of
Layer 2. For each of the four features, there ax@ @ifferent backward projections.

Output

Layer O (64x64) Layer 1 (32x32) Layer 2 (16x16)

Fig. 9.3. Network for super-resolution. It is a small Neural AbstraetPyramid with four
hidden feature arrays in the middle layer. Each pixel cpoeds to a feature cell that is
connected to its neighbors. The gray values show the aet\étfter the recurrent network
has iteratively reconstructed the high-resolution image.

While all projection units have linear transfer functioassigmoidal transfer
function fqz (8 = 1, see Fig. 4.5(a) in Section 4.2.4) is used for the outpusunit
of the processing elements. The feature arrays are suredunda one pixel wide
border that is set to zero since the background of the inpditlae desired output
has this value.

The network’s 235 free parameters are initialized randopamig they are trained
for ten time steps on a fixed set of 200 randomly chosen exadigits. The test
set consisted of 200 different randomly chosen examplesnifig was done using
the back-propagation through time (BPTT) method in comtimnavith the RPROP
learning algorithm, as described in Section 6. The weightifithe squared output
error increased linearly with time.

9.2.3 Experimental Results

Figure 9.4 shows how the output of the trained network dexsetwer time when the
first five digits of the test set are presented at its inputeivo iterations, the input
can influence the output, but no further interactions arsiptesyet. Thus, the output
looks like a copy of the low-resolution input. In the follawg iterations, the initial
reconstruction s refined. Black lines with sharp smootlibos are generated. After
iteration five, the network’s output does not change sigaifity any more.

The outputs produced by the network are close to the targibesdifferences
are shown in Figure 9.5. Some small details at the edges dlirtes, probably
caused by noise that was amplified by the binarization praregchave not been
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Fig. 9.4.Iterative super-resolution. The activity of the networttgput feature array is shown
over time along with the low-resolution input and the higisalution target. The initial output
is refined as the number of iterations increases.

Fig. 9.5.Differences between output of the recurrent super-reisoiuetwork and the target.
Large deviations occur because the choppy edges of thesangeapproximated by smooth
contours.

reproduced, but have been replaced with smooth edge segjrenthis reason, the
reconstructions frequently have a higher perceptual tyuhian the targets.

Figure 9.6 shows the contributions to the activity of thepptifeature cells after
ten iterations. One can see that the feature cells belongitige lines are excited
via the backward projections, while their neighborhood &ty inhibited by the
Layer 1 features. The backward influence on the rest of thgénis weak. The
influence of the lateral projections is strongly inhibit@yerywhere, except at the
lines, where it is excitatory.
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(b)

Fig. 9.6.Contributions to the output feature array for the digitsiof B.4 at iteration 10 (dark
shading represents excitation, bright shading indicatkethition): (a) via backward projec-
tions (lines are excited and their surround is weakly irtkit); (b) via lateral projections (the
background is strongly inhibited, while the lines are wgakitcited).
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Fig. 9.7.Response of the super-resolution network to uniform nd@sck lines with smooth
borders are synthesized at positions where many dark farelgresent in the input image.

The network tries to concentrate the dark foreground ptaséme low-resolution
input images at black lines with smooth borders. To illusttais behavior, uniform
pixel noise drawn from the intervf), 1] is presented to the network. The stable re-
sponse after ten time steps is shown in Figure 9.7. The nkisymthesizes smooth
black lines at positions where many dark pixels are presethid input image.

This behavior can also be observed in Figure 9.8. Here, a¢dswtution line-
drawing is presented as input to a spatially enlarged versiche network. The
crisp network output is shown along with a bicubic interpiolathat looks blurred.

The effect of the recurrent computation was further ingedéid by training a
version of the recurrent neural network (RNN) that has elitiden feature arrays
in the middle layer as well as two feed-forward neural neksqFFNN) with four
and eight features on the same dataset. The units of the FEAIMsaccessed<3
windows of the previous layer. This choice ensured that #te/orks had a similar
number of adjustable parameters as the corresponding RNNSs.

Figure 9.9 shows for the next five test digits the output offthe tested net-
works after 10 iterations. In general, the reconstructamesggood approximations to
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Fig. 9.8. Response of the super-resolution network to a line-draw(@goriginal low res-
olution image (pixelized); (b) bicubic interpolation (btad); (c) output of iterative super-
resolution network (crisp).
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Fig. 9.9. Outputs of different super-resolution networks. The resps of large and small
versions of the recurrent network (RNN) and the feed-fodaaetwork (FFNN) to the low-
resolution input are shown.

the high-resolution targets, given the low-resolutioruitsp The RNN outputs have
a slightly higher perceptual quality than the responsel@tbrresponding FFNNSs.

In Figure 9.10, the mean square error of all four networksdpldyed. The test
set reconstruction error of the recurrent networks deesegsiickly and remains
below the error of the corresponding FFNN after six time stéy iterations 9 and
10 the small RNN outperforms even the large FFNN. When ierditeyond the
trained cycles, the reconstruction error increases $jiglgain. This behavior could
be prevented by training the network for more iterations this was not done here
since ten iterations seem to be sufficient to solve the stgsertution task.
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Fig. 9.10.Mean squared error of super-resolution: (a) the recurretwark on the training
set and the test set; (b) detailed view of the test set pedoca, compared to FFNN.

9.3 Filling-in Occlusions

Occlusion is a major source of image degradation when cagtueal-world im-
ages. Many computer vision systems fail if the object ofriegéis not completely
visible. In contrast, humans can recognize partially cdetliobjects easily. Obvi-
ously, we subconsciously fill-in the missing parts when griahy a scene. In fact,
we are surprised when an occlusion ends and the appeariect pajt does not look
as expected. Johnsen al.[113] have shown that this holds even for infants. By 4
months of age, infants appear to perceive the unity of twosextions extending
from behind an occluding object [112, 121].

Few attempts have been made to reproduce this behavior iputemvision
systems. One example is the approach of Dell’Acqua and FSkig They recently
proposed a method for the reconstruction of planar surfaces as walls, occluded
by objects in range scans. The scene is partitioned intasesfat depth discontinu-
ities and fold edges. The surfaces are then grouped togéthey lie on the same
plane. If they contain holes, these are filled using lineterpolation between the
border points.

Another example is the face recognition system describ&ibgoleet al.[171].
They used average facial range and texture maps to commlelieded parts of an
observed face.

There are several neural models for pattern completiorudiveg the ones
proposed by Kohonen [126] and by Hopfield [101]. Usually theyk in auto-
associative mode. After some training patterns have bexadsin the weights of
the network, partial or noisy versions of them can be tramséal into one of the
stored patterns.

In particular, recurrent auto-associative networks carattvely complete pat-
terns and remove noise by minimizing an energy functionh&s¢ networks, pat-
terns are stored as attractors. Bogacz and Chady [33] haverd#rated that a local
connection structure improves pattern completion in swattvorks.

Continuous attractor networks were proposed by Seung [@20€mplete im-
ages with occlusions. For digits belonging to a common clestrained a two-layer



182 9. Learning Iterative Image Reconstruction

A3 56 7890
(b):"?—'ﬁf“"‘:;g?o

Fig. 9.11.Some examples from the MNIST dataset: (a) original imad®&syith occlusions
caused by a randomly placeck8 light gray square.

recurrent neural network using gradient descent to renactghe original. The net-
work had a local connection structure with many adaptabtarpaters since no
weight sharing was used. The hidden units develop recefitilks that form a to-
pographic feature map. The network is able to complete imaf¢he single digit
class it was trained with. However, it remained open if trerstruction is possible
when the digit class is unknown to the network.

In the following, | extend Seung’s approach by adding ldtemnnections,
weight sharing, and more layers to the network and by trgiitirio reconstruct
digits from all classes without presenting the class label.

9.3.1 MNIST Dataset

For the reconstruction experiments that follow, the MNISifatbase of handwritten
digits [132] is used. The NIST digits [80] have been scale@Q& 20 pixels and
were centered in a 288 image. Normalization to a fixed size facilitates recog-
nition since one source of variability is removed. Centgniemoves translational
variability as well. The lower resolution is still sufficieto recognize the digits. It
allows for the use of smaller networks that facilitate gatiezation and reduce com-
putational costs. Figure 9.11(a) shows some examples fierINIST dataset.

Occlusion was simulated with arx® square that is set to an intensity(of25
(light gray). The square is placed randomly at one of 12 central positions, leav-
ing a four pixel wide border that was never modified, as shawhigure 9.11(b).
The square is placed only at inner positions to make surestimé parts of the digit
are occluded.

9.3.2 Architecture for Filling-In of Occlusions

The recurrent reconstruction network is an instance of therdl Abstraction Pyra-
mid architecture. It consists of four layers, as illustdateFigure 9.12. The leftmost
Layer O has a resolution of 2828 hypercolumns. It contains the input feature array,
one hidden feature array, and the output feature array afeheork.

Layer 1 contains four feature arrays of resolutiork14. In Layer 2, the reso-
lution drops to &7, while the number of different features increases to eighe
topmost Layer 3 consists of only a single hypercolumn wittiek@ure cells.

Both hidden and output feature cells of Layer O receive irffparh 3x3 win-
dows of the input feature array. The three Layer O featurayarare accessed by
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Fig. 9.12.Network architecture for filling-in occluded parts. It is astance of the Neural
Abstraction Pyramid architecture. The activities of alitigre arrays are shown after twelve
iterations along with the reconstruction target. The saet®vark is also used for contrast
enhancement / noise reduction and for reconstruction femmences of degraded images.

overlapping 4«4 forward projections of Layer 1 features. Layer 2 featurageh
4x 4 forward projections as well.

The forward and backward projections between Layer 2 an@iLaymplement
a full connectivity with 7 7x8x 16 total weights in each direction. Backward pro-
jections of Layer 1 and Layer 0 are non-overlapping. For éaature, %2 different
backward projections access thelLhyper-neighborhood in the next higher layer.

Lateral projections in the first three layers originate ia 8x 3 hyperneighbor-
hood of a feature cell. These layers are surrounded by a aréwide border. Its
activities are copied from feature cells using wrap-arodndhe topmost Layer 3,
the lateral projections access all 16 feature cells.

While all projection units have linear transfer functioassigmoidal transfer
function fsiz (8 = 1, see Fig. 4.5(a) in Section 4.2.4) is used for the outpusunit
of the processing elements. Training is done using a work&i@f increasing size
for twelve time steps using BPTT and RPROP. A low-activitippfor the hidden
features ensures the development of sparse represestation

9.3.3 Experimental Results

Figure 9.13 illustrates the reconstruction process fostebeample after the network
was trained. One can observe that all features contributeetocomputation. In the
first few time steps, a coarse approximation to the desir¢plubis produced. The
hidden feature arrays contain representations of the iragnt that develop over
time. While the activity of the topmost Layer 3 decreasesradtfew iterations, the
representations in the other three layers approach a meresating attractor. They
form a distributed hierarchical representation of thetdigi

Fig. 9.14 shows the reconstruction process for the first igitstbf the test set.
One can observe that the images change mostly at occludel$.pbhis demon-
strates that the network recognized the occluding squamgh&rmore, the change
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Fig. 9.13.Filling-in of occluded parts. The activities of all featuaerays are shown over
time. All features contribute to the computation. The atiég change most in the first few
iterations. Towards the end of the sequence, the networoappes an attractor that includes
the reconstructed digit in the output feature array.
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Input 3 12  Target Input 3 6 12  Target

Fig. 9.14.Filling-in of occlusions. The activities of the network'sitputs are shown over
time for the first ten test images. The recurrent network Ie &dbremove the square, and it
produces a reasonable guess of the digit's appearance.
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Fig. 9.15. Filling-in of occlusions: (a) hidden feature array in Lay&r(e) output feature
array; contributions to the output activity (b) via inpubjgctions; (c) via lateral projections
(lines excite themselves and their neighborhood); (d) sigkiwvard projections (note the lack
of inhibition at the filled-in line segments).

is such that a reasonable guess of the digit's appearanaedibl occluder is pro-
duced. The network reconnects lines, interrupted by thargqut is also able to
extend shortened lines, to close opened loops, and to simheorners, junctions,
and crossings. In most cases, the reconstructions are wrifgrsto the originals.
Since the network never saw the original digits, it obvigushs acquired some
knowledge about the appearance of typical digits duringitrg.

Figure 9.15 shows the activities of the single hidden feainithe bottom layer
and the output feature array together with its contribigifir the same digits after
twelve iterations. One can observe that the hidden unitsreme active than the
output units. They seem to represent potential lines. Thtuding square is still
visible in this feature array since it could hide lines.

The contributions from the input projections to the outpestfire cells are
mainly excitatory. They look like a copy of the input and aintthe square. Weak
inhibition occurs at the edges of the lines and the squarec®htributions of lateral
projections are strongly excitatory. Lines excite themsglnd their surroundings.

More interesting are the contributions via backward pribjes. They are strong-
ly inhibitory everywhere, except for the border, where rliition is necessary, and
the filled-in line segments. Hence, a detailed descriptfdhese segments must ex-
ist at the higher layers of the network.

To quantitatively evaluate the network’s performance itean squared recon-
struction error and the mean squared output changes wergutedifor the entire
training set and all test examples. Both are displayed awver in Figure 9.16. The
curves for the two sets are almost identical, indicatingcdhgeneralization.

The reconstruction error drops quickly during the firstateans and remains
low afterwards. It does not reach zero since a perfect réearion is frequently
not possible due to the information loss caused by the ootiudll the network
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Fig. 9.16.Filling-in of occlusions — performance over time: (a) megqoared error; (b) mean
square delta output.

can do is to produce a reasonable guess about the portior afigit behind the
square. No perfect reconstruction should be expected.

The vanishing changes of the output units prove that theor&tactivities in-
deed converge to an attractor even when iterated furthartbetwelve time steps
it was trained for.

9.4 Noise Removal and Contrast Enhancement

Low image contrast, a varying background level, and noiseeammon when cap-
turing real-world images. While some of these sources ofatiggion can be re-
duced by controlling the setup, e.g. by providing homogesdighting, other fac-
tors cannot be compensated for. One example is the darkwstedgaper of larger
envelopes that leads to degraded images of the addressotatikling. Image pro-
cessing can try to reduce noise and improve contrast in dodease subsequent
recognition steps. The challenging aspect of this task sefmarate the noise one
wants to remove from the objects one wants to amplify.

A large number of methods for image denoising have been gexpm the lit-
erature. Only a few can be mentioned here. For example, Mallad Sethian [150]
proposed a level-set method that moves the iso-intensigg lof the image’s gray
level mountains according to their curvature. The methodathes contours in a
hierarchical fashion. A min/max-flow criterion is used togsthe algorithm. When
applied to handwriting, only the larger strokes survive sthing. They are bounded
by sharp edges.

Hierarchical image decompositions using wavelets have Baecessfully ap-
plied to image denoising. Examples are the systems dedcbhp&imoncelli and
Adelson [213] and by Donoho and Johnstone [56]. They transtbe image into
a multiscale representation and use the statistics of th#icients of this repre-
sentation to threshold them. The back-transformed imagethan less noisy. This
method works well when the wavelets used match the structutgpical image
details, such as edges or lines. What is problematic withettegoproaches is that
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Fig. 9.17.Some examples from the MNIST dataset: (a) original imag&sdégraded with
reduced contrast, random background level, noise, ancasiatu

the choice of the wavelet transformation is usually fixed| #rat the thresholding
ignores dependencies between neighboring locationsiwétscale and between
scales.

Yanget al.[246] demonstrated that a linear auto-associator can :fosele-
noising faces if a wavelet representation is used. The oofgbe system has a high
perceptual quality if the noise level is moderate. Howesiace the systemis linear,
no hard decisions can be made, and the network’s output tésemverlayed faces
if the noise level is high. Hence, the need for non-lineadvér becomes obvious.

9.4.1 Image Degradation

In the next experiment, it is demonstrated that the same adethhich was use-
ful for filling-in occluded parts, can be applied to noise m@l as well. The same
network architecture and the same MNIST digits are usedntalsaneously learn
noise removal and contrast enhancement. The only differisrtbe image degrada-
tion procedure.

To degrade the images, the pixel intensities are scaledtiermtervall0, 1] to
the rangd0.25, 0.75]. This reduces image contrast. To simulate variance in-light
ing and paper brightness, a random background level is attdegds uniformly
distributed in the rangé-0.25, 0.25]. Additive uniform pixel noise, drawn from
[—0.25,0.25], simulates sensor noise. Finally, the pixel intensities dipped at
zero and one to resemble sensor saturation. Figure 9.1&gwme digits from the
MNIST dataset that have been degraded in this way.

The network was trained to reconstruct the original imagea working set of
increasing size for twelve time steps using BPTT and RPROBwAactivity prior
was used to encourage the development of sparse représestat

9.4.2 Experimental Results

Figure 9.18 illustrates the reconstruction process of thiae¢d network for a test
example. The activity of the entire network is shown overeti®ne can observe
that all features contribute to the computation. In the firse steps, the confidence
of the digit’s lines visible in the bottom layer is not verghisince locally they look
similar to some background structures. The confidence aseleas more context
influences the result. Finally, background clutter is reatbfrom the output feature
array, and the lines are amplified.
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Fig. 9.18.Noise removal and contrast enhancement. The activitiell &ature arrays are
shown over time. A hierarchical distributed representatibthe digit stabilizes. It is used to
amplify the lines and to remove background clutter.

A distributed representation of the digit stabilizes in tierarchical network.
Most interesting is the representation of the backgroumdlleThree features in
Layer 1, one feature in Layer 2, and one feature in Layer 3 deeestimate the
background intensity. The remaining feature arrays formpeaase representation of
other digit features.

The progress of the reconstruction process is shown in €iguir9 for the first
ten test examples. One can observe that the network is aletézt dark lines,
to complete them, to remove background clutter, and to ezéhtire contrast. The
interpretation at most locations is decided quickly by taework. Ambiguous loca-
tions are kept for some iterations at intermediate valugs ¢hat the decision can
be influenced by neighboring locations. The reconstrucigitcare very similar to
the originals.

To illustrate the network’s solution to the reconstructmmoblem, Figure 9.20
shows the activities of the single hidden feature in the péta/s bottom layer
and the output feature array together with its contribwgifor the same digits after
twelve iterations.

One can observe that the hidden units are less confident ttleaoutput units.
The hidden feature array seems to represent potential Buese background struc-
tures are still visible there since adjacent dark pixeldaba caused by the presence
of a line, rather than by noise.
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Fig. 9.19.Noise removal and contrast enhancement. The activitieseohétwork’s outputs
are shown over time. The stable network outputs approxithatéargets.

The contributions from input projections to the output ardte mainly excita-
tory. They look like a low-pass copy of the input and conti@ background level
as well as the noise.

The lateral contributions are mostly excitatory. Linesiexthemselves and their
surroundings. A wider neighborhood of the lines is inhithitecakly.

Most interesting are the contributions via backward pridgers. They vary with
the background level. Images with darker background reagigre inhibition than
brighter images. The inhibition is distributed quite umifdy, indicating the exis-
tence of a global background level estimate in the higheerayExceptions are
the lines and the image borders. The network has learnedhédines are more
probable in the center of the image than at its border.

Figure 9.21 shows the network’s performance over time ferahtire dataset.
The output error falls rapidly to a lower level than in the loston experiment and
remains low. This implies that occlusions represent a mevere degradation than
low contrast combined with noise. As before, generalizatiogood, and the net-
work converges to an attractor representing the recortgiruc

9.5 Reconstruction from a Sequence of Degraded Digits

The Neural Abstraction Pyramid architecture is not reddo reconstruct static
images from static inputs. Since the networks are recurteay are also able to
integrate information over time. Thus, ifimage sequenceswailable, they can be
used to improve the reconstruction quality.

It has been demonstrated by other researchers that videsriahatan be re-
constructed with higher quality when taking into accourighboring frames than
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Fig. 9.21. Noise removal and contrast enhancement — performance iorer (a) mean
squared error; (b) mean square delta output.

would be possible by considering isolated frames only. FRstaince, Elad and
Feuer [62] proposed a least squares adaptive filtering appro increase the reso-
lution of continuous video.

Another example is the work of Kokaram and Godsill [127]. ¥ipeoposed a
Bayesian approach to the reconstruction of archived vidaral. Using Markov
chain Monte Carlo methods, they simultaneously detedaats, interpolate miss-
ing data, and reduce noise.

9.5.1 Image Degradation

In the next experiment, the capability of the same Neuraldsiotion Pyramid net-
work, used for the previous two tasks, to reconstruct digds a sequence of de-
graded images is explored. The only difference is the imageatiation procedure.
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Fig. 9.22.MNIST example sequences of degraded dlglts A random bauhgrlevel con-

trast reduction, occlusion, and pixel noise were combiliadtow noise; (b) medium noise;
(c) high noise.

A random background level, contrast reduction, occluskow, pixel noise are com-
bined to produce input sequences.

For each sequence, a random movement direction is selemtéuefoccluding
square from 8 possible choices that form an 8-neighborhiiduesquare moves with
a speed of one step per iteration until it is reflected neamagé border. Thus, most
digit parts are visible at some point of the sequence, anddghgork has the chance
to remember the parts seen before occlusion.

Three variants of the training set and the test set are peatlwith different
degrees of degradation. For the low-noise variant, theommifpixel noise is cho-
sen from the interval—0.125,0.125]. The medium noise comes from the range
[—0.25,0.25], and the high noise from-0.5,0.5]. The background level is cho-
sen from[—0.125,0.125] for the low-noise variant and from-0.25, 0.25] for the
medium and high-noise variants. Each training set consfst®,000 randomly se-
lected examples from the MNIST dataset.

Two examples of the low, the medium, and the high-noise sezpseare shown
in Figure 9.22 next to the original digit. While the low-neisequences are easily
readable for humans, the medium-noise sequences arergdiatie The high-noise
sequences are so badly degraded that they are almost ubleeadien looking at a
single image alone. Here, the need to integrate over melitiphges of the sequence
becomes obvious.

The network was trained separately on the three noise varidraining was
done as in the previous experiments, except this time 18titers were used, as
determined by the length of the input sequences.

9.5.2 Experimental Results

Figure 9.23 shows the reconstruction of a high-noise tegt derformed by the
trained network. The activity of the entire network is shawwer time. One can ob-
serve that all features contribute to the computation. Trieslof the digits, visible
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Fig. 9.23. MNIST reconstruction from sequence of degraded images.athgities of all
feature arrays are shown over time.
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Fig. 9.24.Reconstruction from sequence of degraded images. For Hrapm& of Fig. 9.23
are shown over time: (a) hidden feature array in Layer O ésgmting line-candidates); (e)
output feature array (the reconstructed digit); contiing to the output activity (b) via input
projections (noisy); (c) via lateral projections (censerround interaction); (d) via backward
projections (inhibiting the background stronger than thed).

in the bottom layer, need more time steps than in the pre\agpsriments to reach
a high confidence level. Towards the end of the sequence,atighound clutter
and the occluding square have been removed by the netwarktfre output fea-
ture array, and the lines have been completed. The netwackigties converge to
a distributed representation of the digit which faciliatbe reconstruction of the
original.

In Figure 9.24, the activities of the single hidden featurayin Layer 0 and
the output feature array, together with its contributioresshown for the same digit
over time. The hidden feature is more active than the outgatufe, representing
line candidates. Background structures are highly vidiblae first few iterations.
They are reduced towards the end of the sequence.
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The contributions from the input to the output feature araag weakly exci-
tatory with a low-pass characteristic. Input noise, thekgaound level, and the
occluding square are highly visible here.

The contributions from lateral projections are stronglgigatory in the center
and weakly inhibitory in the surroundings. Hence, linesiexthemselves and their
immediate neighborhood, and inhibit their surround.

The contributions via backward projections seem againhibitithe output fea-
ture according to the estimated background level. Interg& the strong inhibition
of the units near the image border at iteration three. Thikedirst step where in-
formation from Layer 3, which has a global view of the imagsgahes the output.
Towards the end of the sequence, the inhibition is weakdreatihits belonging to
lines. This shows that lines are represented at higherdayer

Figures 9.25, 9.27, and 9.29 display the reconstructionge® of the first ten
test digits for low noise, medium noise, and high noise, eetpely.

One can see that in all three cases the network is able to peaghod recon-
structions of the originals, which are also shown in the figuiThe less ambiguous
image parts are reconstructed faster than the parts thateleded. The higher the
noise is or the stronger the background level deviates flrmmtean, the more iter-
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Fig. 9.25.Reconstruction from a sequence of degraded MNIST imagesntise): (a) input
over time; (b) output over time; (c) target.
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Fig. 9.28. Output changes over time for the reconstruction from a sspi®f degraded
MNIST digits. Performance for the training set (TRN) and tbst set (TST) is very similar.
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Fig. 9.30.Confidence over time for the reconstruction from a sequehdegraded MNIST
digits. Performance for the training set (TRN) and the tes{$ST) is very similar. Confi-
dence increases most during the first iterations. For higbise, confidence rises slower and
reaches a lower level than for lower noise.

ations are needed for reconstruction. Towards the end cfedfjgences, the output
changes are small.

To quantitatively evaluate the performance of the netwaitks reconstruction
error, the output changes, and the output confidences werputed for all image
sequences. In all cases, the test set performance is veifgrsioithe performance
on the training set, indicating good generalization.

In Figure 9.26, the mean squared reconstruction error df#tir@ing set and the
test set is displayed over time for the three noise varidiits.reconstruction error
decreases monotonically until it reaches a level wherenitaias flat even when
iterated longer than the 16 iterations the networks weiaadafor. The higher the
noise level is, the slower the error drops and the higher tizé &rror level is.

Figure 9.28 shows the mean squared changes of the outpst Thi general
behavior is similar to the output error. The changes drogldyiduring the first
iterations and decrease more and more slowly. One exceigtitie bump visible
at iteration 17. It is caused by a jump of the occluding squmaithe input image
that returns to its initial position after the end of the 1€pstequence. This behavior
shows that the networks are still sensitive to changes imghg and are not locked
to attractors independent of the input.

Finally, the average output confidences are shown in FigLB@. The higher
noise network variations remain less confident for a lonigee and reach a lower
confidence level than the lower noise variations.

9.6 Conclusions

The experiments in this chapter show that difficult nondinenage reconstruc-
tion tasks can be learned by instances of the Neural AbgiraPlyramid architec-
ture. Supervised training of the networks was done by a coation of BPTT and
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RPROP. The same network was trained to preform differekstas specified by
differentimage degradation procedures.

The networks reconstruct images iteratively and are ablegolve local ambi-
guities by integrating partial results as context. Thistiglar to the recently demon-
strated belief propagation in graphical networks with egclThe main difference is
that the approach proposed here learns horizontal anataeftiedback loops that
produce rich multiscale representations to model the isiagkereas current belief
propagation approaches use either trees or arrays to ezprsther the vertical or
the horizontal dependencies, respectively.

Furthermore, the proposed network can be trained to congpudbjective func-
tion directly, while inference in belief networks with cgdlis only approximate due
to the multiple counting of evidence. Recently, Yeddia,dfnan and Weiss pro-
posed generalized belief propagation [247] that allowdé&iter approximations of
the inference process. It would be interesting to investifae relationship between
this approach and the hierarchical recurrent neural nétsvor

The iterative reconstruction is not restricted to statiagms. In this chapter it
was shown that the recurrent Neural Abstraction Pyramidiowdt is able to inte-
grate information over time in order to reconstruct digits1i a sequence of images
that were degraded by random background level, contrasttied, occlusion, and
pixel noise. The training method allows also for a changeéhefdesired output at
each time step. Thus, the networks should be able to recetsideo sequences.
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10. Face Localization

One of the major tasks in human-computer interface apjicst such as face
recognition and video-telephony, is the exact localizatiba face in an image.

In this chapter, | use the Neural Abstraction Pyramid aeditre to solve this
problem, even in presence of complex backgrounds, diffighting, and noise.
The network is trained using a database of gray-scalerstilfjes to reproduce man-
ually determined eye coordinates. It is able to generatetiel and accurate eye
coordinates for unknown images by iteratively refining atiahsolution.

The performance of the proposed approach is evaluatedsigelarge test set.
It is also shown that a moving face can be tracked. The fastarktupdate allows
for real-time operation.

10.1 Introduction to Face Localization

To make the interface between humans and computers morgapte@omputers
must adapt to the users. One prerequisite for adaptatidratstie computer per-
ceives the user. An important step for many human-computierface applications,
like face recognition, lip reading, reading of the users gomal state, and video-
telephony, is the localization of the user's face in a cagaliimage. This is a task
humans can perform very well, without perceiving effort,itturrent computer
vision systems have difficulties.

An extensive body of literature exists for face detectiod Btalization prob-
lems. Recently, Hjelmas and Low [99] published a survey doraatic face detec-
tion methods. They distinguish between feature-basedraagea-based methods.

Feature-based methods are further classified as eithéngedn low-level fea-
tures, such as edges, motion and skin color, as searchifggioer-level features,
such as a pair of eyes, or as using active shape models, ssrhkes or deformable
templates.

An example of a feature-based method that uses edges is piheaah taken
by Govindaraju [83], where edges are extracted, labeled,raatched against a
predefined face model. A similar system is described by 3kgat al. [111]. It
consists of an edge extraction stage, a coarse localizftitruses a face model, a
fine localization that relies on an eye model, as well as airtayler perceptron for
the exact localization of the pupils.
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The system described by Maio and Maltoni [149] consists mddlstages. The
first stage approximately locates all elliptical objectsidirectional image using a
generalized Hough transformation [13]. The second stagedawes the localization
accuracy by using a local optimization of the ellipse’s foeiand size. Finally, the
third stage checks whether the objects found are faces byadng vertical and
horizontal projections of directions to a face model.

Many face localization techniques rely on skin color. Temi et al. [225] pro-
vide a comparative study on the utility of different chromuiite spaces for this task.
Motion information is also useful for face detection. Diffaces between consec-
utive frames are likely to be large at the boundaries of mpwbjects. Spatio-
temporal contour filters can also be applied to extract alijeandaries. Another
example for the use of motion is the approach taken bydtez. [136]. They com-
pute the optical flow, segment moving face regions usingadinstering algorithm,
and use ellipse fitting to complete the extraction of the faggon.

Color and motion features are strong hints for the presehadare. However,
these low-level features are not always available. Fumntlbeg, each low-level fea-
ture is likely to be ambiguous since a variety of non-faceots, potentially present
in the analyzed images, can trigger them as well. Thus, it beagecessary to use
higher-level features.

An example of a face localization method that employs thatired positioning
of facial features is the one proposed by Jehgl.[110]. They initially try to es-
tablish possible eye locations in binarized images. Foh gassible eye pair, the
algorithm goes on to search for a nose, a mouth, and eyebfidvwessystem de-
scribed by Yow and Cipolla [248] employs a probabilistic mbdf typical facial
feature constellations to localize faces in a bottom-upmaan

Unlike the face models described above, active shape mddpist the actual
physical appearance of features. Once released withie plaximity to a face, an
active shape model will interact with local image featuredges, brightness) and
gradually deform to take the shape of the face by minimizimgrergy function.

Several methods use snakes, first introduced by kasd. [120]. Cooteset
al. [45] recently proposed the use of a generic flexible modetivitiey called ac-
tive appearance model. It contains a statistical modele$tape and gray-level ap-
pearance of the object of interest which can generalizenost any valid example.
During a training phase the relationship between modelmatar displacements
and residual errors induced between a training image andthesized example are
learned.

In contrast to feature-based methods, image-based apm®aandle face de-
tection as a pattern recognition problem. They analyze ag@&éwindow that has
been normalized to a standard size and then classify themrer absence of a
face. Linear subspace methods apply linear statisticad ttike principal compo-
nent analysis (PCA), linear discriminant analysis (LDAjddactor analysis (FA) to
model facial images. For example, Moghaddam and Pentl&8@] froposed a face
detection technique based on a distance measure from arfaggenodel.
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Fig. 10.1.Face detection system proposed by Rovdegl. (image adapted from [198]).

Sung and Poggio [221] first proposed the use of a mixture o§&ans to model
faces. They give distances to face cluster centroids as fogumulti-layer percep-
tron (MLP), trained for face/non-face classification.

Neural networks are a popular technigue for pattern recimgnproblems in-
cluding face detection. The first advanced neural approddbhareported results
on a large, difficult dataset was published by Rowdél. [198]. Their system in-
corporates face knowledge in a retinotopically connectadal network, shown in
Fig. 10.1. The neural network is designed to analyze windofr20x 20 pixels.
There is one hidden layer with 26 units, where 4 units acc8sdlQ pixel subre-
gions, 16 look at %5 subregions, and 6 receive input from overlapping horialont
stripes of size 2@5. The input window is preprocessed through lighting cdroec
and histogram equalization. Recently, Rowkyal. [199] combined this system
with a router neural network to detect faces situated atales in the image plane.

Apart from linear subspace methods and neural networkse thee several
other statistical approaches to image-based face detetite systems based on
information theory or support-vector machines. For exanmfichneiderman and
Kanade [206] use products of histograms of wavelet coeffisiel hey employ mul-
tiple views to detect 3D objects like cars and faces in diffeéposes. Support vector
machines are used e.g. by Heisetal.[92]. They describe a one-step detector for
entire faces and a component-based hierarchical detector.

Searching for feature combinations, matching featurels tkénslated, rotated,
and scaled face models, as well as scanning windows oveosiligns and scales
are time-consuming procedures that may limit the appllitglaif the above meth-
ods to real-time tasks. Furthermore, heuristics must béareg to prevent multiple
detections of the same face at nearby locations or scales.

In the following, a method is described that uses an instdati of the Neu-
ral Abstraction Pyramid architecture, introduced in Cleagt, to localize a face in
gray-scale still images. The network operates by iterBtikafining an initial solu-
tion. Multiresolution versions of entire images are présdumlirectly to the network,
and it is trained with supervision to localize the face a$ ésspossible. Thus, no
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Fig. 10.2.Some face images from the BiolD dataset. Since the examplgsconsiderably,
the dataset can be considered challenging.

scanning through parameter spaces is needed, and mukigletivbn candidates co-
operate and compete with each other to produce a coheregeiimizrpretation.

10.2 Face Database and Preprocessing

To validate the performance of the proposed approach familegface localization,
the BiolD database [111] is used. The database can be dodeddece of charge
from http://www.bioid.com/downloads/facedb/facedatabase.html. It consists of 1,521
images that show 23 individuals in front of various compldfice backgrounds
with uncontrolled lighting. The persons differ in gendegeaand skin color. Some
of them wear glasses and some have beards. Since the fageasitn, and view,
as well as the facial expression vary considerably, thesdatean be considered
challenging.

Such real-world conditions are the ones that show the lipfitsurrent local-
ization techniques. For instance, while the hybrid loedlan system, described
in [111], correctly localizes 98.4% of the XM2VTS databa$87] which has been
produced under controlled conditions, the same systentizesaonly 91.8% of the
BiolD faces. Figure 10.2 shows some example images from ii®Rlataset.

The gray-scale BiolD images have a size of 3288 pixels. To reduce border
effects, the contrast is lowered towards the sides of thgém®o limit the amount
of data, the image is subsampled to85, 24x 18, and 1% 9 pixels, as shown in
Figure 10.3(b). In addition to the images, manually labelgd positiong;, C,. €
R? are available. They are in general quite reliable but noagénas accurate as one
could hope.

Figure 10.3(a) shows the marked eye positions for a sampgemA multi-
resolutional Gaussian blob is produced for each eye in & $@lages that have the
above resolutions. The blobs are shown in Figure 10.3(lgirdtandard deviation
o is proportional to the distance of the eygs; — C,||. Note that with increasing
resolution, the area of the blob increases, with respettedmtiginal image. Thus,
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Fig. 10.3.Preprocessing: (a) original image with marked eye posti@in) eye positions and
subsampled framed image in three resolutions.

while the blobs in the highest resolution do not overlapbblim the lowest resolu-
tion do.

10.3 Network Architecture

The preprocessed images are presented to a hierarchical network, structured
as a Neural Abstraction Pyramid. As shown in Figure 10.4n#tevork consists of
four layers. The resolution of the layers decreases fronet8y(48<36) to Layer 2
(12x9) by a factor of 2 in both dimensions. Layer 3 has only a sihgfgercolumn.
Each layer has excitatory and inhibitory feature arraye. fitbmber of feature arrays

Output

Layer 0 (48x36) Layer 1 (24x18) Layer 2 (12x9) Layer 3 (1x1)

Fig. 10.4.Sketch of the network used for learning face localizatioris Bn instance of the
Neural Abstraction Pyramid architecture. The network isaf four layers, shown from
left to right. Each layer contains excitatory and inhibjtéeature arrays. Excitatory projec-
tions are drawn with filled circles, open circles indicateifditory projections, and projections
labeled with shaded circles can have any sign.
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per layer increases when going from Layef40+ 2) to Layer 2 (16+8). Layer 3
contains 10 excitatory and 5 inhibitory feature cells. Inlitidn, an input feature
array is present in all layers except the topmost one.

Most projections in the network are either excitatory orilitiory. Weights in
projections that access excitatory units are non-negatedghts from inhibitory
units are non-positive. In contrast, weights of projectiancessing the input feature
array can have any sign. They have a window size x5 &and lead to excitatory
features in the same layer or belong to forward projectidnexaitatory feature
cells in the next higher layer.

The excitatory feature cells of Layer 1 and Layer 2 receivevémd projections
from the 4x4 hyper-neighborhood in the layer below them. Connectieia/éen
Layer 2 and the topmost Layer 3 are different since the réisoldrops from 1% 9
to 1x1. Here, the forward and backward projections implementlafunnectivity
between the excitatory feature cells of one layer and atufeacells of the other
layer. The backward projections of Layer O and Layer 1 acatdeature cells of
a single hypercolumn in the next higher layex 2different backward projections
exist for each excitatory feature. In all layers except tpost one lateral projec-
tions access all features of thex3 hyper-neighborhood around a feature cell. In
Layer 3 lateral projections are smaller because all featalls are contained in a
1x1 hyper-neighborhood.

The projections of the inhibitory features are simpler.yraecess %5 windows
of all excitatory feature arrays within the same layer. lyés3, of course, this win-
dow size reduces toxd1. While all projection units have linear transfer functoa
smooth rectifying transfer functiofi, (6 = 10, see Fig. 4.6(a) in Section 4.2.4) is
used for the output units of all feature cells.

The feature arrays are surrounded by a two pixel wide border.activities of
the border cells are copied from feature cells using wrayHad.

10.4 Experimental Results

Because the BiolD dataset does not specify which imageditgprsa training set
and a testing set, the dataset was divided randomly into &t@D0ng images (TRN)
and 521 test examples (TST). The network was trained fortéeations on random
subsets of the training set with increasing size using baggyation through time
(BPTT) and RPROP, as described in Chapter 6. The weightittgeafuadratic error
increased linearly in time.

The two first excitatory feature arrays on the three loweetayare trained to
produce the desired output blobs that indicate the eyeipositAll other features
are hidden. They are forced to have low mean activity.

Figure 10.5 shows the development of the trained networkipud over time
when the test image from Fig. 10.3 is presented as input. @neobserve that
the blobs signaling the locations of the eyes develop in adtmpn fashion. After
the first iteration they appear only in the lowest resolutibms coarse localization
is used to bias the development of blobs in lower layers.rAfte iterations, the
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5 7 10

Fig. 10.5.Face localization recall. The activities of the networkigput feature arrays are
shown over time. Blobs indicating eye positions develop iopadown fashion.

1Y

Fig. 10.6.Face localization recall. Shown are the contributions écettivity of the network’s
output units after iteration 10 of Fig. 10.5 (bright shadiegresents inhibition, dark shading
indicates excitation): (a) via input and forward projengp(b) via lateral projections; (c) via
backward projections.

network’s output is close to the desired one. It does notgéaignificantly during
the next five iterations. Each iteration takes about 22ms@erdium 4 1.7GHz PC
without much optimization for speed.

The contributions to the network’s output activities atatén 10 are displayed
in Figure 10.6. It is evident that the main contribution tolal¥s activity comes
via backward projections. They excite a larger area at teésgposition in all three
resolutions and inhibit its surround.

The effect of the lateral projections can be understood@teceenter excitation
and center-surround inhibition. Note that the blobs do mettéendependently, but
interact. This is most visible in the highest resolution enenboth eye regions are
inhibited and only the center of the opposite eye is weakbjted.

The influence of forward projections and projections from ithput feature ar-
rays is generally not that strong and less consistent. The projections of Layer 0
seem to extract dark vertical lines that are surrounded igyhbpixels from the im-
age. In Layer 2 and Layer 3, the forward and input projectexute the center of
the eye’s blob and inhibit the blob of the opposite eye.

The network’s dynamics cannot be understood by lookingebtitput feature
arrays alone. The majority of the computations are done tgldn features. Fig-
ure 10.7 shows their activities after ten iterations forttgt example from Fig. 10.3.
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Fig. 10.7.Face localization recall. The activities of all featureagg are shown after ten
iterations when the test image from Fig. 10.3 is presentéapas.

The activity pattern forms a sparse distributed multisoaeesentation of the image
content. The hidden features clearly contribute to the ld@weent of stable blobs
at the eye positions and to the suppression of output actwibther candidate lo-
cations, but they are hard to analyze.

The generation of stable blobs is the typical behavior ofigteork. To evaluate
its performance, one has to estimate eye coordinates fretmldivs and to compute
a quality measure by comparison with the given coordinates.

The position of each eye was estimated separately, agdtastin Figure 10.8.
In a first step, the output unit with the highest activity,. is found in the cor-
responding high resolution output. For all units it & [ window around it, the
feature cells belonging to the blob were segmented by cangptreir activity with
a thresholdy; that increases with greater distankg,,. from the center and with the
activity of the centen,, 4!

v = 0.5 Umag * dmas/L. (10.1)

The weighted mean location of the segmented cells is usdtbastimated eye po-
sition. The figure shows the unproblematic segmentatioh®tést example from
Fig. 10.3 as well as a more problematic case, where a segohlidr has not been
removed by the iterative refinement, but is successfullgigd by the blob segmen-
tation.

(@) (b)
c=.75 c=.82 c=.72 c=.53
c=.61 c=.38
Fig. 10.8.Blob segmentation for face localization. A7 segmentation window around the
most active pixel is analyzed. The segmented pixels aredfddoy a black line: (a) output for
example from Fig. 10.3; (b) output for a problematic examplere a secondary blob has
not been removed. This blob is ignored successfully by tgemeatation procedure.
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Flg. 10.9.Relative error measure for face localization, as suggeast§till]: (a) manually
labeled eye position&’;, C;), estimated eye positio€’;, C,), and eye distancesl;, d.);
(b) relative errord.,. from the right eye (shown left), a circle with radids,e = 0.25 is
drawn around the eye.

After transforming these eye positions into the originabrchnate system, a
scale-independent relative error measure was computsdgagsted in [111]:

d = |G-,
dr = ”CT - CT”,
deye = max(d;,d,)/||C1—Crl. (10.2)

The distances of the estimated eye positi&hsand C, to the given coordinates
C; and C,. are denoted byl; andd,., respectively. A small relative distance of
deye < 0.25 is considered a successful localization sidgg = 0.25 corresponds
approximately to the half-width of an eye, as illustratedigure 10.9.

The estimated eye coordinates, the given coordinates ancklative eye dis-
tances are shown in Figure 10.10 for the two test examples fig. 10.8. One can
verify that for these examples the estimated eye positicmatdeast as exact as the
given ones.

To test how the network is able to localize the other examiptes the dataset,
the relative distancé,.,. was computed for all images. Figure 10.11 shows the
network’s localization performance for the training seR{\) and the test set (TST)

\ (b) “
deye = 0.0211 deye = 0.0107

Fig. 10.10.Face localization output for the test examples from Fig81-. mark the given
eye coordinatesk are drawn at the estimated eye coordinates.
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Fig. 10.11.Localization performance: percentage of examples havimglgl.,. for the pro-
posed method (TRN, TST) and for the hybrid system (HaustiufP) [111].

in comparison to the data taken from [111] (Hausdorff+MLA)training examples
have been localized successfully. The performance on shedeis also good. Only
1.5% of the test examples have not been localized accumtelygh. Compare this
to the 8.2% mislocalizations in the reference system.

A detailed analysis of the network’s output for the misldzations showed that
in these cases the output is likely to deviate from the onéHpler-eye pattern. It
can happen that no blob or that several blobs are presen feyea

By comparing the activity,,;,, of a segmented blob to a threshald;,, = 3 and
to the total activity of its feature array;.:q;, @ confidence measurds computed
for each eye:

1 = Qbiob/Ctotal,
Co 1 QAblob > Amin
abiob/min  :  €lse ’
¢z aa (10.3)

The confidences of both eyes are multiplied to produce aesioghlization confi-
dence. Since the faces in the BiolD database are mainly irpgeght position, the
confidence is reduced if the blobs have a large vertical miigtacompared to their
horizontal distance. Figure 10.8 shows some example cowfide Figure 10.12
displays the confidence versus the relative eye distdpngce One can observe that
high distances occur only for examples with low confidenEesthermore, exam-
ples with high confidence values have low distances. Thesctimfidence can be
used to reject ambiguous examples.

The localization confidence is compared to a reject thresholFigure 10.13,
one can see that rejecting the least confident test examplesd the number of



10.4 Experimental Results 209

0.5 T T T T 3 T T T T

045 TRN + i TST +

04 L i 25 B

0.35 | E oL |
o 03 B o
ﬂ)l 0.25 ﬂ)l 15 B
T 02 E ° | +

0.15 | g 1r 1

. N N

oodé i i R R i

’ 0 ! 0 T L+ I# ﬁf@w“

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

(a) confidence (b) confidence

Fig. 10.12.Face localization performance. The confidences are shownvéhe relative eye
distanced.. for: (a) the training set; (b) the test set.
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Fig. 10.13.Localization performance: rejecting the least confideaneples lowers the num-
ber of mislocalizations.

Fig. 10.14.Test examples with lowest confidences. The highest resalutétwork inputs,
the outputs, and the confidences are shown.

mislocalizations rapidly. When rejecting 3.1% of the imagenly one mislocaliza-
tion is left. The average localization error of the accegbegimples igl.,. = 0.06.
That is well within the area of the iris and corresponds toabeuracy of the given
eye coordinates.

Figure 10.14 shows the four test examples with the lowestidemces. In the
leftmost example, the network has produced an extra blothéomouth which pre-
vents segmentation of the blob that corresponds to the @yee e person’s face
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Fig. 10.15.Performance over time: (a) average distatigg ; (b) sum of squared changes in
the network’s output.

in the second example is almost outside the image, the prepsing has destroyed
the upper part of the head, including the eyes. This leadsctdikation failure. The
third example is difficult as well since the face appearstiredly small and in an
unusual posture. In the rightmost example, the networkabainly distracted by the
reflections on the glasses and produces a blob only for orteeadytes. The failure
of the network to localize these faces correctly is not peotdtic since they can be
rejected easily.

Figure 10.15 illustrates the network’s performance oveeti The average rel-
ative distancel.,. drops rapidly within the first five iterations and stays low af
terwards. The average changes in the network’s output age @uring the first
iterations and decrease to almost zero even when updatgerltran the ten steps
it has been trained for. Thus, the network shows the desiebd\ior of iterative
refinement and produces stable outputs.

To investigate if the network is able to track a moving inghg test example
from Figure 10.3 was translated with a speed of one pixeltpeation 40 pixels to
the left, then 80 pixels to the right, and finally 40 pixelshe teft. The left and right

d_eye

0 I I I I
0 20 40 60 80 100 120 140 160

iteration
Fig. 10.16.Face localization recall with moving input. The test imagmnf Fig 10.3 is moved

40 pixels to the left, 80 pixels to the right, and 40 pixelshte left. The relative distancg.,.
of the network’s output to the given moving eye positionshieven.
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sides of the inputimages were wrapped around to fill the mggsixels. The moving
input was presented to the network that was trained withcsiatages, without
any modifications. The network was able to move the outpuibldong with the
moving input. Thus, it tracks the eyes. Figure 10.16 showseélative distancé.,.
over time. After few iterations, the distance reaches d lefvabout0.075. It varies
around this value until the end of the sequence. Interestiaghe steep drops after
iterations 40 and 120, where the direction of movement isnsad. Here, the blobs
catch up with the movement. Hence, the output blobs follanitiput motion with

a short delay.

10.5 Conclusions

In this chapter, an approach to face localization was ptedehat is based on the
Neural Abstraction Pyramid architecture. The network @nted to solve this task
even in the presence of complex backgrounds, difficult iightand noise through
iterative refinement.

The network’s performance was evaluated on the BiolD dathsmmpares fa-
vorably to a hybrid reference system that uses a Hausdaffesmatching approach
in combination with a multi-layer perceptron.

The proposed method is not limited to gray-scale imagesektension to color
is straight forward. Since the network works iterativelydane iteration takes only
a few milliseconds, it would also be possible to use it fof-teae face tracking by
presenting image sequences instead of static images. ld@masnstrated that the
network is able to track a moving face.
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11. Summary and Conclusions

11.1 Short Summary of Contributions

In order to overcome limitations of current computer visgystems, this thesis pro-
posed an architecture for image interpretation, calledraledbstraction Pyramid.
This hierarchical architecture consists of simple proicgsslements that interact
with their neighbors. The recurrent interactions are deedrbe weight templates.
Weighted links form horizontal and vertical feedback lotipst mediate contextual
influences. Images are transformed into a sequence of eati®ns that become
increasingly abstract as their spatial resolution deegaghile feature diversity as
well as invariance increase. This process works iterativEthe interpretation of
an image patch cannot be decided locally, the decision &ref, until contextual
evidence arrives that can be used as bias. Local ambigaigagsolved in this way.

The proposed architecture defines a hierarchical recuneanial network with
shared weights. Unsupervised and supervised learningitgets can be applied to
it. It turned out that the combination of the RPROP learnind backpropagation
through time ensures stable and fast training, despite iffieutties involved in
training recurrent neural networks.

The proposed architecture was applied to example problieiciading the bi-
narization of handwriting, local contrast normalizatiamd shift-invariant feature
extraction. Unsupervised learning was used to producerariiey of sparse digit
features. The extracted features were meaningful andtéed digit recognition.

Supervised learning was applied to several computer visisks. Meter values
were recognized by a block classifier without the need faratigit segmentation.
The binarization of matrix codes was learned. The recumetwork discovered the
cell structure of the code and used it to improve binarizatio

The architecture was also applied for the learning of séwer@ge reconstruc-
tion tasks. Images were degraded and recurrent networlestvagned to reproduce
the originals iteratively. For a super-resolution problesmall recurrent networks
outperformed feed-forward networks of similar complexylarger network was
used for the filling-in of occlusions, the removal of noisegddhe enhancement of
image contrast.

Finally, the proposed architecture was used to localizesae complex office
environments. It developed a top-down strategy to prodimestthat indicate eye
positions. The localization performance compared welhhybrid system, pro-
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posed by the creators of the database used in the expeririéetsnethod is not
restricted to static images. It was shown that a face coutdHoged in real time.

11.2 Conclusions

The successful application of the proposed image inteapogt architecture to sev-
eral non-trivial computer vision tasks shows that the degigtterns followed are
advantageous for those kinds of problems.

The architectural bias of the Neural Abstraction Pyramdilifates learning of
image representations. The pyramidal networks utilizenitedimensional nature
of images as well as their hierarchical structure. Becausesame data structures
and algorithms are used in the lower layers of the pyramichaitd top, the interface
problem between high-level and low-level representatioharacteristic for many
current computer vision systems, does not occur.

The use of weight sharing allows for reusing examples thatpsesented at
one location for the interpretation of other locations. Wlthis is not biologically
plausible, it helps to limit the number of free parameterthimnetwork and hence
facilitates generalization. Restricting the weights tadiate specific excitation and
unspecific inhibition constrains the representations usethe networks since it
enforces sparse features. A similar effect can be achieitadaiow-activity prior.

The use of recurrence was motivated by the ubiquitous peesefifeedback in
the human visual system and by the fact that an iterativetisaltio a problem is
frequently much easier to obtain than direct one. Recueraliows for integration
of bottom-up, lateral, and top-down influences. If local égyuofiies exist, the inter-
pretation decision can be deferred until contextual evidearrives. This yields a
flexible use of context. Parts of the representation thatanéident bias the inter-
pretation of less confident parts.

This iterative approach has anytime characteristicgalnitterpretation results
are available very early. If necessary, they are refined @aptbcessing proceeds.
The advantages of such a strategy are most obvious in sitisatihich are challeng-
ing for current computer vision systems. While the intet@tion of unambiguous
stimuli requires no refinement, the iterative interpretatielps to resolve ambigui-
ties. Hence, the use of the Neural Abstraction Pyramid shbelconsidered when
image contrast is low, noise is present, or objects areghgrticcluded. Further-
more, since the recurrent networks can integrate infoonativer time, they are
suitable for the processing of input sequences, such ae sigeams.

The application of learning techniques to the proposedtaature shows a way
to overcome the problematic design complexity of curremtjgoter vision systems.
While application-specific feature extraction methods nugsdesigned manually
when the task changes, supervised learning in the Neurdtadbion Pyramid of-
fers the possibility of specifying the task through a setrgfut/output examples.
Automatic optimization of all parts of the system is possiiol order to produce the
desired results. In this way, a generic network becomesdpskific.
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11.3 Future Work

Several interesting aspects are not covered in the thdséy, ificlude implementa-
tion options, the use of more complex processing elementsitee integration of
the perception network into a complete system.

11.3.1 Implementation Options

The proposed Neural Abstraction Pyramid has been implesdesnt general-pur-
pose computers, PCs. While such computers are widely dlaileelatively inex-
pensive, and quite flexible, there are some drawbacks ofsetloice as well. PCs
are too large for truly mobile applications, and the highragiag frequencies used
cause a significant consumption of electric power.

Due to the mismatch between the proposed architecture andtthcture of
today’s PCs, the implementation of Neural Abstraction Ryds with general-
purpose computers is inefficient. Even though the architeds fully parallel and
the connectivity is local, PCs cannot take advantage ofsinise memory and pro-
cessing elements are separated. The key operation thamilets the recall speed
of the network is the memory access to a weight and to theigct its source,
followed by a multiply-accumulate. While the achieved gpe&the current imple-
mentation is sufficient for the interpretation of low-ragdn images in real-time,
a significant speedup would be needed to process high-tesolideo. Even more
processing power is required for on-line learning and aatapi.

Several implementation options are available to improeesipeed or to lower
the size/power requirements. All these options trade filityilfor efficiency. One
possibility is to utilize the SIMD instructions of moderngmessors. Pentium 4 pro-
cessors, for instance, offer MMX, SSE, and SSE?2 instrustfonparallel process-
ing of 8-bit, 16-bit, and 32-bit integers, as well as floatsri@nt XScale processors,
used in mobile devices, contain dedicated multiply-acdatewnits, and Intel plans
to add extended MMX instructions to future XScale procesgerogramming with
such SIMD instructions is less flexible since compiler supgolimited, and the
algorithms must be adapted to match the capabilities of tREDSngines. In par-
ticular, the memory access pattern must be tuned to prodeaesing. If the SIMD
processing elements can be fully utilized, speed-up of daraf magnitude seems
to be possible compared to the current implementation.

An option to achieve greater speedup is to use parallel ctarpwith multiple
CPUs. However, parallel computers are less availablegtargquire more power,
and are more expensive than PCs. Furthermore, significaelafament effort is
necessary to distribute the processing efficiently betvilee CPUs.

If one restricts the power of individual processing elersentany of them can
be implemented on a single chip. The vision processor VIF128] is an example
of such an approach. It contains a 2D array of processingegitsrthat have ac-
cess to small local memories and to the data of their neighl@ther examples of
special-purpose parallel processors are the XPACT data[fléjarchitecture and
the Imagine stream processor [119]. Such parallel procggsm achieve speedup
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similar to parallel computers, while keeping size and powgersumption compati-
ble with desktop PCs. It is conceivable that such specidliteps could be used as
input processors in future PCs, similar to the dedicateghicaprocessors widely
employed today. An even greater degree or parallelism isilpleswhen using bit-
serial computations or systolic arrays with thousands of@ssing elements.

Of course, designing special-purpose VLSI hardware to Imidie proposed ar-
chitecture offers the greatest possibilities for speedwngbreduction of size/power,
but involves significant development costs and time. Hetigjs only feasible for
high-volume mobile applications, e.g. for use in cars or AB/cellular phones.
While field-programmable gate array (FPGA) chips can be dsegrototyping,
custom design is necessary to take full advantage of costfintncy advantages.
Since the processing in the Neural Abstraction Pyramidlig farallel, low operat-
ing frequencies can be used. This reduces the voltage nemattience the power
consumption.

At least one additional order of magnitude can be gainedfinieficy by us-
ing analog, instead of digital, VLSI [124]. Analog chips wsdy a single value to
represent a quantity, instead of multiple bits. Furtheentansistors do not switch,
but are kept below saturation. Operations that are costtyigital VLSI, such as
multiplications, can be implemented with few analog tratmis. On the other hand,
the precision of these operations is limited, and analog\‘é Susceptible to noise
and substrate inhomogeneities. Analog VLSI offers the ipdigg of integrating
processing elements and photosensors on the same chipeintoravoid 1/0 bot-
tlenecks. One example for such a tight integration is thdempgntation of cellular
neural networks (CNN) on the focal plane [143].

Similar to LCD displays or CMOS cameras, defects of singlecpssing ele-
ments can be tolerated if the resolution is high. This alléarsproducing large
chips containing millions of processing elements with hyigids. Another excit-
ing possibility is the trend towards 3D integration. Cortirega stack of chips with
dense arrays of vias keeps wire length short and allows &cdimbination of chips
that need different production processes. One examplecbfigrtical interconnects
is the SOLID process, recently announced by Infineon [3], tbduces the size of
vias to10um x 10um. It offers the possibility of establishing a direct corresp
dence between the layers of the Neural Abstraction Pyramidtlae stack levels.
The tight integration of image sensors and massively pdaikrarchical process-
ing could yield inexpensive, small, low power devices thaténthe computational
power of today’s supercomputers for computer-vision taskey will be needed to
allow mobile computers to perceive their environment.

11.3.2 Using more Complex Processing Elements

The simple processing elements, used in the Neural Abgireyramid, resemble
feed-forward neural networks with a single output-unitwtiuld be interesting to
investigate the use of more complex processing elementspossibility would be
to employ units that are biologically more realistic. Theykd generate spikes and
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have dynamic synapses. Spiking neurons could be used ternepit fast tempo-
ral dynamics, as illustrated in the activity-driven updexample. They would also
allow for codes which are based on the precise timing of spikee use of synchro-
nization for feature binding and segmentation could beagal. Dynamic synapses
could be employed to decode temporal codes. Furthermarg cbuld be used to
change the strength of cooperation/competition betwegtnife cells dynamically.
Another possible line of future research is to give the nétveativities a prob-

abilistic interpretation. One could view the abstractigmgmid as a graphical be-
lief network and apply belief propagation. This proposairnistivated by the re-
cent success of the belief propagation algorithm in cyalapgs [76]. Unlike belief
propagation in acyclic graphs, the algorithm only appradies inference and is not
guaranteed to converge. Generalized belief propagat®r] [2as been proposed to
implement better approximations with a moderate increaseinputational costs.

11.3.3 Integration into Complete Systems

The goal of visual processing, in many contexts, is to ultétyecontrol the behavior
of a system based on the sensed state of the environmentallsifor an integrated
treatment of perception and action. Since not only objesntidly, but object loca-

tion is needed for action, the perception network would rteetbt only model the

ventral visual pathway, but the dorsal one as well. Furtloeeqan inverse hierarchi-
cal network could be used to expand abstract action desisiia low-level action

commands. Such an integrated system could be employed terimept active vi-

sion. It would also allow for the use of reinforcement leagniechniques.
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