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Hubert L. Bray
and William P. Minicozzi II
Preface
For more than forty years Richard Schoen has been a
leading figure in geometric analysis, connecting ideas
between analysis, geometry, topology, and physics in fas-
cinating and unexpected ways. In 2017 Richard Schoen
was awarded the Wolf Prize for these fundamental
contributions and for his “understanding of the in-
terconnectedness of partial differential equations and
differential geometry.” In this article we survey some of
his many fundamental ideas.

Figure 1. Schoen was the tenth of thirteen children,
shown here in fourth grade at the Sharpsburg
Elementary School, at graduation from Fort Recovery
High School in 1968, and at graduation summa cum
laude from the University of Dayton in 1972.

Figure 2. Rick Schoen, pictured here soon after
winning the Guggenheim Fellowship in 1996, also
won the Wolf Prize in 2017.

Rick Schoen was born in 1950 in Celina, Ohio. He
was the tenth in a family of thirteen children growing
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up on a farm (Figure 1). He enjoyed farm work and has
described driving a tractor to plow the fields as “great for
thinking.” His mother encouraged the children in their
schooling, and his father was always inventing things. His
older brothers, Hal and Jim, were both math majors and
inspired him to study mathematics.

In 1972 Schoen (Figure 1) graduated summa cum
laude from the University of Dayton and received an
NSF Graduate Fellowship. In March 1977 Rick received
his PhD from Stanford University under the direction of
Leon Simon and Shing-Tung Yau and soon after received
a Sloan Postdoctoral Fellowship. His early work was on
minimal surfaces and harmonic maps. By the time Schoen
received his PhD, he had already proven major results,
including his 1975 curvature estimates paper with Simon
and Yau.

In the late 1970s Schoen and Yau developed new tools
to study the topological implications of positive scalar
curvature. This work grew out of their study of stable
minimal surfaces, eventually leading to their proof of the
positive mass theorem in 1979. Altogether, their work
was impressive for the way it connected neighboring
fields, first using analysis to understand geometry and
then using geometry to understand physics.

Figure 3. Schoen with his collaborators on the theory
of stable minimal surfaces in manifolds of positive
scalar curvature: Fischer-Colbrie and Fields Medalist
Yau (2015). Yau and Schoen applied stable minimal
surfaces to prove the positive mass theorem in 1979.

In the early 1980s, Schoen published a number of
fundamental papers on minimal surfaces and harmonic
maps. His work on minimal surfaces includes an influen-
tial Bernstein theorem for stable minimal surfaces with
Doris Fischer-Colbrie. Schoen met his future wife, Fischer-
Colbrie, in Berkeley, where she received her PhD in 1978.
They have two children, Alan and Lucy, both of whom
graduated from Stanford.

Other works from the early 1980s include an extremely
useful curvature estimate for stable surfaces, a unique-
ness theorem for the catenoid, and a partial regularity
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theory for stable hypersurfaces in high dimensions with
Simon. In 1982, Schoen and Karen Uhlenbeck proved the
partial regularity of energy-minimizing harmonicmaps. In
1983 Schoen was awarded the very prestigious MacArthur
Prize Fellowship.

Schoen is also very well known for his celebrated so-
lution to the remaining cases of the Yamabe problem in
1984, this time using a theorem from physics, namely
the positive mass theorem, to solve a famous problem in
geometry. The resulting fundamental theorem in geom-
etry, that every smooth Riemannian metric on a closed
manifold admits a conformal metric of constant scalar
curvature, had been open since the 1960s. This work was
cited in 1989 when Schoen received the Bocher Prize of
the American Mathematical Society. His work on scalar
curvature at this time set the direction for the field for
the next twenty-five years.

Schoen was elected to the American Academy of Arts
and Sciences in 1988 and the National Academy of
Sciences in 1991. He has been a Fellow of the American
Association for the Advancement of Science since 1995
and won a Guggenheim Fellowship in 1996. Rick was
elected Vice President of the AMS in 2015. He was
awarded the Wolf Prize in Mathematics for 2017, shared
with Charles Fefferman. In 2017 he was also awarded the
Heinz Hopf Prize, the Lobachevsky Medal and Prize, and
the Rolf Schock Prize, to mention only a few of his awards.

Figure 4. Schoen with Simon at Stanford in 2018.
Schoen is Simon’s most successful doctoral student,
with 137 mathematical descendants.

Starting around 1990 Schoen began two major pro-
grams. The first was to develop a theory of harmonic
maps with singular targets, starting with a joint paper
with Mikhail Gromov, where they used harmonic maps
to establish 𝑝-adic superrigidity for lattices in groups of
rank one. In a series of papers, Schoen and Nick Korevaar
laid the foundations for a general theory of mappings to
NPC spaces, established the basic existence and regularity
results, and applied their theory to settle problems in a
number of areas of mathematics. The second big program

was a variational theory of Lagrangian submanifolds, in-
cluding the existence and regularity theory, done in a
series of papers with Jon Wolfson.

Over the last decade, Schoen has continued to make
major contributions to geometric analysis and general
relativity.Amongother results ingeneral relativity, Schoen
has made fundamental contributions to the constraint
equations (with Corvino and others), which dictate the
rangeof possible initial conditions for a spacetime, proved
theorems on the topology of higher-dimensional black
holes (with Galloway), and proved the positive mass
theorem in dimensions greater than seven (with Yau). In
geometric analysis he has several important results with
Simon Brendle on Ricci flow, including the proof of the
differentiable sphere theorem, as well as a compactness
theorem for the Yamabe equation with Marcus Khuri and
Fernando Codá Marques.

Figure 5. Schoen at the Banff International Research
Station in 2016 with his students Pengzi Miao,
Christos Mantoulidis, Daniel Pollack, Alessandro
Carlotto, Sumio Yamada, Dan Lee, and Hubert Bray.

Schoen has written two books and roughly eighty
papers and has solved an impressively wide variety
of major problems and conjectures. He has supervised
around forty students and counting and has hosted many
postdocs. Even with his great success, Schoen is still one
of the hardest working people in mathematics, giving
us all the distinct impression that he must love it. His
impact on mathematics, both in terms of his ideas and
the example he sets, continues to be tremendous.

This article contains surveys of a sampling of Schoen’s
mathematical works, interspersed with personal recol-
lections. Many of Schoen’s accomplishments are not
surveyed here—there were just too many to attempt that
feat. Nevertheless, we hope that the reader will get a taste
of the mathematical genius that is Richard Schoen.

In the next sections, Michael Eichmair and Lan-Hsuan
Huang describe Schoen’s work on scalar curvature, fol-
lowed by a personal note by Shing-Tung Yau about their
collaboration on the positive mass theorem. William Mini-
cozzi describes the work of Schoen–Uhlenbeck, followed
by a personal note by Karen Uhlenbeck about their collab-
oration. Rob Kusner describes Schoen’s work on classical
minimal surfaces in Euclidean space, and Fernando Codá
Marques describes his work on the Yamabe problem.
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Figure 6. At the June 2009 Mathematics Research
Communities Conference in Snowbird, Utah. First row:
Catherine Williams, Vincent Bonini, Leobardo Rosales,
Jeff Jauregui, Po-Ning Chen. Second row: George Lam,
Jacob Bernstein, Chen-Yun Lin, Andrew Bulawa,
Graham Cox, Joel Kramer, Iva Stavrov, Rick Schoen,
Christine Breiner, Lan-Hsuan Huang, Michael Eichmair,
Lu Wang.

Chikako Mese describes his work on harmonic maps into
NPC spaces, and Ailana Fraser describes their joint work
on Steklov eigenvalues. Any of these sections may be read
as its own distinct contribution.

Michael Eichmair and
Lan-Hsuan Huang
Scalar Curvature, Minimal Surfaces, and the
Positive Mass Theorem
Here we describe some of Richard Schoen’s early work
with Shing-Tung Yau on the use ofminimal surfaces in the
study of three-dimensional geometry. We also describe
the impact of their contributions on our own careers.

To set the stage, we briefly recall several notions
of curvature. Let (𝑀,𝑔) be a Riemannian manifold of
dimension 𝑛.

Let 𝜋 be a 2-plane in the tangent space of 𝑀 at 𝑝.
The sectional curvature of 𝜋 may be computed from the
spread of geodesics 𝛾𝑖 starting at 𝑝 with orthonormal
initial velocities 𝑒𝑖 such that 𝜋 = 𝑒1 ∧ 𝑒2:

𝐾𝑝(𝜋) = lim
𝑡→0

6(𝑡 − dist(𝛾𝑖(𝑡), 𝛾𝑗(𝑡))/√2
𝑡3 ) .

The sectional curvature is positive when these geodesics
bend together and negative when they drift apart when
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compared with Euclidean space. Starting with an or-
thonormal basis 𝑒1,… , 𝑒𝑛 of the tangent space at 𝑝, we
can compute the (symmetric) Ricci curvature tensor as

𝑅𝑖𝑐𝑝(𝑒𝑖, 𝑒𝑖) = ∑
𝑗≠𝑖

𝐾𝑝(𝑒𝑖 ∧ 𝑒𝑗)

and the scalar curvature as

𝑅𝑝 =
𝑛
∑
𝑖=1

𝑅𝑖𝑐𝑝(𝑒𝑖, 𝑒𝑖) = ∑
𝑖≠𝑗

𝐾𝑝(𝑒𝑖 ∧ 𝑒𝑗).

The scalar curvature can also be computed from the
deficit between the volume 𝜔𝑛 𝑟𝑛 of a Euclidean ball
of radius 𝑟 > 0 and the volume of a geodesic ball
𝐵𝑝(𝑟) = {𝑥 ∈ 𝑀 ∶ dist(𝑥, 𝑝) < 𝑟} in (𝑀,𝑔):

𝑅𝑝 = lim
𝑟→0

6(𝑛 + 2)(𝜔𝑛 𝑟𝑛 − vol(𝐵𝑝(𝑟))
𝜔𝑛 𝑟𝑛+2 ) .

Thus 𝑅𝑝 > 0 means that a small geodesic ball in (𝑀,𝑔)
has less volume than a Euclidean ball of the same radius.

Figure 7. The spatial Schwarzschild geometry, with
vanishing scalar curvature, provides the prototype
for the concept of mass in general relativity. The
sphere at the neck (in red) is a stable minimal surface
called the horizon.

Let Σ ⊂ 𝑀 be a hypersurface. The variation ∇𝑋𝜈 of the
unit normal𝜈 ∶ Σ → 𝑇𝑀 along a field𝑋 that is tangent to Σ
measures how Σ bends in ambient space. These variations
are recorded synthetically in a symmetric tensor on Σ,

𝐴Σ(𝑋,𝑌) = 𝑔(∇𝑋𝜈,𝑌),
called the second fundamental form. The principal curva-
tures 𝜆1, …, 𝜆𝑛−1 of Σ at a given point are the eigenvalues
of this tensor with respect to the inner product induced
on Σ by 𝑔. Their sum

𝐻Σ = 𝜆1 +⋯+𝜆𝑛−1

is called the mean curvature 𝐻Σ of Σ.
We examine mean curvature more carefully. Let us

assume, for definiteness, that Σ is closed. Every smooth
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function, 𝑓 ∈ 𝐶∞(Σ), with sufficiently small 𝐶1-norm
gives rise to a surface

Σ𝑓 = {exp𝜎 𝑓(𝜎)𝜈(𝜎) ∶ 𝜎 ∈ Σ}
near Σ. In fact, every surface close to Σ has this form.
Taylor expansion gives

area(Σ𝑓) = area(Σ) + ∫
Σ
𝐻Σ 𝑓 + 1

2 ∫
Σ
𝐻2

Σ 𝑓2

+ 1
2 ∫

Σ
|∇Σ𝑓|2 − (|𝐴Σ|2 +𝑅𝑖𝑐(𝜈,𝜈))𝑓2

+𝑂(||𝑓||3𝐶1(Σ)).
Assume now that Σ has least area among all nearby

surfaces. In particular, the first variation of area is zero.
By the preceding formula, this is equivalent to

𝐻Σ = 0.
Moreover, the second variation of area is nonnegative.
In view of our expansion, this amounts to the stability
inequality, i.e.,

∫
Σ
(|𝐴Σ|2 +𝑅𝑖𝑐(𝜈,𝜈))𝑓2 ≤ ∫

Σ
|∇Σ𝑓|2

for all 𝑓 ∈ 𝐶∞(Σ).
In general, we call a surface minimal if its mean

curvature vanishes. Stable minimal surfaces are those
that satisfy both the first and the second derivative tests
for least area.

Figure 8. Schoen and Yau’s famous manipulation of
the second variation formula for a stable minimal
surface, Σ, to involve the ambient scalar curvature,
𝑅𝑀, the intrinsic Gauss curvature, 𝑅Σ, and the norm of
the second fundamental form squared, |𝐴|2.

Using parallel surfaces for area comparison, where
𝑓 ≡ constant, is tempting and hard to resist. It gives

∫
Σ
|𝐴Σ|2 +𝑅𝑖𝑐(𝜈,𝜈) ≤ 0.

J. Simons observed from this that there can be no stable
minimal surfaces if the Ricci curvature is positive. Schoen
and Yau [4] manipulated the integrand further, using the
Gauss equation

𝑅 = 2𝐾Σ + |𝐴Σ|2 −𝐻2
Σ + 2𝑅𝑖𝑐(𝜈,𝜈)

and the Gauss-Bonnet formula

∫
Σ
𝐾Σ = 2𝜋𝜒(Σ)

to conclude that, for a stable minimal surface,
1
2 ∫

Σ
𝑅+ |𝐴Σ|2 ≤ ∫

Σ
𝐾Σ = 2𝜋𝜒(Σ).

Inspecting this identity, Schoen and Yau observed
that the following two conditions—one metric and one
topological—cannot hold simultaneously:

• The scalar curvature 𝑅 is positive along Σ.
• The genus of Σ is positive; i.e., 𝜒(Σ) ≤ 0.

Consider (𝑀,𝑔) where 𝑀 = 𝕊1 × 𝕊1 × 𝕊1 is the 3-
torus. From standard results in geometricmeasure theory,
among all surfaces in 𝑀 that are homologous to Σ0 =
𝕊1 × 𝕊1 × {point}, there is one that has least area in
(𝑀,𝑔); see Figure 9. By Stokes’ theorem, this surface has
a component Σ for which

∫
Σ
(𝑑𝜃1) ∧ (𝑑𝜃2) ≠ 0,

where 𝜃1, 𝜃2 are the angles on the first two factors.
Assume that Σ has genus zero. The restrictions of the
forms 𝑑𝜃1 and 𝑑𝜃2 and consequently of 𝑑𝜃1 ∧ 𝑑𝜃2 are
exact on Σ. In particular, the latter should integrate to
zero on Σ. This contradiction shows that Σ has positive
genus. In view of the dichotomy discussed above, these
ideas of Schoen and Yau give

Theorem 1 (Schoen and Yau [3]). The 3-torus does not
admit a metric of positive scalar curvature.

Figure 9. There is a stable minimal surface Σ (in red)
lying in a torus 𝑀 (in black), which is homologous to
Σ0 (in blue).

As shown by Kazdan–Warner in 1975, a Riemannian
metricwithnonnegative scalar curvature is eitherRicci flat
or there is a metric with positive scalar curvature nearby.
Theorem 1 is thus really a rigidity result for Riemannian
metrics of nonnegative scalar curvature. That is, every
3-dimensional torus with nonnegative scalar curvature is
flat.

Schoen and Yau extended these ideas in their proof of
the positive mass theorem:
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Theorem 2 (Schoen and Yau [4]). Let (𝑀,𝑔) be a complete
Riemannian 3-manifold that is asymptotically flat,

𝑔𝑖𝑗 = 𝛿𝑖𝑗 +𝑂(|𝑥|−𝑞),

for some 𝑞 > 1/2, with nonnegative integrable scalar cur-
vature. Then the ADM-mass of (𝑀,𝑔) is nonnegative, and
it is zero if and only if (𝑀,𝑔) is flat Euclidean space.

The ADM-mass (after R. Arnowitt, S. Deser, and
C. Misner),

𝑚𝐴𝐷𝑀 = lim
𝑟→∞

1
16𝜋𝑟 ∫

{|𝑥|=𝑟}

3
∑

𝑖,𝑗=1
(𝜕𝑖𝑔𝑖𝑗 − 𝜕𝑗𝑔𝑖𝑖)𝑥𝑗,

is a geometric invariant of (𝑀,𝑔) that measures the
deviation from Euclidean at infinity. The example of
Schwarzschild where 𝑀 = {𝑥 ∈ ℝ3 ∶ |𝑥| ≥ 𝑚/2} and

𝑔𝑖𝑗 = 𝑢4𝛿𝑖𝑗 with 𝑢(𝑥) = 1+ 𝑚
2|𝑥|

for some 𝑚 > 0 is particularly important. The boundary
of 𝑀 is a stable minimal surface and is called the horizon.
Note that the ADM-mass is equal to 𝑚.

Schoen and Yau first consider the special case of
harmonic asymptotics where, outside a bounded set,

𝑔𝑖𝑗 = 𝑢4𝛿𝑖𝑗 with 𝑢(𝑥) = 1+ 𝑚
2|𝑥| +𝑂(|𝑥|−2)

and where the scalar curvature is positive everywhere.
(The reduction of the proof of the positive mass theorem
to the special case of such harmonic asymptotics is
proven in a 1981 paper of Schoen and Yau using a density
argument.) If 𝑚 = 𝑚𝐴𝐷𝑀 is negative, the slab

{−Λ < 𝑥3 < Λ}

is a mean-convex region for Λ > 0 sufficiently large. See
Figure 10.

Figure 10. In their proof of the positive mass
theorem, Schoen and Yau find a least area surface, Σ𝑟,
with boundary, 𝜕Σ𝑟, lying in a cylinder of radius 𝑟,
before taking 𝑟 → ∞ to create a complete stable
minimal surface.

Schoen and Yau go ahead and construct least area
surfaces in the slab with respective boundary

𝜕Σ𝑟 = {(𝑥1, 𝑥2, 0) ∶ |(𝑥1, 𝑥2)| = 𝑟}.

As 𝑟 → ∞, these surfaces limit to a complete stable min-
imal surface Σ that is asymptotic to a horizontal plane.
Since Σ is unbounded, one cannot simply choose the con-
stant test function 1 in the second variation inequality as

before. Schoen and Yau apply an approximation argument
involving a logarithmic cut-off trick to argue that, still,

∫
Σ
|𝐴Σ|2 +𝑅𝑖𝑐(𝜈,𝜈) ≤ 0.

Using the Gauss equation as before, this gives

0 < 1
2 ∫

Σ
𝑅 ≤ ∫

Σ
𝐾Σ.

The Cohn–Vossen inequality bounds the right-hand side
by 2𝜋𝜒(Σ). Now, using that Σ is asymptotic to a plane,
they conclude that 𝜒(Σ) ≤ 0, a contradiction.

This shows that 𝑚𝐴𝐷𝑀 ≥ 0. To characterize the case of
equality, Schoen and Yau use a perturbation argument.

These ideas of Schoen and Yau also extend to higher
dimension.

Theorem 3 (Schoen and Yau [3]). Let 𝑀 be a closed man-
ifold of dimension 𝑛 ≤ 7 so there exists a map 𝑀 → 𝕋𝑛 =
𝕊1 ×⋯× 𝕊1 of nonzero degree. Then 𝑀 does not admit a
metric of positive scalar curvature.

The proof is by induction on the dimension. We may
assume that 𝑛 ≥ 4. Using area-minimization, the stability
inequality, and the Gauss equation as above, Schoen and
Yau show that there is a hypersurface Σ ⊂ 𝑀 that admits
a map of nonzero degree into the torus, 𝕋𝑛−1, such that

1
2 ∫

Σ
(𝑅 + |𝐴Σ|2)𝑓2 ≤ ∫

Σ
|∇Σ𝑓|2 +

1
2𝑅Σ 𝑓2

for all 𝑓 ∈ 𝐶∞(Σ). Using the assumption that 𝑅 > 0, they
conclude that the Yamabe operator

𝐿Σ = −ΔΣ + 𝑛− 3
4(𝑛− 2) 𝑅Σ

has positive first eigenvalue on Σ. If 𝑢 ∈ 𝐶∞(Σ) is a
positive first eigenfunction, then the scalar curvature
of the conformal metric 𝑢 4

𝑛−3 𝑔Σ on Σ is positive. This
contradicts the induction hypothesis.

The restriction to low dimensions is on account of sin-
gularities that area-minimizing hypersurfaces may form.
In recent work, Schoen and Yau present a powerful
approach that extends their ideas to all dimensions.

Schoen and Yau have introduced a watershed of ideas
relating scalar curvature, minimal surfaces, topology, and
physics. Their insights have been hugely influential, and
certainly a short survey cannot do them justice. We
conclude by sketching briefly a few examples of how their
ideas have influenced our own work.

The positive mass theorem is a remarkable rigidity
result for Euclidean space: There really is no way at all
to deform the Euclidean metric on a compact set while
keeping the scalar curvature nonnegative. The following
result due to Otis Chodosh and Eichmair establishes a
related rigidity result that was conjectured by Schoen:

Theorem 4 ([1]). The only asymptotically flat 3-manifold
that has nonnegative scalar curvature and which contains
an unbounded area-minimizing surface is flat Euclidean
space.
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Figure 11. Huang, Fischer-Colbrie, and Schoen at
Stanford (2007). Fischer-Colbrie and Schoen’s paper
“On the structure of complete stable minimal
surfaces in 3-manifolds of positive scalar curvature”
is one of Schoen’s five most highly cited papers.

This result has already been used in the solution of
several other conjectures related to the geometry of 3-
manifolds in joint work of Chodosh and Eichmair with
Alessandro Carlotto, with Vlad Moraru, and with Yuguang
Shi and Haobin Yu.

The reduction in the proof of the positivemass theorem
to harmonic asymptotics described above illustrates how
subtle results about the geometry of asymptotically flat
manifolds can be obtained by looking at special cases.

This observation has found many useful applications.
Huang studied further properties of the special classes
that play a key role in studying the geometric center of
mass, buildingon the foundationalwork for specialdataby
GerhardHuisken andYau. This workwas completed in her
2009 Stanford dissertation under Schoen’s supervision.
Schoen, Mu-Tao Wang, and Huang applied these ideas to
study the angularmomentumand disproved a conjectural
mass and angular momentum inequality.

From the point of view of general relativity, asymptot-
ically flat manifolds are just the beginning of the story.
General initial data for the Einstein equations consists of
triplets (𝑀,𝑔, ℎ), where (𝑀,𝑔) is a Riemannian manifold
and ℎ is a symmetric (0, 2)-tensor that represents the
spacetime second fundamental form of the slice (𝑀,𝑔)
through the evolving spacetime.1

In joint work with Dan A. Lee and Schoen [2], the
authors proved a spacetime version of the positive mass
theorem for initial data sets in dimensions ≤ 7. The
strategy is modeled on that for the time-symmetric case
given by Schoen and Yau [5]. In our case, marginally
outer trapped surfaces (MOTS) take the place of minimal
surfaces. Since MOTS do not arise as minimizers of a
geometric variational problem, we depend on existence,

1See the feature on gravitational waves in the August 2017 No-
tices, www.ams.org/publications/journals/notices/201707
/rnoti-p684.pdf.

regularity, andcompactness results for two-sidedsurfaces
Σ ⊂ 𝑀 that solve a geometric boundary value problem of
the form

𝐻Σ(𝑥) = 𝐹(𝑥,𝜈Σ(𝑥))
for all 𝑥 ∈ Σ with 𝜕Σ = Γ. Here, 𝐹 ∶ 𝑀×𝑇𝑀 → ℝ smooth
and Γ ⊂ 𝑀 closed of codimension two are given. A
theory that satisfyingly extends the classical theory for
area-minimizing surfaces to this broader, nonvariational
setting is developed in Eichmair’s thesis under Schoen at
Stanford in 2008. The accompanying rigidity result for
Minkowski spacetime was obtained by Lee and Huang.

Figure 12. Lan-Hsuan Huang, Ailana Fraser, Michael
Eichmair, Rick Schoen, Shing-Tung Yau, Robert
Bartnik, Mu-Tao Wang, and Xiaodong Wang in
Melbourne (2010).

On a personal note, we have very fondmemories of our
time working as doctoral students with Rick at Stanford—
2003–2008 (Eichmair) and 2004–2009 (Huang). He would
be in the office seven days a week, typically from quite
early in the morning until around 4 pm. (There was an
ongoing search for tennis partners in the department
for the late afternoons.) This example has rubbed off on
his PhD students too. We worked hard in a nurturing
environment that could not have been more down-to-
earth about mathematics. We aspired to be like Rick.
Those years laid the foundations for our own research
careers, and we are very grateful.
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Shing-Tung Yau
Memories of Working with Rick Schoen
I am pleased to write on behalf of Rick Schoen on
the occasion of his Wolf Prize, which is clearly a well-
deserved award in recognition of the tremendous insight
and strength he has long demonstrated in the field of
geometric analysis.

I have known Rick for forty-four years, and he is
certainly one of my very best friends. I am proud that
Leon Simon and I were his thesis advisors at Stanford.
Together, Schoen, Leon Simon, Karen Uhlenbeck, S. Y.
Cheng, Richard Hamilton, Clifford Taubes, and I made
great strides in the 1970s in developing themodern theory
of geometric analysis. This was a truly exciting period for
the subject of differential geometry, laying the foundation
for major developments in topology, algebraic geometry,
and mathematical physics over the last four decades.

Figure 13. The collaborators Yau and Schoen. Yau
writes that “more than half of my important papers
were either written jointly with Rick or influenced by
him.”

In the following I shall share some reminiscences
involving Rick that date back to the 1970s.

Both Simon and I arrived at Stanford in the fall
of 1973; fortunately we had offices across the hallway

Shing-Tung Yau is William Caspar Graustein Professor of Math-
ematics at Harvard University. His email address is yau@math
.harvard.edu.

from each other. Rick Schoen was just starting out
as a graduate student. A trenchant observation by Rick
regarding the second variation formula for area functional
for deformation of minimal hypersurfaces in Euclidean
space led to our first collaboration, during which we
managed to find a curvature estimate for stable minimal
hypersurfaces up to dimension five. This result provided
a direct proof of the famous Bernstein conjecture in these
dimensions; it also turned out to be important for later
work on the existence of mini-max hypersurfaces in a
low-dimensional compact manifold.

This papermarked the beginning of our very successful
collaboration over the last forty years. More than half of
my important papers were either written jointly with
Rick or influenced by him. We have a similar way of
approaching problems in mathematics, and we are both
excited by the power of nonlinear analysis in geometry,
topology, and mathematical physics.

I was excited by the rigidity theorem of Mostow when I
was a graduate student. I thought the theory of harmonic
maps could offer a good approach for replacing the
quasiconformal map argument of Mostow. (This was
finally achieved in 1991 by Jost and me and also by Mok,
Young, and Siu based on the similar strategy of Calabi.) I
suggested to Rick that we explore the theory of harmonic
maps as a complement to the theory of minimal surfaces.
In the period of 1974 to 1975, we studied the existence
of harmonic maps and their geometric applications.

We exploited the uniqueness theory of harmonic maps
when the image manifolds have nonpositive curvature in
order to prove the rigidity of group actions on manifolds,
reproving andgeneralizing someof theprevious theorems
inmy thesis, as well as theorems pertaining to finite group
actions on general manifolds. One extremely important
development concerned the proof of the existence of
harmonicmaps fromaRiemann surface into anymanifold
so long as there is a nontrivial map from the Riemann
surface into themanifold inducing a nontrivialmap on the
fundamental group of themanifolds. This was remarkable
because we were able to make sense of the action on the
fundamental group for maps that are not necessarily
continuous but have finite energy only.

Figure 14. Yau and Schoen with Isadore Singer in San
Diego, where they worked late into the night on their
lecture series.
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We were led to believe that there should be some
form of existence theorem for harmonic maps from the
two-sphere. But before we started to work on that, we
saw an announcement by Sacks and Uhlenbeck, who
had proved such an existence theorem using ingenious
ideas on treating the bubbling phenomena, and they can
also treat the case with fundamental group. A couple
of years later I, along with Siu, made use of the sphere
theorem of Sacks–Uhlenbeck to prove the existence of
rational curves in an algebraic manifold with positive
bisectional curvature. The idea rests on a study of the
second variational formula of minimal surfaces, similar
to the case I studied with Rick, as mentioned above.

Rick and I also made use of these ideas to prove that
the three-dimensional torus does not support a metric
with positive scalar curvature. That had been a major
open problem at the time. Our proof, in turn, led to Rick’s
and my subsequent proof of the positive mass conjecture
in general relativity.

This theorem started the extensive applications of
ideas from geometry and geometric analysis to general
relativity. But the flow of ideas between geometers and
general relativists can be very rewarding for all parties.
I remembered that Hawking asked me to look into the
four-dimensional analogue of the positive mass conjec-
ture, which he and Gibbons called the positive action
conjecture.

While pondering the problem posed by Hawking, Rick
and I hit upon an amazing fact: the second variational
formula of a minimal hypersurface can give rise to
a conformal deformation of the minimal hypersurface,
thus providing a way to achieve metrics of positive
scalar curvature on the hypersurfaces. This important
observation allowed us to do dimensional reduction as
a way to understand higher-dimensional manifolds with
positive scalar curvature. We were able to utilize such
ideas to solve certain nonlinear equations, which are
called the Jang equations in general relativity. These
equations allow us, for example, to link the concept of
black hole to mass in general spacetime. Rick and I were
able to demonstrate rigorously that if the matter density
is large in some fixed region, a black hole will form.

Since there is a regularity problem for minimal hy-
persurfaces for dimensions greater than seven, we have
to restrict our theory to lower dimensions. Fortunately,
about ten years ago we were able to remove the dimension
restriction for the positive mass conjecture and also as
pertains to the structure of manifolds with positive scalar
curvature.

During our attempt to solve the positive mass con-
jecture, Rick and I naturally became interested in under-
standing the structure of manifolds with positive scalar
curvature, which can, in turn, help us describe the struc-
ture of the topology of our universe. The first thing that
Rick and I did was to determine what class of topology in
a three-dimensional manifold can support metrics with
positive scalar curvature. We found in early 1978 that it is
possible to preservemetrics with positive scalar curvature
among such manifolds. And we thought that it should be

Figure 15. Richard Schoen, Robert Bartnik, Leon
Simon, and Shing-Tung Yau.

possible to generalize the procedure to perform surgery
on submanifolds of codimension 3 whose normal bundle
is trivial.

I gave a plenary talk at the 1978 Helsinki Congress,
where I discussed some of the results that Rick and
I had obtained. On my way to Helsinki, I mentioned
the surgery result to Blaine Lawson, who later worked
with Gromov, using a more straightforward argument to
reproduce a similar result. These results became the key
to understanding the structure of manifolds with positive
scalar curvature.

For me, working with Rick has been wonderful in so
many ways. I remember that we spent the summer of
1979 together in Stanford while finishing the writing
of our paper on the full positive mass conjecture. We
worked during the day, often stopping to eat at a Chinese
restaurant called Moon Palace. In the evening we stayed
and swam in the house owned by a friend of Doris’s, Rick’s
girlfriend and future wife. The weather was excellent, and
we really had a good time.

Rick and I also gave a lecture series in Princeton,
Berkeley, and San Diego, the contents of which were
published in two books. We often went over the substance
of these lectures a day before we delivered them. Some
of the materials we presented were new, and sometimes
our preparations lasted all the way to midnight and
even beyond. Unfortunately not all of the materials
were recorded or preserved. We can recall some of the
statements that we could prove but not the full proof.

I’ve so far talked mainly about some of the work
that Rick and I have done together. But he has, of
course, made many spectacular achievements on his
own, including the old conjecture of Yamabe, where
Rick applied the positive mass conjecture in a brilliant
manner. The subject of conformal deformation became
an important area of research after this work by Rick.
And he is clearly the leader of the whole field.

His proof with Brendle on the quarter-pinching of
positively curvedmanifoldsbrought adramatic resolution
to a conjecture that had lasted for seventy years. All these
accomplishments reveal the great insight and strength of
Rick as a mathematician of tremendous originality. Rick
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Figure 16.Yau and Schoen look out into the future.

has had many other important successes throughout his
career that I could discuss here. But the work that I have
discussed already demonstrates why Rick Schoen is a
resoundingly worthy recipient of the Wolf Prize.

William P. Minicozzi II
Schoen–Uhlenbeck Theory for Harmonic Maps
In the early 1980s Schoen andUhlenbeck proved a number
of major results on harmonic maps in two papers that
shaped the development of the field. The first paper [SU1]
proved the crucial 𝜖-regularity, proved a sharp bound on
the Hausdorff dimension of the singular set, and gave
new insight into when singularities can occur. The second
paper [SU2] proved complete boundary regularity and
solved the Dirichlet problem for harmonic maps. These
papers are extraordinarily clear and beautifully written,
and the techniques remain important today.

A map 𝑢 ∶ 𝑀𝑚 → 𝑁𝑛 between Riemannian manifolds is
harmonic if it is a critical point for the energy functional:

𝐸(𝑢) = ∫
𝑀
|∇𝑢|2.

This is one of the most natural geometric variational
problems. Taking 𝑁𝑛 = ℝ yields the special case of har-
monic functions. Alternatively, taking 𝑀𝑚 = ℝ yields the
special case of geodesics parametrized by a multiple of
arclength. Taking 𝑀𝑚 = ℝ2 yields the special case of nice
parametrizations of minimal surfaces. See Figure 17. Har-
monic maps have played an important role in geometry,
topology, and mathematical physics.

The energy 𝐸(𝑢) can be defined even when 𝑢 is
not smooth; it suffices to have |∇𝑢|2 defined almost
everywhere and integrable. Thus, harmonic maps can
be defined weakly, and a central question becomes the
regularity of aweak solution. Apoint 𝑥 is said to be regular
if there is a neighborhood 𝐵𝑟(𝑥) where 𝑢 is smooth. The
singular set 𝒮 is the complement of the regular set; it
is automatically closed by definition. Both geodesics and
harmonic functions are necessarily smooth, but general

Figure 17. The standard map from 𝑀 = 𝕊2 into the
horizon at the neck of Schwarzschild space 𝑁3 is a
harmonic map as well as minimal.

harmonic maps—even ones that minimize energy—can
have singularities.

In 1948Morrey [M] showed that energy-minimizing har-
monic maps from a surface𝑀must be Hölder continuous
and therefore smooth as long as𝑀 and𝑁 are smooth. For
the next thirty-five years, there were a number of results
proving regularity for special classes of target manifolds
𝑁. For example, in the 1964 paper [ES, Eells–Sampson]
proved the existence and regularity (smoothness) of har-
monic maps when the target𝑁 has nonpositive curvature.
Hamilton solved the corresponding Dirichlet problem for
manifolds with boundary.

There have been a number of great subsequent results
on harmonic maps. Hardt [H] provides a nice survey.

Figure 18. Minicozzi and Schoen in 2018.

The Size of the Singular Set
The simplest example of a singular harmonic map is the
map

𝑢 ∶ 𝑀3 = 𝐵(0, 1) ⊂ ℝ3 → 𝕊2
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defined by
𝑢(𝑥) = 𝑥

|𝑥| .

This map minimizes energy for its boundary values (e.g.,
among all maps that are the identity map when restricted
to 𝜕𝑀3 = 𝕊2). However it is clearly not continuous at the
origin. Since it is smooth everywhere else, the singular set
𝒮 is the single point {0}. Notice that

dim(𝒮) = 0 = 3− 3 = dim(𝑀) − 3,
so we say 𝒮 has codimension 3.

Schoen and Uhlenbeck showed that this is what
happens in general:
Theorem 5 (Schoen–Uhlenbeck). If 𝑢 ∶ 𝑀𝑚 → 𝑁𝑛 is energy
minimizing and 𝐸(𝑢) is finite and if 𝑢(𝑀) is contained in
a compact subset of 𝑁, then

dim(𝒮) ≤ 𝑚− 3.
If 𝑚 = 3, then 𝒮 is discrete.

An immediate corollary of Theorem 5 is that 𝑢 is
entirely smooth when 𝑀 is a 2-dimensional surface. This
special case was proven in 1948 by Morrey. Around the
same time as Schoen and Uhlenbeck, Giaquinta and Giusti
proved the special case of Theorem 5 when the image of
𝑢 is contained within a coordinate chart.

One of the central tools developed by Schoen and
Uhlenbeck, and an absolutely fundamental result on its
own, was the following 𝜖-regularity theorem:
Theorem 6. There exists 𝜖 > 0 so that if 𝑢 ∶ 𝑀𝑚 → 𝑁𝑛 is
energy minimizing on the ball 𝐵(𝑝, 𝑟) ⊂ 𝑀 for some 𝑟 ≤ 1
and

𝑟2−𝑚 ∫
𝐵(𝑝,𝑟)

|∇𝑢|2 ≤ 𝜖,

then 𝑢 is Hölder continuous on 𝐵(𝑝, 𝑟/2).
Schoen and Uhlenbeck actually proved something

stronger than Theorem 6: there is a uniform Hölder
bound that depends on 𝑀,𝑁, 𝑟, and 𝜖 (and, in particular,
not on 𝑢). Once the map 𝑢 is continuous then higher
regularity theory shows that 𝑢 is smooth [S].

The quantity they estimate in Theorem 6 is the scale-
invariant energy:

𝑟2−𝑚 ∫
𝐵(𝑝,𝑟)

|∇𝑢|2 = –∫
𝐵(𝑝,𝑟)

|∇𝑢|2/𝑟2.

It is scale invariant in the sense that it does not change if
we change 𝑢 by dilating the domain.

It follows immediately from the 𝜖-regularity theorem
that each singular point 𝑝 has the property that

𝑟2−𝑚 ∫
𝐵(𝑝,𝑟)

|∇𝑢|2 > 𝜖 > 0

for 𝑟 arbitrarily small. When𝑚 = 2, it follows immediately
that there are only finitely many singular points. Namely,
any ball, no matter how small, about a singular point
contains energy at least 𝜖 > 0, so the number of singular
points is at most the energy of 𝑢 divided by 𝜖.

In higher dimensions, Schoen and Uhlenback apply a
covering argument to prove that

dim(𝒮) ≤ 𝑚− 2 .

Improving the dimension bound for 𝒮 to𝑚−3 requires
a more detailed blowup analysis, using monotonicity and
scaling and a version of the Almgren–Federer dimension
reduction argument of geometric measure theory. Energy-
minimizing maps have the following crucial monotonicity
property: the scale-invariant energy is nondecreasing as a
function of 𝑟:

𝑟2−𝑚
1 ∫

𝐵(𝑝,𝑟1)
|∇𝑢|2 ≤ 𝑟2−𝑚

2 ∫
𝐵(𝑝,𝑟2)

|∇𝑢|2 for 𝑟1 < 𝑟2.

This monotonicity fails for a general weakly harmonic
map, though it does hold for an important class of
harmonic maps called stationary harmonic maps.

Using the monotonicity, Schoen and Uhlenbeck show
that at each 𝑝 there exists a tangent map,

𝑢𝑝 ∶ 𝐵(0, 1) ⊂ 𝑇𝑀𝑃 = ℝ𝑚 → 𝑁,

defined by blowing up about 𝑝:

𝑢𝑝(𝑥) = lim
𝜎𝑖→0

𝑢(exp𝑝(𝜎𝑖𝑥)).

At a regular point 𝑝, the tangent map 𝑢𝑝 is trivial:

𝑢𝑝(𝑥) = lim
𝜎𝑖→0

𝑢(𝑝) + 𝑔(∇𝑢,𝜎𝑖𝑥) = 𝑢(𝑝).

In the simplest example where 𝑢(𝑥) = 𝑥/|𝑥|, we see that
at 𝑝 = 0 the tangent map is

𝑢𝑝(𝑥) = lim
𝜎𝑖→0

𝑢(𝜎𝑖𝑥) = lim
𝜎𝑖→0

𝜎𝑖𝑥
|𝜎𝑖𝑥|

= 𝑢(𝑥).

In general the tangent map is also homogeneous,

𝑢𝑝(𝑥) = 𝑤𝑝(𝑥/|𝑥|),

and 𝑤𝑝 ∶ 𝕊𝑚−1 → 𝑁𝑛 is harmonic.
This gives a criterion for regularity:
If there are no nontrivial harmonic maps from
𝕊𝑘 to 𝑁 for every 𝑘 ≤ 𝑚 − 1, then every energy-
minimizing map from 𝐵(0, 1) ⊂ ℝ𝑚 to 𝑁 must be
smooth.

As a consequence there is a large class of target manifolds
𝑁 where the harmonic maps are smooth, including, for
instance, 𝑁 with sectional curvature 𝐾 ≤ 0, as proven in
Eells–Sampson.

Boundary Regularity and the Dirichlet Problem
The Dirichlet problem is the search for a harmonic map
𝑢 ∶ 𝑀 → 𝑁 with prescribed values of 𝑢 ∶ 𝜕𝑀 → 𝑁 on the
boundary of𝑀. In the setting where𝑀 is an interval this is
equivalent to the problem of finding a length-minimizing
geodesic between two points. When 𝑀 is a surface and
the energy is, thus, conformally invariant, the Dirichlet
problem is closely related to the Plateau problem for
minimal surfaces. See Figure 19.

The 1982 results of Schoen and Uhlenbeck [SU1] give
interior regularity for the solution 𝑢 but say nothing
about regularity along the boundary. In 1983 Schoen and
Uhlenbeck [SU2] proved complete boundary regularity for
energy-minimizing maps:
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Figure 19. A soap film is a solution to the Dirichlet
problem of finding a conformal harmonic map with
prescribed boundary.

Theorem 7 (Schoen–Uhlenbeck). If𝑀 is compact with𝐶2,𝛼

boundary, 𝑢 is energy minimizing (and 𝐸(𝑢) < ∞), the
image of 𝑢 is in a compact subset of 𝑁, and the restriction
of 𝑢 to 𝜕𝑀 is 𝐶2,𝛼, then 𝑢 is 𝐶2,𝛼 in a neighborhood of 𝜕𝑀.

One consequence is that 𝒮 is a compact subset of
the interior of 𝑀. The boundary regularity comes from
the nonexistence of nontrivial smooth harmonic maps
from the hemisphere which map the boundary to a point.
Boundary regularity for surfaces was proven by Morrey
in his work on the Plateau problem for minimal surfaces
[M].

Using these results, Schoen and Uhlenbeck solved the
Dirichlet problem.

Theorem 8 (Schoen–Uhlenbeck). Let 𝑀 be compact with
𝐶2,𝛼 boundary as in Theorem 7 and suppose that 𝜕𝑁 = ∅.
If 𝑣 ∶ 𝑀 → 𝑁 has

∫|𝑣|2 + |∇𝑣|2 < ∞

and the restriction of 𝑣 to 𝜕𝑀 is 𝐶2,𝛼, then there is an
energy-minimizing harmonic map 𝑢 ∶ 𝑀 → 𝑁 that equals
𝑣 on 𝜕𝑀. The singular set 𝒮 for 𝑢 is a compact subset of
the interior of 𝑀 and

dim(𝒮) ≤ dim(𝑀) − 3.

Figure 20. Schoen’s students André Neves and Bill
Minicozzi discussing mathematics as his long-time
colleague, Brian White, listens at Stanford in 2018.
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Figure 21. Rick Schoen with his doctoral student
Yng-Ing Lee and her doctoral students in 2015.
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Karen Uhlenbeck
Working with Rick Schoen
The academic year 1979–80 at the Institute for Advanced
Study in Princeton was a special year in differential
geometry organized by S.-T. Yau. This year was indeed
special for most of the participants, who met over a
long period of time with their colleagues. They learned
both classic and new open problems and a new set of
techniques to apply to them. This period was a flowering
of many methods of using nonlinear partial differential
equations to approach problems in topology, differential
geometry, and algebraic geometry. S.-T. Yau was a leader
and driving force at this time. We all got to know each
other, talk mathematics, and incidentally play volleyball
and establish an eating co-op. Rick and I were both in
residence for the year.

Figure 22. Schoen at IAS in 1979, where he first
began working with Uhlenbeck on regularity using
monotonicity.

I had since my student days been interested in min-
imization problems for maps between manifolds, and
Rick brought to our collaboration a knowledge of min-
imal surface theory. Together we had a good working
knowledge of nonlinear elliptic PDE. We did not start out
with a deliberate goal of understanding harmonic maps,
although we had seminars on them during the year. There
were two background references we were both well aware

Karen Uhlenbeck is professor emerita at the University of Texas at
Austin and visitor at the Institute for Advanced Study in Princeton.
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of. A step in the construction of minimal surfaces in
manifolds was the solution of the Dirichlet problem for
harmonic maps of domains of the plane into arbitrary
manifolds. Morrey’s regularity theorem for minimizing
the energy integral showed that the minimum of energy,
which is by construction almost continuous, must lie in a
Hölder space. We had both already used harmonic maps
from surfaces to find minimal surfaces in manifolds. An
already classic paper by Eells and Sampson from the
1960s discussed maps from an arbitrary dimensional
space into manifolds of negative curvature, but their heat
flow technique shed little light on harmonic maps into ar-
bitrary manifolds from spaces of dimension greater than
two. The standard regularity theorems only applied once
one had a continuous solution, and direct minimization
yields maps with only one derivative in 𝐿2.

Figure 23. Uhlenbeck with her husband, the
mathematician Bob Williams, in 2017.

At the very end of the year, Rick and I had an “aha
moment” and our collaboration took off. We realized
two things. First, the monotonicity formula for harmonic
maps, which comes from variations by diffeomorphisms
of the basemanifold, showed that theminimawere almost
continuous. Minima lie in aMorrey or Besov space. Second,
on balls of small energy, we could construct a comparison
function to improve the estimate by smoothing out the
boundary values a bit using mollifiers. So we got a
modification of the classic theorem of Morrey to push us
over into stronger estimates implying Hölder continuity.
By covering and counting, we could show that the energy
minimizer was smooth on the complement of a set of
Hausdorff codimension 2.

In our papers, the monotonicity formula was the basis
for all our arguments. We called it the scaling inequality,
which is just as good a term, but not one that became
accepted. I wonder today that neither Rick nor I nor the
referee realized the accepted name for our basic estimate.

We also had a disagreement as to how to make the
estimates. I wanted to construct a comparison minimizer,
while Rick used the Euler–Lagrange equations and har-
monic functions into the ambient manifold. He won, as
in the later steps we did not assume minimization.

This was a great starting point. Later on, work of Tian
et al. on Yang–Mills and work of Chang and Yang on
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Figure 24. Uhlenbeck at the Institute for Advanced
Study in 1995.

biharmonic maps between manifolds showed a similar
result, but it is technically tricky to carry the result further
in those cases.

During the next year, via long distance, we were able
to refine this result. By letting the rescaling go to zero,
one can easily construct a tangent map from 𝑆𝑛−1 to
the image manifold, which has similar properties. In
dimension 3, the tangent maps from 𝑆2 to 𝑁 are smooth,
and approximation of the map by a tangent map shows
the singular set in 𝑀 consists of isolated points. Rick
knew of a dimension-reducing argument of Federer in
geometric measure theory. I was very anxious about
this result but trusted Rick’s confidence. The final result
was that the singular set was of finite codimension-3
Hausdorff measure. We wrote two additional papers on
Dirichlet boundary values and minimizing maps between
spheres. I had become interested in the reduction of
harmonic maps to ordinary differential equations using
extra symmetry, and so I was pleased to be able to include
these.

It was a pleasure toworkwith Rick. He brought valuable
background information and consistent enthusiasm to
our collaboration. The following image has stayed with
me. Rick was until very recently a baseball player who
played regularly. I have always thought that he brought
his consistent practice of mathematics, insistence on
carrying out the game to the end, and a real team spirit
from baseball into mathematics.

Figure 25. Uhlenbeck writes that Schoen brought “a
real team spirit from baseball into mathematics”
always “carrying out the game to the end.”

Rob Kusner
Classical Minimal Surfaces
Following his work with Yau on the existence of in-
compressible minimal surfaces and the topology of
3-manifolds of positive scalar curvature and their break-
through proof of the positive mass theorem in general
relativity, Rick Schoen turned his attention to questions
about classical minimal surfaces in ℝ3.

The simplest complete minimal surface in ℝ3 is the
plane, and early in the twentieth century S. Bernstein
characterized it as the only entire minimal graph. The
generalizationof this tohigherdimensionsbecameknown
as the Bernstein problem, which drove much work in the
field, culminating in the1968Annals of Mathematicspaper
by Jim Simons and further explored in Rick’s 1975 debut
paper in Acta Mathematica with Leon Simon and Yau.
Minimal graphs are stable—in fact, area-minimizing—
hypersurfaces. Both papers make use of the stability
inequality from the second variation formula to bound
the second fundamental form, leading to the solution
of the Bernstein problem and to the regularity of such
hypersurfaces (off a singular set of high codimension).

Even in ℝ3 it’s natural to ask whether the plane is
the only complete stable surface. Schoen proved this
with Doris Fischer-Colbrie in 1980 as a corollary to their
results on complete stable surfaces in 3-manifolds of
nonnegative scalar curvature [2]. A short proof of this
generalizedBernstein theoremwasalsogivenbyManfredo
do Carmo and C. K. Peng around the same time.

Another classical minimal surface problem concerns
the uniqueness of the catenoid (see Figure 26). It can
be motivated by a simple experiment. Imagine dipping
a pair of rings into a soap solution. If the rings are

Rob Kusner is professor of mathematics at UMass Amherst. His
email address is profkusner@gmail.com.
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Figure 26. A catenoid is the only minimal surface of
revolution (up to scaling and besides the plane).

close enough, they bound a connected least-area surface,
a soap film, that is an embedded annulus (if the rings
were linked, this annulus would be embedded with a full
twist). In 1956 Max Shiffman proved a remarkable fact
about thisminimal annulus in case the boundary rings are
perfectly round circles that lie in parallel planes: all the
intermediate parallel planes must also meet the minimal
annulus in round circles! Thismeans the resultingminimal
annulus must either be part of a catenoid (in the special
case where the boundary circles are coaxial) or be part of
a Riemann staircase (Figure 27).

Figure 27. A Riemann staircase is a minimal surface
foliated by round circles and straight lines (these
come in a 1-parameter family, up to scaling).

More generally, if the boundary is a pair of con-
vex curves in parallel planes, then Shiffman proved any
minimal annulus bounded by them is still foliated by con-
vex curves of intersection with the intermediate parallel
planes.

Could there be another nonannular compact, connected
minimal surface spanning a pair of convex curves in par-
allel planes?

Surprisingly, this remains an open problem, yet—in
the spirit of the slogan “As all physicists know, and some
mathematicians believe…”—the answer is conjectured (by
Bill Meeks) to be “No.”

The first answers in this direction were provided
by Schoen in [4] in 1983. Applying the strong maximum
principleofEberhardHopfandA.D.Alexandrov’s “moving
planes” reflection method, Schoen proved that any such
minimal surface inherits the reflection symmetries of
its boundary in the following sense: if the fundamental
pieces of the boundary are “graphical” over the reflection
planes, then so are the surface pieces. In particular, if
there is a pair of orthogonal mirror planes carrying each
such boundary curve into itself, then the minimal surface
is necessarily annular (genus 0). See Figure 28.

Figure 28. The connected minimal surface whose
boundary is a pair of squares lying in parallel planes
must be an annulus (genus 0).

Even for nonconvex boundary curves like the one in
Figure 29 one can still get this graphical property for the
mirror symmetric pieces of the surface as long as the
boundary itself is composed of graphical pieces over the
corresponding reflection plane, as in Figures 30–31, but
in that case the surface could indeed have higher genus.

Figure 29. Connected minimal surfaces with these
nonconvex boundaries are depicted in Figures 30–31.
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Figure 30. This connected minimal surface is an
annulus (genus 0), which is a twice-punctured sphere.

Figure 31. This connected minimal surface is a
twice-punctured torus (genus 1).

Schoen then considered the case of complete minimal
surfaces without boundary; topological and geometric
conditions on ends of the surface stand in for the
boundary conditions. He introduced the notion of regular
at infinity, meaning that each end of the minimal surface
can be expressed as a graph having the asymptotic
expansion (with respect to suitable coordinates 𝑥,𝑦, 𝑧 for
ℝ3, with 𝑥2 +𝑦2 = 𝑟2)

𝑧(𝑥,𝑦) = 𝑎 log𝑟 + 𝑏𝑥+ 𝑐𝑦
𝑟2 +𝑂( 1

𝑟2 ).

Physically, the logarithmic growth 𝑎 corresponds to the
strength of the overall soap film surface-tension force
pulling at that end; if it is nonzero, that end is asymptotic
to a catenoid scaled proportionally to 𝑎 and is called a
catenoidal end.

Using force balancing to align the ends and applying
the Alexandrov reflection method, Schoen proved the
following uniqueness theorem:

Theorem 9 (Schoen’s Uniqueness Theorem [4]). The only
complete, connected minimal surface in ℝ3 with 2 ends,
each regular at infinity, is the catenoid.

Adecade later, Pascal Collin removed Schoen’s “regular-
ity at infinity” hypothesis. Meanwhile Korevaar, Solomon,
and the author [3] proved the soap bubble analogue of this
theorem: a complete, finite topology surface with 2 ends,
properly embedded in ℝ3 with constant mean curvature,
must be a Delaunay unduloid (as in Figure 32).

Figure 32. Korevaar, Kusner, and Solomon proved the
soap bubble analogue of Schoen’s soap film
uniqueness theorem: a complete, finite topology
surface with 2 ends, properly embedded in ℝ3 with
constant mean curvature, must be a Delaunay
unduloid [3].

To get a sense of the amazing progress—the discovery
of new examples and development of new methods—
since 1983, note that Rick [4] remarked, “While there are
a number of examples of finite total curvature surfaces
known, some being regular at infinity, it is not known
whether an embedded example exists besides the catenoid
and the plane.” Within a year, Celso Costa had mooted
this, constructing the first example of such a minimal
surface in more than two centuries!

The situation for infinite topology minimal surfaces in
ℝ3 ismuchmore complicated. There are1-endedexamples
like the singlyperiodic Scherkminimal surfaces (Figure33)
and the triply periodic Schwarz minimal surfaces of
infinite genus. The latter can be constructed by rotating
the “rectangular catenoid” in Figure 28 by a half-turn
about each boundary edge. Both these examples come
in families: changing the angle between the “wings” of
the Scherk surfaces gives a 1-parameter family, while
changing the edge ratio and separation of the rectangles
gives a 2-parameter family of Schwarz surfaces.

For more than two ends, there are subtle topological
obstructions discovered by Collin, Meeks, Rosenberg, and
the author [1]: a complete, properly embedded minimal
surface in ℝ3 can have only countably many ends (like the
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Figure 33. Infinite topology minimal surfaces include
the singly periodic Scherk surfaces. These come in a
1-parameter family (up to scaling) determined by the
angle between “wings” of the surface. We see a
doubled plane or (suitably rescaled) catenoid in the
limit as the angle tends to zero.

Riemann staircase in Figure 27, which has two limit ends
and countably many middle ends).

Although Schoen’s uniqueness theorem characterizes
the catenoid topologically, it’s also interesting to consider
a coarser, measure-theoretic characterization, in terms of
the density at infinity:

lim
𝑅→∞

𝐴𝑟𝑒𝑎(Σ ∩ 𝐵(0,𝑅))
𝜋𝑅2 ,

where Σ is the minimal surface and 𝐵(0,𝑅) is a ball of
radius 𝑅 in the ambient space.

Each end of a minimal surface that is regular at infinity
has density 1 at infinity, and so the catenoid has density
2 at infinity. By monotonicity of area density, it can be
seen that any minimal surface (besides a pair of planes)
in ℝ3 with density 2 at infinity must be embedded.

Are there any other minimal surfaces with density 2
at infinity besides the catenoid? There are! Indeed, the
1-parameter family of singly periodic Scherk surfaces
(see Figure 33) also do, and the catenoid appears (upon
suitable rescaling) in the limit as the “wing” angle tends
to zero. It’s conjectured that these are the only examples:

Conjecture 10. The catenoid and the family of singly pe-
riodic Scherk surfaces are the only complete, connected,
embeddedminimal surfaces inℝ3 with density 2 at infinity.

It’s not clear who should be credited with this con-
jecture or even whether it is true. It first came up in
a lunchtime conversation between Rick and me—the
youngest of Rick’s students from UC Berkeley—after we
had all moved to UC San Diego for a few years in the
mid-1980s. I recall Rick being characteristically agnostic
but aware of the key issues, as if he’d thought about it for
some time, and ready to share his insights with whomever
he thought would have a good chance of solving the prob-
lem. Most of our interactions were like that, whether an

Figure 34. Kusner blowing an unduloidal soap bubble
(at the end of the straw) in 2003.

hour-long phone call or a detailed handwritten letter (so
1980s, long before email), dropping by his office or out
for a long lunch (preferably outdoors—so California, so
not Massachusetts), on the volleyball or basketball court.
Rick always treated me like a peer, letting me wander
and find my own way, or occasionally like a teammate,
providing gentle teasing which urges you to improve and
simultaneously says he thinks you’re tough enough to
take it. No wonder Rick has had so many students. I’m
grateful to be among them.

Websites with Graphics:
GANG: www.gang.umass.edu
MatthiasWeber: www.indiana.edu/~minimal/archive/
GeometrieWerkstatt: service.ifam.uni-hannover.de
/~geometriewerkstatt/gallery/
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Fernando Codá Marques
The Yamabe Problem
In 1984 Richard Schoen [3] solved the remaining cases
of the famous Yamabe problem with the introduction of
a remarkable idea. The Yamabe problem is the question
of whether any given compact Riemannian manifold
(𝑀𝑛, 𝑔) admits a conformal metric ̃𝑔 with constant scalar
curvature. In two dimensions the answer is affirmative
due to the uniformization theorem. In high dimensions
the problem was proposed in 1960 by Yamabe [4], who
mistakenly thought he had found a solution. Trudinger
(1968) pointed out the error and fixed it when the scalar
curvature is nonpositive. The case when 𝑛 ≥ 6 and the
manifold is not locally conformally flat was proven in
importantwork of Aubin (1976). Schoen finished the cases
when 𝑛 = 3, 4, or 5 or when 𝑔 is locally conformally flat
in any dimension by discovering a surprising connection
with the positive mass theorem of general relativity. We
refer the reader to Lee and Parker [2] for a complete
account of this history.

For 𝑛 ≥ 3, the Yamabe Problem is equivalent to finding
a positive solution 𝑢 ∈ 𝐶∞(𝑀) of the nonlinear elliptic
partial differential equation

(1) Δ𝑔𝑢− 𝑐(𝑛)𝑅𝑔𝑢+ 𝑐(𝑛)𝜆𝑢 𝑛+2
𝑛−2 = 0,

where Δ𝑔 is the Laplace operator of 𝑔, 𝑅𝑔 is the scalar
curvature of 𝑔,

𝑐(𝑛) = (𝑛−2)
4(𝑛−1) ,

and 𝜆 ∈ ℝ. Any positive solution 𝑢 gives rise to a
conformal metric

̃𝑔 = 𝑢 4
𝑛−2 𝑔

with constant scalar curvature 𝑅 ̃𝑔 = 𝜆.
This is in fact a variational problem. One can associate

to every metric ̃𝑔 = 𝑢 4
𝑛−2 𝑔 in the conformal class [𝑔] of 𝑔

the Einstein–Hilbert action:

ℛ( ̃𝑔) = 𝑐(𝑛) ∫𝑀 𝑅 ̃𝑔𝑑𝑣 ̃𝑔

(∫𝑀 𝑑𝑣 ̃𝑔) 𝑛−2
𝑛

.

Applying (1) and integrating by parts, we see that the
Einstein–Hilbert action can also be written as

ℛ( ̃𝑔) = ∫𝑀(|∇𝑔𝑢|2 + 𝑐(𝑛)𝑅𝑔𝑢2)𝑑𝑣𝑔

(∫𝑀 𝑢 2𝑛
𝑛−2 𝑑𝑣𝑔) 𝑛−2

𝑛
.

Fernando Codá Marques is professor of mathematics at Princeton
University. His email address is coda@math.princeton.edu.

Figure 35. Schoen solved the Yamabe problem by
discovering a surprising connection with the positive
mass theorem.

This functional is clearly bounded from below. A metric
̃𝑔 is a critical point of ℛ restricted to the conformal class

[𝑔] if and only if ̃𝑔 has constant scalar curvature.
The Yamabe problem is hard because the equation

(1) has a critical exponent for the Sobolev embeddings.
The Sobolev space 𝑊1,2(𝑀) is continuously embedded in
𝐿 2𝑛

𝑛−2 (𝑀) and is compactly embedded in 𝐿𝑞(𝑀) for every

1 ≤ 𝑞 < 2𝑛
𝑛− 2 but not for 𝑞 = 2𝑛

𝑛− 2.

For this reason the direct method of the calculus of
variations,which tries to extract a limit outof aminimizing
sequence of the functional, is doomed to fail.

The difficulty can also be explained on the geometric
side. If ̄𝑔 denotes the round metric on 𝑆𝑛, then 𝜑∗( ̄𝑔)
has constant scalar curvature equal to 𝑛(𝑛 − 1) for any
diffeomorphism𝜑 of the sphere. If𝜑 is a conformal map,
then

𝜑∗( ̄𝑔) = 𝑢
4

𝑛−2𝜑 ̄𝑔
for some positive solution 𝑢𝜑 of the Yamabe equation (1)
with 𝑔 = ̄𝑔 and 𝜆 = 𝑛(𝑛 − 1). It is also possible to prove
that 𝑢𝜑 is a minimizer of ℛ. The group

𝐶𝑜𝑛𝑓(𝑆𝑛, ̄𝑔)
of conformal diffeomorphisms of the round sphere is
noncompact, and in fact for any given 𝑝 ∈ 𝑆𝑛 one can
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Figure 36. Schoen with his academic grandson,
Fernando Codá Marques.

choose a sequence
𝜑𝑖 ∈ 𝐶𝑜𝑛𝑓(𝑆𝑛, ̄𝑔)

such that the corresponding functions
𝑢𝜑𝑖 → 0

in compact subsets of 𝑆𝑛\{𝑝}, while
(2) sup

𝐵𝜀(𝑝)
𝑢𝜑𝑖 → ∞

as 𝑖 → ∞ for any 𝜀 > 0. When condition (2) holds for some
sequence of solutions 𝑢𝑖 we say 𝑢𝑖 blows up at 𝑝.

The usual approach to the Yamabe problem consists
of first finding a positive solution 𝑢𝑝 to the subcritical
equation

Δ𝑔𝑢− 𝑐(𝑛)𝑅𝑔𝑢+ 𝑐(𝑛)𝜆𝑢𝑝 = 0,
with

𝑝 < 𝑛+ 2
𝑛− 2,

which can be done by minimizing the corresponding
functional and then studying the convergence of 𝑢𝑝 as

𝑝 → 𝑛+ 2
𝑛− 2.

The Yamabe quotient of (𝑀,𝑔), defined to be the
conformal invariant

𝑄(𝑀,𝑔) = inf{ℛ( ̃𝑔) ∶ ̃𝑔 ∈ [𝑔]},
plays a key role. Note that

𝑄(𝑀,𝑔) = inf
𝑢∈𝐶∞(𝑀)

∫𝑀(|∇𝑔𝑢|2 + 𝑐(𝑛)𝑅𝑔𝑢2)𝑑𝑣𝑔

(∫𝑀 𝑢 2𝑛
𝑛−2 𝑑𝑣𝑔) 𝑛−2

𝑛
.

One always has
𝑄(𝑀,𝑔) ≤ 𝑄(𝑆𝑛, ̄𝑔),

as canbeseenbychoosingappropriate local test functions,
and when the strict inequality

𝑄(𝑀,𝑔) < 𝑄(𝑆𝑛, ̄𝑔)
holds, the subcritical solutions 𝑢𝑝 converge to a solution
𝑢 of (1). Hence in order to solve the Yamabe problem it
suffices to prove that

𝑄(𝑀,𝑔) < 𝑄(𝑆𝑛, ̄𝑔)
holds for any (𝑀,𝑔) that is not conformally equivalent to
the round sphere. If 𝑛 ≥ 6 and the manifold is not locally
conformally flat, Aubin proved the strict inequality by
constructing local test functions supported near a point
where the Weyl tensor is nonzero.

The cases when 𝑛 = 3, 4, 5 or when 𝑔 is locally con-
formally flat in any dimension are more difficult because
they require the construction of a global test function.
The key insight of Schoen was to realize that the test
function would have to be Green’s function 𝐺𝑝 of the
conformal Laplacian

𝐿𝑔 = Δ𝑔 − 𝑐(𝑛)𝑅𝑔

smoothed out near its singularity 𝑝. One can suppose
scalar curvature is positive, 𝑅𝑔 > 0, in which case Green’s
function is also positive. Since

𝐿𝑔𝐺𝑝 = 0 outside 𝑝,
the conformal metric

̂𝑔 = 𝐺
4

𝑛−2𝑝 𝑔
has zero scalar curvature. The fact that, near 𝑝,

𝐺𝑝(𝑥) = 𝑑(𝑥, 𝑝)2−𝑛 + lower order terms
also implies that the metric ̂𝑔 is asymptotically flat. See
Figure 37.

Figure 37. The main idea in Schoen’s solution of the
Yamabe problem is to invoke an asymptotically flat
manifold obtained by blowing up the original
manifold at a point. On the left is (𝑀,𝑔) with the
point 𝑝, and on the right is the blow-up, (𝑀− {𝑝}, ̂𝑔),
with an asymptotically flat end.

The mass 𝑚 of ̂𝑔, as in the positive mass theorem,
magically comes into play, and the strict inequality

𝑄(𝑀,𝑔) < 𝑄(𝑆𝑛, ̄𝑔)
becomes a consequence of the positivity of 𝑚. The
assertion that 𝑚 > 0 unless ̂𝑔 is flat is the positive mass
theorem.

In 1988, Schoen raised the question of whether the
full set of solutions to equation (1) is compact in the 𝐶𝑘

topology (for any 𝑘) when the manifold is not conformally
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Figure 38. Fernando Codá Marques with his doctoral
advisor, José Escobar, in 2003. Escobar completed his
doctorate with Schoen in 1986 and is known in part
for his work on the Yamabe problem with boundary.

equivalent to the standard sphere. This is basically a prob-
lem of establishing a priori estimates for the solutions.
Schoen was motivated by a potential use of the Pohozaev
identity and the positive mass theorem as obstructions
to the blow-up phenomenon. The a priori estimates pre-
dicted that the Weyl tensor and its derivatives to order
[(𝑛 − 6)/2] should vanish at a blow-up point.

The a priori estimates were obtained much later for
𝑛 ≤ 24 in a paper [1] I wrote with Khuri and Schoen.
They were known to hold for 𝑛 ≤ 7 (Druet, Y.Y Li, L.
Zhang, Marques) and turned out to be false for 𝑛 ≥ 25
(Brendle, Brendle–Marques). In 2009, Khuri, Schoen, and
I [1] discovered that the Pohozaev identity leads to a
certain quadratic form (there is one for every dimension
𝑛) that is positive definite if 𝑛 ≤ 24 (it is not in higher
dimensions), in which case we succeeded in proving the
Weyl vanishing and the a priori estimates.

On a Personal Note
I had the privilege of learning directly from Rick during
the academic year 2005–2006, when I visited Stanford
University. It was a transformative experience in my
career. I am indebted to him for having helped shape my
vision of mathematics.
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Figure 39. In addition to his important joint work
with Schoen and Khuri on the Yamabe problem, Codá
Marques is also famous for solving the Willmore
conjecture with André Neves.

Chikako Mese
Harmonic Maps in Singular Geometry and
Rigidity
Rick Schoen opened up a new frontier in geometric analy-
sis by introducing harmonic maps in the singular setting
through the series of papers [GS], [KS1], [KS2] written
in collaboration with M. Gromov and N. Korevaar. More
specifically, Rick initiated the study of harmonic maps
into nonpositively curved metric spaces (NPC spaces)
and introduced new techniques that were used to settle
outstanding questions in rigidity problems. Here we will
describe this work and further applications.

One of the main applications of harmonic maps is
in geometric rigidity. Let 𝑀 be a compact or a finite
volume Riemannian manifold with universal cover 𝑀̃, and
let 𝜌 ∶ 𝜋1(𝑀) → Isom(𝑋) be a homomorphism from the
fundamental group of 𝑀 into the group of isometries of
a contractible metric space 𝑋. We say this setup is rigid
if there exists a totally geodesic map 𝑢 ∶ 𝑀̃ → 𝑋 that is
𝜌-equivariant:

𝑢(𝛾(𝑥)) = 𝜌(𝛾)(𝑢(𝑥)), ∀𝛾 ∈ Γ, ∀𝑥 ∈ 𝑀̃.

Some of the most influential rigidity results concern
special cases of this setup. In the original Mostow rigidity
theorem, 𝑀̃ and 𝑋 are both 𝑛-dimensional hyperbolic
manifolds with 𝑛 ≥ 3, and 𝜌 is a discrete, faithful, and
co-compact isometric action. Mostow also generalized
this result by considering cases when 𝑀̃ = 𝐺/𝐾 and
𝑋 are other symmetric spaces. The celebrated Margulis
superrigidity further extendedMostow’s work by allowing

Chikako Mese is professor of mathematics at Johns Hopkins
University. Her email address is cmese@math.jhu.edu.
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for a more general homomorphism 𝜌 and established the
arithmeticity of lattices Γ in groups 𝐺 when

rank(𝐺/𝐾) ≥ 2.
The rank is the dimension of the maximal Euclidean
space that can be isometrically embedded in 𝑀̃ = 𝐺/𝐾.
Margulis also proved the higher rank non-Archimedean
superrigidity by considering lattices in 𝑝-adic groups
which, unlike their Archimedean counterpart, do not
act on smooth Riemannian manifolds but instead act
on Bruhat–Tits’ Euclidean buildings. Euclidean buildings
form an important class of NPC spaces, which we define
in the next paragraph.

Figure 40. A geodesic space 𝑋 is an NPC space if
every geodesic triangle in 𝑋 is thinner than a
comparison geodesic triangle in the Euclidean plane
𝔼2.

A complete metric space (𝑋,𝑑) is a geodesic space if
every pair of points 𝑝,𝑞 ∈ 𝑋 is joined by a geodesic whose
length is thedistancebetween thepoints. Ageodesic space
(𝑋,𝑑) is an NPC space if it also has nonpositive curvature
in the sense of triangle comparison: a geodesic triangle
in 𝑋 with vertices 𝑝,𝑞, 𝑟 is thinner than a comparison
geodesic triangle in Euclidean 2-plane 𝔼2 (as in Figure 40).
More precisely, if ̄𝑝, ̄𝑞, ̄𝑟 ∈ 𝔼2 are such that

𝑑(𝑝, 𝑞) = | ̄𝑝 − ̄𝑞|, 𝑑(𝑞, 𝑟) = | ̄𝑞 − ̄𝑟|, 𝑑(𝑟, 𝑝) = | ̄𝑟 − ̄𝑝|,
then

𝑑(𝑝𝑡, 𝑟) ≤ |((1 − 𝑡) ̄𝑝 + 𝑡 ̄𝑞) − ̄𝑟|,
where 𝑡 ↦ 𝑝𝑡 for 𝑡 ∈ [0, 1] is the constant speed parame-
terization of the geodesic from 𝑝 to 𝑞. The study of NPC
spaces (more generally, spaces with curvature bounded
from above by 𝜅 known as CAT(𝜅) spaces) was initiated
by the foundational work of A. D. Alexandrov and further
brought to prominence by Gromov.

Hadamard manifolds (complete and simply connected
Riemannianmanifolds with sectional curvatures bounded
from above by 0) are examples of NPC spaces. A simple
example of an NPC space that is not a manifold is a tripod
𝑇 that is the union of three copies of the interval [0,∞)
identified at zero, as in Figure 41. The distance between
two points 𝑎 and 𝑏 lying in different copies of [0,∞) is
defined to be 𝑎 + 𝑏. Note that any pair of points in 𝑇 is
contained in a totally geodesic isometric embedding of ℝ
into 𝑇.

An 𝑛-dimensional Euclidean building 𝑋 is a more
complicated example of an NPC space, but one can think
of such buildings as higher-dimensional versions of the

Figure 41. The tripod, 𝑇, is an example of an NPC
space that is not a manifold.

tripod in the sense that these metric spaces have the
property that any two points 𝑝,𝑞 ∈ 𝑋 are contained in an
image of a totally geodesic and isometric embedding of 𝔼𝑛

in 𝑋. However, not all NPC spaces have this property.
Other important examples come from different areas
of mathematics, such as geometric group theory and
Teichmüller theory. For example, hyperbolic buildings
arise in the study of hyperbolic groups of Gromov, and
the Weil–Petersson completion of a Teichmüller space of
a surface of genus ≥ 2 is an NPC space.

Korevaar and Schoen [KS1], [KS2] consider maps 𝑢 ∶
𝑀 → 𝑋 from an 𝑚-dimensional Riemannian manifold, 𝑚,
to an NPC space, 𝑋. For simplicity, we will let 𝑀 be a
compact Lipschitz domain in Euclidean space. To define
energy, consider the square of the difference quotient at a
point 𝑥 ∈ 𝑀 and integrate it over unit vectors 𝑉 to define
an 𝜀-approximate energy density function

𝑒𝜀(𝑥) = ∫
𝕊𝑚−1

(𝑑(𝑢(𝑥), 𝑢(𝑥 + 𝜀𝑉))
𝜀 )

2
𝑑𝜎(𝑉).

When themeasures 𝑒𝜀(𝑥)𝑑𝑥have uniformly bounded total
mass then they converge weakly as 𝜀 → 0 to a measure
of the form 𝑒(𝑥)𝑑𝑥 where |∇𝑢|2 ∶= 𝑒(𝑥) is an integrable
function. We define the energy functional by setting

𝐸(𝑢) = ∫
𝑀
|∇𝑢|2𝑑𝑥.

In this way, one can define the Sobolev space 𝑊1,2(𝑀,𝑋)
(and in a similar way, 𝑊1,𝑝(𝑀,𝑋) for 𝑝 > 1 and 𝐵𝑉(𝑀,𝑋)
for 𝑝 = 1) and the notion of energy-minimizing maps.

Gromov–Schoen and Korevaar–Schoen proved the ex-
istence of energy-minimizing maps for the Dirichlet
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problem and certain equivariant problems. Of partic-
ular importance to rigidity is that energy-minimizing
maps are essentially unique (e.g., a 𝜌-equivariant energy-
minimizing map is unique if 𝑋 is negatively curved but
may only be unique up to parallel translation along a flat
subspace generally).

The uniqueness follows fromquadrilateral comparison
inequality (a special case of Reshetnyak’s theorem):

𝑑2(𝑚𝑝,𝑠,𝑚𝑞,𝑟) ≤ 1
2𝑑2(𝑝, 𝑞) + 1

2𝑑2(𝑟, 𝑠)
− 1

4(𝑑(𝑝, 𝑠) − 𝑑(𝑞, 𝑟))2

for the ordered sequence {𝑝, 𝑞, 𝑟, 𝑠} ⊂ 𝑋 where 𝑚𝑥,𝑦 is
the midpoint between 𝑥 and 𝑦. See Figure 42.

Figure 42. A quadrilateral comparison implies
uniqueness for energy-minimizing maps.

This in turn implies the convexity of the energy
functional:

∫|∇(𝑢+ 𝑣
2 )|

2
𝑑𝑥 ≤ 1

2 ∫ |∇𝑢|2𝑑𝑥+ 1
2 ∫ |∇𝑣|2𝑑𝑥

− 1
4 ∫ |∇𝑑(𝑢,𝑣)|2𝑑𝑥,

where 𝑢,𝑣 ∈ 𝑊1,2(𝑀,𝑋) and
(𝑢+𝑣

2 ) (𝑥) = 𝑚𝑢(𝑥),𝑣(𝑦).
Note that if 𝑢 and 𝑣 are energy minimizing, then the map
𝑢+𝑣
2 is also energy minimizing and 𝑑(𝑢,𝑣) is a constant.
The uniqueness of energy-minimizing maps suggests

that if one wants to prove rigidity, then the first step
should be to find a 𝜌-equivariant energy-minimizing
map and then try to prove that it is totally geodesic.
(This idea is mentioned in Yau’s contribution to this
article as the motivating source for his work with Schoen
on harmonic maps.) Indeed, building upon the work
of Y.-T. Siu and K. Corlette, Gromov and Schoen used
harmonic maps in the singular setting to study the 𝑝-adic
case of the superrigidity problem and established non-
Archimedean superrigidity and consequent arithmeticity
for lattices of certain rank-1 groups. A crucial issue in this
application is to understand the regularity and singularity
of harmonic maps. Natural questions that arise are: Under
what conditions are harmonic maps regular? If they are
not regular, what can we say about the structure of the
singular set?

Korevaar and Schoen proved the following regularity
theorem:

Theorem 11. An energy-minimizing map 𝑢 ∶ (Ω,𝑔) →
(𝑋,𝑑) from a Lipschitz Riemannian domain into an NPC
space is locally Lipschitz continuous, where the Lipschitz
constant of 𝑢 at 𝑥 ∈ Ω is dependent on the geometry of
(Ω,𝑔), the distance of 𝑥 to 𝜕Ω, and the total energy of 𝑢.

On the one hand, Lipschitz regularity is the optimal
result when the target is assumed to be only an NPC space.
On the other hand, the crucial idea in Gromov–Schoen
[GS] is that energy-minimizing maps behave better than
in Theorem 11 when the target has a certain manifold
structure.

For a map 𝑢 ∶ Ω → 𝑋 into an NPC space, define the
regular set ℛ(𝑢) of 𝑢 as the set of points in Ω that
possess a neighborhood mapping into an image of a
totally geodesic and isometric embedding of a smooth
Riemannian manifold and define the singular set 𝒮(𝑢) as
its complement. For example, the leaf space of the vertical
foliation of the quadratic differential 𝑧𝑑𝑧2 on ℂ endowed
with the distance function defined by the vertical measure
is isometric to the tripod 𝑇 (see Figure 43). The natural
projection map

𝑢 ∶ 𝔻 → T
from the unit disk centered at 0 is an energy-minimizing
map. It takes any neighborhood away from the origin
into at most two copies of [0,∞). Thus, 𝑢 is locally
a harmonic function away from the origin. The image
of any neighborhood of the origin is not a manifold.
Consequently, ℛ(𝑢) = 𝔻\{0} and 𝒮(𝑢) = {0}.

Figure 43. The energy-minimizing map 𝑢 takes each
leaf (drawn in blue) to its unique point in the tripod 𝑇.

The regularity theorem of Gromov–Schoen asserts
similar behavior for harmonic maps into Euclidean
buildings.

Theorem 12. The singular set of an energy-minimizing
map 𝑢 ∶ Ω → 𝑋 from a Lipschitz Riemannian domain into
a Euclidean building is of Hausdorff codimension at least
2.

This is a delicate result and depends heavily on the
special structure of the target space. We now give an ex-
ample from Gromov–Schoen [GS] of a harmonic map with
singular set of codimension < 2. Unlike 2-dimensional Eu-
clidean buildings, the 2-dimensional target space in this
example has no isometric totally geodesic embedding of
ℝ2.
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Example 13. As in Figure 44, let Ω = 𝔻 be the standard
disk and let 𝑋 = 𝐶𝑜𝑛𝑒(Γ) be the metric cone over a curve
Γ of length 2𝜋𝛼 with vertex denoted by 𝑃0. If 𝛼 > 1, there
exist closed nondegenerate and disjoint intervals 𝐼1, 𝐼2 ⊂
Γ such that the length of each component of Γ\ (𝐼1 ∪ 𝐼2)
is at least 𝜋. If 𝒞(𝐼𝑖) denotes the convex hull of 𝐼𝑖 ∪𝑃0 in
𝐶𝑜𝑛𝑒(Γ), then 𝒞(𝐼𝑖) is a sector and 𝐾 = 𝒞(𝐼1) ∪ 𝒞(𝐼2) is
the convex hull of 𝐼1 ∪ 𝐼2 in 𝐶𝑜𝑛𝑒(Γ). Let

𝑢 ∶ 𝔻 → 𝐶𝑜𝑛𝑒(Γ)

be the energy-minimizing map such that

𝑢|𝜕𝔻 ∶ 𝜕𝔻 → 𝜕𝐾 = 𝜕𝒞(𝐼1) ∪ 𝜕𝒞(𝐼2)

is a constant-speed parameterization of the join of the
closed curves 𝜕𝒞(𝐼1) and 𝜕𝒞(𝐼2). Observe that 𝑢(𝔻) ⊂ 𝐾
since 𝐾 is geodesically convex and that 𝔻\𝑢−1(𝑃0) is not
connected since𝐾\{𝑃0} is not connected. Since 𝑢−1(𝑃0) =
𝒮(𝑢), we conclude that

dimℋ(𝒮(𝑢)) = dimℋ(𝑢−1(𝑃0)) ≥ 1.

Figure 44. The singular set 𝒮(𝑢) (depicted in red on
the left) of the energy-minimizing map 𝑢 from a disk,
𝔻2, into a cone, 𝐶𝑜𝑛𝑒(Γ), over a curve, Γ, of length
greater than 2𝜋, with prescribed boundary (in dark
blue), has Hausdorff dimension at least 1.

The key ingredient in the proof of Theorem 12 is the
monotonicity property of energy-minimizing maps. This
relies on the monotonicity property from the Schoen–
Uhlenbeck theory combined with the convexity of the
distance function in an NPC space 𝑋. Using monotonic-
ity, Gromov–Schoen [GS] construct homogeneous maps
approximating energy-minimizingmaps similar to the tan-
gent maps in the Schoen–Uhlenbeck theory. Furthermore,
they introduce the notion of a homogeneous degree-1map
𝑙 ∶ Ω → 𝑋0 being effectively contained in an essentially
regular totally geodesic subspace 𝑋0. The metric space
𝑋0 is called essentially regular if any harmonic map into
𝑋0 is well approximated near a point by a homogeneous
degree-1 map. The map 𝑙 being effectively contained in
𝑋0 says that most points in the image of 𝑙 are sufficiently
far away from𝑋\𝑋0. For example, the union of two copies
of [0,∞) in 𝑇 (which we will call 𝐿) is essentially regular
(since it can be isometrically identified to ℝ), and the
identity map 𝑙 ∶ ℝ → 𝐿 ≈ ℝ is effectively contained in
𝐿 ⊂ 𝑇.

Theorem 12 is derived from the following:

Theorem 14. Let 𝑋0 be an essentially regular totally geo-
desic subspace of 𝑋 and let 𝑙 ∶ Ω → 𝑋0 be a homogeneous
degree 1map effectively contained in𝑋0 with 𝑙(𝑥0) = 𝑃0 ∈
𝑋0. If an energy-minimizing map 𝑢 ∶ Ω → 𝑋 is sufficiently
close to 𝑙 in 𝐵𝑟0(𝑥0), then 𝑢(𝐵𝜎0(𝑥0)) ⊂ 𝑋0 for some 𝜎0 > 0.

The proof of Theorem 14 [GS] is an analytical tour
de force. It is reminiscent of the proof of the Schoen–
Uhlenbeck 𝜖-regularity theorem, but it additionally over-
comes thedifficulty that there is no PDE toworkwith in the
singular setting. The idea is to inductively compare suc-
cessive blow-up scalings of 𝑢 with the energy-minimizing
maps into 𝑋0. The delicate argument combines the con-
vexity property of the distance function in an NPC space
with the properties of 𝑋0 and 𝑙.

Figure 45. Schoen (far right) with some of his PhD
students at Park City in 2013 at the 23rd Annual
PCMI Summer Session. First row: Chikako Mese, Dan
Lee, Xiaodong Wang. Second row: Michael Eichmair,
Justin Corvino, Ailana Fraser, Hugh Bray, Alessandro
Carlotto, Rick Schoen. Third row: Peter Topping
(actually a student of Mario Micallef, Schoen’s first
student).

Rick’s innovations opened up a completely new av-
enue in the applications of harmonic map theory. In
particular, in a joint work of the author with Geor-
gios Daskalopoulos, Rick’s ideas were pushed forward
to approach rigidity problems that could not be previ-
ously solved by othermethods: superrigidity of hyperbolic
buildings and holomorphic rigidity of Teichmüller space.

Daskalopoulos and Mese [DM1] extended the Gromov–
Schoen regularity theory to include important NPC spaces
other than Euclidean buildings. This result implies, as
originally conjectured by Gromov, the superrigidity of
hyperbolic buildings. Another application concerns the
Weil–Petersson completion𝒯ofTeichmüller space𝒯. The
analysis of harmonic maps into 𝒯 is difficult because the
Weil–Petersson metric is degenerate near the boundary.

Inspired by Rick’s proof of Theorem 14, in a series
of papers that culminated in [DM2], we introduced new
techniques and proved the long-standing holomorphic
rigidity conjecture of Teichmüller space. Loosely speak-
ing, we proved that the action of the mapping class group
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uniquely determines the Teichmüller space as a complex
manifold. The main ingredient in the proof is the surpris-
ing discovery that the Weil–Petersson completion 𝒯 of
Teichmüller space contains essentially regular subspaces
in a sense similar to Euclidean buildings despite its non-
local compactness and degenerating geometry near the
boundary.

On a Personal Note
Rick was a terrific thesis advisor for me at Stanford, and
I have many fond memories of my time as a graduate
student. I am grateful for his generosity, vast mathemat-
ical knowledge, and many words of wisdom that he has
shared with me. Rick’s powerful ideas have guided me
throughout my career as a mathematician.
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Figure 46. Rick Schoen with he and wife Doris
Fischer-Colbrie’s two children Alan and Lucy.

Ailana Fraser
Steklov Eigenvalues and Free Boundary Minimal
Surfaces
One of the fundamental problems in spectral geometry is
to determine sharp eigenvalue bounds. This is a subject
with a long tradition and is a classical subject both in
geometry and PDE. Work for compact surfaces extends
over a period of more than forty years, with contributions
by many authors. Determining sharp eigenvalue bounds
is related to finding extremal metrics for the eigenvalue
problem. The existence of extremal metrics has been a
very difficult subject, and Richard Schoen has contributed
in a fundamental way.

Figure 47. R. Schoen and A. Fraser, Workshop on
General Relativity and Geometric Analysis, Australia,
2010. Can you find the kangaroo?

For surfaces 𝑀 with boundary, the eigenvalue prob-
lem that leads to a geometrically interesting variational
problem is the Steklov eigenvalue problem:

{
Δ𝑔𝑢 = 0 on 𝑀,
𝜕𝑢
𝜕𝜂 = 𝜎𝑢 on 𝜕𝑀,

where 𝑔 is a Riemannian metric on 𝑀, 𝜂 is the outward
unit normal vector to 𝜕𝑀, 𝜎 ∈ ℝ, and 𝑢 ∈ 𝐶∞(𝑀).

Steklov eigenvalues are eigenvalues of the Dirichlet-to-
Neumann map, Λ, which takes a given smooth function,
𝑓 ∶ 𝜕𝑀 → ℝ, finds its harmonic extension, 𝑢 ∶ 𝑀 → ℝ,
satisfying

Δ𝑢 = 0 on 𝑀,

𝑢 = 𝑓 on 𝜕𝑀,
and gives as an output the normal derivative of that
harmonic extension,

Λ(𝑓) = 𝜕𝑢
𝜕𝜂.

Ailana Fraser is professor of mathematics at the University of
British Columbia. Her email address is afraser@math.ubc.ca.
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Figure 48. Examples of free boundary minimal
surfaces in the ball include the equatorial plane and
the critical catenoid.

The Dirichlet-to-Neumann map is a self-adjoint elliptic
pseudo-differential operator of order 1 and therefore has
discrete spectrum

𝜎0 = 0 < 𝜎1 ≤ 𝜎2 ≤ ⋯ ≤ 𝜎𝑘 ≤ ⋯ → ∞.
The Steklov problem has a long history and many people
have contributed; please see Girouard and Polterovich
[GP] for a recent survey.

Some basic questions are:
1) Assuming we fix the boundary length to be 1, what

is the metric on 𝑀 that maximizes the first eigenvalue?
2) Does such a metric exist?
3) If so, what can we say about its geometry?
If we fix a surface 𝑀 of genus 𝛾 with 𝑘 boundary

components, define
𝜎∗(𝛾, 𝑘) = sup

𝑔
𝜎1(𝑔)𝐿𝑔(𝜕𝑀),

where the supremum is over all smooth metrics on 𝑀.
By a 1954 result of Weinstock, 𝜎∗(0, 1) = 2𝜋, and the
supremum is achieved by the Euclidean disk. In general,
there is a coarse upper bound due to Fraser–Schoen [FS1]
and Kokarev:

𝜎∗(𝛾, 𝑘) ≤ min{2𝜋(𝛾+ 𝑘), 8𝜋[(𝛾+ 3)/2]}.
It turns out that there is an intimate connection

between maximizing metrics and minimal surfaces in the
Euclidean unit ball 𝐵𝑛 that are proper in the ball and that
meet the boundary of the ball orthogonally. Such surfaces
are referred to as free boundary minimal surfaces since
they arise variationally as critical points of the area among
surfaces in the ball whose boundaries lie on 𝜕𝐵𝑛 but are
free to vary on 𝜕𝐵𝑛. Classical examples (see Figure 48)
include the equatorial plane disk and the critical catenoid,
the unique portion of a suitably scaled catenoid that
defines a free boundary surface in 𝐵3.

Free boundary minimal surfaces Σ in 𝐵𝑛 are character-
ized by the condition that the coordinate functions are
Steklov eigenfunctions with eigenvalue 1:

Δ𝑥𝑖 = 0 on Σ,
∇𝜂𝑥𝑖 = 𝑥𝑖 on 𝜕Σ.

Moreover, if we assume that we have a smooth metric 𝑔
that realizes the maximum, then there are independent
first eigenfunctions 𝑢1,… ,𝑢𝑛 such that the map

𝑢 = (𝑢1,… ,𝑢𝑛)

defines a proper conformal map from 𝑀 into 𝐵𝑛, 𝑛 ≥ 3.
The image Σ = 𝑢(𝑀) is a free boundary minimal surface
in 𝐵𝑛, and the maximizing metric can be realized by the
induced metric [FS2].

The question of existence of a maximizing metric is
extremely difficult: a major achievement of our work [FS2]
is the proof that for any compact surface𝑀 of genus zero
with boundary, a smoothmaximizingmetric𝑔 exists.More
generally, existence of amaximizingmetric on any surface
𝑀 with boundary is proved, provided the conformal
structure is controlled for any metric near the maximum.
The proof involves a canonical regularization procedure
that produces a special maximizing sequence for which a
carefully chosen set of eigenfunctions converges strongly
in 𝐻1 to a limit. It is then shown that the limit defines a
continuous map that is stationary for the free boundary
problem. Higher regularity follows from minimal surface
theory.

For surfaces of genus zero with arbitrarily many
boundary components, we prove boundedness of the
conformal structure for nearly maximizing metrics and
hence existence of a maximizing metric:
Theorem 15. For any 𝑘 ≥ 1 there exists a smooth metric
𝑔 on the surface of genus 0 with 𝑘 boundary components
with the property 𝜎1(𝑔)𝐿𝑔(𝜕𝑀) = 𝜎∗(0, 𝑘).

Figure 49. Schoen presenting his work with Fraser at
Stanford in 2018.

In the case of the annulus and the Möbius band,
we explicitly characterize the maximizing metric. This
follows from a characterization of the critical catenoid
and the “critical Möbius band,” an explicit free boundary
minimal embedding of the Möbius band into 𝐵4 by
first eigenfunctions, as the only free boundary minimal
immersions of the annulus and Möbius band into 𝐵𝑛 by
first eigenfunctions.

As a result we have sharp eigenvalue bounds:
Theorem 16. For any metric annulus 𝑀,

𝜎1𝐿 ≤ (𝜎1𝐿)𝑐𝑐,
with equality if and only if 𝑀 is equivalent to the critical
catenoid. In particular,

𝜎∗(0, 2) = (𝜎1𝐿)𝑐𝑐 ≈ 4𝜋/1.2.
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Figure 50. Free boundary minimal surface Σ𝑘 of genus
0 with 𝑘 boundary components in 𝐵3 as 𝑘 → ∞. For
large 𝑘, Σ𝑘 is approximately a pair of nearby parallel
plane disks joined by 𝑘 half-catenoidal boundary
bridges.

Theorem 17. For any metric Möbius band 𝑀,

𝜎1𝐿 ≤ (𝜎1𝐿)𝑐𝑚𝑏 = 2𝜋√3,
with equality if and only if 𝑀 is equivalent to the critical
Möbius band.

For surfaces of genus 0 with 𝑘 ≥ 3 boundary compo-
nents, while we don’t have an explicit characterization of
the maximizing metrics, we [FS2] show that maximizing
metrics arise from free boundary surfaces in 𝐵3 which
are embedded and star-shaped with respect to the origin.
We analyze the limit as the number of boundary compo-
nents tends to infinity, as in Figure 50, and obtain an
asymptotically sharp eigenvalue bound:
Theorem 18 ([FS2, Fraser and Schoen]). The sequence
𝜎∗(0, 𝑘) is strictly increasing in 𝑘 and

lim
𝑘→∞

𝜎∗(0, 𝑘) = 4𝜋.

For each 𝑘 a maximizing metric is achieved by a free
boundary minimal surface Σ𝑘 in 𝐵3 of area less than 2𝜋.
The limit of these minimal surfaces as 𝑘 tends to infinity
is a double disk. See Figure 50.

The only previously known free boundary minimal
surfaces in 𝐵3 were the equatorial disk and the critical
catenoid. As a consequence of Theorem 18, we have the
following existence theorem for free boundary minimal
surfaces in the ball.
Corollary 19. For every 𝑘 ≥ 1 there is an embedded free
boundary minimal surface in 𝐵3 of genus 0 with 𝑘 bound-
ary components. Moreover these surfaces are embedded
by first eigenfunctions.

Recently Folha–Pacard–Zolotareva, Kapouleas–Li, and
Kapouleas–Wiygul have used gluing techniques and Ke-
tover has used an equivariant min-max construction to
prove existence of further new examples of free boundary
minimal surfaces in 𝐵3.

On a Personal Note
I was a PhD student of Richard Schoen’s at Stanford
University from 1993 to 1998. One could not hope for a
better advisor, and Iwill feel forever fortunate andgrateful
to have had the opportunity to work with him. Not only
is the mathematics exciting, but another aspect that is so
special about working with him is how motivating and
inspiring he is in discussions and lectures. It has been a
privilege to collaborate with him many years later.
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