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Moscow 1935: Topology Moving Toward America

HASSLER WHITNEY

The International Conference in Topology in Moscow, September 4-10,
1935, was notable in several ways. To start, it was the first truly international
conference in a specialized part of mathematics, on a broad scale. Next, there
were three major breakthroughs toward future methods in topology of great
import for the future of the subject. And, more striking yet, in each of these
the first presenter turned out not to be alone: At least one other had been
working up the same material.

At that time, volume I of P. Alexandroff / H. Hopf, Topologie, was about
to appear. I refer to this volume as A-H. Its introduction gives a broad view
of algebraic topology as then known; and the book itself, a careful treatment
of its ramifications in its 636 pages. (It was my bible for some time.) Yet
the conference was so explosive in character that the authors soon realized
that their volume was already badly out of date; and with the impossibility
of doing a very great revision, the last two volumes were abandoned. Yet
a paper of Hopf still to come (1942) led to a new explosion, with a great
expansion of domains, carried on especially in America.

It is my purpose here to give a general description of the subject from
early beginnings to the 1940s, choosing only those basic parts that would
lead to later more complete theories, directly in the algebraic treatment of
the subject. We can then take a look at some directions of development since
the conference, in very brief form, with one or two references for those who
wish a direct continuation.

Top Row: 1. E. Cech; 2. H. Whitney; 3. K. Zarankiewicz; 4. A. Tucker; 5. S. Lefschetz; 6. H.
Freudenthal; 7. F. Frankl; 8. J. Nielsen; 9. K. Borsuk; 10 ?; 11. J. D. Tamarkin; 12. ?; 13. V.
V. Stepanoff; 14. E. R. van Kampen; 15. A. Tychonoff; Bottom Row: 16. C. Kuratowski; 17.
J. Schauder; 18. St. Cohn-Vossen; 19. P. Heegaard; 20. J. Rézanska; 21. J. W. Alexander; 22.
H. Hopf; 23. P. Alexandroff; 24. ?.
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I also do not hesitate to draw a few conclusions on our difficulties with
new research, with some comments on how research might be improved.

What were early beginnings of “analysis situs”? Certainly a prime example
is Euler’s discovery and proof that for a polyhedron, topologically a ball, if
o, @1 and «a, denote the numbers of “vertices,” “edges” and “faces,” then

(1) oy — oy +ay =2,

How might one find something like this? Who might think of trying it out?
These are questions looking directly for answers, rather than at situations to
explore. For the latter, one might build up a picture:

The first step here is to add a vertex, cutting one edge into two: this leaves
a1 —ag unchanged. The second step is to add an edge joining two vertices; this
leaves a; — a; unchanged. Now it needs some playing to see that (1) contains
both these facts. We might now say that we essentially know the formula
(1); just the 2 is missing. That expression, generalizing to oy — a; + a3 — a3,
etc., is known as the Euler characteristic. (Also Descartes discovered it much
earlier; see A-H, p. 1.)

Can you be taught how to think? If you are in a particular subject, there
may be tricks of the trade for that subject; Polya shows this for some standard
parts of mathematical thinking. But trying to learn to carry out research by
studying Polya is unlikely to get you far. It is the situation you are in which
can lead to insights, and any particular thinking ways are quite unlikely to
apply to different sorts of situations. “Sharpening your wits” on peculiar
questions may keep your mind flexible so that new situations can let you
think in new directions. Thus Lakatos, “Proofs and refutations” can give
you ideas, samples, of thoughts; the usefulness is less in /earning that in
keeping your mind flexible.

A popular pastime in Konigsberg, Germany, was to try to walk over each
of its seven bridges once and only once. Euler showed how to organize the sit-
uation better and check on the possibility. Can we find a way to get naturally
at this?

If we started in the island, say at A4, and crossed the upper left bridge, why
not sit down at C and think it over instead of wandering around aimlessly?
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If we can find the desired path, we can certainly simplify it by using just the
paths shown; and putting a gate in each bridge, we can check on which ones
we have crossed. Thus we crossed gate 3, and must next cross either 4 or 5.
But then we must cross the other of these gates later, and find ourselves back
at C with no way to reach any uncrossed bridges. This is enough for us to
start organizing. The final result, applying to any such situation, was given
by Euler.

A most famous question is of course the four color problem: Can one
color any map on the plane or globe in at most four colors so any adjoining
regions are of different colors? A first “proof” was given by Kempe, in 1869,
who introduced the important tool of “Kempe chains.” The mistake was
discovered by Heawood in 1890. A major step in advance was given by G.
D. Birkhoff, in a paper in 1913 on “The reducibility of maps.” In the early
1930s, when I was at Harvard, exploring the problem among other things,
Birkhoff told me that every great mathematician had studied the problem,
and thought at some time that he had proved the theorem (I took it that
Birkhoff included himself here). In this period I was often asked when I
thought the problem would be solved. My normal response became “not in
the next half century.” The proof by computer (W. Haken and K. Appel)
began appearing in non-final form about 1977.
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A very important advance in mathematics took place in the mid nine-
teenth century, with the appearance of Riemann’s thesis. Here he made
an investigation of “Riemann surfaces,” along with basic analytic consider-
ations, in particular, moving from one “sheet” to another by going around
branch points. This led to the general question of what a “surface” was,
topologically, and the problem of classification. This culminated (Mdbius,
Jordan, Schéfli, Dyck 1888) in the characterization of closed surfaces (with-
out boundary); they are determined through their being orientable or not, and
through their Euler characteristic. Let me note that H. Weyl’s book Die Idee
der Riemannsche Flache, Leipzig 1913, clarified many basic notions such as
neighborhood, manifold, fundamental group, and covering space.

A notable discovery was made by Gauss (who had made deep investigations
in differential geometry, with special studies of the earth’s surface). This was
the expression as a double integral for the “looping coefficient” of two non-
intersecting oriented curves C; and C, in 3-space R3. Consider all pairs of
points P in C; and Q in C,, and

G
\ P C1
Q
P P,
the unit vector from P toward Q:
Q-P
v(BQ) = 0-P

With P and Q as in the figure, if we let P’ run over a short arc 4 in C; about
P and let Q' run similarly over B in C,, v(P’, Q') will clearly run over a little
square-like part of the unit 2-sphere S? of directions in 3-space R3.

The whole mapping is a little complex, since we are mapping C; x C,,
which is a torus, into S2. But we can see that it covers S? an algebraic
number 1 of times, as follows. For each P, look at the image of v(P,. ().
From the figure we see that it is circle-like, down and to the left to start.
When P is taken down to P, the above circle has moved to the right and
up, now going directly around P;. Continuing down and along C; from P, to
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Py, v(P.C,) moves upward, to the left and down again. Thus that part of S?
directly to the right from P; (see the arrow at that point) is swept over just
once in the total sweep. We now use general theory (see A-H for instance)
that says that S2 must be covered some integral number of times, hence once
(algebraically).

Gauss gave a numerical form to the double integral, in the general case of
non-intersecting curves (see A-H, p. 497). If the result is not zero, the looping
coefficient is not zero, and being invariant under deformations, one curve
cannot be separated to a distance from the other without cutting through the
other.

Kronecker considered the common zeros of a set of functions fi,..., fi.
Equivalently, consider the vector field v(p) = (fi(p). ..., f(p)), and its zeros.
This leads to the “Kronecker characteristic,” generalizing the Gauss integral
to higher dimensions. See A-H for some details.

All this work was growing and expanding at the end of the last century.
But I call this the end of the early period, since Poincaré’s studies, from
1895 on, gave a better general organization and important new directions of
progress. The essentials of the early period were described in the article by
Dehn and Heegaard, Enzyklopadie der Mathematischen Wissenschaften, 111
A B 3, 1907, and a very nice exposition of the analytical aspects was given by
Hadamard in an appendix to Tannery, Introduction a la théorie des fonctions
d’une variable, 2nd ed., 1910.

Turning now to the middle period, Poincaré set out to make a deep study
of n-dimensional manifolds (locally like a part of n-space); these were basic
in his work on dynamical systems. He cut them into “n-cells,” each bounded
by (n—1)-cells; and each of the latter is a face of two n-cells. Each (n—1)-cell
is bounded by (n — 2)-cells, and so on. Moreover “r-chains,” written ) a;o7/,
associating an integer a; with each r-cell g/, were defined. Now using 0 for
boundary, each boundary do/ can be seen as an (r — 1)-chain, and for a
general r-chain A" as above, 94" = }_a;00].

For any g/, with a given orientation, an orientation of each of its boundary
cells aj’. ~!is induced, and da! is the sum of these with the induced orienta-
tions (see below). And since each a_;—z in the boundary of g/ is a face of just

two aj’.“, with opposite orientations induced, we have 0da] = 0, and hence
00A" = 0 for all r-chains A".

A special case is the “simplicial complex,” composed of “simplexes.” In
n-space R", an r-simplex is the convex hull pyp,--- p, of a set of points
Do, --., Dy lying in no (r — 1)-plane. In barycentric coordinates, the points of
Do - Dy are given by Y a;p;, each a; > 0, > a; = 1. (This point is the center
of mass of a set of masses, in amount a; at each p;.)
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Any R’ can be oriented in two ways. Choosing an ordered set of r inde-

pendent vectors vy, ..., v, determines an orientation. A continuous change to
another set vj,..., v, gives the same orientation if independence was main-
tained.

A simplex " = py--- p, has a natural orientation, given by the ordered
set p1 — Do, ..., Pr — Do of vectors. Note that the ordered set p; — po, p2 —
Di, ..., Pr— Dr—1 1s equivalent. The induced orientation of the face p;--- p, =
"~ ! of ¢ is defined by choosing vy, ..., v, to orient ¢”, with v,,..., v, in ¢"~!
(orienting it) and v, pointing from pq- - - p, out of ¢"~!, as used just above.
This holds true for the second set of vectors chosen above for pg--- p,; and
this shows also that p --- p, has that orientation. In this way we may find
the full expression for 9 (pg - - - p,).

Some instances of this relation are

d(pop1) =pi—Po.  O(PoP1P2) = P1P2— PoP2+ DoDi.

Later we will note that Kolmogoroff and Alexander might have found the
correct products in cohomology by 1935 if they had kept such relations in
mind, along with the relationship with differential geometry (typified by de
Rham’s theorem).

In accordance with the influence of Emmy Noether in Géttingen in the mid
twenties, we shift now to group concepts to simplify the work. If an r-chain
A" has no boundary, 94" = 0, we call it a cycle. Under addition, the cycles
form a group Z’. Similarly we have the group of r-boundaries, B", which is
a subgroup of Z’ since 39A4"*! = 0 always. The factor, or difference, group,
H"™ = Z" mod B’, is the rth homology group of the complex. Any finite part
of H" (its elements of finite order) is the “torsion” 7.

For an example of the above ideas we look at the real projective plane P2.
It can be described topologically as a closed disk 2, with opposite points

p
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on the boundary (“points at infinity”) identified. The simplest possible cut-
ting into cells is shown. The boundary relations are

do'=p—p=0  90%=20.

Thus the one-dimensional homology group has a single non-zero element
(i.e., H' = T'), with ¢! as the representative cycle. If we carry a pair of
independent vectors (v;, v;) from o2 across ¢!, leading back into g2 on the
other side, we see that the pair has shifted orientation: P? is non-orientable.

When a manifold is cut into cells of a reasonably simple nature, we may
form the “dual subdivision” as follows. Put a new vertex in each n-cell. Let
a new l-cell cross each (n — 1)-cell, joining two new vertices. Let a new
(piecewise linear) 2-cell cross each (n — 2)-cell, finding a boundary waiting
for it, and so on. The figure shows a portion of the construction for n = 2.

There is a one-one correspondence between r-cells of the original complex
K (shown in heavy lines) and (n — r)-cells of the dual Kp (shown in lighter
lines), and incidence between cells of neighboring dimensions is preserved.
If the manifold is orientable, this shows that homology in K is the same as
cohomology in Kp (except in extreme dimensions). From this we can see
that the Betti numbers (ranks of the H") coincide in dimensions r and n —r,
and the torsion numbers in dimensions r and n —r — 1. This is the “Poincaré
duality” in a complex formed from an orientable manifold.

Note also (see the dashed lines in the figure) that K and Kp have a com-
mon simplicial subdivision, the “barycentric subdivision” K* of K. Also



104 HASSLER WHITNEY

invariance of the homology groups under subdivisions is not hard to show;
Alexander proved topological invariance of the ranks of the H” in 1915. If we
examine a cycle A” of K and a cycle B® of Kp, with r+s > n, the intersection
is seen to be expressible as a cycle C’+5~" of K*. This is a generalization of
the intersection of submanifolds of M", of great importance in algebraic ge-
ometry for instance (Lefschetz, Hodge). It is quite clear (that is, until 1935)
that there is nothing of this sort in general complexes.

Poincaré applied considerations like these to his work in dynamical theory
(for instance, the three body problem). But he could not prove a simply stated
fact needed about area preserving transformations of a ring shaped surface.
However, G. D. Birkhoff succeeded in proving this theorem in 1913.

The fundamental group and covering spaces were also studied in detail by
Poincaré. In a space K, with a chosen point P, a curve C starting and ending
at P defines an element of the fundamental group; any deformation of C,
keeping the ends at P, defines the same element. One such curve followed
by another gives the product of the two elements. The identity is defined by
any curve which can be “shrunk to a point” (hence to P). The fundamental
group is in general noncommutative. A space with vanishing fundamental
group is called “simply connected.”

Great efforts were expended by Poincaré to understand 3-dimensional
manifolds. In particular, he conjectured that the 3-sphere was the only simply
connected 3-manifold. This is as yet unproved.

Alexander proved an entirely new kind of “duality theorem” in 1922:
Given a complex K imbedded homeomorphically in an n-sphere S”, there is
a strict relation between the homology groups of K and of S" — K.

Alexander also gave in 1924 a remarkable example (using ideas of Antoine)
of a simply connected surface $* (homeomorphic image of S?) in S3, cutting
S3 into two regions, one of which is not simply connected. We begin with the
surface of a cylinder, stretched and bent around to have its two ends facing
each other; the figure shows these facing ends, the gap G between them partly
filled.

We pull out, from each side of the gap, a piece, pulled into a cylindrical
piece with a gap (like the original cylinder), these two pieces looped together,
as shown; there are now two much smaller gaps, G; and G,. We next act
in the same manner with each of these gaps, giving Gy, and Gy, in G; and
G, and Gy, in G,, and continue. The limiting surface S* has the stated
properties. In fact, a loop going around each gap Gy,...x, gives an infinite set
of independent gensrators in the fundamental group of the outside of S* in
S3, as we see easily. (The inside of S* is simply connected.)

Going back to the early 1910s, Lebesgue discovered (1911) that a region
of R”, if cut into sufficiently small closed pieces, must contain at least n + 1
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of these pieces with a common point. This (when proved) gives a topological
definition of that number #n for R".

L. E. J. Brouwer proved this in 1913. He was very active, with a general
proof of invariance of dimension (a general definition of dimension was given
by Menger and Urysohn), mappings of complexes and manifolds, studied
through simplicial approximations, the Jordan separation theorem in n-space,
coverings and fixed points of mappings, and other things. Alexandroff and
Hopf were so inspired by all this that they dedicated their volume A-H to
him. (If f is a mapping of a simplicial complex K into R", and f’(p;) is near
f(p;) for each vertex p; of K, the corresponding simplicial approximation is
defined by letting f” be linear over simplexes: f'(3"a;p;) = Y aif'(pi). By
subdividing into smaller simplexes, the approximation f’ can be made closer
to f.)

In the 1920s there was considerable rivalry between S. Lefschetz and
W. V. D. Hodge in the applications of topology to algebraic geometry. In
a Riemannian manifold M", a principal question was to find the “periods”
of a differential form w, that is, the integrals [ ¢ @ over cycles C” which would
form a base for the homology in dimension r. In later work, the forms would
be required to be harmonic.
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At one time I was visiting Hodge in Cambridge. In our taking a walk
together, he said “Lefschetz claimed to have proved that theorem before I
did; but I really did prove it first; besides which the theorem was false!” He
liked intriguing questions, so I asked him one that was recently going around
Princeton: A man walked south five miles, then east five miles, then north five
miles, and ended up where he had started. What could you say about where
he had started? (Or more popularly, what color was the bear?) He insisted it
must be the north pole, and proceeded to give a careful proof; but I got the
sense he did not really believe his proof was correct. (Try Antarctica.)

A contrasting situation was less happy. With both Alexander and Lef-
schetz in Princeton, they naturally had many discussions on topology. But
Alexander became increasingly wary of this; for Lefschetz would come out
with results, not realizing they had come from Alexander. Alexander was
a strict and careful worker, while Lefschetz’s mind was always full of ideas
swimming together, generating new ideas, of origin unknown. I saw this well
in my year, 1931-1932, as a National Research Fellow in Princeton. I believe
that Lefschetz never felt good about Veblen choosing Alexander, not him, as
one of the first professors at the new Institute for Advanced Study. Let me
mention here the famous Lefschetz formula for the algebraic number of fixed
points of a self-mapping of a space, an example of Lefschetz’s great power.

The basic work on integration of differential forms in manifolds was given
by G. de Rham in his thesis (1931, under E. Cartan). A complete iden-
tity was shown in the homology structure of Riemannian manifolds, as seen
through the algebraic structure of a subdivision or through integrating differ-
ential forms; moreover, the intersections of submanifolds were related in the
natural manner to the products of differential forms.

There are three more recent books with fine accounts of this theory in
extended form: W. V. D. Hodge, The theory and applications of harmonic
integrals, Cambridge University Press, 1941; G. de Rham, Variétées Differen-
tiables, Hermann, Paris, 1955; and H. Flanders, Differential Forms, Academic
Press, 1963. The third is especially helpful to the untutored reader. I myself
was greatly intrigued by de Rham’s work, and studied his thesis assiduously
when it appeared. Of course I looked forward to meeting him; I did not
suspect the happy occasion in which this would take place.

In the late twenties, Alexandroff and Hopf spent considerable time in
Gottingen, especially influenced by E. Noether (as mentioned above). I was
there for three weeks in early summer, 1928, after graduating from Yale, to
get the sense of a great physics and mathematics center. I had physics notes to
review, which I thought would go quickly; instead I found that I had forgotten
most of it, in spite of much recent physics study. Seeing Hilbert-Ackermann,
Grundziige der Theoretischen Logik, in a bookstore, I got it and started work-
ing on it, along with George Sauté, a math student from Harvard. So I soon
decided that since physics required learning and remembering facts, which I
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could not do, I would move into mathematics. I have always regretted my
quandary, but never regretted my decision.

Those weeks I was staying in the house of Dr. Cairo, along with some
physicists, Paul Dirac in particular. We became quite friendly, and discussed
many things together. One was the problem of expressing all possible natural
numbers with at most four 2’s, and common signs. For example we can write
7 = /[(2/.2 = .2)/.2]. We finally discovered a simple formula, which uses
a transcendental function taught in high school. (I’ll let you look for it; it
starts with a minus sign.)

The authors of A-H speak also of a fruitful winter of 1931 in Princeton,
influenced by Veblen, Alexander, and especially Lefschetz. The next autumn
I found this also. At one time there were seven separate seminars going
on together; one of them was devoted to my proof (just discovered) of a
characterization of the closed 2-cell. One of my talks was to be on my cutting
up process. But a few days before, I was horrified to find that there was a
bad mistake in the proof. I worked desperately hard the next two days,
and found a valid proof. Later, at the Moscow conference, Kuratowski told
me that he especially liked that proof, for he had tried very hard to carry
out such a process, but could not. Conversely, I had greatly appreciated his
characterization of planar graphs through their containning neither of two
graph types: five vertices, each pair joined, and two triples of vertices, each
pair from opposite triples being joined. I did, however, find how to use my
characterization of planar graphs through dual graphs to give his theorem.

By the time of the conference, Heinz Hopf had become my favorite writer
(and I later became a personal friend). I found his papers always very care-
fully written, with fine introductory sections, describing purposes and tools
(and he made some similar comments on my writings; he told me he “learned
cohomology” from my 1938 paper). I still want to speak of two of Hopf’s
theorems published before the conference. One was the classification of map-
pings of an n-complex K" into the n-sphere S, it required working separately
with the Betti numbers and the torsion numbers. The other described a sim-
ple analytic mapping of S3 onto S? which could not be shrunk to a point;
yet homology could not suggest its existence. The latter theorem was a ba-
sic step forward in studying the homotopy groups, to be presented at the
conference. Also, it showed that formally the above-mentioned classification
theorem could not easily be extended to higher dimensions K™, m > n.

How did people learn topology at that time? For point set theory, Haus-
dorff’s Mengenlehre was the bible. Menger’s Dimensionstheorie was a help
(superseded later by the Hurewicz-Wallman book). For “combinatorial”
topology, Veblen’s book Analysis situs was a very useful book in the 1920s.
Kerekjarto’s Topologie was a help (he disliked Bessel-Hagen; look up the ref-
erence to the latter in his index). Lefschetz’s Topology (1930) became at
one a basic reference; but it was very difficult to read. I failed completely
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to understand some broad sections. But soon Seifert-Threlfall Lehrbuch der
Topologie appeared, a very fine book; it was admirable for students, and its
chapters on the fundamental group and covering spaces remain a good source
for these topics.

Finally, the foreword to A-H was written soon after the Moscow confer-
ence. But, as mentioned earlier, one tragic result of the conference was the
abandonment of later volumes.

It is high time that we turned to the conference itself. Who was there?
Most of the world leaders, that is, in the combinatorial direction. There was
Heegaard, representing the old-timers. (Replying to his invitation, he wrote,
“I could not resist coming and meeting the greats of present day topology.”)
Representing the great Polish school of point set theory were W. Sierpinski
(but he could not come, I believe) and K. Kuratowski.

Two great figures who could have added immeasurably to the conference
had they been there, were Marston Morse (analysis in the large) and S. S.
Chern (differential geometry, in the complex domain in particular). Apart
from these (and Veblen, no longer active in this direction) there were, from
America, Alexander, Lefschetz, J. von Neumann, M. H. Stone, and P. A.
Smith; also W. Hurewicz and A. Weil (later to be U.S. residents). There
were Hopf and de Rham from Switzerland, J. Nielson from Copenhagen,
E. Cech from Czechoslovakia, and Alexandroff, Kolmogoroff (not usually
thought of as a topologist) and Pontrjagin from U.S.S.R. Then there were
younger people: Garrett Birkhoff, A. W. Tucker and myself from America;
Borsuk, Cohn-Vossen, D. van Danzig, E. R. van Kampen (becoming a U.S.
resident), G. Nobeling, J. Schauder, and others.

The Proceedings of the conference came out as No. 5 of vol. 1 (43), of
Recueil Math or Matematischiskii Shornik, 1936. All papers were either pub-
lished or listed here. There were about 40 members in all; a number of them
missed being in the official photograph (see page 88).

For many of us, coming to the conference was a very special event. And
since I was one of three from America that met in Chamonix to climb together
beforehand, I tell something about this. But to start, how did Alexander and
de Rham first meet? Alexander told me (when he and I were at the Charpoua
hut above Chamonix in 1933) how he and his guide Armand Charlet (the two
already forming a famous team) were crossing the enormous rock tower, the
Dru, from this same hut a few years before. They and another party crossed
paths near the top; so since each had left a pair of ice axes at the glacier,
they decided to pick up the other party’s axes when they reached the glacier
again. With all back at the hut, two of them discovered that they knew each
other by name very well: Alexander and de Rham.

I had had the great fortune to spend two years in school in Switzerland,
in 1921-1923, including three summers. Besides learning French one year
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and German the next, I had essentially one subject of study: the Alps. The
first of these years my next elder brother, Roger, was with me. We were very
lucky in having an older boy, Boris Piccioni, quite experienced in climbing,
in school with us; and in a neighboring school teacher, M. le Coultre, who
was a professional guide also, inviting us all on three climbing trips, which
included training in high alpine climbing. As a further consequence, nearly
all my climbing has been without guides.

In 1933 Alexander and I met for several fine climbs at Chamonix, then
went on to Saas Fee for more climbing. We next went up to the Weisshaon
hut, below the east side of the great Weisshorn, with the idea of trying an
apparently unclimbed route, the E. ridge of the Schallihorn, a smaller peak
just south of the Weisshorn. At the hut, there was Georges de Rham, with
a friend Nicolet! They had just climbed the Weisshorn by the N. ridge and
descended the E. ridge; tomorrow they would climb the E. ridge again, to
descend the much more difficult S. ridge, the “Schalligrat.” So we were all
off early the next morning. Alexander and I found our ridge easier than
expected, and never put on the rope during the ascent. (Near the top we
found a bottle; it was apparently from a party traversing to the top part of
the ridge in 1895.) The descent (now we were roped) was over the N. ridge
and down to the Schallijoch (where we heard calls of greeting from the other
party). The others watched our route going down the glacier, aiding their
own descent, which was partly after dark. From this time on, de Rham and
I often met during the summers, and did much fine climbing together. It
seems that he was renowned in Switzerland as much for his climbing as for
his mathematics. In the summer of 1939, my finest alpine climbing season,
he and Daniel Bach and I crossed the Schallihorn by “our ridge” (now its
third ascent), and went on to climb the “Rothorngrat” and Ober Gabelhorn
(we having first climbed the Matterhorn). Georges’ new “vibram”-soled boots
were giving him trouble, so he stopped now, while Daniel and I returned to
the Weisshorn hut and made a one-day traverse of the Weisshorn by the
Schalligrat and N. ridge, closing the season. And imagine my surprise when,
some years later, I bought a wonderful picture book “La Haute Route” of the
high peaks, by Georges’ friend André Roch, and saw the first picture in it:
Daniel and I on the Schallihorn (taken by Georges)!

To return to 1935: Alexander, Paul Smith and I met at Chamonix, climbed
the Aiguille de Peigne together, then went on to further climbing; but the
weather was turning bad, and we soon had to go on toward Moscow. (de
Rham was already in Warsaw.) Alexander drove me to Berlin, and we took
the night train from there.

What was the main import of the conference? As I see it, it was threefold:

1. It marked the true birth of cohomology theory, along with the products
among cocycles and cycles.
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2. The pair of seemingly diverse fields, homology and homotopy, took
root and flourished together from then on.

3. An item of application, vector fields on manifolds, was replaced by an
expansive theory, of vector bundles.

Yet seven years later, a single paper of Hopf would cause a renewed burst-
ing open of the subject in a still more general fashion.

We now look at the remarkable way in which these matters developed at
the conference.

The first major surprise was from Kolmogoroff, an unlikely person at the
conference, who presented a multiplication theory in a complex, applying it
also to more general spaces. The essence of the definition lies in the expres-
sion

(Po---pr) x (4o~ qs) = (Do~~~ Prdo- - ds),
provided that the right-hand side is a simplex; besides, an averaging over
permutations is taken. (One obvious problem is that the product seems to
be of dimension r + s + 1, one more than it should be.)

When he had finished, Alexander announced that he, also, had essentially
the same definition and results. (Both had papers in press.) From the repu-
tations of these mathematicians, there must be something real going on; but
it was hard to see what it might be. I digress for a moment to say what
happened to this product. Within a few months, E. Cech and I both saw a
way to rectify the definition. We each used a fixed ordering of the vertices
of a simplicial complex K, and defined everything in terms of this ordering.
The basic definition was simply (with the vertices in proper order)

(PO"'Pr)‘-’(Pr"'PrH):(PO"'Pr"'PrH)»

whenever the latter is a simplex of K. Alexander at once saw the advantage of
this, and rewrote his paper from this point of view (4nnals of Math., 1936).

Another event at the conference was the defining of the homotopy groups
in different dimensions of a space, with several simple but important appli-
cations, by Hurewicz. Alexander responded by saying he had considered that
definition many years (twenty?) earlier, but had rejected it since it was too
simple in character and hence could not lead to deep results. Perhaps one
lesson is that even simple things may have some value, especially if pushed
long distances.

Both E. Cech and D. van Danzig also said that they had considered or
actually used the definition of Hurewicz. Thus at the time of the conference,
the homotopy groups were very much “in the air.”

I now turn to the paper that had the most intense personal interest for
me. Hopf presented the results of E. Stiefel (written under Hopf’s direc-
tion), “Richtungsfelder und Fernparallelismus in n-dimensionalen Mannig-
faltigkeiten.” It was concerned with the existence of several independent
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vector fields in a manifold. Both in generality, and (largely) in detail, this
was just what I had come to Moscow in order to present myself! Stiefel had
more complete results; in particular, that all orientable 3-dimensional man-
ifolds were “parallelizable.” On the other hand, I had given a much more
general definition; for example, for submanifolds of Euclidean space (or of
another manifold), I considered normal vector fields also. Moreover, I con-
sidered sphere (or vector, or fiber) bundles over a complex as base space, and
found that results were best expressed in terms of cohomology, not homology,
in the complex (for manifolds it did not matter).

I spoke briefly of these things right after Hopf’s talk; but still had to decide
afresh how to talk about my own work. Moreover, on my way to the confer-
ence I had already become uncertain on how to talk; for I had realized that
Hopf’s classification of the mappings of K” into S” could be presented much
more simply in terms of cohomology than of homology. In fact, it seemed
to me highly worthwhile to show this in detail, as the possibly first true use
of cohomology, and the simplest possible example of its usefulness.

I therefore gave two shorter talks, one giving a fuller account of my work on
sphere bundles, and the other, a pretty complete proof of the Hopf theorem
with cohomology.

I want to speak briefly of two further presentations. Tucker spoke on “cell
spaces,” a thesis written under Lefschetz’s direction, which gave certain spec-
ifications about what can usefully be considered a “complex.” This cleared
up some important matters which played a real role in both Cech’s and my
exposition of cohomology and products in our coming papers in the Annals
of Mathematics. The other was Nobeling’s presentation, which occupied the
full last morning of the conference. (I was not there; I had left early for
Leningrad, hoping to meet the composer Shostakovich (which did not hap-
pen), and to make the five-day boat trip from Leningrad through the Kiel
Canal to London, which was quite interesting.)

Nobeling’s talk was to present, in outline, the proof that all topological
manifolds can be triangulated. von Neumann reported on this conference as
follows: Nobeling demonstrated amply that he had answers to every possible
question that one might think of. (Within the year, van Kampen found the
error in the proof. Disproving the theorem took much longer.)

I give a brief description of Hopf’s mapping theorem (about K" — S")
through cohomology; take n = 2 for ease of expression. (See my papers in
the Duke Math Journal, 1937.) First, “coboundary” is dual to “boundary”:
If 96 = 7+ -, then 0t = ¢ + ---. With the language of scalar products,
or, better, considering a cochain as being a linear function of chains, we can
write

ot-0=1-00, OX -AT'=X".04"F.
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Whereas the “boundary” of a cell makes good geometric sense, the “co-
boundary” does not. In the figure, dt stretches into three pieces; but why
stretch so far?

In the theorem, our first step is to deform any mapping f into a “normal”
mapping. To this end, choose a definite point P of S? (the south pole). For
each vertex p; of K, we may deform f into f’ so that f’(p;) = P. Of course

(@)
p

all cells of K with p; on the boundary must be pulled along some also. Do
this for all vertices, so they are now all at P. Now each 1-cell 7; of K has its
ends mapped into P; we may pull 7;; along S? down to P, keeping its ends
at P, extending the deformation in any manner through the rest of K. This
gives a normal mapping f;, in which the 1-dimensional part K! of K lies at
P.

Now take any 2-cell 6? of K. It is a standard theorem (first proved by
Brouwer) that (since its boundary is at P) it lies over S? with the degree
d; = d(c?), this being an integer. (If it only partly covers S, each piece of
S? is covered an algebraic number 0 of times; we may shrink the mapping to
P, keeping da? at P.)

We remark in passing that when 7 is pulled down to P, how far we choose
to extend the deformation into 2-cells depends on how far those 2-cells reach
beyong 7; thus d7 plays a role in the proceedings.

Let us write X (0?) = d; for each g?. (Or we could write X = }_d;0}.)
This is the cochain X defined by the deformed mapping.

We could deform a normal mapping fy into a different normal mapping
fi as follows. Choose a 1-cell 7, and sweep it up and over S?, and down the
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other side back to P, keeping its ends always at P. (In the figure, we show
two stages, f;, and f;,, 0 < t; < t, < 1, of this deformation of 7.) Extend
the deformation over the neighboring 2-cells of K. For each ¢? of K which
has 7 on its boundary (positively), d? is increased by 1; thus the change in
the corresponding cochain is simply to add d7. In this manner we may add
dY to the cochain X, for any 1-dimensional cochain Y’; but the cohomology
class of X remains unchanged.

Since there is no 3-dimensional part in K, all 2-cochains are cocycles; thus
there is a definite 2-dimensional cohomology class associated with the original
mapping.

We have one thing still to prove: Given any deformation of a normal
mapping fy into another one, fi, the same cohomology class is defined. We
use a standard technique to do this. Let f;(0 < ¢ < 1) denote the deformation.
Set F(t, p) = f;(p). Now F is a mapping of the product space I x K into S?,
where [ is the unit interval (0, 1).

/, //
/ /
0 t 1 O etk S
-— —e \
I : \
\ \

Ta

4
0xo? tj;a2 lxo

I x 62

If we alter F for 0 < ¢ < 1, it will give a new deformation of f; into f.
So look at any vertex p; of K, and the corresponding line segment I x p; of
I x K. This segment is mapped by F into a curve in S? starting and ending
at P. We may alter F(¢, p;) by pulling this curve along S down to P, and
extending the mapping to the rest of / x K. Doing this for each vertex of X,
we have defined a new deformation of fj into f}, in which each vertex of K
remains at P. We have already seen that this implies that the cohomology
classes of fy and f; differs by a coboundary, and the proof is complete.
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I have spoken of my great interest in the papers of Hopf and de Rham. In
the mid thirties I saw my main job of coming years to be the extending of
the general subject of sphere bundles. For this purpose, I was very anxious
to have the basic foundations in as nice a state as possible; I could not work
with concepts that were at all vague in my mind. As part of this, I wanted to
work both with algebraic and with differential methods; hence I needed, as
far as possible, a common foundation of both (and Hopf and de Rham were
my best models). But these subjects had been quite separate, and hence the
notations used were very different in character. So I tried to devise notations
that could allow the fields to work more closely together.

The use of “contravariant” and “covariant” vectors raised a quandary. A
covariant tensor was one whose components (depending on the coordinate
system) transform “like” or “with” the partial derivatives of a function. But
for me, the basic object was a vector space, and its elements, vectors, should
be the base of operations: They should be called “covariant™ (if anything),
not contravariant. Also homology dealt directly with geometric things, and
should have the prefix (if any) “co” not “contra.” In any case, I would not
use prefixes differently in homology and in differential geometry. So I started
publishing, using the term “cohomology” for the new topic, omitting any use
at all of “contra,” and disregarding the (for me) wrong use of “co.” This was
picked up quickly by others, and the inherent reverse of “co” and “contra”
remains.

There was a further block to my progress. I had to handle tensors; but how
could I when I was not permitted to see them, being only allowed to learn
about their changing costumes under changes of coordinates? I had somehow
to grab the rascals, and look straight at them. I could /ook at a pair of vectors,
“multiplied”: # Vv v. And here, I needed u Vv = —v Vu. So I managed to
construct the rest of the beasts, in “tensor products of abelian groups.” (Duke
Math Journal, 1938). Before long I noticed that neat form, using less space,
was the sine qua non of mathematical writing: the CORRECT definition of
the tensor product of two vector spaces must use the linear functionals over
the linear functionals over one of them. So this is the way in which later
generations learned them.

Only in 1988 did I make a further discovery (or rediscovery?): A typical
“differential 2-form” is u v v; and this is already a product! Any simplex, say
PoD1 D2, is a bit of linear space, and writing v;; = p; — p;, a natural associated
2-form is vg; V vj;. Another such product in pyp; p> p; is, for instance,

vor V (V12 V v23).
Then why not write

(Pop1) ~ (P1P2DP3) = PoP1D2D3,
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whenever the right hand side is a simplex? From the basic definition only
of differential forms associated with simplexes (or a simplicial complex),
nothing could be more natural. (This was soon called the “cup” product.)

Why did not Kolmogoroff and Alexander (and lots of others) think of it?
I think this is a real lesson to be learned: Keep wide contexts and broad
relations in mind; new connections and extended methods may show up.

I mention still the “cap” product, typified by p; p»p3 —~ pop1 P23 = DoD1,s
and for cochains X and Y and chains 4,

X~(Y~A)=(X<Y)~4

What was the aftermath of the conference? To a large extent, the younger
generation took over. In the U.S.S.R., L. Pontrjagin was coming into full
flower (in particular, with topological groups and duality). J. Leray (France)
and J. Schauder (Poland), collaborating in large part, and S. S. Chern (China,
U.S.A. and elsewhere) were bringing powerful tools into play. New domains
such as sheaves and spectral sequences were playing a big role.

In the U.S.A., N. E. Steenrod, S. Eilenberg, and S. Mac Lane were play-
ing an increasing role, especially in building edifices from extremely general
principles (with categories and functors for the foundation).

We are getting into the 1940s, with an astounding pair of papers by H.
Hopf about to arrive on the scene. The first of these papers, “Fundamental-
gruppe und zweite Bettische Gruppe,” was communicated to the Commen-
tarii Mathematicii Helvetici on September 12, 1941. In this paper Hopf gives
an algebraic construction of a certain group G} from any given group G.
Now let K be a complex, with second homology (Betti) group B2 and with
fundamental group G. Let S? be the subgroup of B? formed from the “spher-
ical cycles,” continuous images of the 2-sphere. Then Hopf proves that the
factor group B2/S? is isomorphic with G}. Thus the fundamental group of a
complex has a strong influence on the second homology group. For example,
if G is a free abelian group of rank p, then G is a free abelian group of rank
p(p — 1)/2, so this is a lower bound for the rank of the second homology
group.

The construction of G} is as follows. Represent the fundamental group
G as a factor group F/R, where F is a free group and R is a subgroup (of
relations in F). Define the commutator subgroups [F R] (generated by all
commutators fr/~'r~! for f € F and r € R) and [E F] (using /i /7' ;7).
Then

Gi = (R ~ [EF))/[ER].

(Actually, this group G} had been defined much earlier, by 1. Schur, in Berlin.)

At this point I turn over a description of happenings to S. Mac Lane,
“Origins of the cohomology of groups”, L’Enseignement Mathématique, vol.
24, fasc. 1-2, 1978. This is an admirable paper, full of descriptions of modern
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fields of work and their interrelations, all showing the enormous influence of
the above paper of Hopf (and another to follow a few years later). Here is
one quote from Mac Lane.

Hopf’s 1942 paper was the starting point for the cohomology
and homology of groups; indeed this Hopf group G; is simply our
present second homology group H,(G, Z). This idea and this paper
were indirectly the starting point for several other developments:
Invariants of group presentations; cohomology of other algebraic
systems; functors and duality; transfer and Galois cohomology;
spectral sequences; resolutions; Eilenberg-Mac Lane spaces; de-
rived functors and homological algebra; and other ideas as we will
indicate below.

I had the great pleasure of reviewing Hopf’s paper for Math Reviews (the
review appeared already in November 1942). I also, many years later, wrote
an informal paper whose purpose was to bring out the essential reasoning
(commonly geometric in character) of various basic theorems. This paper
ended with the quoted formula of Hopf. It was published as “Letting re-
search come naturally,” Math. Chronicle 14 (1985) (Auckland, New Zealand)
1-19. I mention just one crucial idea of Hopf: that of “homotopy bound-
ary,” A, from which everything flowed: From a fixed point P of K, choose a
(simplicial) path to any 2-simplex g2, go around its boundary, and back to
P:

Now 4 (in R) is a relation in the fundamental group G of K, associated with
the cell o2, considered as a 2-dimensional chain in K. (Write G = F/R,
where the free group F is the fundamental group of the 1-dimensional part
K'of K. NowA€ RCF.)

I will say a few words still about my own work in the direction of topol-
ogy. My one fairly full account of researches in sphere bundles appeared
in Lectures in Topology, University of Michigan Press, 1941, under the title
“On the topology of differentiable manifolds.” This paper is certainly the
basis of some awards I have received in later years. Largely to help prepare
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good foundations for my planned book on sphere bundles, I wrote the book
Geometric integration theory, Princeton University Press, 1957. This volume
received quite unexpected acclaim over many years. On the other hand, in
this period, Warren Ambrose once said to me “I calculate that the publica-
tion date of your book on sphere bundles is receding at the rate of two years
per year.” He was quite right. I was having increasing difficulty in finding
good geometric foundations for the topological aspects. Then I had an unex-
pected piece of good fortune; rather, two. Steenrod’s book on fiber bundles
appeared, doing a far better job than I could possibly have done, and I was
invited to join the faculty at the Institute for Advanced Study.

I also had new sources of inspiration: Henri Cartan (we played music to-
gether at times, piano and violin) was combining topology with analytic stud-
ies (several complex variables), which I studied with determination, getting
preparation for my final book on complex analytic varieties (whose unfulfilled
purpose was to help in the foundations of singularity theory). And R. Thom
and I had started working (independently) on singularities of mappings, my
last major field of work. He had also given a very simple and general proof
of my “duality theorem,” really the formula for the characteristic classes of
the product of two sphere bundles over the same base space, which I had car-
ried out through a full examination of the geometric definitions. (And later,
under the general definitions of Eilenberg-Steenrod, the theorem became part
of the definition of sphere bundles.)

I did still write some further papers, with which I was amply satisfied,
about ideals of differentiable functions (4m. J. of Math, 1943), On totally
differentiable and smooth functions (Pacific J. Math., 1951), On functions
with bounded nth differences (J. de Math. Pures at appliquées, 1957), some-
what outside my normal fields of work. But younger workers, in America in
particular, were taking over in a strong way; I mention John Mather espe-
cially, in singularities of mappings. So, to return to the title of this paper, I
have seen general topological and algebraic methods flourishing all over the
world increasingly, as the “center of mass” of such studies moves still nearer
to the U.S.A. shores.
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