1	Increased lung cell entry of B.1.617.2 and evasion of antibodies induced by
2	infection and BNT162b2 vaccination
3	
4	Prerna Arora ^{1,2} , Amy Kempf ^{1,2} , Inga Nehlmeier ¹ , Anzhalika Sidarovich ^{1,2} , Nadine Krüger ¹ ,
5	Luise Graichen ^{1,2} , Anna-Sophie Moldenhauer ¹ , Martin S. Winkler ³ , Sebastian Schulz ⁴ ,
6	Hans-Martin Jäck ⁴ , Metodi V. Stankov ⁵ , Georg M. N. Behrens ⁵ , Stefan Pöhlmann ^{1,2,*} ,
7	Markus Hoffmann ^{1,2,*}
8	
9	¹ Infection Biology Unit, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany
10	² Faculty of Biology and Psychology, Georg-August-University Göttingen, Wilhelmsplatz 1,
11	37073 Göttingen, Germany
12	³ Department of Anaesthesiology, University of Göttingen Medical Center, Göttingen, Georg-
13	August University of Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
14	⁴ Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander
15	University of Erlangen-Nürnberg, Glückstraße 6, 91054 Erlangen, Germany
16	⁵ Department for Rheumatology and Immunology, Hannover Medical School, Carl-Neuberg-Str.
17	1, 30625 Hannover, Germany
18	
19	*E-mail: mhoffmann@dpz.eu (M.H.), spoehlmann@dpz.eu (S.P.)
20	
21	
22	
23	
24	1

25 SUMMARY

26	The delta variant of SARS-CoV-2, B.1.617.2, emerged in India and has subsequently spread
27	to over 80 countries. B.1.617.2 rapidly replaced B.1.1.7 as the dominant virus in the United
28	Kingdom, resulting in a steep increase in new infections, and a similar development is
29	expected for other countries. Effective countermeasures require information on
30	susceptibility of B.1.617.2 to control by antibodies elicited by vaccines and used for COVID-
31	19 therapy. We show, using pseudotyping, that B.1.617.2 evades control by antibodies
32	induced upon infection and BNT162b2 vaccination, although with lower efficiency as
33	compared to B.1.351. Further, we found that B.1.617.2 is resistant against Bamlanivimab, a
34	monoclonal antibody with emergency use authorization for COVID-19 therapy. Finally, we
35	show increased Calu-3-lung cell entry and enhanced cell-to-cell fusion of B.1.617.2, which
36	may contribute to augmented transmissibility and pathogenicity of this variant. These
37	results identify B.1.617.2 as an immune evasion variant with increased capacity to enter and
38	fuse lung cells.
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	

49 INTRODUCTION

50	Vaccines based on inactivated whole virus, adenoviral vectors or mRNAs encoding the severe
51	acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein protect against
52	coronavirus disease 2019 (COVID-19) and allow to effectively combat the COVID-19 pandemic
53	(Polack et al., 2020, Golob et al., 2021, Xia et al., 2021). These vaccines present the S proteins of
54	viruses circulating early during the pandemic as antigens to the immune system. However, at a
55	later stage of the pandemic so called SARS-CoV-2 variants of concern (VOC) emerged that
56	harbor mutations in the S protein that allow for augmented transmissibility (B.1.1.7, alpha
57	variant) and/or immune evasion (B.1.351, beta variant; P.1, gamma variant) (Plante et al., 2021b).
58	Mutations conferring increased transmissibility might augment binding to the cellular receptor
59	ACE2 while mutations conferring immune evasion alter epitopes of neutralizing antibodies
60	(Plante et al., 2021b). Immune evasion can allow for infection of convalescent or vaccinated
61	individuals but vectored and mRNA-based vaccines protect against severe COVID-19 induced by
62	alpha, beta and gamma VOC.
63	A massive surge of COVID-19 cases was detected in India between April and May 2021
64	and was associated with spread of a new variant, B.1.617, that subsequently branched off into
65	B.1.617.1, B.1.617.2 and B.1.617.3. The B.1.617.2 variant subsequently spread into more than 80
66	countries and became dominant in India and the United Kingdom(Singh et al., 2021, Campbell et
67	al., 2021). In the UK, the spread of B.1.617.2 was associated with a marked increase in cases and
68	more than 80% of new infections are now due to B.1.617.2. A rapid increase of B.1.617.2 spread
69	is also expected in Germany, the US and several other countries, and a recent massive increase of
70	cases in Lisbon, Portugal, that required travel restrictions is believed to be due to B.1.617.2. In
71	order to contain spread of B.1.617.2, now considered a VOC, it will be critical to determine
72	whether convalescent or vaccinated patients are protected against infection by this variant. Here,

73	we addressed this question using reporter particles pseudotyped with the SARS-CoV-2 spike (S)
74	protein, which are suitable tools to study SARS-CoV-2 neutralization by antibodies (Riepler et
75	al., 2020, Schmidt et al., 2020).
76	
77	
78	
79	
80	
81	
82	
83	
84	
85	
86	
87	
88	
89	
90	
91	
92	
93	
94	
95	
96	

97 **RESULTS**

98	The S protein of B.1.617.2 harbors nine mutations in the surface unit, S1, of the S protein
99	and 1 mutation in the transmembrane unit, S2 (Figure 1A-B). Mutations T19R, G142D, E156G,
100	F157 Δ and R158 Δ are located in the N-terminal domain of S1, which contains epitopes for
101	neutralizing antibodies (Liu et al., 2020, McCallum et al., 2021, Suryadevara et al., 2021, Chi et
102	al., 2020). The receptor binding domain (RBD) harbors mutations L452R and T478K. Mutation
103	L452R reduces antibody-mediated neutralization (Deng et al., 2021, Liu et al., 2021b) and it has
104	been speculated that T478K might increase infectivity (Wang et al., 2021). Mutation D614G is
105	located between RBD and S1/S2 cleavage sites and linked to increased ACE2 binding,
106	replication in the upper respiratory tract and transmission (Figure 1A-B) (Plante et al., 2021a,
107	Zhou et al., 2021). Finally, P681R might increase cleavage of S protein at the S1/S2 site while the
108	impact of D950N on S protein driven entry and its inhibition by antibodies is unknown.
109	We first asked whether B.1.617.2 S protein mediates robust entry into cell lines frequently
110	used for SARS-CoV-2 research, Vero (African green monkey, kidney), 293T (human, kidney),
111	Caco-2 (human, colon) and Calu-3 (human, lung). All cell lines express endogenous ACE2 and
112	Vero, Caco-2 and Calu-3 cells are often used for infection studies with authentic SARS-CoV-2.
113	The B.1.617.2 S protein mediated entry into 293T and Vero cells with the same efficiency as WT
114	S protein while entry into Caco-2 (~1.5-fold) and Calu-3 cells (~2.0-fold) was augmented (Figure
115	1C and Supplemental figure 1A). The lung is the central target of SARS-CoV-2 but infection of
116	colon has also been reported, suggesting that B.1617.2 might have increased capacity to enter
117	target cells in these tissues. Finally, we did not detect increased ACE2 binding of B.1.617.2 S
118	protein (Figure 1D), suggesting that increased entry into Caco-2 and Calu-3 cells was not due to
119	augmented ACE2 binding.

120	Besides its ability to drive fusion of viral and cellular membranes, the S protein is further
121	able to drive the fusion of neighboring cells, resulting in the formation of multinucleated giant
122	cells, so called syncytia, which have been observed in vitro following directed S protein
123	expression or SARS-CoV-2 infection and in post mortem tissues from COVID-19 patients
124	(Bussani et al., 2020, Tian et al., 2020, Xu et al., 2020) . Since SARS-CoV-2 S protein-driven
125	syncytium formation is believed to contribute to COVID-19 pathogenesis, we investigated the
126	ability of B.1.617.2 S protein to drive cell-to-cell fusion in the human lung cell line A549, which
127	was engineered to express high levels of ACE2. As expected, directed expression of WT S led to
128	the formation of syncytia, while cells transfected with empty expression plasmid remained
129	normal (Figure 1E). Strikingly, directed expression of B.1.617.2 S protein caused more and larger
130	syncytia and quantification of cell-to-cell fusion revealed that fusion by B.1.617.2 S protein was
131	~2.5-fold more efficient as compared to WT S (Figure 1E).
132	We next determined whether entry of B.1.617.2 is susceptible to inhibition by
133	recombinant antibodies with emergency use authorization for COVID-19 treatment. Three out
134	four antibodies tested inhibited B.1.617.2 S protein with similar efficiency as WT S protein
135	(Figure 1F and Supplemental figure 1C). However, B.1.617.2 was resistant to Bamlanivimab,
136	most likely because of mutation L452R (Supplemental figure 1B and (Starr et al., 2021)). Thus,
137	Bamlanivimab monotherapy is not suitable for prevention or treatment of B.1.617.2 infection.
138	Finally, we asked whether B.1.617.2 entry is inhibited by antibodies generated by infected or
139	vaccinated individuals. For these experiments, we employed the S protein of B.1.351 as control
140	since this VOC exhibits marked evasion from neutralizing antibodies. A previously described
141	collection of plasma (Hoffmann et al., 2021a) from convalescent COVID-19 patients collected at
142	University Hospital Göttingen, Germany, neutralized entry driven by B.1.617.2 S protein with
143	slightly reduced efficiency as compared to WT S protein (Figure 1G and Supplemental figure

144	1D). In contrast, r	neutralization c	of B.1.351 S	protein-de	pendent entr	y was markedly	y reduced.
	, , , , , , , , , , , , , , , , , , , ,						

- Finally, similar observations were made with previously characterized sera (Hoffmann et al.,
- 2021b) from donors who received two doses of BNT162b2, although immune evasion of
- B.1.617.2. was more prominent as compared to convalescent sera (Figure 1H and Supplemental
- figure 1E).

168 **DISCUSSION**

169 Our results demonstrate immune evasion, enhanced colon- and lung cell entry and augmented syncytium formation by B.1.617.2. Evasion of antibody-mediated neutralization by 170 B.1.617.2 is in agreement with two recent studies (Liu et al., 2021a, Wall et al., 2021) and is 171 172 more prominent than previously observed by us for B.1.1.7 but less prominent as compared to B.1.351 (Hoffmann et al., 2021a). This finding would be compatible with increased vaccine 173 breakthrough of B.1.617.2 but also suggests that BNT162b2 should still protect from B.1.617.2-174 175 induced COVID-19. Treatment of infection with Bamlanivimab alone will be ineffective but we expect that Casirivimab, Imdevimab and Etesevimab will be beneficial to B.1.617.2 infected 176 patients when administered early after infection. The observation that B.1.617.2 S protein is able 177 to cause more cell-to-cell fusion than WT S may suggest that B.1.617.2 could cause more tissue 178 damage, and thus be more pathogenic, than previous variants or that viral spread via syncytium 179 180 formation contributes to efficient inter- and intra-host spread of this variant. Entry experiments with cell lines need to be interpreted with care and confirmation with primary cells is pending. 181 However, the significantly increased entry into the colon and lung cell lines Caco-2 and Calu-3, 182 respectively, suggest that B.1.617.2 might have an augmented capacity to infect these organs and 183 increased infection of the respiratory epithelium might account for the purported increased 184 transmissibility of B.1.617.2. 185 186 187 188 189 190

192 AUTHOR CONTRIBUTIONS

- 193 Conceptualization, M.H., S.P.; Funding acquisition, S.P.; Investigation, P.A., A.K., I.N., A.S.,
- 194 N.K., L.G., A.-S.M., M.H.; Essential resources, M.S.W., S.S., H.-M.J., M.V.S., G.M.N.B.;
- 195 Writing, M.H., S.P.; Review and editing, all authors.

196

197 ACKNOWLEDGMENTS

- 198 We like to thank Roberto Cattaneo, Georg Herrler, Stephan Ludwig, Andrea Maisner, Thomas
- 199 Pietschmann and Gert Zimmer for providing reagents. We gratefully acknowledge the originating
- 200 laboratories responsible for obtaining the specimens and the submitting laboratories where
- 201 genetic sequence data were generated and shared via the GISAID Initiative, on which this
- research is based. S.P. acknowledges funding by BMBF (01KI2006D, 01KI20328A, 01KI20396,
- 203 DM11-311), the Ministry for Science and Culture of Lower Saxony (DM11-607, DM11-610,
- DM11-611) and the German Research Foundation (DFG; PO 716/11-1, PO 716/14-1). N.K.
- acknowledges funding by BMBF (ANI-CoV, 01KI2074A). M.S.W. received unrestricted funding
- 206 from Sartorius AG, Lung research.

207

208 COMPETING INTERESTS

209 The authors declare no competing interests

210

- 212
- 213
-
- 214
- 215

216 MATERIALS AND METHODS

217

218 Cell culture

219 All cell lines were incubated at 37 °C in a humidified atmosphere containing 5% CO₂. 293T (human, female, kidney; ACC-635, DSMZ, RRID: CVCL 0063), Vero76 cells (African green 220 monkey kidney, female, kidney; CRL-1586, ATCC; RRID: CVCL 0574, kindly provided by 221 Andrea Maisner) and BHK-21 (Syrian hamster, male, kidney; ATCC Cat# CCL-10; RRID: 222 CVCL 1915, kindly provided by Georg Herrler) and A549-ACE2 cells (Hoffmann et al., 2021a), 223 which were derived from parental A549 cells (human, male, lung; CRM-CCL-185, ATCC, 224 225 RRID:CVCL 0023; kindly provided by Georg Herrler), were cultured in Dulbecco's modified Eagle medium (PAN-Biotech) supplemented with 10% fetal bovine serum (FBS, Biochrom), 100 226 227 U/ml penicillin and 0.1 mg/ml streptomycin (pen/strep) (PAN-Biotech). In addition, Calu-3 228 (human, male, lung; HTB-55, ATCC; RRID: CVCL 0609, kindly provided by Stephan Ludwig) 229 and Caco-2 cells (human, male, colon; HTB-37, ATCC, RRID: CVCL 0025) were cultured in 230 minimum essential medium (GIBCO) supplemented with 10% FBS, 1% pen/strep, 1x non-essential 231 amino acid solution (from 100x stock, PAA) and 1 mM sodium pyruvate (Thermo Fisher 232 Scientific). Cell lines were validated by STR-typing, amplification and sequencing of a fragment 233 of the cytochrome c oxidase gene, microscopic examination and/or according to their growth characteristics. Furthermore, all cell lines were routinely tested for contamination by mycoplasma 234 contamination. 235

236

237 Expression plasmids

238 Plasmids encoding pCAGGS-DsRed, pCAGGS-VSV-G (vesicular stomatitis virus glycoprotein),

239 pCG1-WT SARS-CoV-2 S (codon optimized, based on the Wuhan/Hu-1/2019 isolate, equipped

240	with D614G mutation; with C-terminal truncation of the last 18 amino acid), pCG1-SARS-CoV-2
241	S, B.1.351 (codon optimized; with C-terminal truncation of the last 18 amino acid), ACE2
242	(angiotensin converting enzyme 2) and soluble ACE2 have been previously described (Hoffmann
243	et al., 2021a, Hoffmann et al., 2021b, Hoffmann et al., 2020). In order to generate the expression
244	vector for the S protein of SARS-CoV-2 variant B.1.617.2, the respective mutations were inserted
245	into the WT SARS-CoV-2 S sequence by splice-overlap PCR. The resulting open reading frame
246	was further inserted into vector pCG1 plasmid (kindly provided by Roberto Cattaneo, Mayo
247	Clinic College of Medicine, Rochester, MN, USA), using BamHI and XbaI restriction enzymes.
248	The integrity of all sequences was confirmed by sequence analysis using a commercial
249	sequencing service (Microsynth SeqLab). Specific details on the cloning procedure can be
250	obtained upon request. Transfection of 293T cells was carried out by the calcium-phosphate
251	precipitation method, while BHK-21 and A549-ACE2 cells were transfected using Lipofectamine
252	LTX (Thermo Fisher Scientific).

253

254 Sequence analysis and protein models

The S protein sequence of SARS-CoV-2 S variant B.1.617.2 (GISAID Accession ID: EPI_ISL_1921353) was obtained from the GISAID (global initiative on sharing all influenza data) databank (https://www.gisaid.org/). Protein models were generated employing the YASARA software (http://www.yasara.org/index.html) and are based on published crystal structure PDB: 6XDG (Hansen et al., 2020), PDB: 7L3N (Jones et al., 2020) or PDB: 7C01 (Shi et al., 2020), or a template that was constructed by modelling the SARS-2 S sequence on PDB: 6XR8 (Cai et al., 2020), using the SWISS-MODEL online tool (https://swissmodel.expasy.org)

262

263 **Production of pseudotype particles**

Rhabdoviral pseudotypes bearing SARS-CoV-2 spike protein were generated according to an 264 established protocol (Berger Rentsch and Zimmer, 2011). Briefly, 293T cells were transfected with 265 266 expression plasmids encoding S protein, VSV-G or empty plasmid (control). At 24 h posttransfection, cells were inoculated with a replication-deficient vesicular stomatitis virus that 267 lacks the genetic information for VSV-G and instead codes for two reporter proteins, enhanced 268 green fluorescent protein and firefly luciferase (FLuc), VSV*AG-FLuc (kindly provided by Gert 269 270 Zimmer) at a multiplicity of infection of 3. Following 1 h of incubation at 37 °C, the inoculum was 271 removed and cells were washed with phosphate-buffered saline (PBS). Subsequently, cells 272 received culture medium containing anti-VSV-G antibody (culture supernatant from I1-hybridoma 273 cells; ATCC no. CRL-2700; except for cells expressing VSV-G, which received only medium) in 274 order to neutralize residual input virus. After 16-18h, the culture supernatant was harvested, 275 clarified from cellular debris by centrifugation at 4,000 x g, 10 min, aliquoted and stored at -80 °C.

276

277 Transduction of target cells

For transduction experiments, target cells were seeded in 96-well plates and inoculated with equal volumes of pseudotype particles. The transduction efficiency was evaluated at 16-18 h post transduction. For this, cells were lysed in PBS containing 0.5% triton X-100 (Carl Roth) for 30 min at RT. Afterwards, cell lysates were transferred into white 96-well plates and mixed with luciferase substrate (Beetle- Juice, PJK) before luminescence was recorded using a Hidex Sense Plate luminometer (Hidex).

285 Analysis of ACE2 binding

For the production of soluble ACE2 fused to the Fc portion of human immunoglobulin G (IgG), 286 sol-ACE2, 293T cells were seeded in a T-75 flask and transfected with 20 µg of sol-ACE2 287 288 expression plasmid. The medium was replaced at 10 h posttransfection and cells were further incubated for 38 h. Further, the culture supernatant was harvested and clarified by centrifugation 289 at 2,000 x g, 10 min, 4 °C. Next, the clarified supernatant was loaded onto Vivaspin protein 290 291 concentrator columns (molecular weight cut-off of 30 kDa; Sartorius) and centrifuged at 4,000 x g 292 at 4 °C until the supernatant was 100-fold concentrated. Finally, concentrated sol-ACE2 was aliquoted and stored at -80 °C. 293

294 In order to test the binding efficiency of sol-ACE2 to S protein, BHK-21 cells were seeded in 12-295 well plates and transfected with expression plasmid for WT or SARS-CoV-2 S variant. Untransfected cells and cells transfected with empty pCG1 plasmid served as controls. At 24 h 296 posttransfection, the culture supernatant was removed and cells were washed and resuspended in 297 PBS and transferred into 1.5 ml reaction before being pelleted by centrifugation (600 x g, 5 min, 298 299 RT, all centrifugation steps). Thereafter, cells were washed with PBS containing 1% bovine serum 300 albumin (BSA; PBS/BSA) and pelleted again by centrifugation. Next, the supernatant was removed and cell pellets were incubated with 100 µl of solACE2-Fc (1:100 in PBS/BSA) and rotated for 1 301 302 h at 4 °C using a Rotospin eppi rotator disk (IKA). After incubation, cells were pelleted and incubated with 100 µl of human AlexaFlour-488-conjugated antibody (1:200 in PBS/BSA; Thermo 303 Fisher Scientific) and rotated again as described above. Finally, cells were washed and resuspended 304 305 in PBS/BSA and subjected to flow cytometry using a LSR II flow cytometer and the FACS diva software (BD Biosciences). Data analysis was performed using the FCS express 4 Flow research 306 307 software (De Novo Software) in order to obtain the geometric mean values.

308

309 Syncytium formation assay

In order to analyze S protein-driven cell-to-cell fusion, A549-ACE2 cells were grown in 12-well 310 311 plates and transfected with expression vector for WT or B.1.617.2 S protein. In addition, cells 312 transfected with empty plasmid served as control. At 24 h posttransfection, cells were washed with 313 PBS and fixed by incubation (20 min, room temperature) with 4% paraformaldehyde solution (Carl 314 Roth). Thereafter, cells were washed with deionized water, air-dried and stained with May-Gruenwald solution (30 min, room temperature; Sigma-Aldrich). Next, cells were washed three 315 times with deionized water, air-dried and 1:10 diluted Giemsa (30 min, room temperature; Sigma-316 317 Aldrich) solutions. Finally, cells were washed three times with deionized water, air-dried and analyzed by bright-field microscopy using a Zeiss LSM800 confocal laser scanning microscope 318 and the ZEN imaging software (Zeiss). For each sample, three randomly selected areas were 319 imaged and S protein-driven syncytium formation was quantified by counting the total number of 320 nuclei in syncytia per image. Syncytia were defined as cells containing at least three nuclei. To 321 322 eliminate potential bias and correct for counting errors, counting was performed blinded by two 323 persons independently and for each sample average counts were used. Further, for each biological replicate, the average (mean) total number of nuclei in syncytia per image was calculated from 324 325 three images obtained for randomly selected areas of the well.

326

327 Collection of serum and plasma samples

Before analysis, all serum and plasma samples were heat-inactivated at 56 °C for 30 min. Further, all plasma/serum samples were pre-screened for their ability to neutralize transduction of Vero cells by pseudotype particles bearing WT SARS-CoV-2 S.

Convalescent plasma was obtained from COVID-19 patients treated at the intensive care unit of 331 the University Medicine Göttingen (UMG) under approval given by the ethic committee of the 332 UMG (SeptImmun Study 25/4/19 Ü). Cell Preparation Tube (CPT) vacutainers with sodium citrate 333 334 were used for collection of convalescent plasma. Further, plasma was collected as supernatant over the peripheral blood mononuclear cell layer. In addition to convalescent plasma, serum from 335 individuals vaccinated with BioNTech/Pfizer vaccine BNT162b2/Comirnaty was collected 24-31 336 days after receiving the second dose using S-Monovette® EDTA tubes (Sarstedt). Sampling and 337 338 sample analysis were approved by the Institutional Review Board of Hannover Medical School (8973 BO K 2020, amendment Dec 2020). 339

340

341 Neutralization assay

For neutralization experiments, S protein bearing pseudotype particles were pre-incubated for 30 342 min at 37 °C with different concentrations of Casirivimab, Imdevimab, Bamlanivimab, 343 344 Etesevimab, or unrelated control IgG (2, 0.2, 0.02, 0.002, 0.0002, 0.00002 µg/ml). Alternatively, pseudotype particles were pre-incubated with different dilutions (1:25, 1:100, 1:400, 1:1,600, 345 346 1:6,400) of convalescent plasma or serum from BNT162b2/Comirnaty vaccinated individuals. 347 Following incubation, mixtures were inoculated onto Vero cells with particles incubated only with medium serving as control. Transduction efficiency was determined at 16-18 h postinoculation as 348 described above. 349

350

351 Data analysis

The results on S protein-driven cell entry represent average (mean) data acquired from six 352 353 biological replicates, each conducted with four technical replicates. Data were normalized against 354 WT S protein, for which entry was set as 1. Alternatively, transduction was normalized against the 355 background signal (luminescence measured for cells inoculated with particles bearing no viral 356 glycoprotein; set as 1). SolACE2 binding results are average (mean) data obtained from six 357 biological replicates, each conducted with single samples. Each data point represents the geometric 358 mean channel fluorescence for one biological replicate without normalization. Data on S protein-359 driven cell-to-cell fusion represent average (mean) data from four biological replicates, each conducted with single samples (three images per sample). Each data point represents the average 360 (mean) number of nuclei in syncytia per image from two counting events by independent persons 361 362 for each of the four biological replicate without normalization. The neutralization data are based on a single experiment (standard in the field), which were conducted with technical quadruplicates. 363 364 For data normalized, background signals (Fluc signals obtained from cell inoculated with 365 pseudotype particles bearing no S protein) were subtracted from all values and transduction by particles incubated only with medium was set as 0% inhibition. The neutralizing titer 50 (NT50) 366 367 value, which indicates the plasma/serum dilution that causes a 50 % reduction of transduction efficiency, was calculated using a non-linear regression model (inhibitor vs. normalized response, 368 variable slope). 369

Error bars are defined as either standard deviation (SD, neutralization data) or standard error of the
mean (SEM, all other data). Data ware analyzed using Microsoft Excel (as part of the Microsoft
Office software package, version 2019, Microsoft Corporation) and GraphPad Prism 8 version

- 8.4.3 (GraphPad Software). Statistical significance was tested by two-tailed Students t-test. Only p
- values of 0.05 or lower were considered statistically significant (p > 0.05, not significant [ns]; $p \le 1000$
- 375 $0.05, *; p \le 0.01, **; p \le 0.001, ***$). Details on the statistical test and the error bars can be found
- 376 in the figure legends.

378 REFERENCES

- 379 BERGER RENTSCH, M. & ZIMMER, G. 2011. A vesicular stomatitis virus replicon-based
- bioassay for the rapid and sensitive determination of multi-species type I interferon. *PLoS One*, 6, e25858.
- 382 BUSSANI, R., SCHNEIDER, E., ZENTILIN, L., COLLESI, C., ALI, H., BRAGA, L., VOLPE,
- 383 M. C., COLLIVA, A., ZANCONATI, F., BERLOT, G., SILVESTRI, F., ZACCHIGNA,
- S. & GIACCA, M. 2020. Persistence of viral RNA, pneumocyte syncytia and thrombosis
 are hallmarks of advanced COVID-19 pathology. *EBioMedicine*, 61, 103104.
- 386 CAI, Y., ZHANG, J., XIAO, T., PENG, H., STERLING, S. M., WALSH, R. M., JR., RAWSON,
- 387 S., RITS-VOLLOCH, S. & CHEN, B. 2020. Distinct conformational states of SARS-
- 388 CoV-2 spike protein. *Science*, 369, 1586-1592.
- 389 CAMPBELL, F., ARCHER, B., LAURENSON-SCHAFER, H., JINNAI, Y., KONINGS, F.,
- 390 BATRA, N., PAVLIN, B., VANDEMAELE, K., VAN KERKHOVE, M. D., JOMBART,
- 391 T., MORGAN, O. & LE POLAIN DE WAROUX, O. 2021. Increased transmissibility and
- 392 global spread of SARS-CoV-2 variants of concern as at June 2021. *Euro Surveill*, 26.
- 393 CHI, X., YAN, R., ZHANG, J., ZHANG, G., ZHANG, Y., HAO, M., ZHANG, Z., FAN, P.,
- 394 DONG, Y., YANG, Y., CHEN, Z., GUO, Y., ZHANG, J., LI, Y., SONG, X., CHEN, Y.,
- 395 XIA, L., FU, L., HOU, L., XU, J., YU, C., LI, J., ZHOU, Q. & CHEN, W. 2020. A
- neutralizing human antibody binds to the N-terminal domain of the Spike protein of
- 397 SARS-CoV-2. *Science*, 369, 650-655.
- 398 DENG, X., GARCIA-KNIGHT, M. A., KHALID, M. M., SERVELLITA, V., WANG, C.,
- 399 MORRIS, M. K., SOTOMAYOR-GONZALEZ, A., GLASNER, D. R., REYES, K. R.,
- 400 GLIWA, A. S., REDDY, N. P., SANCHEZ SAN MARTIN, C., FEDERMAN, S.,
- 401 CHENG, J., BALCEREK, J., TAYLOR, J., STREITHORST, J. A., MILLER, S.,

402	SREEKUMAR, B	. CHEN.	P. Y.	. SCHULZE-GAHMEN	U.	TAHA	T. Y.	. HAYASHL
102		$, \circ \dots \circ ,$,		,	,	,	,

- J. M., SIMONEAU, C. R., KUMAR, G. R., MCMAHON, S., LIDSKY, P. V., XIAO, Y.,
- 404 HEMARAJATA, P., GREEN, N. M., ESPINOSA, A., KATH, C., HAW, M., BELL, J.,
- 405 HACKER, J. K., HANSON, C., WADFORD, D. A., ANAYA, C., FERGUSON, D.,
- 406 FRANKINO, P. A., SHIVRAM, H., LAREAU, L. F., WYMAN, S. K., OTT, M.,
- 407 ANDINO, R. & CHIU, C. Y. 2021. Transmission, infectivity, and neutralization of a
- 408 spike L452R SARS-CoV-2 variant. *Cell*.
- 409 GOLOB, J. L., LUGOGO, N., LAURING, A. S. & LOK, A. S. 2021. SARS-CoV-2 vaccines: a
- 410 triumph of science and collaboration. *JCI Insight*, 6.
- 411 HANSEN, J., BAUM, A., PASCAL, K. E., RUSSO, V., GIORDANO, S., WLOGA, E.,
- 412 FULTON, B. O., YAN, Y., KOON, K., PATEL, K., CHUNG, K. M., HERMANN, A.,
- 413 ULLMAN, E., CRUZ, J., RAFIQUE, A., HUANG, T., FAIRHURST, J., LIBERTINY,
- 414 C., MALBEC, M., LEE, W. Y., WELSH, R., FARR, G., PENNINGTON, S.,
- 415 DESHPANDE, D., CHENG, J., WATTY, A., BOUFFARD, P., BABB, R.,
- 416 LEVENKOVA, N., CHEN, C., ZHANG, B., ROMERO HERNANDEZ, A., SAOTOME,
- 417 K., ZHOU, Y., FRANKLIN, M., SIVAPALASINGAM, S., LYE, D. C., WESTON, S.,
- 418 LOGUE, J., HAUPT, R., FRIEMAN, M., CHEN, G., OLSON, W., MURPHY, A. J.,
- 419 STAHL, N., YANCOPOULOS, G. D. & KYRATSOUS, C. A. 2020. Studies in
- 420 humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail.
- 421 *Science*, 369, 1010-1014.
- 422 HOFFMANN, M., ARORA, P., GROSS, R., SEIDEL, A., HORNICH, B. F., HAHN, A. S.,
- 423 KRUGER, N., GRAICHEN, L., HOFMANN-WINKLER, H., KEMPF, A., WINKLER,
- 424 M. S., SCHULZ, S., JACK, H. M., JAHRSDORFER, B., SCHREZENMEIER, H.,

425	MULLER, M., KLEGER, A., MUNCH, J. & POHLMANN, S. 2021a. SARS-CoV-2
426	variants B.1.351 and P.1 escape from neutralizing antibodies. Cell.
427	HOFFMANN, M., HOFMANN-WINKLER, H., KRÜGER, N., KEMPF, A., NEHLMEIER, I.,
428	GRAICHEN, L., SIDAROVICH, A., MOLDENHAUER, AS., WINKLER, M. S.,
429	SCHULZ, S., JÄCK, HM., STANKOV, M. V., BEHRENS, G. M. N. & PÖHLMANN,
430	S. 2021b. SARS-CoV-2 variant B.1.617 is resistant to Bamlanivimab and evades
431	antibodies induced by infection and vaccination. <i>bioRxiv</i> , 2021.05.04.442663.
432	HOFFMANN, M., KLEINE-WEBER, H., SCHROEDER, S., KRUGER, N., HERRLER, T.,
433	ERICHSEN, S., SCHIERGENS, T. S., HERRLER, G., WU, N. H., NITSCHE, A.,
434	MULLER, M. A., DROSTEN, C. & POHLMANN, S. 2020. SARS-CoV-2 Cell Entry
435	Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease
436	Inhibitor. Cell, 181, 271-280 e8.
437	JONES, B. E., BROWN-AUGSBURGER, P. L., CORBETT, K. S., WESTENDORF, K.,
438	DAVIES, J., CUJEC, T. P., WIETHOFF, C. M., BLACKBOURNE, J. L., HEINZ, B. A.,
439	FOSTER, D., HIGGS, R. E., BALASUBRAMANIAM, D., WANG, L., BIDSHAHRI, R.,
440	KRAFT, L., HWANG, Y., ZENTELIS, S., JEPSON, K. R., GOYA, R., SMITH, M. A.,
441	COLLINS, D. W., HINSHAW, S. J., TYCHO, S. A., PELLACANI, D., XIANG, P.,
442	MUTHURAMAN, K., SOBHANIFAR, S., PIPER, M. H., TRIANA, F. J., HENDLE, J.,
443	PUSTILNIK, A., ADAMS, A. C., BERENS, S. J., BARIC, R. S., MARTINEZ, D. R.,
444	CROSS, R. W., GEISBERT, T. W., BORISEVICH, V., ABIONA, O., BELLI, H. M., DE
445	VRIES, M., MOHAMED, A., DITTMANN, M., SAMANOVIC, M., MULLIGAN, M. J.,
446	GOLDSMITH, J. A., HSIEH, C. L., JOHNSON, N. V., WRAPP, D., MCLELLAN, J. S.,
447	BARNHART, B. C., GRAHAM, B. S., MASCOLA, J. R., HANSEN, C. L. &

448	FALCONER, E. 2020. LY-CoV555, a rapidly isolated potent neutralizing antibody,
449	provides protection in a non-human primate model of SARS-CoV-2 infection. <i>bioRxiv</i> .
450	LIU, J., LIU, Y., XIA, H., ZOU, J., WEAVER, S. C., SWANSON, K. A., CAI, H., CUTLER,
451	M., COOPER, D., MUIK, A., JANSEN, K. U., SAHIN, U., XIE, X., DORMITZER, P. R.
452	& SHI, P. Y. 2021a. BNT162b2-elicited neutralization of B.1.617 and other SARS-CoV-2
453	variants. Nature.
454	LIU, L., WANG, P., NAIR, M. S., YU, J., RAPP, M., WANG, Q., LUO, Y., CHAN, J. F., SAHI,
455	V., FIGUEROA, A., GUO, X. V., CERUTTI, G., BIMELA, J., GORMAN, J., ZHOU, T.,
456	CHEN, Z., YUEN, K. Y., KWONG, P. D., SODROSKI, J. G., YIN, M. T., SHENG, Z.,
457	HUANG, Y., SHAPIRO, L. & HO, D. D. 2020. Potent neutralizing antibodies against
458	multiple epitopes on SARS-CoV-2 spike. Nature, 584, 450-456.
459	LIU, Z., VANBLARGAN, L. A., BLOYET, L. M., ROTHLAUF, P. W., CHEN, R. E.,
460	STUMPF, S., ZHAO, H., ERRICO, J. M., THEEL, E. S., LIEBESKIND, M. J.,
461	ALFORD, B., BUCHSER, W. J., ELLEBEDY, A. H., FREMONT, D. H., DIAMOND,
462	M. S. & WHELAN, S. P. J. 2021b. Identification of SARS-CoV-2 spike mutations that
463	attenuate monoclonal and serum antibody neutralization. Cell Host Microbe, 29, 477-488
464	e4.
465	MCCALLUM, M., DE MARCO, A., LEMPP, F. A., TORTORICI, M. A., PINTO, D., WALLS,
466	A. C., BELTRAMELLO, M., CHEN, A., LIU, Z., ZATTA, F., ZEPEDA, S., DI IULIO,
467	J., BOWEN, J. E., MONTIEL-RUIZ, M., ZHOU, J., ROSEN, L. E., BIANCHI, S.,
468	GUARINO, B., FREGNI, C. S., ABDELNABI, R., FOO, S. C., ROTHLAUF, P. W.,
469	BLOYET, L. M., BENIGNI, F., CAMERONI, E., NEYTS, J., RIVA, A., SNELL, G.,
470	TELENTI, A., WHELAN, S. P. J., VIRGIN, H. W., CORTI, D., PIZZUTO, M. S. &

471 VEESLER, D. 2021. N-terminal domain antigenic mapping reveals a site of vulnerability

472 for SARS-CoV-2. *Cell*, 184, 2332-2347 e16.

- 473 PLANTE, J. A., LIU, Y., LIU, J., XIA, H., JOHNSON, B. A., LOKUGAMAGE, K. G.,
- 474 ZHANG, X., MURUATO, A. E., ZOU, J., FONTES-GARFIAS, C. R.,
- 475 MIRCHANDANI, D., SCHARTON, D., BILELLO, J. P., KU, Z., AN, Z., KALVERAM,
- 476 B., FREIBERG, A. N., MENACHERY, V. D., XIE, X., PLANTE, K. S., WEAVER, S.
- 477 C. & SHI, P. Y. 2021a. Spike mutation D614G alters SARS-CoV-2 fitness. *Nature*, 592,
 478 116-121.
- 479 PLANTE, J. A., MITCHELL, B. M., PLANTE, K. S., DEBBINK, K., WEAVER, S. C. &
- 480 MENACHERY, V. D. 2021b. The variant gambit: COVID-19's next move. *Cell Host*481 *Microbe*, 29, 508-515.
- 482 POLACK, F. P., THOMAS, S. J., KITCHIN, N., ABSALON, J., GURTMAN, A., LOCKHART,
- 483 S., PEREZ, J. L., PEREZ MARC, G., MOREIRA, E. D., ZERBINI, C., BAILEY, R.,
- 484 SWANSON, K. A., ROYCHOUDHURY, S., KOURY, K., LI, P., KALINA, W. V.,
- 485 COOPER, D., FRENCK, R. W., JR., HAMMITT, L. L., TURECI, O., NELL, H.,
- 486 SCHAEFER, A., UNAL, S., TRESNAN, D. B., MATHER, S., DORMITZER, P. R.,
- 487 SAHIN, U., JANSEN, K. U., GRUBER, W. C. & GROUP, C. C. T. 2020. Safety and
- 488 Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. *N Engl J Med*, 383, 2603-2615.
- 489 RIEPLER, L., ROSSLER, A., FALCH, A., VOLLAND, A., BORENA, W., VON LAER, D. &
- 490 KIMPEL, J. 2020. Comparison of Four SARS-CoV-2 Neutralization Assays. *Vaccines*491 (*Basel*), 9.
- 492 SCHMIDT, F., WEISBLUM, Y., MUECKSCH, F., HOFFMANN, H. H., MICHAILIDIS, E.,
- 493 LORENZI, J. C. C., MENDOZA, P., RUTKOWSKA, M., BEDNARSKI, E., GAEBLER,
- 494 C., AGUDELO, M., CHO, A., WANG, Z., GAZUMYAN, A., CIPOLLA, M., CASKEY,

495 M., ROBBIANI, D. F., NUSSENZWEIG, M. C., RICE, C. M., HATZIIOANN	JOU, T. &
--	-----------

- 496 BIENIASZ, P. D. 2020. Measuring SARS-CoV-2 neutralizing antibody activity using
- 497 pseudotyped and chimeric viruses. *J Exp Med*, 217.
- 498 SHI, R., SHAN, C., DUAN, X., CHEN, Z., LIU, P., SONG, J., SONG, T., BI, X., HAN, C., WU,
- 499 L., GAO, G., HU, X., ZHANG, Y., TONG, Z., HUANG, W., LIU, W. J., WU, G.,
- 500 ZHANG, B., WANG, L., QI, J., FENG, H., WANG, F. S., WANG, Q., GAO, G. F.,
- 501 YUAN, Z. & YAN, J. 2020. A human neutralizing antibody targets the receptor-binding
 502 site of SARS-CoV-2. *Nature*, 584, 120-124.
- 503 SINGH, J., RAHMAN, S. A., EHTESHAM, N. Z., HIRA, S. & HASNAIN, S. E. 2021. SARS-
- 504 CoV-2 variants of concern are emerging in India. *Nat Med.*
- 505 STARR, T. N., GREANEY, A. J., DINGENS, A. S. & BLOOM, J. D. 2021. Complete map of
- SARS-CoV-2 RBD mutations that escape the monoclonal antibody LY-CoV555 and its
 cocktail with LY-CoV016. *Cell Rep Med*, 2, 100255.
- 508 SURYADEVARA, N., SHRIHARI, S., GILCHUK, P., VANBLARGAN, L. A., BINSHTEIN,
- 509 E., ZOST, S. J., NARGI, R. S., SUTTON, R. E., WINKLER, E. S., CHEN, E. C.,
- 510 FOUCH, M. E., DAVIDSON, E., DORANZ, B. J., CHEN, R. E., SHI, P. Y.,
- 511 CARNAHAN, R. H., THACKRAY, L. B., DIAMOND, M. S. & CROWE, J. E., JR.
- 512 2021. Neutralizing and protective human monoclonal antibodies recognizing the N-
- terminal domain of the SARS-CoV-2 spike protein. *Cell*, 184, 2316-2331 e15.
- 514 TIAN, S., HU, W., NIU, L., LIU, H., XU, H. & XIAO, S. Y. 2020. Pulmonary Pathology of
- Early-Phase 2019 Novel Coronavirus (COVID-19) Pneumonia in Two Patients With
 Lung Cancer. *J Thorac Oncol*, 15, 700-704.
- 517 WALL, E. C., WU, M., HARVEY, R., KELLY, G., WARCHAL, S., SAWYER, C., DANIELS,
- 518 R., HOBSON, P., HATIPOGLU, E., NGAI, Y., HUSSAIN, S., NICOD, J.,

519	GOLDSTONE, R., AMBROSE, K., HINDMARSH, S., BEALE, R., RIDDELL, A.,
520	GAMBLIN, S., HOWELL, M., KASSIOTIS, G., LIBRI, V., WILLIAMS, B.,
521	SWANTON, C., GANDHI, S. & BAUER, D. L. 2021. Neutralising antibody activity
522	against SARS-CoV-2 VOCs B.1.617.2 and B.1.351 by BNT162b2 vaccination. Lancet,
523	397, 2331-2333.
524	WANG, R., CHEN, J., GAO, K. & WEI, G. W. 2021. Vaccine-escape and fast-growing
525	mutations in the United Kingdom, the United States, Singapore, Spain, India, and other
526	COVID-19-devastated countries. Genomics, 113, 2158-2170.
527	XIA, S., ZHANG, Y., WANG, Y., WANG, H., YANG, Y., GAO, G. F., TAN, W., WU, G., XU,
528	M., LOU, Z., HUANG, W., XU, W., HUANG, B., WANG, H., WANG, W., ZHANG,
529	W., LI, N., XIE, Z., DING, L., YOU, W., ZHAO, Y., YANG, X., LIU, Y., WANG, Q.,
530	HUANG, L., YANG, Y., XU, G., LUO, B., WANG, W., LIU, P., GUO, W. & YANG, X.
531	2021. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV:
532	a randomised, double-blind, placebo-controlled, phase 1/2 trial. Lancet Infect Dis, 21, 39-
533	51.
534	XU, Z., SHI, L., WANG, Y., ZHANG, J., HUANG, L., ZHANG, C., LIU, S., ZHAO, P., LIU,
535	H., ZHU, L., TAI, Y., BAI, C., GAO, T., SONG, J., XIA, P., DONG, J., ZHAO, J. &
536	WANG, F. S. 2020. Pathological findings of COVID-19 associated with acute respiratory
537	distress syndrome. Lancet Respir Med, 8, 420-422.
538	ZHOU, B., THAO, T. T. N., HOFFMANN, D., TADDEO, A., EBERT, N., LABROUSSAA, F.,
539	POHLMANN, A., KING, J., STEINER, S., KELLY, J. N., PORTMANN, J., HALWE, N.
540	J., ULRICH, L., TRUEB, B. S., FAN, X., HOFFMANN, B., WANG, L., THOMANN, L.,
541	LIN, X., STALDER, H., POZZI, B., DE BROT, S., JIANG, N., CUI, D., HOSSAIN, J.,
542	WILSON, M. M., KELLER, M. W., STARK, T. J., BARNES, J. R., DIJKMAN, R.,

543	JORES, J., BENARAFA, C., WENTWORTH, D. E., THIEL, V. & BEER, M. 2021.
544	SARS-CoV-2 spike D614G change enhances replication and transmission. <i>Nature</i> , 592,
545	122-127.
546	
547	
548	
549	
550	
551	
552	
553	
554	
555	
556	
557	
558	
559	
560	
561	
562	
563	
564	
565	
566	

567 Figure legends

568

569 Figure 1: The spike protein of SARS-CoV-2 B.1.617.2 promotes efficient entry into human

- 570 lung and colon cells, causes more cell-to-cell fusion and evades from antibody-mediated
- 571 neutralization.
- 572 (A) Schematic overview of the S protein from SARS-CoV-2 variant B.1.617.2 (RBD, receptor-
- 573 binding domain; TD, transmembrane domain).
- (B) Location of the mutations found in SARS-CoV-2 variant B.1.617.2 in the context of the
- trimeric spike protein (Color code: light blue, S1 subunit with RBD in dark blue; gray, S2

subunit; orange, S1/S2 and S2' cleavage sites; red, mutated amino acid residues).

- 577 (C) Pseudotyped particles bearing the S protein of wildtype (WT) SARS-CoV-2 or variant
- 578 B.1.617.2 were inoculated onto the indicated cell lines and transduction efficiency was quantified
- 579 by measuring virus-encoded luciferase activity in cell lysates at 16-18 h post transduction.
- 580 Presented are the average (mean) data from six biological replicates (each conducted with
- technical quadruplicates) for which transduction was normalized against SARS-CoV-2 S WT (=
- 1). Error bars indicate the standard error of the mean. Statistical significance of differences
- between WT and B.1.617.2 S proteins was analyzed by two-tailed Students t-test (p > 0.05, not
- significant [ns]; $p \le 0.01$, **). See also Figure S1A.
- 585 (D) BHK-21 expressing the S protein of WT SARS-CoV-2 or variant B.1.617.2 were
- subsequently incubated with soluble ACE2 (harboring a C-terminal Fc-tag derived from human
- IgG) and AlexaFluor-488-conjugated anti-human antibody, before being subjected to flow
- 588 cytometry. ACE2 binding efficiency was analyzed by measuring the geometric mean channel
- fluorescence at 488 nm. Untransfected cells and cells transfected with empty expression plasmid
- served as controls. Presented are the average (mean) data from six biological replicates (each

591	conducted with single samples). Error bars indicate the standard deviation (SD). Statistical
592	significance of differences between WT and variant B.1.617.2 S proteins was analyzed by two-
593	tailed Students t-test ($p > 0.05$, ns).
594	(E) Analysis of S protein induced cell-to-cell fusion. A549-ACE2 cells were transfected with
595	expression plasmid for the indicated S proteins or empty vector (EV). At 24 h posttransfection,
596	cells were fixed and subsequently stained with May-Gruenwald and Giemsa solutions.
597	Presented are representative microscopic images (scale bar = $200 \ \mu m$). For quantification of
598	fusion efficiency, the total number of nuclei in syncytia per image was counted. Presented are the
599	average (mean) data from four biological replicates (each conducted with single samples; for
600	each sample, three randomly selected areas were imaged and independently analyzed by two
601	persons). Error bars indicate the SEM. Statistical significance of differences between WT and
602	B.1.617.2 S proteins was analyzed by two-tailed Students t-test ($p \le 0.001$, ***).
603	(F) Neutralization of SARS-CoV-2 WT, B.1.351 and B.1.617.2 S proteins by monoclonal
604	antibodies used for COVID-19 therapy. Pseudotyped particles bearing the S protein of WT
605	SARS-CoV-2 or variant B.1.617.2 were incubated for 30 min at 37 °C in the presence of
606	escalating concentrations (0.00002, 0.0002, 0.002, 0.02, 0.2, 2 μ g/ml) of the indicated SARS-
607	CoV-2 S protein-specific monoclonal antibody (please see Figure S1B) or an unrelated control
608	antibody (please see Figure S1C), before being inoculated onto Vero cells. Transduction
609	efficiency was quantified by measuring virus-encoded luciferase activity in cell lysates at 16-18 h
610	post transduction. Presented are the average (mean) data from a single biological replicate
611	(conducted with technical quadruplicates) for which transduction was normalized against samples
612	that did not contain any antibody (= 0% inhibition). Error bars indicate the SD.
613	(G) Neutralization of SARS-CoV-2 WT, B.1.351 and B.1.617.2 S proteins by antibodies in
614	convalescent plasma. Pseudotyped particles bearing the S protein of WT SARS-CoV-2 or variant

615	B.1.617.2 were incubated for 30 min at 37 °C in the presence of different dilutions of
616	convalescent plasma (1:25, 1:100, 1:400, 1:1,600, 1:6,400, 1:25,600). Transduction efficiency
617	was quantified by measuring virus-encoded luciferase activity in cell lysates at 16-18 h post-
618	transduction and used to calculate the plasma dilution factor that leads to 50 % reduction in S
619	protein-driven cell entry (neutralizing titer 50, NT50). Presented are the data from a total of eight
620	convalescent plasma (black lines indicate the median). Statistical significance of differences
621	between the indicated groups was analyzed by two-tailed Students t-test (p > 0.05, ns; p \leq 0.05, *;
622	$p \le 0.01$, **; $p \le 0.001$, ***). Please see also Figure S1D.
623	(G) The experiment was performed as described for panel F but this time serum from
624	Comirnaty/BNT162b2-vaccinated individuals was investigated. Presented are the data from a
625	total of fifteen vaccinee sera (black lines indicate the median). Please see also Figure S1E.
626	
627	
628	
629	
630	
631	
632	
633	
634	
635	
636	
637	
638	

1 SI Figure Legend

2

3	Figure S1: Cell entry and evasion of antibody-mediated neutralization by the spike protein
4	of SARS-CoV-2 B.1.617.2 (related to Figure 1).
5	(A) Transduction data normalized against the assay background (related to Figure 1C). The
6	experiment was performed as described in the legend of Figure 1C. Presented are the average
7	(mean) data from the same six biological replicates (each conducted with technical
8	quadruplicates) as presented in Figure 1C with the difference that transduction was normalized
9	against signals obtained from cells inoculated with particles bearing no viral glycoprotein
10	(background, set as 1). In addition, transduction data of particles bearing VSV-G are included.
11	Error bars indicate the SEM.
12	(B) Location of the receptor binding domain (gray) mutations L452R and T478K (both red) of
13	SARS-CoV-2 variant B.1.617.2 in the context of the interfaces for ACE2 binding (orange) and
14	binding of monoclonal antibodies used for COVID-19 therapy.
15	(C) An unrelated control antibody does not affect cell entry of pseudotype particles bearing
16	SARS-CoV-2 WT, B.1.351 or B.1.617.2 S (related to Figure 1E). The experiment was performed
17	as described in the legend of Figure 1E.
18	(D) Individual neutralization data for convalescent plasma (related to Figure 1F). Pseudotype
19	particles bearing the indicated S proteins were incubated (30 min, 37 °C) with different dilutions
20	of convalescent plasma before being inoculated onto Vero cells. Transduction efficiency was
21	quantified by measuring virus-encoded luciferase activity in cell lysates at 16-18 h
22	posttransduction. Presented are the data from a single representative experiment conducted with
23	technical quadruplicates. For normalization, inhibition of S protein-driven entry in samples
24	without plasma was set as 0%. Error bars indicate the SD. The data were further used to

- calculated the plasma/serum dilution that leads to 50% reduction in S protein-driven cell entry
- 26 (neutralizing titer 50, NT50; shown in Figure 1F).
- 27 (E) Individual neutralization data for vaccinee serum (related to Figure 1G). Pseudotype particles
- 28 bearing the indicated S proteins were incubated (30 min, 37 °C) with different dilutions of serum
- 29 from individuals vaccinated with the Pfizer/BioNTech vaccine Comirnaty/BNT162b2 before
- 30 being inoculated onto Vero cells. Transduction efficiency was quantified by measuring virus-
- encoded luciferase activity in cell lysates at 16-18 h posttransduction. Presented are the data from
- 32 a single representative experiment conducted with technical quadruplicates. For normalization,
- 33 inhibition of S protein-driven entry in samples without plasma was set as 0%. Error bars indicate
- the SD. The data were further used to calculated the NT50 shown (shown in Figure 1G).

35

Figure S1

