MMWR

Morbidity and Mortality Weekly Report

Weekly

April 6, 2007 / Vol. 56 / No. 13

Fatal Occupational Injuries - United States, 2005

Data from the annual Census of Fatal Occupational Injuries (CFOI), collected by the Bureau of Labor Statistics (BLS), provide information on fatal occupational injuries that occur in the United States. CDC's National Institute for Occupational Safety and Health (NIOSH) uses CFOI data to support research and evaluation activities related to the National Occupational Research Agenda (NORA), a partnership between the public and private sectors to encourage workplace safety and health research (1). Since 1992, when BLS first introduced CFOI, BLS has annually reported data on fatal occupational injuries from all 50 states and the District of Columbia. For 2005, BLS reported a total of 5,702* workrelated fatal injuries and a rate of 4.0 deaths per 100,000 workers (2); compared with 1992 , this represents an 8% decline in the number of deaths (from 6,217 in 1992) and a 23% decline in the fatality rate (from 5.2 in 1992). This report summarizes the 2005 data, which indicated that the highest percentages of fatal workplace injuries were attributed to highway incidents, followed by falls, being struck by an object, and homicides. Since 1992, the number of deaths resulting from highway incidents, falls, and being struck by an object has increased, and the number of homicides has decreased. To reduce the number of workplace deaths, transportation measures targeting workers (e.g., truck safety and highway workzone safety) should be enhanced by state and local transportation agencies and coordinated with highway-safety measures for the general public.

CFOI collects data on fatal occupational injuries from various federal, state, and local source documents, including death certificates, workers' compensation reports, medical examiner reports, and police reports. More than 95% of cases are veri-

[^0]fied by at least two independent sources (2). To be included in CFOI, the decedent must have been employed at the time of the event, been engaged in a legal work activity, ${ }^{\dagger}$ or been present at a site as a job requirement. Public- and privatesector noninstitutionalized workers (i.e., wage and salary, selfemployed, and volunteer) are included. CFOI excludes deaths that occurred during a worker's normal commute to and from work and deaths related to occupational illnesses (e.g., lung disease or cancer). Incident characteristics from the various CFOI source documents were used to code the event or exposure that directly caused the death, according to the Occupational Injury and Illness Classification System (OIICS) (3). The industry in which the decedent worked is coded according to the North American Industry Classification System (NAICS) (4). For NORA, the detailed codes from the 20 NAICS sectors are combined into eight industry sectors (1) according to the similarity of their occupational safety and health risks: 1) agriculture, forestry, and fishing; 2) mining; 3) construction; 4) manufacturing; 5) wholesale and retail trade; 6) transportation, warehousing, and utilities; 7) services; and 8) health care and social assistance.
For this analysis, fatality rates were calculated using estimates of employed civilian workers from the 2005 Current Population Survey (CPS) (5) and numbers of military personnel residing in the United States provided by the U.S.

[^1]
INSIDE

301 Prevalence of Fruit and Vegetable Consumption and Physical Activity by Race/Ethnicity — United States, 2005
304 Elimination of Measles - South Korea, 2001-2006
307 Notices to Readers
309 QuickStats

The MMWR series of publications is published by the Coordinating Center for Health Information and Service, Centers for Disease Control and Prevention (CDC), U.S. Department of Health and Human Services, Atlanta, GA 30333.
Suggested Citation: Centers for Disease Control and Prevention. [Article title]. MMWR 2007;56:[inclusive page numbers].

Centers for Disease Control and Prevention
Julie L. Gerberding, MD, MPH Director
Tanja Popovic, MD, PhD
(Acting) Chief Science Officer
James W. Stephens, PhD (Acting) Associate Director for Science

Steven L. Solomon, MD
Director, Coordinating Center for Health Information and Service
Jay M. Bernhardt, PhD, MPH
Director, National Center for Health Marketing
B. Kathleen Skipper, MA
(Acting) Director, Division of Health Information Dissemination (Proposed)
Editorial and Production Staff
Frederic E. Shaw, MD, JD
Editor, MMWR Series
Suzanne M. Hewitt, MPA
Managing Editor, MMWR Series
Douglas W. Weatherwax (Acting) Lead Technical Writer-Editor

Catherine H. Bricker, MS Jude C. Rutledge
Writers-Editors Beverly J. Holland
Lead Visual Information Specialist
Lynda G. Cupell Malbea A. LaPete Visual Information Specialists

Quang M. Doan, MBA Erica R. Shaver
Information Technology Specialists

Editorial Board

William L. Roper, MD, MPH, Chapel Hill, NC, Chairman Virginia A. Caine, MD, Indianapolis, IN David W. Fleming, MD, Seattle, WA William E. Halperin, MD, DrPH, MPH, Newark, NJ Margaret A. Hamburg, MD, Washington, DC

King K. Holmes, MD, PhD, Seattle, WA Deborah Holtzman, PhD, Atlanta, GA John K. Iglehart, Bethesda, MD Dennis G. Maki, MD, Madison, WI Sue Mallonee, MPH, Oklahoma City, OK Stanley A. Plotkin, MD, Doylestown, PA Patricia Quinlisk, MD, MPH, Des Moines, IA Patrick L. Remington, MD, MPH, Madison, WI Barbara K. Rimer, DrPH, Chapel Hill, NC John V. Rullan, MD, MPH, San Juan, PR Anne Schuchat, MD, Atlanta, GA Dixie E. Snider, MD, MPH, Atlanta, GA John W. Ward, MD, Atlanta, GA

Department of Defense (2005 data) ${ }^{\S}$; rates are expressed as number of work-related deaths per 100,000 workers. CPS is a monthly household survey of the U.S. civilian, noninstitutionalized population aged ≥ 16 years that includes wage and salary, self-employed, and part-time workers, in addition to unpaid workers in family-operated enterprises (e.g., farms and small businesses) (5). Rates are reported for workers aged ≥ 16 years; numbers of deaths are reported for all ages. ${ }^{9}$
In 2005, U.S. workers died from an injury while at work at a rate of 4.0 per 100,000 workers. Males accounted for 93% of all deaths and had a work-related fatality rate approximately 12 times the rate for females (6.9 per 100,000 workers versus 0.6). Workers aged $35-54$ years accounted for 46% of workplace deaths. Rates increased with age, from 2.3 per 100,000 workers for those aged 16-19 years to 11.3 for workers aged ≥ 65 years.
Approximately 43% of fatal work-related injuries resulted from transportation incidents (Table); 58\% $(1,428)$ of these deaths involved highway incidents (i.e., incidents that occurred on public roads and surrounding areas such as roadway shoulders, excluding incidents in parking lots or on commercial or farm properties). The majority of the remaining transportation-related deaths involved workers who were struck by vehicles or mobile equipment and workers who were vehicle occupants in nonhighway incidents (i.e., transportation incidents that occurred or originated entirely off the highway or that occurred or originated on industrial, commercial, residential, or farm premises). The remaining categories with the highest rates of fatal occupational injuries were contact with objects or equipment (e.g., being struck by a falling object such as a tree, being crushed during a cave-in while digging ditches, or getting caught in running machinery) (18\%), assaults and violent acts (14\%), and falls (13\%).

During 1992-2005, highway incidents remained the leading cause of fatal occupational injury, with rates that remained nearly constant, from 0.96 per 100,000 workers in 1992 to 1.0 in 2005 . During the same period, rates for falls also remained nearly constant, from 0.50 per 100,000 workers in 1992 to 0.54 in 2005 . The homicide rate decreased 55%, from 0.87 per 100,000 in 1992 to 0.39 in 2005.

In 2005, one NORA industry sector had a lower fatality rate than other sectors but a high number of fatal injuries (the services sector, with 1,494 deaths) (Table). Similarly, one sector had a higher fatality rate but fewer deaths (the mining sector, with 159 deaths). Sectors with both high numbers of

[^2]TABLE. Number and rate* of fatal occupational injuries, by selected event or exposure ${ }^{\dagger}$ and NORA industry sector§_United States, 2005

Event or exposure	Total fatal injuries		NORA industry sector															
			Agriculture, forestry, fishing		Mining		Construction		Manufacturing		Trade		Transportation, warehousing, utilities		Services		Health care, social assistance	
	No.	(\%)	No.	Rate														
Total ${ }^{1 /}$	5,702	(100)	718	31.6	159	25.5	1,238	11.1	394	2.4	602	2.8	967	13.1	1,494	2.2	119	0.7
Transportation	2,480	(43)	349	15.2	60	9.6	348	3.1	109	0.7	223	1.0	706	9.6	621	0.9	64	0.4
Highway incidents	1,428	(25)	93	4.2	35	5.6	161	1.4	52	0.3	175	0.8	524	7.1	352	0.5	36	0.2
Worker struck by vehicle or equipment	390	(7)	23	1.0	-	-	116	1.0	20	0.1	27	0.1	83	1.1	113	0.2	-	-
Nonhighway incidents	340	(6)	162	7.1	-	-	53	0.5	18	0.1	11	0.1	16	0.2	64	0.1	-	-
Contact with objects and equipment**	1,001	(18)	220	9.7	-	-	250	2.2	138	0.8	74	0.3	98	1.3	163	0.2	-	-
Struck by object	604	(11)	154	6.9	-	-	134	1.2	69	0.4	46	0.2	61	0.8	110	0.2	-	-
Falls	767	(13)	31	1.4	11	1.8	396	3.5	48	0.3	53	0.2	46	0.6	167	0.2	13	0.1
Falls to lower level ${ }^{\dagger \dagger}$	662	(12)	26	1.2	-	-	386	3.4	42	0.3	35	0.2	33	0.4	124	0.2	-	-
Assaults and violent acts	787	(14)	50	2.2	5	0.8	36	0.3	35	0.2	212	1.0	62	0.8	354	0.5	29	0.2
Homicides	564	(10)	6	0.3	-	-	24	0.2	21	0.1	187	0.9	44	0.6	262	0.4	-	-
Exposure to harmful substances or environments \S	496	(9)	51	2.3	16	2.6	166	1.5	35	0.2	23	0.1	45	0.6	149	0.2	10	0.1
Contact with electric current	250	(4)	17	0.8	-	-	109	1.0	17	0.1	16	0.1	16	0.2	64	0.1	-	-
Fires and explosions	158	(3)	16	0.7	-	-	41	0.4	27	0.2	13	0.1	10	0.1	35	0.1	-	-
Fires	91	(2)	13	0.6	-	-	27	0.2	11	0.1	9	<0.1	-	-	21	<0.1	-	-

* Per 100,000 workers aged ≥ 16 years. Rates were calculated based on the number of fatalities from the Bureau of Labor Statistics (BLS) Census of Fatal Occupational Injuries in 2005; the number of employed workers from the BLS Current Population Survey, 2005; and the number of resident military personnel from the Department of Defense (2005 data). Per BLS publication requirements, numbers of deaths are reported for workers of all ages, whereas rates are for workers aged ≥ 16 years. In 2005 , a total of 24 deaths involved workers aged <16 years.
\dagger Event or exposure according to the BLS Occupational Injury and Illness Classification System.
§ National Occupational Research Agenda. Industry in which the decedent worked was coded according to the 2002 North American Industry Classification System (NAICS). For NORA, the detailed codes from the 20 NAICS sectors are combined into eight industry sectors according to the similarity of their occupational safety and health risks: 1) agriculture, forestry, and fishing; 2) mining; 3) construction; 4) manufacturing; 5) wholesale and retail trade; 6) transportation, warehousing, and utilities; 7) services; and 8) health care and social assistance.

I Totals for major events or exposures include subcategories not shown separately. Dashes indicate no data reported or data that do not meet BLS publication criteria.
** Examples include being struck by a falling object such as a tree, being crushed during a cave-in while digging ditches, or getting caught in running machinery.
$\dagger \dagger$ Examples include falling from a ladder, roof, or scaffold; falling down stairs or steps; or falling through a floor or roof.
§§ Examples include heat stroke or hypothermia, poisoning through inhalation or ingestion of harmful substances, insect stings and animal bites, and non-transportation-related drownings.
deaths and high fatality rates included construction; transportation, warehousing, and utilities; and agriculture, forestry, and fishing.
Transportation incidents resulted in the highest rate of fatal occupational injuries for six of the eight NORA sectors (Table). Falls resulted in the highest rate in the construction sector, and contact with objects and equipment resulted in the highest rate in the manufacturing sector. Assaults and violent acts resulted in the second-highest rate for three sectors (trade, services, and health care and social assistance).

Highway incidents resulted in the highest fatal occupational injury rate for both sexes (Figure 1). However, for men, a fall to a lower level (e.g., falling from a ladder, roof, or scaffold; falling down stairs or steps; or falling through a floor or roof surface) had the second-highest fatality rate; for women, workplace homicide had the second-highest rate. Rates by type of event or exposure were similar among age groups, with highway incidents accounting for the highest rate among all age groups (Figure 2). However, workers aged ≥ 65 years had the highest rate for all types of fatal events.

FIGURE 1. Rate* of fatal occupational injuries, by selected event or exposure ${ }^{\dagger}$ and sex - United States, 2005

*Per 100,000 workers aged ≥ 16 years. Rates were calculated from the number of fatalities from the Bureau of Labor Statistics (BLS) Census of Fatal Occupational Injuries in 2005; the number of employed workers from the BLS Current Population Survey, 2005; and the number of resi\dagger dent military personnel from the U.S. Department of Defense (2005 data).
${ }^{\dagger}$ Event or exposure according to the BLS Occupational Injury and Illness Classification System.
${ }^{\text {E Examples include falling from a ladder, roof, or scaffold; falling down stairs }}$ or steps; or falling through a floor or roof.
${ }^{1}$ Nonhighway transportation incidents that occur or originate entirely off the highway or that occur or originate on industrial, commercial, residential, or farm premises.

FIGURE 2. Rate* of fatal occupational injuries, by selected event or exposure ${ }^{\dagger}$ and age group - United States, 2005

*Per 100,000 workers aged ≥ 16 years. Rates were calculated from the number of fatalities from the Bureau of Labor Statistics (BLS) Census of Fatal Occupational Injuries in 2005; the number of employed workers from the BLS Current Population Survey, 2005; and the number of resident military personnel from the U.S. Department of Defense (2005 data).
${ }^{\dagger}$ Event or exposure according to the BLS Occupational Injury and IIIness Classification System.
${ }^{\S}$ Examples include falling from a ladder, roof, or scaffold; falling down stairs or steps; or falling through a floor or roof.

Reported by: S Pegula, MS, Bur of Labor Statistics, US Dept of Labor. SM Marsh, MPA, LL Jackson, PhD, Div of Safety Research, National Institute for Occupational Safety and Health, CDC.
Editorial Note: The CFOI data in this report are comparable to other data on work-related deaths collected by CDC. CDC compiles mortality statistics based on data from U.S. death certificates and categorizes deaths according to codes from the International Classification of Diseases, Tenth Revision (ICD-10) (6). For 2004, the most recent data available, CDC reported 160,150 injury-related deaths among the U.S. population aged ≥ 15 years (7); 5,157 of all deaths were attributed to injuries at work.** CFOI uses death certificates as a primary data source, but CFOI also identifies occupational-injury deaths from other sources; thus, the number of work-related injury deaths reported by CDC was approximately 89% of the number reported from CFOI for 2004 (5,764). CFOI also might exclude some deaths that were indicated as work related by CDC because CFOI could not use multiple sources to verify that the deaths were work related.

Although differences in the CDC cause-of-death classification codes and CFOI event classification codes preclude direct comparisons in work-related mortality trends, basic

[^3]comparisons indicate similar trends in causes of death for workers and the general population (7). Because the distribution of deaths for workers and the general population by cause of death is comparable (with the exception of suicide and unintentional poisoning), prevention strategies that simultaneously target both populations, such as those related to traffic safety (e.g., promotion of safety-belt use and prevention of impaired driving), might reduce unintentional injury deaths overall (8). This strategy might be advantageous in areas that frequently include both workers and the general population, such as highway work zones. Similarly, measures to reduce workplace violence should be integrated with broader communitywide violence-prevention strategies.
The findings in this report are subject to at least three limitations. First, 2005 CFOI data are preliminary. A certain number of additional deaths might be included before finalization of the data in 2007. Second, less than 5% of CFOI cases could not be verified by a second source; however, because initial source documents provided sufficient job-related information, the cases were included and might have resulted in an overestimation; conversely, exclusion of unsubstantiated or misidentified cases might have resulted in an underestimation. Finally, although CFOI data can include volunteers (e.g., hospital aides and firefighters), the CPS and military population data used for the rate denominator do not include volunteers; therefore, the difference in numerator and denominator populations used for calculations in this report might have resulted in an overestimation of the actual fatality rate.
Although substantial improvements have been made, preventable deaths from work-related injuries continue to occur at a rate of nearly 16 deaths per day. These findings suggest that workers continue to be at high risk for fatal highwayrelated incidents and falls. Implementation, evaluation, and dissemination of strategies to prevent workplace deaths should continue to focus on persons who are exposed to these risks.

References

1. CDC. The national occupational research agenda (NORA). Cincinnati, OH: US Department of Health and Human Services, CDC, National Institute for Occupational Safety and Health; 2006. Available at http:// www.cdc.gov/niosh/nora.
2. Bureau of Labor Statistics. National census of fatal occupational injuries in 2005. Washington, DC: US Department of Labor, Bureau of Labor Statistics; 2006. Available at http://www.bls.gov/news.release/ pdf/cfoi.pdf.
3. Bureau of Labor Statistics. Occupational injury and illness classification manual. Washington, DC: US Department of Labor, Bureau of Labor Statistics; 1992. Available at http://www.bls.gov/iif/oshoiics.htm.
4. US Bureau of the Census. North American industry classification system. Washington, DC: US Bureau of the Census; 2006. Available at http://www.census.gov/epcd/www/naics.html.
5. Bureau of Labor Statistics. Current population survey, 2005, and labor force, employment, and unemployment from the current population survey. In: BLS handbook of methods. Washington, DC: US Department of Labor, Bureau of Labor Statistics; 2003. Available at http:// www.bls.gov/cps/home.htm.
6. World Health Organization. International statistical classification of diseases and related health problems, tenth revision. Geneva, Switzerland: World Health Organization; 1992.
7. CDC. Deaths: final data for 2004. US Department of Health and Human Services, CDC, National Center for Health Statistics; 2007. Available at http://www.cdc.gov/nchs/deaths.htm.
8. CDC. Work-related roadway crashes—United States, 1992-2002. MMWR 2004;53:260-4.

Prevalence of Fruit and Vegetable Consumption and Physical Activity by Race/Ethnicity United States, 2005

Diets high in fruits and vegetables and participation in regular physical activity are associated with a lower risk for several chronic diseases and conditions (1). The National Cholesterol Education Program and the American Cancer Society both emphasize lifestyle modifications that include diet and physical activity to reduce disease risk.* These are also two of the strategies implemented by states participating in CDC's Nutrition and Physical Activity Program to Prevent Obesity and Other Chronic Diseases. To examine the combined prevalence of 1) consumption of fruits and vegetables five or more times per day and 2) regular physical activity among U.S. adults by race/ethnicity, CDC analyzed self-reported data from the 2005 Behavioral Risk Factor Surveillance System (BRFSS). This report describes the results of that analysis, which indicated that the combined prevalence of these two behavioral strategies was higher among men of multiple/other races (16.5%) compared with non-Hispanic white men (12.6\%). In addition, only 12.6% of non-Hispanic black women and 14.8% of Hispanic women, compared with 17.4% of nonHispanic white women, engaged in these two behavioral strategies. These results underscore the need to promote diets high in fruits and vegetables and regular physical activity among all populations in the United States and among racial and ethnic minority communities in particular.

BRFSS is a state-based, random-digit-dialed telephone survey of the noninstitutionalized U.S. civilian population aged ≥ 18 years. In 2005, the survey, which used a stratified, multi-

[^4]stage probability sampling design, was administered to a nationally representative sample of adults from the 50 states and the District of Columbia, Puerto Rico, and the U.S. Virgin Islands ($\mathrm{N}=356,112$). The median state response rate ${ }^{\dagger}$ was 51.1%, and the median cooperation rate ${ }^{\mathfrak{S}}$ was 75.1%, when calculated using Council of American Survey and Research Organizations guidelines. ${ }^{9}$ Data were weighted to the respondents' probabilities of being selected and to the age-, race-, and sex-specific populations from the states' annually adjusted census results to provide national estimates for the combined prevalence of the two behavioral strategies.
Respondents were asked to report their race and ethnicity; six categories are included in this report: non-Hispanic white, non-Hispanic black, Hispanic, American Indian/Alaska Native (AI/AN), Asian/Pacific Islander (A/PI), and multiracial/ other. Any respondent who reported being of Hispanic ethnicity was categorized as Hispanic regardless of race. After excluding 1) respondents who were from Puerto Rico or the U.S. Virgin Islands ($\mathrm{n}=6,211$), 2) respondents for whom information on race or ethnicity was missing or who replied "don't know" regarding race or ethnicity ($\mathrm{n}=3,349$), and 3) respondents who were missing information on physical activity ($\mathrm{n}=24,136$) or consumption of fruits and vegetables ($\mathrm{n}=$ 5,115), a total of 317,301 participants remained to constitute the final study sample.
To measure consumption of fruits and vegetables, respondents were asked, "How often do you drink fruit juices such as orange, grapefruit, or tomato?" "Not counting juice, how often do you eat fruit?" "How often do you eat green salad?" "How often do you eat potatoes, not including French fries, fried potatoes, or potato chips?" "How often do you eat carrots?" and "Not counting carrots, potatoes, or salad, how many servings of vegetables do you usually eat?" After the responses were summarized, respondents were classified as eating or not eating fruits and vegetables five or more times per day.
To measure physical activity, respondents were asked how often they engaged in physical activities of moderate intensity (i.e., brisk walking, bicycling, vacuuming, gardening, or anything else that causes small increases in breathing or heart rate) and vigorous intensity (i.e., running, aerobics, heavy yard work, or anything else that causes large increases in breathing or heart rate) for at least 10 minutes at a time in a usual week. Respondents were classified as being regularly active if they

[^5]reported engaging in moderate-intensity activity at least 30 minutes per day, 5 or more days per week, or vigorousintensity activity at least 20 minutes per day, 3 or more days per week. Respondents were classified as insufficiently active if they reported engaging in physical activity for at least 10 minutes per week, but did not meet the requirements for regular activity. Respondents who reported no instances of physical activity of ≥ 10 minutes' duration during a usual week were classified as inactive.
A combined variable was created to classify 1) respondents who ate fruits and vegetables five or more times per day and were regularly active and 2) respondents who did not engage in either behavior. Age-adjusted prevalence was stratified by sex and racial/ethnic population. The chi-square test was used to compare non-Hispanic whites with all other racial/ethnic populations. Because of the multiple comparisons, the Bonferroni correction was used to detect statistically significant differences ($\mathrm{p}<0.01$).

During 2005, the estimated prevalence of eating fruits and vegetables five or more times per day was lower for men than
women (Table). Compared with non-Hispanic white men (19.5\%), the prevalence of eating fruits and vegetables five or more times per day was significantly higher among A/PI men (25.1%) and men of multiple/other races (27.1%). Compared with non-Hispanic white women (28.8\%), the prevalence of eating fruits and vegetables five or more times per day was significantly higher among A/PI women (35.9\%).
Among men, engaging in regular physical activity was significantly less common for non-Hispanic blacks (45.9\%), Hispanics (42.5\%), and A/PIs (37.5\%) than for non-Hispanic whites (52.5\%). Among women, regular physical activity was significantly lower among non-Hispanic blacks (36.3%) and Hispanics (42.3\%) than among non-Hispanic whites (49.8\%).
Compared with non-Hispanic white men (12.6\%), the combined prevalence for eating fruits and vegetables five or more times per day and engaging in regular physical activity was significantly higher for men of multiple/other races (16.5%). Among women, the combined prevalence of eating fruits and vegetables five or more times per day and engaging in regular physical activity was significantly lower for non-Hispanic

TABLE. Prevalence of selected levels of fruit and vegetable consumption and physical activity, by sex and race/ethnicity - Behavioral Risk Factor Surveillance System, United States, 2005

Characteristic	No. in sample	White, non-Hispanic		Black, non-Hispanic		Hispanic		American Indian/ Alaska Native		Asian/ Pacific Islander		Multiracial/ Other	
		\%*	(95\% CI')	\%	(95\% CI)								
Men§													
Fruit and vegetable consumption													
<5 times per day	97,872	80.5	(80.1-81.0)	78.5	(76.6-80.2)	79.3	(77.1-81.3)	75.8	(70.8-80.1)	74.9 !	(71.1-78.5)	72.9 !\|	(69.4-76.1)
≥ 5 times per day	24,048	19.5	(19.0-20.0)	21.5	(19.8-23.4)	20.7	(18.7-23.0)	24.2	(19.9-29.2)	$25.1{ }^{11}$	(21.5-28.9)	$27.1{ }^{11}$	(23.9-30.6)
Physical activity status													
Regularly active	61,078	52.5	(52.0-53.1)	45.9 ${ }^{17}$	(43.9-48.0)	42.50	(40.1-44.9)	55.5	(51.0-59.9)	37.59	(33.7-41.5)	53.3	(49.8-56.7)
Insufficient	44,430	36.7	(36.1-37.3)	35.8	(33.9-37.8)	37.7	(35.3-40.1)	31.0	(26.9-35.5)	46.2 ¢	(42.0-50.4)	32.4	(29.2-35.7)
Inactive	16,412	10.8	(10.4-11.1)	18.3 \|	(16.8-19.9)	$19.8{ }^{\text {¹ }}$	(17.9-21.9)	13.5	(10.7-16.8)	16.3 ¢	(13.4-19.7)	$14.4{ }^{\text {¹ }}$	(11.9-17.2)
Combined ≥ 5 times per day for fruits and vegetables and regularly active	14,997	12.6						17.5					
Women**													
Fruit and vegetable consumption													
<5 times per day	138,826	71.2	(70.8-71.7)	72.7	(71.4-73.9)	71.7	(69.9-73.4)	67.5	(62.7-72.0)	64.19	(59.8-68.2)	69.1	(66.2-71.8)
≥ 5 times per day	56,555	28.8	(28.4-29.2)	27.3	(26.1-28.7)	28.3	(26.6-30.2)	32.5	(28.0-37.3)	35.9 !	(31.8-40.2)	30.9	(28.2-33.8)
Physical activity status													
Regularly active	89,739	49.8	(49.3-50.2)	36.3 !	(35.0-37.7)	42.3 !	(40.4-44.2)	50.3	(45.6-54.9)	45.5	(41.4-49.8)	48.0	(44.9-51.1)
Insufficient	76,430	38.9	(38.4-39.3)	40.6	(39.3-42.0)	37.8	(36.0-39.7)	34.0	(29.8-38.5)	38.7	(35.1-42.4)	37.0	(34.1-39.9)
Inactive	29,212	11.4	(11.1-11.6)	23.0 "	(21.9-24.2)	19.9"	(18.4-21.5)	15.7 T	(12.9-19.1)	15.8	(12.3-20.0)	15.0	(13.2-17.1)
Combined													
≥ 5 times per day for fruits and vegetables and regularly active	31,978	17.4	(17.0-17.7)	$12.6{ }^{\text {¹ }}$	(11.6-13.6)	$14.8{ }^{\text {f }}$	(13.4-16.3)	19.6	(15.6-24.2)	17.3	(14.6-20.4)	18.2	(15.7-21.0)

[^6]blacks (12.6\%) and Hispanics (14.8\%) than for non-Hispanic whites (17.4\%).
Reported by: J Kruger, MM Yore, M Solera, R Moeti, Div of Nutrition and Physical Activity, National Center for Chronic Disease Prevention and Health Promotion, CDC.
Editorial Note: This report describes racial/ethnic differences in the combined prevalence of engaging in two behavioral strategies for reducing the risk for chronic disease: consuming fruits and vegetables five or more times per day and engaging in regular physical activity. The findings indicate that 14.6% of U.S. adults surveyed engage in both of these behavioral strategies. A previously published report examined the combined prevalence of these two behaviors among black and Hispanic survey populations in the United States, the state of Michigan, and the Racial and Ethnic Approaches to Community Health (REACH) 2010 program communities in Detroit, Michigan, during 2001-2003; the results indicated that $7 \%-11 \%$ of respondents consumed five or more daily servings of fruits and vegetables and were regularly active (2). Although this finding applies to black and Hispanic populations alone and is not directly comparable with the data described in this report, both reports indicate that few adults combine consuming fruits and vegetables frequently and engaging in regular physical activity, thus missing an opportunity to help reduce their risk for chronic disease.

The findings in this report indicate racial/ethnic differences in combining these two behavioral strategies. Men of multiple/ other races had a significantly higher prevalence of combining the two strategies than did non-Hispanic whites. In addition, compared with non-Hispanic white women, non-Hispanic black women and Hispanic women had significantly lower prevalences of combining the two strategies. In part, these differences among women are attributed to the lower prevalence of physical activity among non-Hispanic blacks and Hispanics, a finding that is consistent with previous reports (3). This difference might be attributed to lack of access; previous studies have demonstrated that lower-income, nonwhite communities often lack facilities for physical activity and environments that are supportive of physical activity (4).

Despite the specific racial/ethnic differences observed in this report, the prevalence of engaging in both behaviors is low among all racial/ethnic populations. Thus, all populations should be targeted by interventions to increase consumption of fruits and vegetables and to increase regular physical activity. However, interventions are likely to be most effective if they are tailored to the needs of specific populations (e.g., Hispanics and non-Hispanic blacks) through strategies such as establishing programs in culturally relevant settings, promoting culturally appropriate foods and activities, and engaging members of the groups in development of interventions (5).

Interventions to promote the two behavioral strategies described in this report might be accomplished simultaneously or individually. Interventions should be comprehensive, combining both consumer education and environmental factors, such as the availability of fresh fruits and vegetables and access to these foods (G). New approaches, such as improving availability by developing alternative sources for fruits and vegetables (e.g., food cooperatives, farmers' markets, and community gardens) and providing alternative transportation options (e.g., car pools and ride-sharing programs) should be considered. The Community Guide to Preventive Services has identified nine evidence-based strategies to increase physical activity at the community level, including increasing access combined with informational approaches, interventions providing behavioral and social support, and environmental and policy approaches (7).
The findings in this report are subject to at least three limitations. First, prevalence estimates are based on self-reports and therefore are subject to reporting errors. Estimates of the intake of fruits and vegetables from short food-frequency questionnaires, such as the BRFSS module on fruits and vegetables, are lower than those made from other more extensive methods of dietary assessment used in research settings (8). Although the BRFSS fruit and vegetable module has been determined to have moderate validity and reliability in multiple population groups, its reliability has been determined to be lowest among AI/AN populations, and validity studies have not been conducted among AI/AN or A/PI populations (9). Similar questions on physical activity have been found to be reliable (10) but have not been validated by studies among subpopulations. Second, the BRFSS sample does not include persons who are institutionalized or who do not have landline telephones. To the extent that these groups have different behavioral patterns, the estimates of prevalence might be biased. Finally, because of the low response rate (51.1%) and because respondents from Puerto Rico and the U.S. Virgin Islands were excluded, results might not be representative of the U.S. population.
Increasing consumption of fruits and vegetables and levels of physical activity are two key strategies implemented by states in CDC's Nutrition and Physical Activity Program to Prevent Obesity and Other Chronic Diseases.** In these states, interventions to address these behaviors are implemented at individual, group, and community levels and include education, access to fruits and vegetables, and opportunities for physical activity in settings such as day care centers, work sites, and communities. State coordinators work with statewide coalitions and community partners to develop statewide action

[^7]plans and interventions to promote fruit and vegetable consumption and physical activity. In addition, CDC's REACH 2010 communities have demonstrated improvements in the consumption of fruits and vegetables and in physical activity in their target populations as a result of community interventions. ${ }^{\dagger \dagger}$
${ }^{\dagger \dagger}$ Additional information available at http://www.cdc.gov/reach2010.

References

1. US Department of Health and Human Services, US Department of Agriculture. Dietary guidelines for Americans 2005. 6th ed. Washington, DC: US Government Printing Office; 2005.
2. Kieffer EC, Sinco BR, Rafferty A, et al. Chronic disease-related behaviors and health among African Americans and Hispanics in the REACH Detroit 2010 communities, Michigan, and the United States. Health Promot Pract 2006;7(3 Suppl):256S-64S.
3. Jones DA, Ainsworth BE, Croft JB, Macera CA, Lloyd EE, Yusuf HR. Moderate leisure-time physical activity: who is meeting the public health recommendations? A national cross-sectional study. Arch Fam Med 1998;7:285-9.
4. Gordon-Larsen P, Nelson MC, Page P, Popkin BM. Inequality in the built environment underlies key health disparities in physical activity and obesity. Pediatrics 2006;117:417-24.
5. Kreuter MW, Lukwago SN, Bucholtz DC, Clark EM, SandersThompson V. Achieving cultural appropriateness in health promotion programs: targeted and tailored approaches. Health Educ Behav 2003;30:133-46.
6. French SA, Story M, Jeffery RW. Environmental influences on eating and physical activity. Annu Rev Public Health 2001;22:309-35.
7. Task Force on Community Preventive Services. Guide to community preventive services. Physical activity. Atlanta, GA: US Department of Health and Human Services, CDC; 2005. Available at http://www. thecommunityguide.org/pa/default.htm.
8. Serdula M, Coates R, Byers T, et al. Evaluation of a brief telephone questionnaire to estimate fruit and vegetable consumption in diverse study populations. Epidemiology 1993;4:455-63.
9. Nelson DE, Holtzman D, Bolen J, Stanwyck CA, Mack KA. Reliability and validity of measures from the Behavioral Risk Factor Surveillance System (BRFSS). Soz Praventivmed 2001;46(Suppl 1):S3-S42.
10. Brown WJ, Trost SG, Bauman A, Mummery K, Owen N. Test-retest reliability of four physical activity measures used in population surveys. J Sci Med Sport 2004;7:205-15.

Elimination of Measles South Korea, 2001-2006

Before the introduction of measles-containing vaccine (MCV), measles was endemic in South Korea. MCV became available in South Korea in 1965, and measles, mumps, and rubella (MMR) vaccine was added to the country's national immunization program in 1983, with 1 dose administered at age 9-15 months. In 1997, a second dose of MCV (MCV2) was added to the schedule; recommended ages for administration of MCV1 and MCV2 were 12-15 months and 4-6 years, respectively. However, with insufficient policies and programs in place to promote 2-dose coverage, this 1997 rec-
ommendation achieved limited coverage with 2 doses of MCV. In a 2000 seroepidemiologic study among children aged 7-9 years who had been eligible for vaccination since 1997, only 39% had received MCV2 (Korea Centers for Disease Control and Prevention [KCDC], unpublished data, 2001). During 2000-2001, South Korea experienced a measles epidemic that affected tens of thousands of children. In response, in 2001, South Korea announced a 5 -year National Measles Elimination Plan. This report describes the activities and summarizes the results of that plan, which enabled South Korea to announce in late 2006 that interruption of indigenous measles transmission had been achieved, making South Korea the first country in the World Health Organization's (WHO) Western Pacific Region declare measles eliminated.
The January 2000-July 2001 measles epidemic in South Korea resulted in approximately 55,000 reported cases (118 cases per 100,000 population) of measles and seven deaths. Most cases occurred among children aged <2 years and 7-15 years. Among patients aged <2 years, approximately 86% had not received measles vaccination; among patients aged 7-15 years, approximately 80% had received 1 dose of MCV. Fifteen measles virus strains were isolated and identified as genotype H1 (1).

National Measles Elimination Plan

Recognizing that indigenous measles virus circulation and periodic epidemics would continue without a more intensified approach, South Korea established a goal to eliminate measles by 2005. In 2001, a National Committee for Measles Elimination was formed to determine appropriate strategies, provide recommendations, and monitor progress. The committee included representatives from the Korean Ministry of Health \& Welfare, KCDC, the Korean Ministry of Education Welfare, the Korea Advisory Committee on Immunization Practice, the Korea Medical Association, the Korean Society of Pediatrics, and the Parents Association of True Education. Representatives of WHO's Western Pacific Regional Office (WPRO), and CDC served as advisors to the committee. Key elimination strategies developed by this group were 1) maintaining 2 -dose measles vaccination coverage of $\geq 95 \%$ by requiring completion of MCV2 for school entry by children aged 7 years, 2) conducting a measles vaccination catchup campaign among children aged $8-16$ years, and 3) strengthening case-based surveillance with laboratory confirmation of reported cases.
School entry. A new school-entry requirement was implemented in March 2001, resulting in 99\% of children aged 7 years entering primary school with documentation of MCV2. This was the first time vaccinations were required for school
entry in South Korea. Children without documented history of MCV2 were not refused admission but were directed to private clinics or public health centers where they were encouraged to receive vaccination. During the next 4 years, MCV2 coverage ranged from 95.0% to 99.9% among children aged 7 years entering school (2).
Catch-up campaign. During May 21-July 14, 2001, a nationwide measles-rubella (MR) vaccination catch-up campaign was conducted, targeting youths aged $8-16$ years who did not have documented evidence of receiving MCV2. The target age range was based on the epidemiology of the 2000-2001 measles epidemic (Figure 1) and on results from a 2000 population-based seroepidemiologic survey using enzyme linked immunosorbent assay (ELISA) to detect antimeasles immunoglobulin G (IgG) antibody* among 18,139 youths aged 7-18 years (Figure 2). The survey indicated that, by specific age, 5.3% (children aged 17 years) to 15.4% (children aged 10 years) of youths in the target age range lacked immunity to measles (KCDC, unpublished data, 2001). MR vaccine was selected for the campaign on the basis of results of a cost-benefit analysis (JK Lee, Seoul National University, Korea, unpublished data, 2003).

Information regarding the measles campaign and possible adverse events following immunization (AEFI) were publicized through the media and through school officials beginning 40 days before the campaign. Safe-injection and waste-management guidelines were distributed to vaccination teams before the campaign. AEFIs were monitored through passive surveillance in public health centers, private clinics, hospitals, and a toll-free telephone emergency call service. Vaccination teams, including a physician and two or three nurses, visited nearly every school in South Korea.

* Presence of IgG antibody might result from either vaccination or natural infection.

FIGURE 1. Incidence rate* of reported measles cases, by patient age ${ }^{1200}$ South Korea, 2000-2001

[^8]FIGURE 2. Proportion of persons aged 7-18 years* with measles susceptibility, ${ }^{\dagger}$ by age - South Korea, 2000

${ }^{*} \mathrm{~N}=18,139$.
${ }_{\S}^{\dagger}$ Defined as not having anti-measles immunoglobulin G antibody.
§ 95% confidence interval.

Among the 5.8 million youths in the target population, approximately 4.8 million (83%) were administered MR vaccine, $833,000(14 \%)$ had immunization records with previously documented MCV2, 132,000 (2.3\%) deferred vaccination to a later date, and 22,849 (0.4%) were not vaccinated because of contraindications. At the conclusion of the campaign, 97% of the target population had received MCV2, either before or during the campaign; coverage was high in all 16 provinces.
Enhanced surveillance. Before the 2000-2001 epidemic, the goal of measles surveillance in South Korea was to detect outbreaks; after the catch-up plan was implemented in 2001, the goal of surveillance became to monitor and confirm elimination of indigenous measles virus transmission in the country. To increase measles surveillance sensitivity, in July 2001, officers from the Division of Epidemic Intelligence Service of the KCDC began investigating suspected measles cases and collecting clinical specimens. A network of public- and privatesector laboratories was established at the national and provincial levels to confirm suspected cases serologically by ELISA for antimeasles immunoglobulin $\mathrm{M}(\mathrm{IgM})$ antibody and to conduct molecular diagnostics and genotyping on viral isolates (3). By 2006, among 126 reported measles cases (i.e., cases with rash and fever and either cough, coryza, or conjunctivitis), 107 (84.9%) were investigated within 48 hours of report, and adequate serologic specimens were collected from 117 (92.8\%). Laboratory results from all 117 cases with adequate specimens (100%) were available within 7 days. Measles virus was isolated from one identified chain of measles transmission involving 15 cases but not from sporadic confirmed cases.

Effects of Measles Elimination Activities

Before implementation of the National Measles Elimination Plan, South Korea experienced multiple measles epidem-
ics. Before the 2000-2001 epidemic, measles epidemics occurred during 1993-1994 and in 1990 (Table). The annual number of measles cases from 1990 to 2000 ranged from two in 1997 to 32,647 in 2000.
During 2002-2006, after implementation of the national plan, the number of annual confirmed measles cases ranged from six to 25 , with corresponding annual incidence ranging from 0.13 to 0.52 cases per million (KCDC, unpublished data, 2007). One confirmed measles case in 2002 was imported, as were two cases in 2003, one in 2005, and five in 2006. The annual number of reported measles cases that were not serologically confirmed (an indicator of measles surveillance sensitivity with a target incidence of at least one case per 100,000 population in 80% of districts) ranged from 45 to 132 , with corresponding annual incidence ranging from 0.09 to 0.28 cases per 100,000 population.
During 2002-2006, South Korea satisfied nearly all interim criteria for measles elimination as established by WHO/ WPRO. Those criteria include 1) less than one confirmed measles case reported per million population per year (excluding imported cases); 2) case-based surveillance with comprehensive reporting and investigation of all cases and chains of transmission; 3) maintaining 95% immunity to measles in each cohort in every district, as demonstrated by at least 95% coverage with 2 doses of MCV; and 4) importations leading to only small outbreaks (4). In South Korea, reported measles incidence has been less than one confirmed case per million population since 2002. Adequate serologic specimens have been collected from $>80 \%$ of reported suspected cases since

TABLE. Number of reported and confirmed measles cases, by
year- South Korea, $1990-2006$

Year	Total no. of reported cases	No. of confirmed cases
2006	126	25
2005	63	6
2004	71	6
2003	58	13
2002	143	11
2001	23,060	$-{ }^{*}$
2000	32,647	-
1999	88	-
1998	4	-
1997	2	-
1996	65	-
1995	71	-
1994	7,883	-
1993	1,503	-
1992	38	-
1990	258	-

${ }^{*}$ A full year confirmed case count was not available before 2002. Beginning in July 2001, specimens from all persons with reported measles were routinely sent for laboratory confirmation; cases were confirmed serologically or virologically.
2005. National coverage with 2 doses of MCV among children aged 7 years has been $\geq 95 \%$ since 2002. Additional evidence of high levels of protection against measles includes results from a 2004 seroepidemiologic study among school children. Among 7,131 youths aged 7-16 years, 6,583 (92.3\%; 95% confidence interval [CI] $=91.7-92.9$) had protective anti-measles IgG antibody titers of $\geq 150 \mathrm{MIU} / \mathrm{mL}$ (5), an increase from the 2000 seroepidemiologic study, in which $8,339(87.9 \% ; \mathrm{CI}=87.2-88.6)$ of 9,501 youths in the same age group had protective measles IgG antibody titers. Finally, the largest measles outbreak since the 2001 campaign, reported in 2006, consisted of 15 confirmed cases among children aged $1-5$ years and was caused by measles virus genotype H1 (6).

On November 7, 2006, the National Committee for Measles Elimination invited international measles authorities from WHO/WPRO, UNICEF, CDC, Japan National Institute of Infectious Diseases, and the International Vaccine Institute to meet in South Korea to review the evidence for elimination of indigenous measles transmission in accordance with WHO/ WPRO guidelines. Members of the group concluded that measles elimination had been achieved in South Korea.
Reported by: J-K Lee, MD, H-W Cho, PhD, D-K Oh, MD, Korea Centers for Disease Control and Prevention, South Korea. Western Pacific Regional Office, Manila, Philippines; Vaccines and Biologicals Dept, World Health Organization, Geneva, Switzerland. Global Immunization Div, National Center for Immunization and Respiratory Diseases, $C D C$.
Editorial Note: South Korea has rapidly interrupted indigenous transmission of endemic measles virus, thereby achieving measles elimination, by using WHO/WPRO's recommended strategies of appropriately targeted supplementary immunization activities (SIAs), high routine coverage with 2 doses of MCV, and case-based measles surveillance. In 2001, in the midst of an epidemic that resulted in approximately 55,000 cases of measles, South Korea established measles vaccination as a requirement for school entry for children aged 7 years, while simultaneously conducting a measles vaccination catch-up campaign among children in a wide age range. Usually, a catch-up measles elimination campaign also includes a younger population. However, implementing a school-entry requirement in a setting where school enrollment is $>95 \%$ ensured high routine MCV2 vaccination coverage.

The effect of school-entry requirements on achieving measles elimination has been demonstrated previously in the United States, where several states required a single dose of measles vaccine before school entry as early as the 1960s. In the 1970s and 1980s, more states adopted and strictly enforced such school entry requirements (7). A 2-dose MCV requirement was phased in beginning in 1989. By the fall of $2001,96 \%$ of states required 2 doses of MCV before enter-
ing primary school, and median MCV2 coverage of students entering primary school among 38 states surveyed was 97% (range: $57 \%-99 \%$) (8).
Despite apparent success in interrupting indigenous measles virus transmission in South Korea, the overall number of measles cases might be underreported because many parents seek health care for their children from the private sector, which might not adhere to case definitions and reporting requirements. The finding of a measles virus genotype H 1 isolate in the recent chain of measles transmission is difficult to interpret. Genotype H1 had been indigenous to South Korea before implementation of the catch-up campaign in 2001. More recently, this genotype was detected in Japan and Vietnam and in measles imported to the Americas and Europe. Multiple lineages of genotype H 1 also continue to circulate in China (9). Health officials in countries where measles is considered to be eliminated must remain vigilant through sensitive and timely case-based surveillance to potential recurrences of measles virus transmission.

The experience in South Korea demonstrated that introduction of a 2-dose measles vaccination schedule in 1997 without school-entry requirements was insufficient to prevent the 2000-2001 epidemic because of low MCV2 coverage. To eliminate indigenous measles virus circulation in the presence of repeated importations, high population immunity was ensured through 1) simultaneous implementation of a catchup vaccination campaign targeting a wide age range and requirements that students have documentation of MCV2 before school entry and 2) enhanced case-based measles surveillance. Maintaining elimination will require sustaining 2 -dose measles vaccination coverage $\geq 95 \%$ and maintaining sensitive case-based surveillance to identify whether and when preventive SIAs or other interventions might be required.

Acknowledgments

This report is based, in part, on technical assistance from WA Orenstein, MD, Emory University, Atlanta, Georgia; Y Baoping, MD, Western Pacific Regional Office, World Health Organization, Manila, Philippines; J McFarland, MD, UNICEF, New York, New York; and M Papania, MD, Office of the Chief Science Officer, CDC.

References

1. Korean Ministry of Health and Welfare and National Institute of Health. First year evaluation of the 5 -year measles elimination program in Korea, and challenges and opportunities to eliminate measles in the Western Pacific Region. Seoul, South Korea: Korean Ministry of Health and Welfare and National Institute of Health; 2001.
2. World Health Organization. WHO vaccine-preventable disease: monitoring system. 2006 global summary. Geneva, Switzerland: World Health Organization; 2006. Available at http://www.who.int/vaccines-documents/globalsummary/globalsummary.pdf.
3. World Health Organization. Global measles and rubella laboratory network—update. Wkly Epidemiol Rec 2005;80:384-8.
4. World Health Organization, Western Pacific Regional Office. Field guidelines for measles elimination. Manila, Philippines: World Health Organization; 2004. Available at http://www.wpro.who.int/publications.
5. Korea Centers for Disease Control and Prevention. The 5th year evaluation of the measles elimination program: the strategy for measles elimination and hepatitis B control. Seoul, South Korea: Korea Centers for Disease Control and Prevention; 2006.
6. Na BK, Shin JM, Lee JY, et al. Genetic and antigenic characterization of measles viruses that circulated in Korea during the 2000-2001 epidemic. J Med Virol 2003;70:649-54.
7. Orenstein WA, Hinman AR. The immunization system in the United States-role of school immunization laws. Vaccine 1999;17(Suppl 3):S19-24.
8. Kolasa MS, Klemperer-Johnson S, Papania MJ. Progress toward implementation of a second-dose measles immunization requirement for all schoolchildren in the United States. J Infect Dis 2004;189(Suppl 1):S98103.
9. Zhang Y, Zhu Z, Rota PA, et al. Molecular epidemiology of measles viruses in China, 1995-2003. Virol J 2007;4:14.

Notice to Readers

Addition of Novel Influenza A Virus Infections to the National Notifiable Diseases Surveillance System, 2007

On January 9, 2007, the Executive Committee of the Council of State and Territorial Epidemiologists (CSTE) approved an interim position statement, adding novel influenza A virus infections* to the National Notifiable Diseases Surveillance System (NNDSS) (1). This issue of $M M W R$ adds novel influenza A virus infection to Table I (Provisional cases of infrequently reported notifiable diseases, United States). The addition of this infection to NNDSS is expected to facilitate the following: 1) timely identification and confirmation of cases, 2) timely reporting of cases to CDC, and 3) early initiation of appropriate health responses to human infections with novel influenza A viruses that might have pandemic potential.
These infections must be reported immediately to the World Health Organization under the revised International Health Regulations (IHR) approved by the World Health Assembly on May 23, 2005 (2). The revised regulations will take effect in the United States on June 15, 2007. CDC is collaborating with partners to develop plans to implement the revised IHR by that date.

* Defined as human infections with influenza A viruses that are different from currently circulating human influenza H 1 and H 3 viruses.

References

1. Council of State and Territorial Epidemiologists. National reporting of novel influenza A virus infections, submitted January 5, 2007, and approved January 9, 2007. Available at http://www.cste.org/ps/2007 pdfs/novelfluanndssjan10final23.pdf.
2. World Health Organization. Revision of the international health regulations. Geneva, Switzerland: World Health Organization; 2005. Available at http://www.who.int/csr/ihr/IHRWHA58_3-en.pdf.

Notice to Readers

Satellite Broadcast: Preventing HIV/AIDS Among Men Who Have Sex with Men: Challenges and Innovations

CDC and the Public Health Training Network will present the satellite broadcast and webcast, "Preventing HIV/AIDS Among Men Who Have Sex with Men: Challenges and Innovations," on May 17, 2007, at 1 p.m. EDT. The 2-hour broadcast is designed to 1) raise awareness of the ongoing crisis of human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) among gay, bisexual, and other men who have sex with men (MSM); 2) promote greater understanding of the behaviors that affect HIV/AIDS risk among MSM; and 3) encourage providers of HIV-prevention services to implement effective interventions and strategies to reduce HIV transmission among MSM. The broadcast will highlight relevant research and examples of effective programs in the United States. A panel will answer viewer questions,
which can be sent by fax during the broadcast or by e-mail during and after the broadcast.

Organizations are responsible for setting up their own viewing locations and are encouraged to register their locations as soon as possible so that potential viewers can access information online. Additional information regarding the broadcast and directions for establishing and registering a viewing location are available at http://www.cdenpin-broadcast.org.

The broadcast also can be viewed live online and will be available on the Internet for 3 years at http://www2.cdc.gov/ phtn. DVDs and videotapes of the broadcast can be ordered by telephone (800-458-5231).

Erratum: Vol. 56, No. 12

In the QuickStats, "Percentage of Children with Selected Allergies,* by Age Group-United States, 2003-2005," the website provided as the source should have read http://www. cdc.gov/nchs/health_data_for_all_ages.htm.

QuickStats

FROM THE NATIONAL CENTER FOR HEALTH STATISTICS
Percentage Change in Death Rates for the Leading Causes of Unintentional Injury, by Mechanism of Injury — United States, 1999-2004

During 1999-2004, age-adjusted unintentional injury death rates increased 6.8%, from 35.3 per 100,000 population to 37.7. This increase was attributed primarily to increases in rates from motorcycle crashes, poisoning (including unintentional drug overdose), and falls. Similar but smaller increases were observed for these causes in 2003, thus the upward trend continued in 2004.

SOURCE: National Vital Statistics System (NVSS), 1999-2004. NVSS injury mortality data are available from CDC's Web-based Injury Statistics Query and Reporting System (WISQARS) at http://www.cdc.gov/ ncipc/wisqars.

TABLE I. Provisional cases of infrequently reported notifiable diseases ($<1,000$ cases reported during the preceding year) - United States, week ending March 31, 2007 (13th Week)*

[^9]TABLE II. Provisional cases of selected notifiable diseases, United States, weeks ending March 31, 2007, and April 1, 2006 (13th Week)*

Reporting area	Chlamydia ${ }^{\dagger}$					Coccidioidomycosis					Cryptosporidiosis				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$	Current week	Previous 52 weeks		$\begin{gathered} \text { Cum } \\ 2007 \end{gathered}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \\ & \hline \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	12,198	19,779	23,532	216,320	247,345	111	151	478	1,939	2,227	21	68	301	549	646
New England	664	674	1,364	8,103	7,124	-	0	0	-	-	2	3	22	23	73
Connecticut	171	198	833	1,788	1,422	N	0	0	N	N	-	0	5	5	38
Maine ${ }^{\text {® }}$	50	46	73	652	494	-	0	0	-	-	-	0	6	7	8
Massachusetts	383	304	604	4,117	3,624	-	0	0	-	-	-	0	14	-	20
New Hampshire	8	39	69	471	438	-	0	0	-	-	2	0	5	6	5
Rhode Island ${ }^{\text {® }}$	42	64	108	856	829	-	0	0	-	-	-	0	5		-
Vermont ${ }^{\text {S }}$	10	20	45	219	317	N	0	0	N	N	-	1	5	5	2
Mid. Atlantic	1,597	2,478	4,163	28,530	30,246	-	0	0	-	-	2	11	33	68	102
New Jersey	-	387	543	3,420	4,776	N	0	0	N	N	-	0	3	-	5
New York (Upstate)	621	501	2,745	5,593	4,919	N	0	0	N	N	2	3	13	20	19
New York City	437	757	1,325	9,735	10,567	N	0	0	N	N	-	2	12	13	28
Pennsylvania	539	773	1,006	9,782	9,984	N	0	0	N	N	-	4	18	35	50
E.N. Central	1,197	3,214	4,501	35,335	43,225	-	1	3	9	8	4	16	110	111	151
Illinois	662	1,014	1,318	11,140	13,859	-	0	0	-	-	-	2	22	3	20
Indiana	-	374	631	4,664	5,226	-	0	0	-	-	2	1	18	10	9
Michigan	325	757	1,225	8,912	6,943	-	1	3	7	5	-	2	9	23	26
Ohio	121	643	2,311	6,443	11,579	-	0	2	2	3	2	5	33	46	56
Wisconsin	89	374	528	4,176	5,618	N	0	0	N	N	-	4	53	29	40
W.N. Central	460	1,186	1,445	13,405	15,799	-	0	54	2	-	4	12	77	83	78
lowa	122	156	225	2,064	2,230	N	0	0	N	N	-	2	28	13	6
Kansas	187	147	270	1,861	2,106	N	0	0	N	N	-	1	8	13	14
Minnesota	-	246	314	2,074	3,353	-	0	54	-	-	1	3	25	21	30
Missouri	-	447	628	5,220	5,666	-	0	1	2	-	2	2	21	15	17
Nebraska ${ }^{\text {§ }}$	97	102	180	1,260	1,324	N	0	0	N	N	1	1	16	6	4
North Dakota	3	30	64	316	474	N	0	0	N	N	-	0	1	1	-
South Dakota	51	50	84	610	646	N	0	0	N	N	-	1	7	14	7
S. Atlantic	3,238	3,732	6,115	36,106	47,192	-	0	1	1	2	8	17	68	172	157
Delaware	66	69	111	924	948	N	0	0	N	N	-	0	3	2	-
District of Columbia	-	64	161	1,062	707	-	0	0	-	-	-	0	2	3	5
Florida	-	960	1,187	3,300	11,648	N	0	0	N	N	3	8	32	87	62
Georgia	1	702	3,022	6,178	7,719	N	0	0	N	N	3	5	12	47	43
Maryland ${ }^{\text {® }}$	945	341	466	4,612	4,294	-	0	1	1	2	1	0	2	5	7
North Carolina	1,207	613	1,772	7,656	9,655	-	0	0	-	-	1	0	11	8	23
South Carolina ${ }^{\text {s }}$	404	384	2,105	5,806	5,312	N	0	0	N	N	-	1	14	11	5
Virginias	615	461	687	6,016	6,249	N	0	0	N	N	-	1	5	8	11
West Virginia	-	58	96	552	660	N	0	0	N	N	-	0	3	1	1
E.S. Central	1,264	1,456	2,083	19,002	18,995	-	0	0	-	-	-	3	14	27	15
Alabama ${ }^{\text {® }}$	-	421	651	3,967	6,400	N	0	0	N	N	-	0	11	12	7
Kentucky	149	131	691	1,473	2,343	N	0	0	N	N	-	1	3	9	4
Mississippi	539	392	958	6,033	3,918	N	0	0	N	N	-	0	3	3	
Tennessee ${ }^{\text {§ }}$	576	524	709	7,529	6,334	N	0	0	N	N	-	1	5	3	3
W.S. Central	1,698	2,125	3,025	24,349	27,110	-	0	1	-	-	-	5	45	22	27
Arkansas ${ }^{\text {® }}$	227	154	337	2,037	2,003	N	0	0	N	N	-	0	2	2	2
Louisiana	94	279	610	1,225	4,430	-	0	1	-	-	-	1	9	5	-
Oklahoma	428	257	473	3,572	2,511	N	0	0	N	N	-	1	4	10	9
Texas ${ }^{\text {® }}$	949	1,453	1,905	17,515	18,166	N	0	0	N	N	-	2	36	5	16
Mountain	417	1,269	2,018	10,639	15,691	98	103	201	1,361	1,693	1	3	39	29	23
Arizona	201	431	993	2,782	4,654	98	102	199	1,338	1,651	-	0	3	7	3
Colorado	-	317	416	1,781	3,814	N	0	0	N	N	-	1	7	11	4
Idahos	133	50	253	981	836	N	0	0	N	N	-	0	5	1	2
Montana ${ }^{\text {§ }}$	-	50	143	557	537	N	0	0	N	N	1	0	26	2	4
Nevada§	-	106	397	1,816	1,682	-	1	3	7	19	-	0	1	-	3
New Mexicos	-	180	314	1,270	2,569	-	0	3	5	4	-	0	5	5	2
Utah	67	97	201	1,132	1,232	-	1	4	11	17	-	0	3	1	5
Wyoming ${ }^{\text {§ }}$	16	28	54	320	367	-	0	0	-	2	-	0	11	2	-
Pacific	1,663	3,377	4,077	40,851	41,963	13	53	299	566	524	-	1	5	14	20
Alaska	-	86	157	984	1,028	N	0	0	N	N	-	0	1	-	-
California	1,122	2,670	3,187	31,774	32,370	13	53	299	566	524	-	0	0	-	-
Hawaii	-	107	133	1,216	1,470	N	0	0	N	N	-	0	1	-	-
Oregon ${ }^{\text {§ }}$	332	161	394	2,438	2,499	N	0	0	N	N	-	1	4	14	20
Washington	209	352	548	4,439	4,596	N	0	0	N	N	-	0	0	-	-
American Samoa	U	0	46	U	U	U	0	0	U	U	U	0	0	U	U
C.N.M.I.	U	0	0	U	U	U	0	0	U	U	U	0	0	U	U
Guam	-	0	0	-	-	-	0	0	-	-	-	0	0	-	
Puerto Rico	210	108	236	1,994	1,184	N	0	0	N	N	N	0	0	N	N
U.S. Virgin Islands	U	4	15	U	U	U	0	0	U	U	U	0	0	U	U

C.N.M.I.: Commonwealth of Northern Mariana Islands

U: Unavailable. -: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Incidence data for reporting years 2006 and 2007 are provisional. Data for HIV/AIDS, AIDS, and TB, when available, are displayed in Table IV, which appears quarterly

Chlamydia refers to genital infections caused by Chlamydia trachomatis.
${ }^{\S}$ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending March 31, 2007, and April 1, 2006 (13th Week)*

Reporting area	Giardiasis					Gonorrhea					Haemophilus influenzae, invasive All ages, all serotypes ${ }^{\dagger}$				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \\ & \hline \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	163	309	530	2,895	3,609	3,097	6,848	8,670	69,541	85,148	33	43	137	555	594
New England	4	18	44	112	246	100	111	259	1,276	1,187	-	2	12	23	31
Connecticut	-	5	25	48	45	39	42	203	376	367	-	0	7	15	8
Maine ${ }^{\text {® }}$	2	4	14	37	17	-	2	8	19	32	-	0	4	5	5
Massachusetts	-	0	18	-	129	47	48	96	697	597	-	0	7	-	15
New Hampshire	-	0	9	1	6	2	3	9	37	58	-	0	2	3	
Rhode Island ${ }^{\text {§ }}$	-	0	17	-	12	12	10	19	133	118	-	0	3	-	1
Vermont ${ }^{\text {}}$	2	3	12	26	37	-	1	5	14	15	-	0	2	-	2
Mid. Atlantic	22	64	120	532	732	390	633	1,521	7,745	8,274	10	10	25	121	135
New Jersey	-	7	16	36	116	-	103	158	1,123	1,363	-	1	4	8	22
New York (Upstate)	15	25	101	202	201	134	122	1,035	1,473	1,376	3	3	14	30	27
New York City	1	17	33	160	240	99	176	376	2,258	2,625	-	2	6	31	33
Pennsylvania	6	14	35	134	175	157	223	336	2,891	2,910	7	3	8	52	53
E.N. Central	19	40	96	393	632	533	1,290	2,227	14,207	17,488	4	6	14	54	85
Illinois	-	9	27	29	148	196	365	488	3,928	5,257	-	1	5	3	25
Indiana	N	0	0	N	N	-	154	288	1,919	2,297	1	1	10	7	12
Michigan	3	13	38	139	177	256	302	880	4,022	2,701	-	0	5	8	13
Ohio	16	15	32	178	187	46	315	1,196	2,837	5,329	3	2	6	36	21
Wisconsin	-	9	24	47	120	35	133	181	1,501	1,904	-	0	3	-	14
W.N. Central	9	23	117	211	327	103	384	518	4,355	4,804	2	3	22	33	28
lowa	2	5	16	45	58	25	37	63	475	462	-	0	1	-	-
Kansas	3	3	11	29	40	41	43	90	564	605	-	0	2	4	3
Minnesota	-	0	87	7	77	-	65	87	590	788	1	1	17	10	10
Missouri	4	9	28	103	107	-	195	269	2,354	2,510	-	1	5	15	12
Nebraska ${ }^{\text {§ }}$	-	2	9	18	21	30	24	48	290	320	1	0	2	3	3
North Dakota	-	0	4	-	4	-	2	6	14	29	-	0	2	1	-
South Dakota	-	1	6	9	20	7	6	15	68	90	-	0	0	-	-
S. Atlantic	55	51	97	583	525	603	1,613	2,696	14,194	20,720	13	11	28	159	150
Delaware	-	1	4	7	6	15	28	44	361	374	-	0	3	4	-
District of Columbia	-	1	7	15	15	-	35	63	484	466	-	0	2	2	-
Florida	23	23	44	265	229	-	446	549	1,564	5,360	4	3	9	49	46
Georgia	19	12	26	148	101	-	349	1,539	2,538	3,560	3	2	6	46	39
Maryland ${ }^{\text {§ }}$	7	4	11	46	46	230	118	159	1,499	1,678	2	2	5	27	19
North Carolina	-	0	0	-	-	-	317	608	3,809	4,947	2	0	8	13	14
South Carolina ${ }^{\S}$	2	2	8	14	22	135	167	1,135	2,312	2,453	1	1	3	12	11
Virginias	4	9	28	83	104	223	119	238	1,468	1,707	-	1	7	1	15
West Virginia	-	0	21	5	2	-	19	44	159	175	1	0	6	5	6
E.S. Central	6	8	34	86	92	373	577	878	6,737	7,538	2	2	9	31	41
Alabama ${ }^{\text {® }}$	2	4	22	41	43	-	193	286	1,633	2,940	-	0	5	7	10
Kentucky	N	0	0	N	N	34	51	268	479	824	-	0	1	1	4
Mississippi	N	0	0	N	N	174	151	434	2,106	1,474	-	0	1	-	2
Tennessee ${ }^{\text {§ }}$	4	4	12	45	49	165	194	240	2,519	2,300	2	1	6	23	25
W.S. Central	2	7	21	69	35	561	959	1,480	9,767	11,350	1	1	26	30	22
Arkansas ${ }^{\text {® }}$	2	3	13	32	16	107	79	142	953	1,168	-	0	2	2	2
Louisiana	-	1	6	12	-	45	167	366	935	2,566	-	0	3	3	1
Oklahoma	-	2	11	25	19	128	102	237	1,525	837	1	1	24	23	18
Texas ${ }^{\text {s }}$	N	0	0	N	N	281	581	928	6,354	6,779	-	0	2	2	1
Mountain	15	29	69	281	331	57	268	455	2,096	3,429	1	4	14	79	76
Arizona	1	3	11	47	38	36	106	220	607	1,124	-	2	9	40	29
Colorado	-	10	26	92	112	-	71	93	524	908	-	1	4	17	22
Idaho§	-	3	12	24	37	12	2	20	60	49	1	0	1	3	2
Montana ${ }^{\text {§ }}$	3	2	11	15	17	-	3	20	22	30	-	0	0	-	-
Nevada ${ }^{\text {§ }}$	2	1	9	19	21	-	30	135	453	581	-	0	2	3	6
New Mexico§	-	1	6	17	16	-	29	65	239	457	-	0	2	7	10
Utah	9	7	25	59	85	7	16	28	173	232	-	0	4	9	7
Wyoming ${ }^{\text {§ }}$	-	1	4	8	5	2	2	5	18	48	-	0	1	-	-
Pacific	31	60	147	628	689	377	787	971	9,164	10,358	-	2	8	25	26
Alaska	-	1	17	14	6	-	11	27	102	128	-	0	2	4	2
California	20	43	71	456	524	300	643	833	7,739	8,590	-	0	6	-	7
Hawaii	-	1	4	12	15	-	15	30	138	261	-	0	1	-	4
Oregon§	-	8	14	85	100	36	26	46	277	356	-	1	6	21	12
Washington	11	8	68	61	44	41	77	131	908	1,023	-	0	2	-	1
American Samoa	U	0	0	U	U	U	0	2	U	U	U	0	0	U	U
C.N.M.I.	U	0	0	U	U	U	0	0	U	U	U	0	0	U	U
Guam	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-
Puerto Rico	2	5	19	41	20	6	5	16	97	90	-	0	2	-	-
U.S. Virgin Islands	U	0	0	U	U	U	0	4	U	U	U	0	0	U	U

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. -: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Incidence data for reporting years 2006 and 2007 are provisional.
\dagger Data for H. influenzae (age <5 yrs for serotype b, nonserotype b, and unknown serotype) are available in Table I.
${ }^{\S}$ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending March 31, 2007, and April 1, 2006 (13th Week)*

Reporting area	Hepatitis (viral, acute), by type ${ }^{\dagger}$										Legionellosis				
	Current week	A				B									
		Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \\ & \hline \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	23	59	116	550	945	58	81	287	789	1,000	17	49	109	317	310
New England	1	2	20	6	68	-	2	4	16	39	-	1	12	3	16
Connecticut	-	1	3	4	9	-	0	4	8	17	-	0	9	2	3
Maine ${ }^{\text {§ }}$	-	0	2	-	3	-	0	2	1	4	-	0	2	-	2
Massachusetts	-	0	4	-	38	-	0	1	-	12	-	0	4	-	9
New Hampshire	1	0	16	2	13	-	0	1	2	4	-	0	0	-	1
Rhode Island ${ }^{\text {§ }}$	-	0	2	-	1	-	0	4	4	1	-	0	6	-	-
Vermont ${ }^{\text {8 }}$	-	0	2	-	4	-	0	1	1	1	-	0	2	1	1
Mid. Atlantic	1	7	19	67	77	6	8	19	84	125	2	15	53	82	96
New Jersey	-	1	4	6	29	-	2	6	16	39	-	2	11	11	14
New York (Upstate)	1	2	12	17	12	4	1	14	15	14	2	5	30	26	30
New York City	-	2	11	30	24	-	2	6	12	28	-	2	20	8	17
Pennsylvania	-	1	4	14	12	2	3	7	41	44	-	5	19	37	35
E.N. Central	3	6	13	66	77	5	9	19	92	121	3	10	30	66	56
Illinois	-	1	4	17	15	-	2	5	9	43	-	1	11	-	10
Indiana	-	0	7	5	4	3	0	17	5	5	-	1	5	4	3
Michigan	-	2	8	24	31	1	3	10	36	43	-	3	10	24	11
Ohio	3	1	4	20	20	1	3	10	37	28	3	4	19	37	21
Wisconsin	-	0	4	-	7	-	0	3	5	2	-	0	3	1	11
W.N. Central	-	2	8	14	31	-	3	13	33	41	-	1	15	11	7
lowa	-	0	1	4	3	-	0	3	7	6	-	0	3	1	-
Kansas	-	0	1	-	15	-	0	2	3	4	-	0	2	-	-
Minnesota	-	0	7	1	1	-	0	12	2	1	-	0	11	2	-
Missouri	-	1	3	5	7	-	1	5	16	27	-	0	2	6	5
Nebraska§	-	0	2	2	3	-	0	3	3	2	-	0	2	1	2
North Dakota	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-
South Dakota	-	0	3	2	2	-	0	1	2	1	-	0	1	1	-
S. Atlantic	7	8	27	100	147	22	23	55	236	278	10	10	25	89	75
Delaware	-	0	2	-	4	-	0	4	3	11	-	0	2	1	1
District of Columbia	-	0	5	9	1	1	0	2	1	4	-	0	5	-	1
Florida	1	3	13	42	54	6	7	16	83	105	5	3	10	38	35
Georgia	1	1	5	12	8	-	3	8	29	29	-	1	5	11	2
Maryland ${ }^{\text {§ }}$	2	1	7	10	22	-	2	7	20	45	1	2	8	20	18
North Carolina	1	0	11	6	34	12	1	16	48	49	2	0	5	9	9
South Carolina ${ }^{\text {® }}$	-	0	3	3	7	3	2	5	20	16	1	0	2	4	1
Virginias	2	1	4	18	16	-	2	5	25	8	-	1	5	3	7
West Virginia	-	0	3	-	1	-	0	23	7	11	1	0	4	3	1
E.S. Central	1	2	7	22	32	2	6	20	58	81	-	2	9	13	10
Alabama ${ }^{\text {® }}$	-	0	2	2	2	1	1	10	18	23	-	0	2	1	2
Kentucky	-	0	4	4	14	-	1	5	1	19	-	1	5	6	2
Mississippi	-	0	5	5	1	-	1	7	7	10	-	0	2	-	-
Tennessee ${ }^{\text {® }}$	1	1	5	11	15	1	3	7	32	29	-	1	7	6	6
W.S. Central	-	6	20	36	75	1	18	128	105	146	-	1	12	12	6
Arkansas ${ }^{\text {§ }}$	-	0	5	3	19	-	1	4	7	14	-	0	1	1	1
Louisiana	-	0	4	4	2	-	1	5	15	5	-	0	2	1	-
Oklahoma	-	0	3	-	3	1	1	14	9	1	-	0	6	-	1
Texas ${ }^{\text {§ }}$	-	5	15	29	51	-	14	108	74	126	-	1	12	10	4
Mountain	3	5	16	76	97	1	3	9	27	52	1	2	8	22	14
Arizona	2	3	13	66	58	-	0	2	-	19	1	1	4	7	3
Colorado	-	1	3	5	15	-	0	4	5	10	-	0	2	3	3
Idahos	1	0	2	1	4	-	0	2	3	4	-	0	3	1	2
Montana ${ }^{\text {§ }}$	-	0	3	-	1	-	0	0	-	-	-	0	1	-	-
Nevada§	-	0	2	3	5	-	1	5	10	11	-	0	2	2	3
New Mexicos	-	0	2	1	6	-	0	2	3	5	-	0	2	2	-
Utah	-	0	2	-	8	1	0	5	6	3	-	0	6	5	3
Wyoming ${ }^{\text {§ }}$	-	0	1	-	-	-	0	1	-	-	-	0	1	2	-
Pacific	7	15	52	163	341	21	12	38	138	117	1	1	11	19	30
Alaska	-	0	1	1	1	-	0	3	2	1	-	0	1	-	-
California	7	13	48	149	319	20	8	26	106	86	1	1	11	16	30
Hawaii	-	0	2	2	5	-	0	1	-	1	-	0	0	-	
Oregon§	-	1	3	6	9	-	2	5	21	21	-	0	0	-	-
Washington	-	1	4	5	7	1	1	12	9	8	-	0	2	3	-
American Samoa	U	0	0	U	U	U	0	0	U	U	U	0	0	U	U
C.N.M.I.	U	0	0	U	U	U	0	0	U	U	U	0	0	U	U
Guam	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-
Puerto Rico	-	1	10	9	12	-	1	9	11	4	-	0	1	-	-
U.S. Virgin Islands	U	0	0	U	U	U	0	0	U	U	U	0	0	U	U

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. -: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.
Incidence data for reporting years 2006 and 2007 are provisional
${ }_{\S}$ Data for acute hepatitis C, viral are available in Table I.
§ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending March 31, 2007, and April 1, 2006 (13th Week)*

Reporting area	Lyme disease					Malaria					Meningococcal disease, invasive ${ }^{\dagger}$ All serogroups				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	57	250	1,019	1,321	1,366	7	25	50	146	281	16	19	40	242	378
New England	1	20	260	75	91	-	0	6	-	9	-	1	3	5	13
Connecticut	-	9	227	20	38	-	0	3	-	1	-	0	2	2	3
Maine ${ }^{\text {® }}$	-	2	39	28	15	-	0	1	-	1	-	0	3	1	2
Massachusetts	-	0	3	-	19	-	0	3	-	5	-	0	2	-	6
New Hampshire	1	3	95	22	16	-	0	3	-	1	-	0	2	-	2
Rhode Island ${ }^{\text {§ }}$	-	0	93	-	1	-	0	1	-	-	-	0	1	-	-
Vermont ${ }^{\text {8 }}$	-	1	15	5	2	-	0	0	-	1	-	0	1	2	-
Mid. Atlantic	32	153	571	646	932	3	5	18	34	78	5	2	11	25	54
New Jersey	-	26	187	102	248	-	1	7	-	22	-	0	2	-	4
New York (Upstate)	29	54	392	180	334	3	1	7	9	6	2	1	4	7	8
New York City	-	3	24	5	15	-	3	9	19	40	-	1	4	4	21
Pennsylvania	3	45	237	359	335	-	1	4	6	10	3	0	4	14	21
E.N. Central	-	12	158	17	71	2	3	10	23	36	2	2	12	28	53
Illinois	-	0	1	-	-	-	1	6	6	12	-	0	3	3	15
Indiana	-	0	3	-	2	-	0	2	1	5	-	0	5	7	8
Michigan	-	1	5	6	3	1	0	2	6	5	-	0	4	8	9
Ohio	-	0	5	2	8	1	0	2	5	9	2	1	4	10	14
Wisconsin	-	11	154	9	58	-	0	3	5	5	-	0	2	-	7
W.N. Central	-	5	169	19	29	-	1	13	11	5	2	1	5	25	16
lowa	-	1	8	3	4	-	0	1	1	1	-	0	3	6	2
Kansas	-	0	2	1	-	-	0	2	-	-	-	0	1	1	-
Minnesota	-	2	167	15	24	-	0	12	7	2	2	0	3	6	2
Missouri	-	0	2	-	-	-	0	1	1	1	-	0	3	9	8
Nebraska ${ }^{\text {§ }}$	-	0	2	-	1	-	0	1	2	-	-	0	1	1	4
North Dakota	-	0	0	-	-	-	0	1	-	-	-	0	1	1	-
South Dakota	-	0	1	-	-	-	0	0	-	1	-	0	1	1	-
S. Atlantic	20	42	134	514	212	1	5	15	40	78	2	3	10	37	67
Delaware	3	8	28	88	74	-	0	1	1	1	-	0	1	-	2
District of Columbia	-	0	7	2	5	-	0	2	1	-	-	0	1	-	-
Florida	-	1	5	13	6	1	1	4	10	9	-	1	7	11	25
Georgia	-	0	1	-	1	-	1	6	4	21	-	0	3	6	6
Maryland ${ }^{\text {® }}$	10	20	103	344	116	-	1	4	12	21	-	0	2	10	6
North Carolina	4	0	4	5	8	-	0	4	4	9	1	0	6	4	11
South Carolina ${ }^{\text {§ }}$	-	0	2	3	1	-	0	2	-	3	1	0	2	4	6
Virginia ${ }^{\text {® }}$	3	6	36	59	1	-	1	4	8	13	-	0	2	2	10
West Virginia	-	0	14	-	-	-	0	1	-	1	-	0	2	-	1
E.S. Central	-	0	4	5	1	-	0	3	6	6	-	1	3	11	15
Alabama ${ }^{\text {8 }}$	-	0	3	1	1	-	0	2	-	2	-	0	2	2	3
Kentucky	-	0	2	-	-	-	0	1	1	1	-	0	1	-	3
Mississippi	-	0	1	-	-	-	0	1	1	1	-	0	3	3	3
Tennessee ${ }^{\text {® }}$	-	0	2	4	-	-	0	2	4	2	-	0	2	6	6
W.S. Central	1	0	6	6	2	-	1	7	3	8	2	1	9	30	22
Arkansas ${ }^{\text {§ }}$	-	0	0	-	-	-	0	2	\bigcirc	-	-	0	2	5	3
Louisiana	-	0	1	-	-	-	0	1	1	1	-	0	4	8	3
Oklahoma	-	0	0	-	-	-	0	2	1	1	2	0	3	6	5
Texas ${ }^{\text {¢ }}$	1	0	6	6	2	-	1	6	1	6	-	0	9	11	11
Mountain	-	0	4	2	2	-	1	6	7	17	1	1	5	21	27
Arizona	-	0	2	-	2	-	0	3	4	2	1	0	2	4	10
Colorado	-	0	1	-	-	-	0	2	1	6	-	0	2	4	10
Idaho§	-	0	2	-	-	-	0	1	-	-	-	0	1	2	1
Montanas	-	0	1	1	-	-	0	1	1	1	-	0	1	1	-
Nevadas	-	0	1	1	-	-	0	1	-	-	-	0	1	3	2
New Mexicos	-	0	1	-	-	-	0	1	-	1	-	0	1	1	1
Utah	-	0	1	-	-	-	0	2	1	7	-	0	2	6	3
Wyoming ${ }^{\text {§ }}$	-	0	1	-	-	-	0	0	-	-	-	0	2	-	-
Pacific	3	3	17	37	26	1	4	14	22	44	2	5	9	60	111
Alaska	-	0	1	2	-	-	0	4	2	4	-	0	1	1	2
California	3	2	14	31	26	1	2	6	16	34	2	3	8	42	72
Hawaii	N	0	0	N	N	-	0	2	-	-	-	0	2	2	4
Oregon§	-	0	2	4	-	-	0	3	3	4	-	0	3	8	17
Washington	-	0	3	-	-	-	0	11	1	2	-	0	5	7	16
American Samoa	U	0	0	U	U	U	0	0	U	U	U	0	0	-	-
C.N.M.I.	U	0	0	U	U	U	0	0	U	U	U	0	0	-	-
Guam	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-
Puerto Rico	N	0	0	N	N	-	0	1	1	-	-	0	1	3	2
U.S. Virgin Islands	U	0	0	U	U	U	0	0	U	U	U	0	0	-	-

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. -: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Incidence data for reporting years 2006 and 2007 are provisional.
${ }_{\S}$ Data for meningococcal disease, invasive caused by serogroups A, C, Y, \& W-135; serogroup B; other serogroup; and unknown serogroup are available in Table I.
${ }^{\text {® }}$ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending March 31, 2007, and April 1, 2006 (13th Week)*

Reporting area	Pertussis					Rabies, animal					Rocky Mountain spotted fever				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$	Current week	Previous 52 weeks		$\begin{gathered} \text { Cum } \\ 2007 \end{gathered}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	60	248	885	1,555	3,524	53	105	173	733	1,212	11	29	118	99	276
New England	-	19	53	46	375	5	11	26	94	126	-	0	1	-	-
Connecticut	-	1	9	-	20	-	4	14	38	26	-	0	0	-	-
Maine ${ }^{\dagger}$	-	2	15	24	21	-	2	8	16	18	N	0	0	N	N
Massachusetts	-	0	28	-	291	-	0	17	-	60	-	0	1	-	-
New Hampshire	-	2	27	7	2	1	1	5	9	4	-	0	1	-	-
Rhode Island ${ }^{\dagger}$	-	0	17	-	11	-	0	3	6	4	-	0	1	-	-
Vermont ${ }^{\dagger}$	-	1	14	15	30	4	2	5	25	14	-	0	0	-	-
Mid. Atlantic	11	34	156	313	448	19	16	57	113	182	-	2	6	10	11
New Jersey	-	4	11	9	102	-	0	0	-	-	-	0	2	-	2
New York (Upstate)	7	20	150	215	127	-	0	0	-	-	-	0	2	-	-
New York City	-	0	8	-	22	-	1	5	16	-	-	0	3	3	2
Pennsylvania	4	9	25	89	197	19	16	56	97	182	-	1	4	7	7
E.N. Central	24	41	79	371	561	2	2	18	5	4	-	1	6	1	3
Illinois	-	10	23	49	132	-	0	7	-	1	-	0	4	-	1
Indiana	1	3	37	3	44	-	0	2	-	-	-	0	1	-	-
Michigan	-	10	39	87	114	2	0	5	4	2	-	0	1	1	-
Ohio	23	12	56	217	190	-	0	9	1	1	-	0	4	-	2
Wisconsin	-	3	8	15	81	-	0	0	-	-	-	0	1	-	-
W.N. Central	2	18	96	117	403	4	6	20	34	41	-	3	14	14	4
lowa	-	4	16	34	115	2	0	7	4	6	-	0	1	-	-
Kansas	-	4	13	47	103	2	2	5	20	16	-	0	1	-	-
Minnesota	-	0	80	-	-	-	0	6	3	2	-	0	2	-	-
Missouri	1	4	10	18	122	-	1	6	2	3	-	2	12	14	4
Nebraska ${ }^{\dagger}$	1	1	4	4	53	-	0	0	-	-	-	0	5	-	-
North Dakota	-	0	9	1	4	-	0	7	5	2	-	0	0	-	-
South Dakota	-	0	4	13	6	-	0	4	-	12	-	0	0	-	-
S. Atlantic	8	18	164	223	265	20	37	62	406	593	10	11	68	57	246
Delaware	-	0	1	1	1	-	0	0	-	-	-	0	3	2	3
District of Columbia	-	0	2	2	3	-	0	0	-	-	-	0	1	-	-
Florida	5	4	20	81	63	-	0	8	31	176	-	0	5	3	6
Georgia	-	0	3	-	7	-	4	16	36	54	-	1	5	2	3
Maryland ${ }^{\dagger}$	2	2	6	34	55	-	6	12	62	95	-	1	7	8	12
North Carolina	-	0	111	59	52	9	9	22	102	77	10	4	61	32	218
South Carolina ${ }^{\dagger}$	1	3	11	20	38	-	3	11	27	30	-	1	5	4	2
Virginia ${ }^{+}$	-	2	19	23	42	11	11	27	132	142	-	2	13	6	2
West Virginia	-	0	19	3	4	-	2	8	16	19	-	0	2	-	-
E.S. Central	-	6	24	54	71	-	4	13	16	44	1	5	27	15	9
Alabama ${ }^{\text {a }}$	-	1	17	17	18	-	1	8	-	15	-	1	9	5	2
Kentucky	-	0	5	-	12	-	0	4	6	4	-	0	1	-	-
Mississippi	-	0	6	6	9	-	0	2	-	-	-	0	1	-	-
Tennessee ${ }^{\dagger}$	-	3	11	31	32	-	2	7	10	25	1	4	22	10	7
W.S. Central	3	17	147	78	141	1	2	34	15	162	-	1	28	-	3
Arkansas ${ }^{\dagger}$	-	1	13	2	10	1	0	5	6	3	-	0	10	-	3
Louisiana	1	0	2	5	3	-	0	0	-	-	-	0	1	-	-
Oklahoma	-	0	9	-	2	-	0	9	9	10	-	0	18	-	-
Texas ${ }^{\dagger}$	2	14	134	71	126	-	0	29	-	149	-	0	6	-	-
Mountain	12	39	87	294	858	-	3	28	12	25	-	0	5	2	-
Arizona	-	6	28	55	161	-	2	10	11	24	-	0	2	-	-
Colorado	-	8	26	83	346	-	0	0	-	-	-	0	1	1	-
Idaho ${ }^{\dagger}$	1	1	7	10	23	-	0	24	-	-	-	0	3	1	-
Montana ${ }^{\dagger}$	1	1	8	10	31	-	0	2	-	-	-	0	2	-	-
Nevada ${ }^{\text { }}$	-	0	9	3	15	-	0	1	-	-	-	0	1	-	-
New Mexico ${ }^{\dagger}$	-	2	8	11	22	-	0	2	-	1	-	0	2	-	-
Utah	10	13	39	111	246	-	0	1	1	-	-	0	2	-	-
Wyoming ${ }^{\dagger}$	-	1	8	11	14	-	0	2	-	-	-	0	1	-	-
Pacific	-	33	229	59	402	2	4	12	38	35	-	0	1	-	-
Alaska	-	1	8	8	26	-	0	6	20	7	N	0	0	N	N
California	-	22	226	-	217	2	3	11	18	28	-	0	1	-	-
Hawaii	-	1	7	6	37	N	0	0	N	N	N	0	0	N	N
Oregon ${ }^{\dagger}$	-	1	6	18	48	-	0	4	-	-	-	0	1	-	-
Washington	-	4	46	27	74	-	0	0	-	-	N	0	0	N	N
American Samoa	U	0	0	U	U	U	0	0	U	U	U	0	0	U	U
C.N.M.I.	U	0	0	U	U	U	0	0	U	U	U	0	0	U	U
Guam	-	0	0	-	-	-	0	0	-	-	N	0	0	N	N
Puerto Rico	-	0	1	-	-	-	1	6	15	25	N	0	0	N	N
U.S. Virgin Islands	U	0	0	U	U	U	0	0	U	U	U	0	0	U	U

C.N.M.I.: Commonwealth of Northern Mariana Islands

U: Unavailable. -: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.
${ }^{*}$ Incidence data for reporting years 2006 and 2007 are provisional.
Contains data reported through the National Electronic Disease Surveillance System (NEDSS)

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending March 31, 2007, and April 1, 2006 (13th Week)*

Reporting area	Salmonellosis					Shiga toxin-producing E. coli (STEC) ${ }^{\dagger}$					Shigellosis				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	332	821	1,336	5,980	6,909	28	75	178	352	481	133	258	521	2,240	2,352
New England	2	18	82	117	758	-	2	16	8	104	2	2	14	13	117
Connecticut	-	0	59	59	503	-	0	1	1	84	-	0	8	8	67
Maine ${ }^{\text {§ }}$	1	2	14	24	15	-	0	8	4	2	2	0	2	4	-
Massachusetts	-	0	53	-	208	-	0	9	-	13	-	0	11	-	43
New Hampshire	-	3	25	16	19	-	0	3	3	2	-	0	2	1	3
Rhode Island ${ }^{\text {§ }}$	-	1	10	9	10	-	0	2	-	1	-	0	3	-	3
Vermont ${ }^{\text {® }}$	1	1	6	9	3	-	0	4	-	2	-	0	2	-	1
Mid. Atlantic	43	90	191	813	788	5	8	62	40	40	4	14	47	96	215
New Jersey	-	16	49	49	150	-	1	16	1	10	-	3	35	6	69
New York (Upstate)	26	27	93	255	153	4	3	14	19	10	1	3	43	24	64
New York City	3	24	50	199	213	-	0	4	2	7	2	5	14	51	58
Pennsylvania	14	30	67	310	272	1	2	47	18	13	1	1	6	15	24
E.N. Central	47	105	198	614	953	-	10	59	45	79	6	24	68	117	235
Illinois	-	27	61	48	267	-	1	7	2	11	-	10	50	16	82
Indiana	22	15	55	110	99	-	1	8	1	10	2	2	17	14	30
Michigan	3	18	35	132	172	-	1	6	9	18		2	5	8	58
Ohio	21	23	56	212	250	-	3	18	30	17	4	3	14	56	41
Wisconsin	1	16	27	112	165	-	2	39	3	23	-	3	10	23	24
W.N. Central	33	48	109	474	412	4	11	45	45	63	38	38	77	456	211
lowa	-	8	26	65	73	1	1	38	4	12	-	2	14	12	8
Kansas	13	7	16	75	62	-	0	4	4	-	1	2	11	8	20
Minnesota	1	11	60	96	93	-	3	26	18	25	-	4	24	66	20
Missouri	15	14	35	164	116	1	2	13	12	21	37	12	69	350	121
Nebraska ${ }^{\text {§ }}$	3	3	9	30	41	2	1	11	7	4	-	1	14	4	23
North Dakota	1	0	5	8	3	-	0	0	-	-	-	0	18	4	2
South Dakota	-	3	11	36	24	-	0	5	-	1	-	6	24	12	17
S. Atlantic	115	224	395	1,992	1,634	10	12	32	106	78	54	70	143	876	556
Delaware	-	2	10	17	17	-	0	3	4	-	-	0	2	3	-
District of Columbia	-	1	4	8	15	-	0	1	-	-	-	0	5	3	3
Florida	49	95	176	828	711	6	2	9	29	13	30	33	76	543	231
Georgia	13	34	66	362	214	1	1	7	14	12	12	24	54	269	187
Maryland ${ }^{\text {s }}$	9	13	33	136	110	3	2	9	20	14	-	1	10	16	33
North Carolina	25	29	130	335	333	-	2	11	16	19	6	1	14	15	56
South Carolina ${ }^{\S}$	11	19	55	138	82	-	0	3	-	2	4	0	10	11	35
Virginia ${ }^{\text {§ }}$	7	20	58	150	137	-	3	11	22	18	2	2	9	16	11
West Virginia	1	1	31	18	15	-	0	5	1	-	-	0	2	-	-
E.S. Central	22	52	138	364	348	2	4	21	20	35	7	12	75	148	159
Alabama ${ }^{\text {8 }}$	9	10	70	92	128	1	0	5	3	3	6	4	66	53	33
Kentucky	2	9	23	85	69	-	1	12	7	10	-	2	15	15	80
Mississippi	-	12	42	36	56	-	0	0	-		-	1	25	25	24
Tennessee ${ }^{\text {® }}$	11	17	32	151	95	1	2	9	10	22	1	3	14	55	22
W.S. Central	12	84	186	235	553	2	3	52	15	14	6	37	187	161	260
Arkansas ${ }^{\text {8 }}$	5	14	45	64	215	-	0	7	4	2	2	2	10	17	20
Louisiana	-	17	42	73	45	-	0	1	-	-	-	3	24	40	8
Oklahoma	7	8	40	62	48	2	0	17	4	1	-	2	9	12	20
Texas ${ }^{\text {® }}$	-	46	107	36	245	-	2	48	7	11	4	30	174	92	212
Mountain	14	52	88	459	488	3	7	36	38	45	9	26	87	158	185
Arizona	9	19	45	180	168	2	2	13	16	13	5	11	35	77	98
Colorado	-	12	30	110	118	-	1	8	2	12	-	4	15	22	22
Idahos	-	3	9	25	31	1	2	8	4	5	2	0	3	3	5
Montana ${ }^{\text {® }}$	2	2	10	18	23	-	0	0	-	-	2	0	13	4	-
Nevada§	-	4	20	35	37	-	0	5	4	7	-	1	20	11	23
New Mexico§	-	5	15	38	44	-	1	5	7	4	-	2	15	25	25
Utah	3	4	15	39	53	-	1	14	5	3	-	1	6	5	11
Wyoming ${ }^{\text {§ }}$	-	1	4	14	14	-	0	3	-	1	-	0	19	11	1
Pacific	44	116	306	912	975	2	5	24	35	23	7	32	94	215	414
Alaska	-	1	5	20	24	N	0	0	N	N	-	0	2	5	1
California	30	89	218	709	748	1	0	5	21	N	6	28	81	178	313
Hawaii	1	4	16	49	48	-	0	3	2	2	-	1	3	7	10
Oregon ${ }^{\text {® }}$	-	7	17	47	86	-	1	9	4	15	-	1	6	10	55
Washington	13	11	83	87	69	1	2	22	8	6	1	2	13	15	35
American Samoa	U	0	0	U	U	U	0	0	U	U	U	0	0	U	U
C.N.M.I.	U	0	0	U	U	U	0	0	U	U	U	0	0	U	U
Guam	-	0	0	-	-	N	0	0	N	N	-	0	0	-	-
Puerto Rico	5	14	65	86	54	-	0	0	-	-	-	0	6	5	2
U.S. Virgin Islands	U	0	0	U	U	U	0	0	U	U	U	0	0	U	U

[^10]U: Unavailable. -: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.
${ }^{*}$ Incidence data for reporting years 2006 and 2007 are provisional
${ }_{\text {§ }}$ Includes E. coli O157:H7; Shiga toxin-positive, serogroup non-O157; and Shiga toxin-positive, not serogrouped.
§ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending March 31, 2007, and April 1, 2006 (13th Week)*

Reporting area	Streptococcal disease, invasive, group A					Streptococcus pneumoniae, invasive disease ${ }^{\dagger}$ Age <5 years				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$
		Med	Max				Med	Max		
United States	93	88	210	1,238	1,699	26	24	88	381	369
New England	1	2	15	19	62	-	1	4	9	19
Connecticut	-	0	0	-	-	-	0	0	-	-
Maine ${ }^{\text {® }}$	-	0	2	5	6	-	0	2	-	-
Massachusetts	-	0	5	-	43	-	0	4	-	16
New Hampshire	-	0	9	4	8	-	0	4	5	3
Rhode Island ${ }^{\S}$	-	0	4	-	3	-	0	3	3	-
Vermont ${ }^{\text {® }}$	1	0	2	10	2	-	0	1	1	-
Mid. Atlantic	10	17	39	229	333	1	3	17	33	61
New Jersey	-	2	8	20	62	-	1	4	-	19
New York (Upstate)	5	5	26	83	89	1	2	14	33	37
New York City	-	3	8	39	63	-	0	2	-	5
Pennsylvania	5	6	11	87	119	N	0	0	N	N
E.N. Central	19	14	31	205	388	4	6	14	61	107
Illinois	-	4	11	33	130	-	1	6	9	31
Indiana	8	2	12	32	43	1	0	10	6	12
Michigan	3	3	11	61	85	-	1	5	24	25
Ohio	8	4	14	79	86	3	1	7	21	22
Wisconsin	-	1	6	-	44	-	0	2	1	17
W.N. Central	8	4	32	110	121	3	2	10	35	24
lowa	-	0	0	-	-	-	0	0	-	-
Kansas	2	0	3	15	28	-	0	3	3	7
Minnesota	3	0	29	48	52	3	1	6	19	7
Missouri	2	2	5	35	22	-	0	2	10	6
Nebraskas	1	0	2	4	13	-	0	2	2	3
North Dakota	-	0	2	6	4	-	0	1	1	1
South Dakota	-	0	2	2	2	-	0	0	-	-
S. Atlantic	31	20	45	313	349	5	2	12	82	20
Delaware	-	0	2	-	1	-	0	0	-	-
District of Columbia	-	0	2	4	4	-	0	1	-	-
Florida	8	5	16	69	86	2	0	6	20	-
Georgia	4	5	11	77	85	3	0	5	29	-
Maryland ${ }^{\text {® }}$	4	3	10	53	78	-	1	5	23	15
North Carolina	8	0	26	40	34	-	0	0	-	
South Carolina ${ }^{\text {§ }}$	1	1	5	20	25	-	0	2	7	-
Virginia ${ }^{\text {§ }}$	5	2	10	44	29	-	0	1	2	-
West Virginia	1	0	6	6	7	-	0	3	1	5
E.S. Central	3	4	11	54	75	-	0	6	23	5
Alabama ${ }^{\text {s }}$	N	0	0	N	N	N	0	0	N	N
Kentucky	-	0	4	12	20	-	0	0	-	-
Mississippi	N	0	0	N	N	-	0	2	2	5
Tennessee§	3	3	7	42	55	-	0	6	21	-
W.S. Central	11	6	61	83	125	10	4	39	65	56
Arkansas ${ }^{\text {§ }}$	-	0	5	9	3	-	0	2	6	8
Louisiana	-	0	2	3	1	-	0	4	12	2
Oklahoma	3	2	5	34	44	1	1	12	18	13
Texas§	8	3	56	37	77	9	1	24	29	33
Mountain	10	11	42	196	221	3	3	9	62	75
Arizona	7	5	34	79	126	3	2	7	38	49
Colorado	-	3	9	54	41	-	1	4	15	18
Idaho ${ }^{\text {§ }}$	-	0	1	5	3	-	0	1	-	1
Montana ${ }^{\text {s }}$	N	0	0	N	N	N	0	0	N	N
Nevadas	-	0	1	1	1	-	0	0	-	-
New Mexicos	-	1	4	15	26	-	0	3	9	7
Utah	3	1	7	40	22	-	0	0	-	-
Wyoming ${ }^{\text {§ }}$	-	0	1	2	2	-	0	0	-	-
Pacific	-	2	9	29	25	-	0	4	11	2
Alaska	-	0	2	7	N	-	0	2	9	-
California	N	0	0	N	N	N	0	0	N	N
Hawaii	-	2	9	22	25	-	0	2	2	2
Oregon§	N	0	0	N	N	N	0	0	N	N
Washington	N	0	0	N	N	N	0	0	N	N
American Samoa	U	0	0	U	U	U	0	0	U	U
C.N.M.I.	U	0	0	U	U	U	0	0	U	U
Guam	-	0	0	-	-	N	0	0	N	N
Puerto Rico	-	0	0	-	-	N	0	0	N	N
U.S. Virgin Islands	U	0	0	U	U	U	0	0	U	U

[^11]TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending March 31, 2007, and April 1, 2006 (13th Week)*

Reporting area	Streptococcus pneumoniae, invasive disease, drug resistant ${ }^{\dagger}$										Syphilis, primary and secondary				
	All ages					Age <5 years									
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	60	43	115	742	838	9	7	16	108	113	103	180	260	1,833	2,165
New England	-	0	7	16	10	-	0	1	-	2	2	4	13	41	55
Connecticut	-	0	0	-	-	-	0	0	-	-	1	0	10	5	12
Maine ${ }^{\text {§ }}$	-	0	2	3	2	-	0	0	-	1	-	0	1	-	3
Massachusetts	-	0	0	-	-	-	0	0	-	-	1	2	7	28	30
New Hampshire	-	0	0	-	-	-	0	0	-	-	-	0	2	4	5
Rhode Island ${ }^{\text {® }}$	-	0	4	5	3	-	0	1	-	-	-	0	3	3	4
Vermont ${ }^{\text {§ }}$	-	0	2	8	5	-	0	1	-	1	-	0	1	1	1
Mid. Atlantic	3	3	8	48	43	-	0	5	11	4	25	24	44	384	259
New Jersey	-	0	0	-	-	-	0	0	-	-		3	8	42	42
New York (Upstate)	-	1	5	17	13	-	0	4	6	-	2	3	14	30	29
New York City	-	0	0	-	-	-	0	0	-	-	19	12	35	260	129
Pennsylvania	3	2	6	31	30	-	0	2	5	4	4	5	12	52	59
E.N. Central	17	10	40	190	187	3	1	7	23	33	6	14	32	137	234
Illinois	-	0	2	1	8	-	0	1	1	3	-	6	13	25	131
Indiana	1	2	30	34	41	-	0	5	3	8	-	1	5	10	22
Michigan	-	0	3	-	8	-	0	1	-	1	1	2	10	32	21
Ohio	16	5	38	155	130	3	1	5	19	21	1	4	9	57	49
Wisconsin	N	0	0	N	N	-	0	0	-	-	4	1	4	13	11
W.N. Central	3	1	51	30	14	-	0	10	3	1	-	5	14	42	55
Iowa	-	0	0	-	-	-	0	0	-	-	-	0	3	1	3
Kansas	1	0	1	3	-	-	0	0	-	-	-	0	3	5	7
Minnesota	-	0	50	-	-	-	0	10	-	-	-	1	5	15	15
Missouri	1	1	5	25	14	-	0	2	2	1	-	3	9	21	28
Nebraska§	1	0	1	1	-	-	0	0	-	-	-	0	2	-	2
North Dakota	-	0	0	-	-	-	0	0	-	-	-	0	1	-	-
South Dakota	-	0	3	1	-	-	0	1	1	-	-	0	3	-	-
S. Atlantic	32	21	54	352	465	5	3	8	52	43	44	41	136	345	475
Delaware	-	0	1	1	-	-	0	1	1	-	-	0	3	2	8
District of Columbia	-	0	3	4	12	-	0	0	-	2	-	2	7	32	32
Florida	22	12	29	196	209	5	2	8	46	40	-	14	23	68	178
Georgia	10	7	17	136	211	-	0	1	-	1	1	6	105	11	35
Maryland ${ }^{\text {S }}$	-	0	0	-	-	-	0	0	-	-	11	5	14	68	80
North Carolina	-	0	0	-	-	-	0	0	-	-	24	5	21	92	82
South Carolina ${ }^{\text {§ }}$	-	0	0	-	-	-	0	0	-	-	2	1	5	18	20
Virginia§	N	0	0	N	N	-	0	0	-	-	6	4	17	53	39
West Virginia	-	1	17	15	33	-	0	1	5	-	-	0	2	1	1
E.S. Central	2	2	7	47	77	1	0	3	9	13	11	14	29	172	140
Alabama§	N	0	0	N	N	-	0	0	-	-	-	5	17	49	74
Kentucky	-	0	2	9	19	1	0	1	1	3	2	1	9	23	11
Mississippi	-	0	0	-	-	-	0	0	-	-	2	1	8	30	17
Tennessee ${ }^{\text {§ }}$	2	2	7	38	58	-	0	3	8	10	7	5	12	70	38
W.S. Central	3	1	5	42	8	-	0	2	4	3	10	29	58	351	335
Arkansas ${ }^{\text {§ }}$	-	0	3	1	4	-	0	0	-	2	3	1	7	28	25
Louisiana	-	0	2	13	4	-	0	1	1	1	2	5	30	65	43
Oklahoma	3	0	5	28	-	-	0	2	3	-	-	1	5	23	20
Texas§	-	0	0	-	-	-	0	0	-	-	5	21	31	235	247
Mountain	-	1	7	17	34	-	0	5	6	14	3	8	27	48	113
Arizona	-	0	0	-	-	-	0	0	-	-	-	2	16	11	52
Colorado	-	0	0	-	-	-	0	0	-	-	-	1	5	3	19
Idaho ${ }^{\text {§ }}$	N	0	0	N	N	-	0	0	-	-	1	0	1	1	1
Montana ${ }^{\text {s }}$	-	0	0	-	-	-	0	0	-	-	-	0	1	1	-
Nevada ${ }^{\text {§ }}$	-	0	3	11	6	-	0	2	3	-	-	1	12	17	24
New Mexicos	-	0	0	-	-	-	0	0	-	-	-	1	5	11	15
Utah	-	0	7	4	17	-	0	4	2	9	2	0	2	3	2
Wyoming ${ }^{\text {s }}$	-	0	3	2	11	-	0	2	1	5	-	0	1	1	-
Pacific	-	0	0	-	-	-	0	0	-	-	2	37	52	313	499
Alaska	-	0	0	-	-	-	0	0	-	-	-	0	2	3	5
California	N	0	0	N	N	-	0	0	-	-	2	34	45	283	427
Hawaii	-	0	0	-	-	-	0	0	-	-	-	0	1	1	8
Oregon ${ }^{\text {§ }}$	N	0	0	N	N	-	0	0	-	-	-	0	6	4	5
Washington	N	0	0	N	N	-	0	0	-	-	-	2	11	22	54
American Samoa	U	0	0	U	U	U	0	0	U	U	U	0	0	U	U
C.N.M.I.	U	0	0	U	U	U	0	0	U	U	U	0	0	U	U
Guam	N	0	0	N	N	-	0	0	-	-	-	0	0	-	-
Puerto Rico	N	0	0	N	N	-	0	0	-	-	5	2	11	27	38
U.S. Virgin Islands	U	0	0	U	U	U	0	0	U	U	U	0	0	U	U

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. -: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Incidence data for reporting years 2006 and 2007 are provisional.
\dagger Includes cases of invasive pneumococcal disease caused by drug-resistant S. pneumoniae (DRSP) (NNDSS event code 11720).
${ }^{\S}$ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending March 31, 2007, and April 1, 2006 (13th Week)*

Reporting area	Varicella (chickenpox)					West Nile virus disease ${ }^{\dagger}$									
						Neuroinvasive					Non-neuroinvasive ${ }^{\text {s }}$				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$	Current week		ous	Cum	Cum	Current			Cum	Cum
		Med	Max				Med	Max	2007	2006	week	Med	Max	2007	2006
United States	820	821	1,435	11,139	13,788	-	1	178	-	3	-	1	399	-	1
New England	6	22	72	143	486	-	0	3	-	-	-	0	2	-	-
Connecticut	-	0	0	-	-	-	0	3	-	-	-	0	1	-	-
Maine ${ }^{\text {l }}$	-	2	17	-	96	-	0	0	-	-	-	0	0	-	-
Massachusetts	-	0	1	-	92	-	0	1	-	-	-	0	1	-	-
New Hampshire	4	5	47	56	105	-	0	0	-	-	-	0	0	-	-
Rhode Island ${ }^{\text {f }}$	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-
Vermont ${ }^{17}$	2	11	66	87	193	-	0	0	-	-	-	0	0	-	-
Mid. Atlantic	119	103	193	1,530	1,715	-	0	11	-	-	-	0	4	-	-
New Jersey	N	0	0	N	N	-	0	2	-	-	-	0	1	-	-
New York (Upstate)	N	0	0	N	N	-	0	5	-	-	-	0	1	-	-
New York City	- 11	0	0			-	0	4	-	-	-	0	2	-	-
Pennsylvania	119	103	193	1,530	1,715	-	0	2	-	-	-	0	1	-	-
E.N. Central	198	226	587	3,385	5,486	-	0	43	-	-	-	0	33	-	-
Illinois	-	0	7	2	27	-	0	23	-	-	-	0	23	-	-
Indiana	-	0	0	-	-	-	0	7	-	-	-	0	12	-	-
Michigan	50	94	258	1,342	1,610	-	0	11	-	-	-	0	2	-	-
Ohio	148	128	449	1,813	3,388	-	0	11	-	-	-	0	3	-	-
Wisconsin	-	13	64	228	461	-	0	2	-	-	-	0	2	-	-
W.N. Central	40	30	131	626	704	-	0	36	-	-	-	0	79	-	-
Iowa	N	0	0	N	N	-	0	3	-	-	-	0	4	-	-
Kansas	9	7	52	276	108	-	0	3	-	-	-	0	3	-	-
Minnesota	-	0	0	-	-	-	0	6	-	-	-	0	7	-	-
Missouri	30	16	82	241	564	-	0	14	-	-	-	0	2	-	-
Nebraska ${ }^{\text {¹ }}$	N	0	0	N	N	-	0	9	-	-	-	0	38	-	-
North Dakota	-	0	60	84	13	-	0	5	-	-	-	0	28	-	-
South Dakota	1	1	15	25	19	-	0	7	-	-	-	0	22	-	-
S. Atlantic	108	96	176	1,411	1,434	-	0	2	-	-	-	0	7	-	-
Delaware	-	1	6	8	30	-	0	0	-	-	-	0	0	-	-
District of Columbia	-	0	5	-	6	-	0	0	-	-	-	0	1	-	-
Florida	30	0	42	368	N	-	0	1	-	-	-	0	0	-	-
Georgia	N	0	0	N	N	-	0	1	-	-	-	0	4	-	-
Maryland ${ }^{\text {f }}$	N	0	0	N	N	-	0	2	-	-	-	0	2	-	-
North Carolina	-	0	0	31	74	-	0	1	-	-	-	0	0	-	-
South Carolina ${ }^{\text {¹ }}$	42	22	72	431	374	-	0	1	-	-	-	0	0	-	-
Virginia		29	142	197	459	-	0	0	-	-	-	0	2	-	-
West Virginia	36	25	57	407	565	-	0	1	-	-	-	0	0	-	-
E.S. Central	3	4	43	96	-	-	0	15	-	3	-	0	16	-	-
Alabama ${ }^{\text {a }}$	3	4	43	94	-	-	0	2	-	-	-	0	0	-	-
Kentucky	N	0	0	N	N	-	0	2	-	-	-	0	1	-	-
Mississippi	-	0	2	2	-	-	0	10	-	3	-	0	16	-	-
Tennessee"	N	0	0	N	N	-	0	4	-	-	-	0	2	-	-
W.S. Central	288	200	966	3,077	2,884	-	0	58	-	-	-	0	26	-	1
Arkansas¹	8	11	92	163	216	-	0	4	-	-	-	0	2	-	-
Louisiana	-	2	11	39	13	-	0	13	-	-	-	0	9	-	1
Oklahoma	-	0	0	-	-	-	0	6	-	-	-	0	4	-	-
Texas"	280	172	873	2,875	2,655	-	0	38	-	-	-	0	16	-	-
Mountain	58	57	102	852	1,079	-	0	61	-	-	-	1	228	-	-
Arizona	-	0	0	-	-	-	0	9	-	-	-	0	15	-	-
Colorado	-	23	51	316	584	-	0	10	-	-	-	0	51	-	-
Idaho ${ }^{\text {² }}$	N	0	0	N	N	-	0	30	-	-	-	0	157	-	-
Montana ${ }^{\text {T }}$	3	0	26	98	N	-	0	3	-	-	-	0	8	-	-
Nevada ${ }^{\text {a }}$	-	0	3	-	1	-	0	9	-	-	-	0	16	-	-
New Mexico"	2	3	21	79	207	-	0	1	-	-	-	0	1	-	-
Utah	53	19	65	355	278	-	0	8	-	-	-	0	17	-	-
Wyoming ${ }^{\text {¹ }}$	-	0	11	4	9	-	0	7	-	-	-	0	10	-	-
Pacific	-	0	9	19	-	-	0	15	-	-	-	0	51	-	-
Alaska	-	0	9	19	N	-	0	0	-	-	-	0	0	-	-
California	-	0	0	-	N	-	0	15	-	-	-	0	37	-	-
Hawaii	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-
Oregon ${ }^{10}$	N	0	0	N	N	-	0	2	-	-	-	0	14	-	-
Washington	N	0	0	N	N	-	0	0	-	-	-	0	2	-	-
American Samoa	U	0	0	U	U	U	0	0	U	U	U	0	0	U	U
C.N.M.I.	U	0	0	U	U	U	0	0	U	U	U	0	0	U	U
Guam	-	0	0	-	-	-	0	0	-	-	-	0	0	-	
Puerto Rico	6	12	30	134	115	-	0	0	-	-	-	0	0	-	-
U.S. Virgin Islands	U	0	0	U	U	U	0	0	U	U	U	0	0	U	U

C.N.M.I.: Commonwealth of Northern Mariana Islands

U: Unavailable. -: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.
\star Incidence data for reporting years 2006 and 2007 are provisional.
\dagger Updated weekly from reports to the Division of Vector-Borne Infectious Diseases, National Center for Zoonotic, Vector-Borne, and Enteric Diseases (proposed) (ArboNET Surveillance).
§Data for California serogroup, eastern equine, Powassan, St. Louis, and western equine diseases are available in Table I.
Not notifiable in all states. Data from states where the condition is not notifiable are excluded from this table, except in 2007 for the domestic arboviral diseases and influenza-
associated pediatric mortality, and in 2003 for SARS-CoV. Reporting exceptions are available at http://www.cdc.gov/epo/dphsi/phs/infdis.htm
Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE III. Deaths in 122 U.S. cities,* week ending March 31, 2007 (13th Week)

	All causes, by age (years)								All causes, by age (years)						
Reporting Area	$\begin{gathered} \text { All } \\ \text { Ages } \end{gathered}$	≥ 65	45-64	25-44	1-24	<1	$\begin{array}{\|c\|} \hline \text { P\& }{ }^{\dagger} \\ \text { Total } \end{array}$	Reporting Area	$\begin{gathered} \text { All } \\ \text { Ages } \end{gathered}$	≥ 65	45-64	25-44	1-24	<1	$\begin{aligned} & \text { P\&I } I^{\dagger} \\ & \text { Total } \end{aligned}$
New England	526	372	105	26	10	13	55	S. Atlantic	1,515	932	383	123	48	29	108
Boston, MA	140	95	28	7	4	6	17	Atlanta, GA	210	111	58	31	7	3	11
Bridgeport, CT	42	30	8	3	1	-	2	Baltimore, MD	226	138	60	15	8	5	23
Cambridge, MA	13	11	1	1	-	-	1	Charlotte, NC	132	83	30	9	6	4	10
Fall River, MA	19	15	4	-	-	-	2	Jacksonville, FL	188	115	52	13	5	3	20
Hartford, CT	47	34	10	2	-	1	7	Miami, FL	150	94	42	8	3	3	6
Lowell, MA	27	16	8	2	1	-	-	Norfolk, VA	56	32	15	4	3	2	4
Lynn, MA	10	7	2	-	1	-	-	Richmond, VA	63	43	13	3	2	2	6
New Bedford, MA	16	13	2	1	-	-	1	Savannah, GA	73	53	13	2	5	-	6
New Haven, CT	33	23	9	-	-	1	10	St. Petersburg, FL	69	46	16	3	2	2	5
Providence, RI	54	33	12	3	1	5	7	Tampa, FL	234	156	53	18	4	3	15
Somerville, MA	3	3	-	-	-	-	-	Washington, D.C.	100	51	28	16	3	2	1
Springfield, MA	47	35	7	5	-	-	5	Wilmington, DE	14	10	3	1	-	-	1
Waterbury, CT	29	26	3	2	2	-	3	E.S. Central	849	545	219	50	20	15	71
Worcester, MA	46	31	11	2	2	-	3	Birmingham, AL	168	107	41	14	3	3	18
Mid. Atlantic	2,046	1,427	424	127	41	26	118	Chattanooga, TN	95	75	17	3	-	-	11
Albany, NY	44	33	5	3	1	2	1	Knoxville, TN	92	60	26	4	1	1	3
Allentown, PA	26	19	4	2	1	-	2	Lexington, KY	44	26	17	1	-	-	6
Buffalo, NY	88	67	15	1	4	1	9	Memphis, TN	178	114	39	13	8	4	19
Camden, NJ	25	12	8	1	1	3	-	Mobile, AL	100	64	25	5	4	2	3
Elizabeth, NJ	21	15	6	-	-	-	6	Montgomery, AL	40	23	12	2	2	1	4
Erie, PA	43	35	8	-	-	-	3	Nashville, TN	132	76	42	8	2	4	7
Jersey City, NJ	28	20	6	1	18	1	2	W.S. Central	1,678	1,103	389	108	46	32	108
New York City, NY	1,095	748	239	74	18	15	51	Austin, TX	1,678	+ 53	30	8	4	1	10
Newark, NJ	41	20	11 7	6	3	1	1	Baton Rouge, LA	76	55	19	2	-	-	3
Paterson, NJ Philadelphia, PA	25 232	11 146	7 57	7 21	7	1	11	Corpus Christi, TX	83	62	13	3	1	4	12
Pittsburgh, PA§	35	25	7	1	1	1	-	Dallas, TX	226	122	55	29	13	7	11
Reading, PA	30	26	3	1	-		2	El Paso, TX	112	84	22	3	3	-	4
Rochester, NY	120	89	24	4	3	-	13	Fort Worth, TX	126	88	32	2	1	3	10
Schenectady, NY	15	12	1	1	1	-	-	Houston, TX Little Rock, AR	406 73	260 50	102	28	9 3	7 1	25 4
Scranton, PA	21	15	6	-	-	1	1	New Orleans, LA ${ }^{\text {a }}$	73 U	U	U	U	U	U	${ }_{4}$
Syracuse, NY	84	71	10	2	-	1	8	San Antonio, TX	279	192	66	10	8	3	13
Trenton, NJ	39	33	5	-	1	-	2							5	
Utica, NY	12	12	2	2	-	-	4	Shreveport, LA	67 134	38 99	19	11	4	5 1	9
Yonkers, NY	22	18	2	2	-	-	2								
E.N. Central	2,081	1,371	479	129	51	51	164	Mountain Albuquerque, NM	1,347 299	925 215	281 71	72 10	39 2	28 1	111 24
Akron, OH	40	23	11	3	2	1	3	Albuquerque, NM Boise, ID	299 42	215 37	71 4	10	2	1 1	24 5
Canton, OH	47	38	5	2	-	2	7	Colorado Springs, CO	72	53	14	1	1	3	5 4
Chicago, IL	356	197	100	38	14	7	26	Denver, CO	97	65	12	12	5	3 3	13
Cincinnati, OH	91	56	22	9	2	2	17	Lenver, CO	-971	185	12 67	12	5	3 6	13 17
Cleveland, OH	256	180	54	7	6	9	18	Ogden, UT	29	19	6	14 3	1	6	17 1
Columbus, OH	189	123	48	12	3	3	17	Phoenix, AZ	191	110	46		13		12
Dayton, OH	130	97	24	2	3	4	11	Phoenix, AZ Pueblo, CO	191 38	110 26	46 6	14 2	13 3	7	12
Detroit, MI	152	74	53	16	5	4	12	Salt Like City, UT	38 141	92	31	9	3 5	4	12
Evansville, IN	45	33	8	2	1	1	2	Tucson, AZ	157	123	24	7	1	2	20
Fort Wayne, IN	63	43	15	-	3	2	4	Tucson, AZ	157	123	24	7	1	2	20
Gary, IN	19	8	5	4	1	1	-	Pacific	1,213	846	249	67	28	22	88
Grand Rapids, MI	65	49	9	4	1	2	12	Berkeley, CA	17	13	3	-	1	-	-
Indianapolis, IN	171	130	28	5	3	5	10	Fresno, CA	111	88	17	4	1	1	7
Lansing, MI	51	39	9	-	2	1	2	Glendale, CA	U	U	U	U	U	U	U
Milwaukee, WI	84	45	31	7	-	1	7	Honolulu, HI	61	51	7	1	1	1	11
Peoria, IL	58	42	10	2	3	1	2	Long Beach, CA	59	43	11	2	2	1	9
Rockford, IL	51	35	10	4	-	2	2	Los Angeles, CA	U	U	U	U	U	U	U
South Bend, IN	50	39	8	2	1	-	5	Pasadena, CA	36	23	10	3	-	-	2
Toledo, OH	96	63	20	9	1	3	4	Portland, OR	100	71	19	6	2	2	4
Youngstown, OH	67	57	9	1	-	-	3	Sacramento, CA	184	127	37	11	6	3	12
W.N. Central	651	428	140	38	21	21	54	San Diego, CA	108	85	13	5	2	2	13
Des Moines, IA	79	58	12	8	2	1	9	San Francisco, CA	119	70	31	11	6	1	4
Duluth, MN	31	22	7	2	-	-	1	San Jose, CA	157	113	37	4	1	2	13
Kansas City, KS	20	11	8	-	1	-	1	Santa Cruz, CA	10	8	2	12	-	4	-
Kansas City, MO	107	66	24	3	6	5	12	Seattle, WA	118 54	70	30	12	2	4	8
Lincoln, NE	33	25	8		4	-	5	Spokane, WA	54 79	36 48	21	5 3	4	2 3	4 1
Minneapolis, MN	65	38	13	6	4	4	4	Tacoma, WA	79	48	21	3	4	3	1
Omaha, NE	79	62	12	3	1	1	5	Total	11,906**	7,949	2,669	740	304	237	877
St. Louis, MO	100	54	26	9	5	6	4								
St. Paul, MN	56	37	12	4	-	3	3								
Wichita, KS	81	55	18	3	4	1	10								

U: Unavailable. -: No reported cases.

[^12]FIGURE I. Selected notifiable disease reports, United States, comparison of provisional 4-week totals March 31, 2007, with historical data

[^13]| Notifiable Disease Data Team and | 122 Cities Mortality Data Team |
| :---: | :--- |
| Patsy A. Hall | |
| Deborah A. Adams | Rosaline Dhara |
| Willie J. Anderson | Vernitta Love |
| Lenee Blanton | Pearl C. Sharp |

The Morbidity and Mortality Weekly Report (MMWR) Series is prepared by the Centers for Disease Control and Prevention (CDC) and is available free of charge in electronic format. To receive an electronic copy each week, send an e-mail message to listserv@listserv.cdc.gov. The body content should read SUBscribe mmwr$t o c$. Electronic copy also is available from CDC's Internet server at http://www.cdc.gov/mmwr or from CDC's file transfer protocol server at ftp://ftp.cdc.gov/pub/ publications/mmwr. Paper copy subscriptions are available through the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402; telephone 202-512-1800.

Data in the weekly $M M W R$ are provisional, based on weekly reports to CDC by state health departments. The reporting week concludes at close of business on Friday; compiled data on a national basis are officially released to the public on the following Friday. Data are compiled in the National Center for Public Health Informatics, Division of Integrated Surveillance Systems and Services. Address all inquiries about the MMWR Series, including material to be considered for publication, to Editor, MMWR Series, Mailstop E-90, CDC, 1600 Clifton Rd., N.E., Atlanta, GA 30333 or to www.mmwrq@cdc.gov.

All material in the $M M W R$ Series is in the public domain and may be used and reprinted without permission; citation as to source, however, is appreciated.
Use of trade names and commercial sources is for identification only and does not imply endorsement by the U.S. Department of Health and Human Services.
References to non-CDC sites on the Internet are provided as a service to $M M W R$ readers and do not constitute or imply endorsement of these organizations or their programs by CDC or the U.S. Department of Health and Human Services. CDC is not responsible for the content of these sites. URL addresses listed in $M M W R$ were current as of the date of publication.

[^0]: * Preliminary 2005 CFOI data, which were used in this analysis, were released in August 2006. Final 2005 CFOI data will be released in spring 2007 and available at http://www.bls.gov/iif.

[^1]: ${ }^{\dagger}$ Reported deaths of undocumented workers were included if their deaths were confirmed as work related.

[^2]: ${ }^{\$}$ BLS routinely reports fatality rates by industry, occupation, and other selected worker characteristics. For this report, CDC used BLS data to calculate rates by type of injury event or exposure.
 ${ }^{9}$ Per BLS publication requirements, numbers of deaths are reported for workers of all ages. Rates in this report are presented per 100,000 workers aged ≥ 16 years. In 2005, a total of 24 deaths involved workers aged <16 years.

[^3]: ** The 5,157 CDC work-related deaths were those with the "injury at work" check box marked on the death certificate. Injury-related deaths were those assigned an ICD-10 underlying cause-of-death code of V01-Y89. Some "injury at work" deaths might have been assigned a noninjury ICD-10 code, leading to exclusion from the 160,150 injury-related deaths reported by CDC.

[^4]: *Additional information available at http://www.nhlbi.nih.gov/guidelines/ cholesterol/atp3xsum.pdf and http://caonline.amcancersoc.org/cgi/content/full/ 56/5/254.

[^5]: ${ }^{\dagger}$ The percentage of persons who completed interviews among all eligible persons, including those who were not successfully contacted. Rates available at http:// www.cdc.gov/brfss/technical_infodata/2005qualityreport.htm.
 ${ }^{\$}$ The percentage of persons who completed interviews among all eligible persons who were contacted.
 'Available at http://www.cdc.gov/brfss/technical_infodata/quality.htm.

[^6]: * Percentages are weighted and age adjusted to the 2000 U.S. standard population.
 \dagger Confidence interval.
 § Denominators by race/ethnicity: non-Hispanic white $(99,768)$, non-Hispanic black $(7,228)$, Hispanic $(7,266)$, American Indian/Alaska Native $(1,938)$, Asian/Pacific Islander $(2,558)$, and multiracial/other $(3,162)$.
 II Significantly different ($\mathrm{p}<0.01$) compared with non-Hispanic whites.
 ** Denominators by race/ethnicity: non-Hispanic white (156,576), non-Hispanic black (15,931), Hispanic (11,930), American Indian/Alaska Native (2,955), Asian/Pacific Islander (3.537), and multiracial/other $(4,452)$.

[^7]: ** Additional information available at http://www.cdc.gov/nccdphp/dnpa.

[^8]: * Per 100,000 population.

[^9]: -: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts
 incidence data for reporting years 2006 and 2007 are provisional, whereas data for 2002, 2003, 2004, and 2005 are finalized.
 preceding years. Additional information is available at http://www.cdc.gov/epo/dphsi/phs/files/5yearweeklyaverage.pdf.
 associated pediatric mortality, and in 2003 for SARS-CoV. Reporting exceptions are available at http://www.cdc.gov/epo/dphsi/phs/infdis.htm.
 Borne, and Enteric Diseases (proposed) (ArboNET Surveillance). Data for West Nile virus are available in Table II.
 ** Data for H. influenzae (all ages, all serotypes) are available in Table II.

 data management system is completed. Data for HIV/AIDS, when available, are displayed in Table IV, which appears quarterly
 2006-07 flu season.
 १ा No measles cases were reported for the current week.
 *** Data for meningococcal disease (all serogroups) are available in Table II.
 $\dagger \dagger \dagger$ No rubella cases were reported for the current week.
 $\S \S \S$ Updated weekly from reports to the Division of Viral and Rickettsial Diseases, National Center for Zoonotic, Vector-Borne, and Enteric Diseases (proposed).

[^10]: C.N.M.I.: Commonwealth of Northern Mariana Islands.

[^11]: C.N.M.I.: Commonwealth of Northern Mariana Islands

 U: Unavailable. -: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.
 \star Incidence data for reporting years 2006 and 2007 are provisional.
 Includes cases of invasive pneumococcal disease, in children aged <5 years, caused by S. pneumoniae, which is susceptible or for which susceptibility testing is not available (NNDSS event code 11717).
 ${ }^{\S}$ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

[^12]: * Mortality data in this table are voluntarily reported from 122 cities in the United States, most of which have populations of $\geq 100,000$. A death is reported by the place of its occurrence and by the week that the death certificate was filed. Fetal deaths are not included.
 \dagger Pneumonia and influenza.

 ${ }^{\pi}$ "Because of Hurricane Katrina, weekly reporting of deaths has been temporarily disrupted.
 ** Total includes unknown ages.

[^13]: * No measles cases reported for the current 4-week period, yielding a ratio for week 13 of zero (0).
 ${ }^{\dagger}$ Ratio of current 4 -week total to mean of 154 -week totals (from previous, comparable, and subsequent 4 -week periods for the past 5 years). The point where the hatched area begins is based on the mean and two standard deviations of these 4 -week totals.

