MMWR Morbidity and Mortality Weekly Report

www.cdc.gov/mmwr

Weekly

December 7, 2007 / Vol. 56 / No. 48

Trends in Childhood Cancer Mortality - United States, 1990-2004

Cancer is the fourth most common cause of death (after unintentional injury, homicide, and suicide) among persons aged 1-19 years in the United States (1,2). Because recent childhood cancer mortality has not been well characterized in terms of temporal, demographic, and geographic trends (2,3), CDC analyzed cancer death rates among children (defined as aged $0-14$ years) and adolescents (defined as aged 15-19 years) for the period 1990-2004 by sex, age group, race, ethnicity, U.S. Census region, and primary cancer site/leading diagnosis, using the most recent data available from the National Vital Statistics System (NVSS). This report describes the results of that analysis, which indicated that, overall, age-adjusted childhood cancer death rates decreased significantly during 1990-2004 among both sexes, both age groups, all races (except American Indians/Alaska Natives [AI/ANs]), Hispanics, non-Hispanics, and all U.S. Census regions. However, decreases in death rates varied among U.S. Census regions and between Hispanics and non-Hispanics. Eliminating racial/ethnic health disparities is one of the overarching goals of Healthy People 2010 (4). Further research is needed to understand geographic and ethnic disparities in childhood cancer death rates. Moreover, cancer prevention and intervention measures should be designed to reach populations that are underserved and at high risk.

NVSS collects death certificate data from vital statistics offices in the 50 states and the District of Columbia.* All reported deaths among children and adolescents during 1990-2004 were included in this analysis. Population estimates used as denominators in death rate calculations were from the U.S. Bureau of the Census and were modified by the Surveillance, Epidemiology, and End Results

[^0](SEER) program (1). ${ }^{\dagger}$ Age-adjusted death rates and trends were calculated for all primary cancer sites combined and for the two leading cancer diagnoses: leukemias and brain and other nervous system neoplasms. ${ }^{\S}$ All rates were per 1 million population and age adjusted to the 2000 U.S. standard population. For all primary cancer sites/leading diagnoses combined, death rates and trends were stratified further by sex, age, race, ethnicity, and U.S. Census region. Rates and overall annual percentage changes (APCs) from 1990 to 2004 were calculated using SEER-Stat. ${ }^{9}$ Joinpoint regression was performed to determine statistically significant changes in trends during 1990-2004 (5). The overall statistical significance level was $\alpha=0.05$, with a maximum of three joinpoints and four line segments allowed (5).
A total of 34,500 childhood cancer deaths were reported in the United States during 1990-2004. A total of 2,223 cancer deaths occurred in 2004; among these, leukemias were the most common diagnoses (25.5%), followed by brain and other nervous system neoplasms (25.0\%) (Figure 1). From 1990 to 2004, death rates declined

[^1]The $M M W R$ series of publications is published by the Coordinating Center for Health Information and Service, Centers for Disease Control and Prevention (CDC), U.S. Department of Health and Human Services, Atlanta, GA 30333.

Suggested Citation: Centers for Disease Control and Prevention. [Article title]. MMWR 2007;56:[inclusive page numbers].

Centers for Disease Control and Prevention
Julie L. Gerberding, MD, MPH Director
Tanja Popovic, MD, PhD
Chief Science Officer
James W. Stephens, PhD
Associate Director for Science
Steven L. Solomon, MD
Director, Coordinating Center for Health Information and Service
Jay M. Bernhardt, PhD, MPH
Director, National Center for Health Marketing
Katherine L. Daniel, PhD
Deputy Director, National Center for Health Marketing
Editorial and Production Staff
Frederic E. Shaw, MD, JD
Editor, MMWR Series
Christine G. Casey, MD
Guest Editor, MMWR Series
Suzanne M. Hewitt, MPA
Managing Editor, MMWR Series
Douglas W. Weatherwax
Lead Technical Writer-Editor
Catherine H. Bricker, MS Jude C. Rutledge Writers-Editors Beverly J. Holland
Lead Visual Information Specialist Lynda G. Cupell Malbea A. LaPete
Visual Information Specialists
Quang M. Doan, MBA Erica R. Shaver Information Technology Specialists

Editorial Board

William L. Roper, MD, MPH, Chapel Hill, NC, Chairman Virginia A. Caine, MD, Indianapolis, IN David W. Fleming, MD, Seattle, WA William E. Halperin, MD, DrPH, MPH, Newark, NJ Margaret A. Hamburg, MD, Washington, DC King K. Holmes, MD, PhD, Seattle, WA Deborah Holtzman, PhD, Atlanta, GA John K. Iglehart, Bethesda, MD Dennis G. Maki, MD, Madison, WI Sue Mallonee, MPH, Oklahoma City, OK Stanley A. Plotkin, MD, Doylestown, PA Patricia Quinlisk, MD, MPH, Des Moines, IA Patrick L. Remington, MD, MPH, Madison, WI Barbara K. Rimer, DrPH, Chapel Hill, NC
John V. Rullan, MD, MPH, San Juan, PR Anne Schuchat, MD, Atlanta, GA Dixie E. Snider, MD, MPH, Atlanta, GA John W. Ward, MD, Atlanta, GA
significantly for leukemias by 3.0% per year, for brain and other nervous system neoplasms by 1.0% per year, and for all other cancers combined by 1.3% per year (Table).
For all cancers combined during 1990-2004, boys (33.1 per million) had significantly higher death rates than girls (26.1); adolescents (37.9) had significantly higher death rates than children (26.9); whites (30.1) and blacks (29.3) had significantly higher death rates than Asians/Pacific Islanders (A/PIs) (26.4) and AI/ANs (20.0), respectively; and Hispanics (30.3) had significantly higher death rates than non-Hispanics (29.1) (Table). Death rates decreased similarly by sex, age group, and race; decreases ranged from 1.5% to 2.0% per year during 1990-2004. However, APCs, reflecting a decline in death rates, differed by 60% between Hispanics and non-Hispanics: 1.0\% per year for Hispanics compared with 1.6% per year for non-Hispanics. Statistical analysis with joinpoint regression revealed that the death rate for whites remained stable during 1990-1992 ($\mathrm{p}=0.77$), declined significantly during 1992-1996 by 4.3% per year ($p=0.001$), and then stabilized again during 1996-2004 ($\mathrm{p}=0.07$) (Figure 2). Death rates for blacks and A/PIs declined significantly, both by 1.6% per year ($p<0.001$ for blacks and $p=0.003$ for A/PIs). Death rates for AI/ANs were stable during 1990-2004 ($\mathrm{p}=0.18$); this trend might be attributed to the small numbers available for

FIGURE 1. Percentage of childhood cancer deaths,* by primary cancer site/leading diagnosis ${ }^{\dagger}$ — United States, 2004

[^2]TABLE. Number of deaths, death rates,* and annual percentage change in rates for childhood cancer deaths, by sex, age group, race, ethnicity, U.S. Census region, and primary cancer site/leading diagnosis ${ }^{\dagger}$ — United States, 1990-2004

Characteristic	No. of deaths		Age-adjusted rate		$\begin{gathered} 1990-2004 \\ \text { aggregated rate } \end{gathered}$	Annual \% change	(95\% C1s)
	1990	2004	1990	2004			
Total	2,457	2,223	34.2	27.3	29.7	-1.7	(-2.1--1.3)
Sex							
Male	1,390	1,256	37.8	30.1	33.1	-1.9	(-2.4--1.4)
Female	1,067	967	30.4	24.3	26.1	-1.5	(-2.0--1.0)
Age group (yrs)							
0-14	1698	1,492	31.4	24.6	26.9	-1.8	(-2.2--1.3)
15-19	759	731	42.7	35.3	37.9	-1.6	(-2.0--1.2)
Race							
White	1,986	1,748	34.6	27.5	30.1	-1.7	(-2.2--1.2)
Black	374	368	33.8	27.8	29.3	-1.6	(-2.3--0.9)
American Indian/Alaska Native	23	18	29.1	16.9	20.0	-2.0	(-4.9-1.0)
Asian/Pacific Islander	70	89	28.2	23.9	26.4	-1.6	(-2.6--0.7)
Ethnicity ${ }^{\text {I }}$							
Hispanic	286	437	32.7	29.2	30.3	-1.0	(-1.8--0.2)
Non-Hispanic	2,061	1,775	32.7	26.8	29.1	-1.6	(-1.9--1.2)
Region**							
Northeast	415	366	30.8	25.6	28.4	-1.8	(-2.3--1.2)
Midwest	636	499	36.5	27.5	29.1	-2.1	(-2.8--1.4)
South	844	795	33.8	26.9	29.8	-1.8	(-2.2--1.3)
West	562	563	35.2	28.8	31.1	-1.4	(-2.2--0.5)
Primary cancer site/ leading diagnosis							
Leukemia	738	566	10.3	6.9	8.4	-3.0	(-3.5--2.5)
Brain/Other nervous system	568	555	7.9	6.9	7.1	-1.0	(-1.6--0.5)
Other	1,151	1,102	16.0	13.5	14.1	-1.3	(-1.8--0.8)

* Per 1 million population; rates age adjusted to the 2000 U.S. standard population.
\dagger Based on International Classification of Diseases, Tenth Revision codes for leukemias (C91.0-C91.4, C91.7, C91.9, C92.0-C92.5, C92.7, C92.9, C93.0-C93.2, C93.7, C93.9, C94.0, C94.2, C94.4, C94.5, and C95.0) and brain and other nervous system neoplasms (C70-C72).
§ Confidence interval.
I Ethnicity is not mutually exclusive from race categories.
** Northeast: Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, and Vermont. Midwest: Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, and Wisconsin. South: Alabama, Arkansas, Delaware, District of Columbia, Florida, Georgia, Kentucky, Louisiana, Maryland, Mississippi, North Carolina, Oklahoma, South Carolina, Tennessee, Texas, Virginia, and West Virginia. West: Alaska, Arizona, California, Colorado, Hawaii, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, and Wyoming.
analysis in this population. Regression analysis also revealed that the death rate for Hispanics remained stable during 1990-1992 ($\mathrm{p}=0.53$), declined significantly during 19921998 by 4.3% per year ($\mathrm{p}=0.01$), and then stabilized during 1998-2001 ($\mathrm{p}=0.32$) and during 2001-2004 ($p=0.57$); the death rate for non-Hispanics declined significantly during $1990-1996$ by 2.6% per year ($\mathrm{p}<0.001$) and 1996-2004 by 0.9% per year ($\mathrm{p}=0.009$) (Figure 2).
Death rates did not decrease equally in all regions** during 1990-2004: 2.1% per year in the Midwest, 1.8% per year in the South and Northeast, and 1.4% per year in the

[^3]West (Table). For all cancers combined, children and adolescents living in the West (31.1 per million) had significantly higher death rates than those living in the Midwest (29.1), the Northeast (28.4), and the South (29.8), respectively (Table).
Reported by: LA Pollack, MD, SL Stewart, PhD, TD Thompson, Div of Cancer Prevention and Control, National Center for Chronic Disease Prevention and Health Promotion; J Li, MD, EIS Officer, CDC.
Editorial Note: The findings in this report indicate that, during 1990-2004, overall childhood cancer death rates declined significantly among boys and girls, children and adolescents, Hispanics and non-Hispanics, most racial groups, and all U.S. Census regions. Incidence rates for all childhood cancers increased by 0.6% per year during 1975-2002 (G). The overall decreasing trend in childhood cancer mortality in the United States likely reflects advances in cancer treatment in this population (3).

FIGURE 2. Rates* of childhood cancer deaths, by race and ethnicity ${ }^{\dagger}$ — United States, 1990-2004

*Per 1 million population; rates age adjusted to the 2000 U.S. standard population.
${ }_{\S} \dagger$ Ethnicity is not mutually exclusive from race categories.
${ }^{\S}$ Death rate remained stable during 1990-1992 ($p=0.53$), declined significantly during 1992-1998 ($p=0.01$), and then stabilized during 1998-2001 ($p=0.32$) and during 2001-2004 $(p=0.57)$.
further studies, including cancer survival studies. Moreover, variations by ethnicity were observed. Hispanics and non-Hispanics had similar childhood cancer death rates in 1990, but these rates declined more rapidly for non-Hispanics than for Hispanics during 1990-2004. Studies have documented that Hispanics lack sufficient access to health-care services because of inadequate heathinsurance coverage, lack of health insurance, poor geographic access to health-care providers, lack of transportation to and from providers, and cultural and linguistic barriers (8), which might contribute to this disparity. However, differences in tumor aggressiveness, cancer stage at diagnosis, and response to treatment also should be considered.
The findings in this report are subject to at least five limitations. First, the reporting of race/ethnicity to the U.S. Bureau of the Census and on death certificates usually is reliable for blacks and whites; however, death rates for American Indians, A/PIs, and Hispanics are underestimated by $21 \%, 11 \%$, and 2%, respectively (9). Second, the ability to stratify death rates for each primary cancer site/leading diagnosis by demographic and geographic variables and to assess the geographic variation at the state or county level was limited because of low death counts. Third, causes of death might be misclassified on death certificates. Fourth, using the 2000 U.S. standard population for all study years might not reflect actual annual population. Finally, cancer deaths among boys and girls who had cancer diagnosed as children but who died as adolescents are reflected in adolescent mortality rates. Thus, the mortality rates of adolescents might reflect the improved survival of children with cancer.
The overall trend of declining childhood cancer mortality during 1990-2004 likely reflects better treatment of childhood cancer. Surveillance of childhood cancer mortality should be well maintained to monitor the persistence of these declines. Possible causes for disparities in childhood cancer death rates (e.g., lack of health insurance, difficulty in accessing health care, late diagnosis, poor treatment quality, and unhealthy behaviors and lifestyles) need to be studied
further. By addressing these factors, geographic and ethnic disparities in childhood cancer death might be reduced, and children with cancer might live longer.
CDC maintains the National Program of Cancer Registries, which monitors cancer rates and trends. CDC also is working in partnership with organizations (e.g., the Lance Armstrong Foundation) to educate childhood cancer survivors, their families, and their health-care providers to recognize long-term effects associated with cancer treatment. These measures aim to enhance quality of life and increase survival.

References

1. Ries LA, Smith A, Gurney JG, et al. Cancer incidence and survival among children and adolescents: United States SEER Program 19751995. Bethesda, MD: National Cancer Institute, SEER Program; 1999. NIH publication no. 99-4649.
2. Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2006. CA Cancer J Clin 2006;56:106-30.
3. Linet MS, Ries LA, Smith MA, Tarone RE, Devesa SS. Cancer surveillance series: recent trends in childhood cancer incidence and mortality in the United States. J Natl Cancer Inst 1999;91:1051-8.
4. US Department of Health and Human Services. Healthy people 2010 (conference ed, in 2 vols). Washington, DC: US Department of Health and Human Services; 2000. Available at http://www.health.gov/healthy people.
5. Kim HJ, Fay MP, Feuer EJ, Midthune DN. Permutation tests for joinpoint regression with applications to cancer rates. Stat Med 2000;19:335-51.
6. Ward EM, Thun MJ, Hannan LM, Jemal A. Interpreting cancer trends. Ann N Y Acad Sci 2006;1076:29-53.
7. American Cancer Society. Cancer facts \& figures 2007. Atlanta, GA: American Cancer Society; 2007. Available at http://www.cancer.org/ downloads/stt/caff2007pwsecured.pdf.
8. Morales LS, Lara M, Kington RS, Valdez RO, Escarce JJ. Socioeconomic, cultural, and behavioral factors affecting Hispanic health outcomes. J Health Care Poor Underserved 2002;13:477-503.
9. Rosenberg HM, Maurer JD, Sorlie PD, et al. Quality of death rates by race and Hispanic origin: a summary of current research, 1999. Vital Health Stat 2 1999(128).

Surveillance for Travel-Associated Legionnaires Disease United States, 2005-2006

An estimated 8,000-18,000 persons are hospitalized with Legionnaires disease (LD) each year in the United States (1), and approximately 20\% of reported LD cases are associated with travel (2). Outbreaks of travelassociated LD can be difficult to detect because travelers disperse and Legionella-specific diagnostic tests are underutilized (3). Consequently, clinicians and health departments often are unaware when more than one LD case is associated with a common travel destination. In 2005, the Council of State and Territorial Epidemiologists
(CSTE) adopted a position statement recommending enhanced surveillance measures for LD, with emphasis on diagnosis and reporting of confirmed travel-associated LD cases within 7 days.* The rationale for enhanced surveillance was that earlier detection might lead to more rapid identification of a source (e.g., cooling tower) and expedite prevention measures (e.g., cleaning and chlorination). To 1) assess data from 32 states that used a supplementary reporting system for LD, 2) describe the epidemiology of travel-associated LD, and 3) compare characteristics of travel-associated cases with those of cases not associated with travel, CDC analyzed LD cases reported via the supplementary system during 2005-2006. The results of that analysis indicated that the proportion of LD cases that were travel associated remained stable from 2005 (23%) to 2006 (25%), the proportion of travel-associated cases reported via a dedicated CDC e-mail address increased from 11% to 24%, and the number of reported clusters of travelassociated LD increased from two in 2005 to eight in 2006. These results suggest that, to fully assess the benefits of enhanced LD surveillance, more states will need to adopt the CSTE recommendations.
LD cases are reported to CDC through the National Notifiable Diseases Surveillance System (NNDSS); this system collects certain patient demographic information (e.g., age and state of residence) but not travel history. Since 1980, states have had the option of additionally reporting more detailed information voluntarily to CDC through a supplementary LD reporting system, using a paper caseLD report form ${ }^{\dagger}$ that defines confirmed cases of LD and collects information related to diagnostic testing, location of disease acquisition (i.e., community or hospital), and travel. For this analysis, only confirmed LD cases were included. In 2005 and 2006, totals of 2,301 and 2,834 cases of LD, respectively, were reported to NNDSS, of which 603 (26\%) and 729 (26\%) cases, respectively, also were reported via the supplementary system (4,5). During 2005-2006, LD cases were reported through the supplementary system by 32 states; five states (Ohio, Michigan, New Jersey, New York, and Virginia) submitted the majority (69%) of supplementary reports. A case of LD was considered to be travel associated if the patient reported spending at least one night away from home during the 2 weeks ${ }^{\S}$ before illness onset; possible nosocomial cases were

[^4]excluded. Changes in data from 2005 to 2006 were determined to be statistically significant at $\mathrm{p}<0.05$ by chi-square test.
The proportions of LD cases that were travel associated and reported via the supplementary system were similar in 2005 (136 of 603 [$23 \%]$) and 2006 (183 of 729 [25\%]). Reporting via the dedicated CDC e-mail address (travellegionella@cdc.gov), which can facilitate timely reporting, increased significantly, from 15 reports (11%) in 2005 to 44 reports (24%) in 2006 (Table 1). The supplementary system recorded two clusters (defined as two or more cases associated with the same potential source during a 12 -month period) of travel-associated LD in 2005 and eight clusters in 2006. Of these 10 clusters overall, seven were associated with hotels, and three were associated with cruise ships; each cluster consisted of either two or three cases of LD. The majority of persons with travelassociated LD had traveled to destinations outside their state of residence.
During 2005-2006, the median age was 59 years for persons with travel-associated LD and 60 years for non-travel-associated LD (Table 2). Among those with

TABLE 1. Number and percentage of confirmed* cases of travel-associated Legionnaires disease reported via supplementary reporting system, by selected characteristics United States, 2005 and 2006

Characteristic	$\begin{gathered} 2005 \\ (N=136) \end{gathered}$		$\begin{gathered} 2006 \\ (\mathrm{~N}=183) \end{gathered}$	
	No.	(\%)	No.	(\%)
Source of report				
Initial report by e-mail	15	(11)	44	(24)
Initial report on paper form	96	(71)	127	(69)
Other ${ }^{\dagger}$	25	(18)	12	(7)
Clusters				
Total no. reported	2	-	8	-
Two persons per cluster	0	-	5	(63)
Three persons per cluster	2	(100)	3	(37)
Travel destination				
Within state of residence	28	(21)	50	(27)
Outside state of residence	101	(74)	115	(63)
Outside country of residence	19	-	35	-
Unknown	7	(5)	18	(10)
Traveler accommodation§				
Hotel	55	(40)	93	(51)
Private home, private vehicle, or campsite	29	(21)	60	(33)
Cruise ship	13	(10)	17	(9)
Other	2	(2)	4	(2)
Unknown	46	(34)	31	(17)

* Definition available at http://www.cste.org/ps/2005pdf/final2005/05-id01 final.pdf, with the exception that LD cases were considered travel associated if patients had a history of travel in the 2 weeks, rather than 10 days, before onset of illness.
\dagger Includes Epidemic Information Exchange (Epi-X) posting, fax, telephone, § or unknown.
${ }^{\text {}}$ More than one type of accommodation might apply.

TABLE 2. Comparison of confirmed* cases of travel-associated and non-travel-associated Legionnaires disease reported via supplementary reporting system, by selected characteristics United States, 2005-2006

Characteristic	Travel associated$(\mathrm{N}=319)^{\dagger}$		Non-travel associated ($\mathrm{N}=1,013$) ${ }^{\dagger}$	
	No.	(\%)	No.	(\%)
Patients				
Median age (yrs)	59	-	60	-
Age range (yrs)	20-89	-	1-99	-
Male	210 of 284	(74)	532 of 832	(64)
White	178 of 203	(88)	582 of 748	(78)
Hospitalized	274 of 282	(97)	950 of 976	(97)
Died	15 of 252	(6)	71 of 882	(8)
Diagnostic test ${ }^{\text {§ }}$				
Urine antigen	306 of 319	(96)	976 of 1,013	(96)
Culture	17 of 319	(5)	66 of 1,013	(7)
Serology	5 of 319	(2)	2 of 1,013	(0.2)

* Definition available at http://www.cste.org/ps/2005pdf/final2005/05-id01 final.pdf, with the exception that LD cases were considered travel associated if patients had a history of travel in the 2 weeks, rather than 10 days, before onset of illness.
${ }_{\S}^{\dagger}$ Denominators vary because certain data were not available.
$\S_{\text {More than one type of test might apply. }}$
travel-associated LD, 74% were male, and 88% were white. Among the 252 patients with travel-associated LD and known outcome, 15 (6%) died, compared with 71 (8%) of the 882 patients with non-travel-associated LD. Approximately 96% of both travel-associated and non-travel-associated LD cases were diagnosed by urine antigen testing; few were diagnosed by Legionella culture or serology. Reported by: P Smith, MD, Div of Epidemiology, New York State Health Dept. M Moore, MD, NAlexander, MPH, L Hicks, DO, Div of Bacterial Diseases, National Center for Immunization and Respiratory Diseases; R O'Loughlin, PhD, EIS Officer, CDC.
Editorial Note: The 2,301 LD cases reported to NNDSS in 2005 and the 2,834 cases reported in 2006 represent only a fraction of the estimated $8,000-18,000$ cases of LD that require hospitalization each year in the United States (1), likely because of underdiagnosis and underreporting. The 2005 CSTE position statement recommended that all cases of LD be reported to CDC to enhance recognition of outbreaks and enable earlier implementation of prevention measures. CSTE also set parameters for timely reporting of travel-associated LD cases, recommending that investigating health departments ascertain whether cases are travel associated and report them to CDC within 7 days of notification of a case. CDC encourages states to submit casereport forms for all LD cases; non-travel-associated cases should be reported to CDC within 30 days. Although the CSTE position statement was not adopted until June 2005, increased use of dedicated e-mail for reporting and improved
identification of clusters was noted in 2006 for travelassociated LD.
The proportion of LD cases diagnosed by culture has declined since introduction of urine antigen testing (2), and tests are performed on only a limited proportion of patients who have indications for urine antigen testing or Legionella culture of respiratory specimens (6). Despite the convenience of urine antigen testing, the availability of a clinical isolate of Legionella improves the likelihood that an environmental source for Legionella can be identified (i.e., by matching the characteristics of clinical and environmental isolates) and remediated $(7,8)$. In addition, CDC recently implemented DNA sequence-based typing to compare individual clinical strains of Legionella among travelers. Strain typing has contributed to identification of clusters of travel-associated LD in Europe (9) and might provide similar benefits in the United States. Therefore, CDC is requesting that state health departments forward to CDC all clinical isolates of Legionella obtained from persons who report that they traveled during the 2-14 days before onset of illness. Details regarding the isolate submission process can be obtained by e-mail (travellegionella@cdc.gov) or by telephone (404-6390418).

The findings in this report are subject to at least five limitations. First, because analysis was limited to 20052006 and the CSTE position statement was adopted in 2005, sufficient time might not have elapsed to attribute changes in LD reporting to the CSTE statement. Second, the data presented likely underestimate the number of cases of LD because diagnostic tests for LD are underutilized in the United States. Utilization might increase as more clinicians follow recently updated guidelines for management of community-acquired pneumonia, including LD (10). Third, travel-associated LD cases might be underestimated because not all clinicians obtain a travel history from all patients with community-acquired pneumonia. Fourth, although an increase in reporting by e-mail might suggest more rapid reporting, timeliness of reporting could not be assessed because the dates that reports were received by CDC were not recorded. Finally, although all states are required to report LD to NNDSS, only 26% of these LD cases also were reported via the voluntary supplementary system during 2005-2006. Therefore, the detailed data provided on case-report forms might not be representative of all reported LD cases.
Identification of a single case of LD suggests the possibility of an environmental source to which other persons might be exposed. Therefore, timely reporting all cases of travel-associated LD to CDC is important for identifying
clusters. CDC encourages state health departments to post information on LD cases associated with travel on the CDC Epidemic Information Exchange (Epi-X) to alert other health officials to review their records for cases of LD associated with travel to the same destination. During 20052006, a total of 30 Epi-X postings asked that cases of LD associated with travel to specific locations be reported to CDC or to the investigating state health department. CDC resources for investigating and reporting cases of travelassociated LD are available at http://www.cdc.gov/ legionella. CDC also continues to be available for consultation with regard to LD clusters.

References

1. Marston BJ, Plouffe JF, File TM Jr, et al. Incidence of communityacquired pneumonia requiring hospitalization: results of a populationbased active surveillance study in Ohio. The Community-Based Pneumonia Incidence Study Group. Arch Intern Med 1997;157: 1709-18.
2. Benin AL, Benson RF, Besser RE. Trends in Legionnaires disease, 19801998: declining mortality and new patterns of diagnosis. Clin Infect Dis 2002;35:1039-46.
3. Benin AL, Benson RF, Arnold KE, et al. An outbreak of travel-associated Legionnaires disease and Pontiac fever: the need for enhanced surveillance of travel-associated legionellosis in the United States. J Infect Dis 2002;185:237-43.
4. CDC. Summary of notifiable diseases - United States, 2005. MMWR 2007;54(53).
5. CDC. Final 2006 reports of nationally notifiable infectious diseases. MMWR 2007:56:853-63.
6. Gorwitz R, Javadi M, Benson R, et al. An outbreak of travel associated Legionnaires' disease-Las Vegas, 2001. Programs and abstracts of the 42 nd Interscience Conference on Antimicrobial Agents and Chemotherapy, San Diego, CA; September 27-30, 2002.
7. Den Boer JW, Yzerman EP, Schellekens J, et al. A large outbreak of Legionnaires' disease at a flower show, the Netherlands, 1999. Emerg Infect Dis 2002;8:37-43.
8. Garcia-Fulgueiras A, Navarro C, Fenoll D, et al. Legionnaires' disease outbreak in Murcia, Spain. Emerg Infect Dis 2003;9:915-21.
9. Gaia V, Fry NK, Afshar B, et al. Consensus sequence-based scheme for epidemiological typing of clinical and environmental isolates of Legionella pneumophila. J Clin Microbiol 2005;43:2047-52.
10. Mandell LA, Wunderink RG, Anzueto A, et al. Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis 2007;44(Suppl 2):S27-72.

Brief Report

Respiratory Syncytial Virus Activity United States, July 2006-November 2007

Respiratory syncytial virus (RSV), the most common cause of severe lower respiratory tract disease among infants and young children, typically infects persons by age 2 years and can cause subsequent infections throughout life (1). RSV infection primarily manifests as bronchiolitis or pneumonia and results in approximately 75,000 to 125,000 hospitalizations in the United States each year (1). Persons
at increased risk for severe disease or death include premature infants, older adults, and persons of any age with compromised respiratory, cardiac, or immune systems $(2,3)$. RSV is transmitted from person to person via close contact, droplets, or fomites. In temperate climates, peak RSV activity typically occurs during the winter. However, year-to-year national and regional variability in the RSV season onset and offset* occurs in the United States (4). RSV circulation also varies by geographic location; for example, Florida has an earlier season onset and a longer season than the rest of the United States (5). Using data reported to the National Respiratory and Enteric Virus Surveillance System (NREVSS), this report summarizes RSV temporal and geographic trends in the United States during the weeks ending July 8, 2006-June 30, 2007, and for the first 5 months of the current reporting season (the weeks ending July 7-November 24, 2007). Appropriately timed diagnostic tests can provide data that indicate when the RSV season begins nationally and regionally, information that has been critical in determining when to begin RSV prophylaxis for infants and children at high risk for infection.
NREVSS receives weekly reports from a passive voluntary network of laboratories regarding the number of specimens tested for specific viral pathogens, including RSV, and the number of positive results, stratified by test type. During July 2006-June 2007, a total of 94 clinical and public health laboratories reported RSV data. Laboratories that were included in this analysis met the following three criteria: reported ≥ 30 weeks of data, tested ≥ 15 specimens per week during the winter months, and reported $\geq 2 \%$ of specimens testing positive annually. Sixty-three (67%) laboratories representing 36 states met these criteria and reported a total of 126,617 RSV antigen-detection tests, of which $21,470(17.0 \%)$ were positive. The national RSV season onset began during the week ending November 11, 2006, and continued for 19 weeks until the season offset (week ending March 17, 2007).
Data were summarized by region ${ }^{\dagger}$ (Midwest, South [excluding Florida], Northeast, and West); data from Florida are presented separately because they differed substantially

[^5]from RSV-detection data from the remainder of the South (5) (Figure). The 2006-07 RSV season onset occurred during the week ending November 11, 2006, in the Midwest (12 laboratories reporting); the week ending November 18 in the Northeast (eight laboratories reporting); and the week ending December 16 in the West (14 laboratories reporting). The season offset occurred during the week ending February 10, 2007, in the Northeast; the week ending March 17 in the Midwest; and the week ending March 31 in the West. The RSV season onset in the South (excluding Florida) (27 laboratories reporting) began during the week ending October 28, 2006, and continued until the week ending February 24, 2007 (18 weeks). The RSV season onset in Florida (two Miami laboratories reporting) began during the week ending July 1, 2006, and continued until the week ending January 27, 2007 (31 weeks).
For the 2007-08 season, the number of reporting laboratories and geographic coverage has increased substantially as a result of a data-sharing agreement with Surveillance Data, Inc. (SDI), a private company that conducts RSV surveillance. ${ }^{\S}$ On the basis of preliminary reports from the week ending July 7, 2007, to the week ending November 24, a total of 179 laboratories in 46 states and the District of Columbia reported 69,230 RSV tests and 5,173 (7.5\%) positive results by antigen detection to NREVSS. Reports received through November 24 indicate that although the national RSV season onset has not yet occurred, the regional season onset occurred during the week ending November 17 in the South (58 laboratories reporting, excluding Florida) and during the week ending November 24 in the Northeast (23 laboratories reporting). As of November 24, reports from the Midwest (48 laboratories reporting) and West (37 laboratories reporting) did not indicate onset of the RSV season. Florida continued to have a unique onset (week ending August 4 [13 laboratories reporting]). Weekly updates indicating RSV national, regional, and state trends are available from the NREVSS website ($)$); data from Florida laboratories are available from the Florida Department of Public health website (7).
No vaccine or effective therapy is available for RSV. Infants and children at risk for severe RSV infection can

[^6]FIGURE. Percentage of specimens testing positive for respiratory syncytial virus (RSV) antigen, by region* and week of report United States, July 8, 2006-November 24, 2007

* Northeast: Connecticut, Massachusetts, New Hampshire, New Jersey, New York, and Rhode Island; Midwest: Illinois, Indiana, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, and Wisconsin; South: Alabama, Arkansas, Delaware, District of Columbia, Georgia, Kentucky, Louisiana, Maryland, Mississippi, North Carolina, Oklahoma, South Carolina, Tennessee, Texas, and Virginia; West: Alaska, Arizona, California, Colorado, Hawaii, Montana, Washington, and Wyoming; Florida. (Data from Florida are presented separately because they differed substantially from RSV-detection data from the remainder of the South region.)
receive immune prophylaxis with monthly doses of a humanized murine anti-RSV monoclonal antibody during the RSV season (8). Specific immune prophylaxis guidelines are available from the American Academy of Pediatrics (8,9).
Reported by: National Respiratory and Enteric Virus Surveillance System collaborating laboratories. CA Panozzo, MPH, AL Fowlkes, MPH, E Schneider, MD, LJ Anderson, MD, Div of Viral Diseases, National Center for Immunization and Respiratory Diseases, $C D C$.

References

1. Shay DK, Holman RC, Newman RD, Liu LL, Stout JW, Anderson LJ. Bronchiolitis-associated hospitalizations among U.S. children, 19801996. JAMA 1999;282:1440-6.
2. Welliver RC. Review of epidemiology and clinical risk factors for severe respiratory syncytial virus (RSV) infection. J Pediatr 2003;143(5 Suppl):S112-17.
3. Falsey AR, Hennessey PA, Formica MA, Cox C, Walsh EE. Respiratory syncytial virus infection in elderly and high-risk adults. N Engl J Med 2005;352:1749-59.
4. Mullins JA, LaMonte AC, Bresee JS, Anderson LJ. Substantial variability in community RSV season timing. Pediatr Infect Dis J 2003;22:857-62.
5. CDC. Respiratory syncytial virus activity—United States, 2005-2006. MMWR 2006;55:1277-9.
6. CDC. National Respiratory and Enteric Virus Surveillance System. Available at http://www.cdc.gov/surveillance/nrevss.
7. Florida Department of Public Health. Respiratory syncytial virus information. Available at http://www.doh.state.fl.us/disease_ctrl/epi/rsv/rsv.htm.
8. Meissner HC, Long SS, American Academy of Pediatrics Committee on Infectious Diseases and Committee on Fetus and Newborn. Revised indications for the use of palivizumab and respiratory syncytial virus immune globulin intravenous for the prevention of respiratory syncytial virus infections. Pediatrics 2003;112(6 Pt 1):1447-52.
9. American Academy of Pediatrics. Respiratory syncytial virus. In: Pickering LK, Baker CJ, Long SS, McMillan JA, eds. Red Book: 2006 report of the Committee on Infectious Diseases. 27th ed. Elk Grove Village, IL: American Academy of Pediatrics; 2006:560-6.

Notice to Readers

Recommendation from the Advisory Committee on Immunization Practices (ACIP) for Use of Quadrivalent Meningococcal Conjugate Vaccine (MCV4) in Children Aged 2-10 Years at Increased Risk for Invasive Meningococcal Disease

On October 17, 2007, the Food and Drug Administration approved quadrivalent meningococcal conjugate vaccine (MCV4) (Menactra ${ }^{\circledR}$, Sanofi Pasteur, Swiftwater,

Pennsylvania) for use in children aged 2-10 years, in addition to its prior approval for use in persons aged 11-55 years (1). Previous Advisory Committee on Immunization Practices (ACIP) recommendations called for routine vaccination with meningococcal polysaccharide vaccine (MPSV4) (Menomune ${ }^{\circledR}$, Sanofi Pasteur) of children aged $2-10$ years who are at increased risk for meningococcal disease. These children include travelers to or residents of countries in which meningococcal disease is hyperendemic or epidemic, children who have terminal complement component deficiencies, and children who have anatomic or functional asplenia (2). This notice provides updated recommendations for meningococcal vaccination among children aged 2-10 years at increased risk for meningococcal disease.

In anticipation of possible licensure of MCV4 for children aged 2-10 years, during February 2007-October 2007, the ACIP meningococcal vaccine workgroup reviewed data on MCV4 immunogenicity and safety in children in that age group. On the basis of these data, opinions of workgroup members, and feedback from partner organizations, the workgroup proposed recommendations for use of MCV4 among children aged 2-10 years who are at increased risk for meningococcal disease. The recommendations were approved by ACIP at its October 24, 2007, meeting.
In a single, randomized, modified double-blind, controlled study of healthy U.S. children aged $2-10$ years that compared MCV4 with MPSV4, serum bactericidal antibody geometric mean titers against all four serogroups were significantly higher at both 28 days and 6 months after vaccination in the children who received MCV4 (3). In the same study, rates of most solicited local and systemic adverse events after vaccination with MCV4 were comparable to rates observed after vaccination with MPSV4 (3). Although duration of protective immunity from MCV4 is not yet known, conjugate vaccines generally have a longer duration of protection than polysaccharide vaccines (2).
At its October meeting, ACIP revised its recommendation to state that MCV4 is preferable to MPSV4 for vaccination of children aged $2-10$ years who are at increased risk for meningococcal disease. These children include travelers to or residents of countries in which meningococcal disease is hyperendemic or epidemic, children who have terminal complement component deficiencies, and children who have anatomic or functional asplenia (2). Additionally, MCV4 is preferred to MPSV4 for use among children aged 2-10 years for control of meningococcal disease outbreaks. Providers may elect to vaccinate children aged 210 years who are infected with human immunodeficiency
virus (HIV).* For children aged 2-10 years who have previously received MPSV4 and remain at increased risk for meningococcal disease, ACIP recommends vaccination with MCV4 at 3 years after receipt of MPSV4. Children who last received MPSV4 more than 3 years ago and remain at risk for meningococcal disease should be vaccinated with MCV4 as soon as possible. For children at lifelong increased risk for meningococcal disease, subsequent doses of MCV4 likely will be needed. ACIP will make recommendations for revaccination with MCV4 as more data on duration of protection become available.
Persons with a history of Guillain-Barré syndrome (GBS) might be at increased risk for GBS after MCV4 vaccination (4); therefore, a history of GBS is a precaution (5) to administering MCV4. For children with a history of GBS, MPSV4 is an acceptable alternative for short-term (i.e., $3-5$ years) protection against meningococcal disease.
The ACIP meningococcal vaccine workgroup is considering options for general use of MCV4 among children aged $2-10$ years. Recommendations will be presented at a future ACIP meeting. Recommendations for use of MCV4 in persons aged $11-55$ years, including a recommendation for routine vaccination with MCV4 of persons aged 11-18 years, have been published previously and remain unchanged (3,6).

References

1. Food and Drug Administration. Product approval information-licensing action, package insert: Meningococcal (groups A, C, Y, W-135) polysaccharide diphtheria toxoid conjugate vaccine Menactra ${ }^{\circledR}$. Sanofi Pasteur. Rockville, MD: US Department of Health and Human Services, Food and Drug Administration, Center for Biologics Evaluation and Research; 2005. Available at http://www.fda.gov/cber/label/ menactralb.pdf.
2. CDC. Prevention and control of meningococcal disease: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR 2005;54(No. RR-7).
3. Pichichero M, Casey J, Blatter M, et al. Comparative trial of the safety and immunogenicity of quadrivalent ($\mathrm{A}, \mathrm{C}, \mathrm{Y}, \mathrm{W}-135$) meningococcal polysaccharide-diphtheria conjugate vaccine versus quadrivalent polysaccharide vaccine in two- to ten-year-old children. Pediatr Infect Dis J 2005;24:57-62.
4. CDC. Update: Guillain-Barré syndrome among recipients of Menactra ${ }^{\circledR}$ meningococcal conjugate vaccine-United States, June 2005September 2006. MMWR 2006;55:1120-4.
5. CDC. General recommendations on immunization: recommendations of the Advisory Committee on Immunization Practices (ACIP) and the American Academy of Family Physicians (AAFP). MMWR 2002;51(No. RR-2):10-11.
6. CDC. Revised recommendations of the Advisory Committee on Immunization Practices to vaccinate all persons aged 11-18 years with meningococcal conjugate vaccine. MMWR 2007;56:794-5.
[^7]
Notice to Readers

Epidemiology in Action: Intermediate Analytic Methods Course

CDC and Emory University's Rollins School of Public Health will cosponsor the course Epidemiology in Action: Intermediate Analytic Methods on February 25-29, 2008, at Emory University, Rollins School of Public Health. The course is designed for practicing public health professionals who have had training and experience in basic applied epidemiology and would like training in additional quantitative skills related to analysis and interpretation of epidemiologic data. The course includes a review of the fundamentals of descriptive epidemiology and biostatistics, measures of association, normal and binomial distributions, confounding, statistical tests, stratification, logistic regression models, and computer programs used in epidemiology.

The prerequisite is an introductory course in epidemiology, such as Epidemiology in Action or the International Course in Applied Epidemiology. Tuition is charged. The application deadline is January 26, 2008, or when all slots have been filled.

Additional information and applications are available from Emory University, Hubert Global Health Dept (Attn: Pia), 1518 Clifton Rd. NE, Rm. 746, Atlanta, GA 30322; or by telephone, 404-727-3485; fax, 404-727-4590; website, http://www.sph.emory.edu/epicourses; or e-mail, pvaleri@sph.emory.edu.

Errata: Vol. 54, No. RR-16

In the MMWR Recommendations and Reports, "A Comprehensive Immunization Strategy to Eliminate Transmission of Hepatitis B Virus Infection in the United States:

Recommendations of the Advisory Committee on Immunization Practices (ACIP) - Part 1: Immunization of Infants, Children, and Adolescents," the following errors occurred:

On page 8, in Table 2, in the first row, "Infants ($<1 \mathrm{yr}$)," under the column heading "Combination vaccine, Pediarix, Dose ($\mu \mathrm{g}$)," the text should read, "10."

On page 9, in Table 4, under the column heading "Recommendation," the second bullet should read, "Administer 3 additional hepatitis B vaccine doses with single-antigen vaccine at ages $1,2-3$, and 6 mos or hepatitis B-containing combination vaccine at ages 2, 4, and 6 mos (Pediarix) or 2, 4, and $12-15 \operatorname{mos}(C o m v a x) .{ }^{\dagger "}$

The fourth bullet should read, "Test for HBsAg and antibody to HBsAg $1-2$ mos after completion of ≥ 3 doses of a licensed hepatitis B vaccine series (i.e., at age 9-18 mos, generally at the next well-child visit). Testing should not be performed before age 9 mos nor within 4 wks of the most recent vaccine dose."

The seventh bullet should read, "Administer 3 additional hepatitis B vaccine doses with single-antigen vaccine at ages $1,2-3$, and 6 mos or hepatitis B-containing combination vaccine at ages 2,4 , and 6 mos (Pediarix) or 2, 4, and 12-15 mos (Comvax). ${ }^{\dagger "}$

The 10th bullet should read, "Complete the hepatitis B vaccine series with single-antigen vaccine at ages 2 mos and $6-18$ mos or hepatitis B-containing combination vaccine at ages 2, 4, and 6 mos (Pediarix) or 2, 4, and 12-15 mos (Comvax). ${ }^{\dagger "}$

The following footnote should be added to Table 4: "†The final dose in the vaccine series should not be administered before age 24 weeks (164 days)."

The corrected Table 4 is available in its entirety at http:// www.cdc.gov/hepatitis/hbv/pdfs/correctedtable4.pdf.

TABLE I. Provisional cases of infrequently reported notifiable diseases ($<1,000$ cases reported during the preceding year) - United States, week ending December 1, 2007 (48th Week)*

[^8]* Incidence data for reporting year 2007 are provisional, whereas data for 2002, 2003, 2004, 2005, and 2006 are finalized.
\dagger Calculated by summing the incidence counts for the current week, the 2 weeks preceding the current week, and the 2 weeks following the current week, for a total of 5 preceding years. Additional information is available at http://www.cdc.gov/epo/dphsi/phs/files/5yearweeklyaverage.pdf.
§ Not notifiable in all states. Data from states where the condition is not notifiable are excluded from this table, except in 2007 for the domestic arboviral diseases and influenzaassociated pediatric mortality, and in 2003 for SARS-CoV. Reporting exceptions are available at http://www.cdc.gov/epo/dphsi/phs/infdis.htm.
II Includes both neuroinvasive and nonneuroinvasive. Updated weekly from reports to the Division of Vector-Borne Infectious Diseases, National Center for Zoonotic, VectorBorne, and Enteric Diseases (ArboNET Surveillance). Data for West Nile virus are available in Table II.
** Data for H. influenzae (all ages, all serotypes) are available in Table II
$\dagger \dagger$ Updated monthly from reports to the Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention. Implementation of HIV reporting influences the number of cases reported. Updates of pediatric HIV data have been temporarily suspended until upgrading of the national HIV/AIDS surveillance data management system is completed. Data for HIV/AIDS, when available, are displayed in Table IV, which appears quarterly.
§§ Updated weekly from reports to the Influenza Division, National Center for Immunization and Respiratory Diseases. One case occurring during the 2007-08 influenza season has been reported. A total of 73 cases were reported for the 2006-07 influenza season
IIf $N o$ measles cases were reported for the current week.
*** Data for meningococcal disease (all serogroups) are available in Table II
${ }^{\dagger \dagger \dagger}$ The one rubella case reported for the current week was unknown.
Uss Updated weekly from reports to the Division of Viral and Rickettsial Diseases, National Center for Zoonotic, Vector-Borne, and Enteric Diseases

TABLE II. Provisional cases of selected notifiable diseases, United States, weeks ending December 1, 2007, and December 2, 2006 (48th Week)*

Reporting area	Chlamydia ${ }^{\text { }}$					Coccidioidomycosis					Cryptosporidiosis				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	12,126	20,818	25,395	952,631	942,578	148	143	658	6,875	7,359	63	84	978	9,895	5,248
New England	762	705	1,357	32,526	30,916	-	0	1	2	-	-	4	39	295	366
Connecticut	226	223	829	9,791	8,933	N	0	0	N	N	-	0	39	39	38
Maine ${ }^{\text {§ }}$	50	49	74	2,340	2,097	-	0	0	-	-	-	1	5	50	48
Massachusetts	319	301	672	14,779	14,100	-	0	0	-	-	-	2	11	107	171
New Hampshire	60	38	73	1,928	1,851	-	0	1	2	-	-	1	5	50	46
Rhode Island ${ }^{\text {§ }}$	90	62	106	2,890	2,851	-	0	0	-	-	-	0	3	10	14
Vermont ${ }^{\text {§ }}$	17	19	45	798	1,084	N	0	0	N	N	-	1	3	39	49
Mid. Atlantic	2,107	2,801	4,284	133,144	116,285	-	0	0	-	-	5	11	113	1,278	623
New Jersey	198	406	528	19,064	18,797	N	0	0	N	N	-	0	6	41	42
New York (Upstate)	738	537	2,758	25,689	22,475	N	0	0	N	N	5	3	20	234	163
New York City	446	971	1,971	45,282	38,721	N	0	0	N	N	-	1	7	88	147
Pennsylvania	725	807	1,800	43,109	36,292	N	0	0	N	N	-	5	103	915	271
E.N. Central	2,006	3,223	6,212	155,597	155,852	-	1	3	32	42	19	20	131	1,662	1,287
Illinois	1,280	988	1,370	45,995	49,418	-	0	0	-	-		2	13	151	188
Indiana	207	398	646	18,910	18,387	-	0	0	-	-	14	2	12	111	98
Michigan	417	714	1,059	33,130	32,906	-	0	3	21	36	2	3	11	178	137
Ohio	102	759	3,637	40,996	36,280	-	0	1	11	6	3	5	61	547	343
Wisconsin	-	370	443	16,566	18,861	N	0	0	N	N	-	7	59	675	521
W.N. Central	460	1,206	1,465	55,135	57,322	-	0	54	8	1	12	15	125	1,554	827
lowa	91	160	252	7,973	7,779	N	0	0	N	N	-	3	61	600	169
Kansas	-	155	294	7,000	7,306	N	0	0	N	N	-	1	16	145	77
Minnesota	-	253	314	11,164	11,995	-	0	54	-	-	5	3	34	286	209
Missouri	302	462	551	21,380	21,188	-	0	1	8	1	-	2	13	171	185
Nebraska ${ }^{\text {® }}$	-	94	183	3,956	4,979	N	0	0	N	N	7	1	21	161	94
North Dakota	-	27	61	1,277	1,673	N	0	0	N	N	-	0	11	26	9
South Dakota	67	49	84	2,385	2,402	N	0	0	N	N	-	2	16	165	84
S. Atlantic	3,001	3,935	6,760	182,693	181,608	-	0	1	3	4	13	20	69	1,169	1,123
Delaware	109	66	140	3,235	3,301	-	0	0	-	-	-	0	4	20	15
District of Columbia	95	111	166	5,354	3,005	-	0	0	-	-	-	0	2	3	16
Florida	1,263	1,168	1,767	53,894	45,497	N	0	0	N	N	6	11	35	630	514
Georgia	8	640	3,822	23,124	33,123	N	0	0	N	N	6	4	22	217	267
Maryland ${ }^{\text {® }}$	341	398	696	18,556	19,778	-	0	1	3	4	-	0	2	30	19
North Carolina	55	539	1,905	24,578	31,091	-	0	0	-	-	1	1	18	113	93
South Carolina ${ }^{\text {}}$	589	508	3,030	28,782	21,065	N	0	0	N	N	-	1	14	78	128
Virginia ${ }^{\text {s }}$	538	485	621	22,379	22,057	N	0	0	N	N	-	1	5	67	61
West Virginia	3	64	93	2,791	2,691	N	0	0	N	N	-	0	5	11	10
E.S. Central	978	1,529	2,160	73,008	70,664	-	0	0	-	-	4	4	63	589	165
Alabama ${ }^{\text {§ }}$	64	471	590	21,589	21,466	N	0	0	N	N	1	1	14	116	59
Kentucky	302	155	691	7,928	8,038	N	0	0	N	N	-	1	40	246	38
Mississippi	-	359	959	18,123	17,672	N	0	0	N	N	-	0	11	96	24
Tennessee ${ }^{\text {§ }}$	612	516	725	25,368	23,488	N	0	0	N	N	3	1	19	131	44
W.S. Central	799	2,348	3,006	110,830	106,172	-	0	1	2	1	1	4	41	341	385
Arkansas ${ }^{\text {¢ }}$	125	174	328	8,690	7,615	N	0	0	N	N	-	0	8	32	22
Louisiana	356	359	851	17,629	16,536	-	0	1	2	1	-	1	4	50	86
Oklahoma	318	256	467	11,793	11,690	N	0	0	N	N	1	1	11	117	39
Texas ${ }^{\text {§ }}$	-	1,534	2,015	72,718	70,331	N	0	0	N	N	-	1	29	142	238
Mountain	357	1,250	1,706	56,776	64,913	111	97	293	4,498	4,951	9	7	580	2,883	390
Arizona	58	484	834	21,266	21,315	111	93	293	4,363	4,815	1	1	6	46	29
Colorado	-	200	376	9,121	15,210	N	0	0	N	N	-	2	26	205	70
Idaho ${ }^{\text {§ }}$	125	55	252	3,391	3,064	N	0	0	N	N	5	1	71	451	35
Montana ${ }^{\text {§ }}$	-	43	73	1,646	2,414	N	0	0	N	N	1	1	7	67	135
Nevadas	-	174	293	7,279	7,795	-	1	5	50	61	-	0	3	18	14
New Mexicos	8	157	395	7,877	9,158	-	0	2	18	20	-	2	9	106	41
Utah	166	105	209	5,114	4,628	-	1	7	64	53	2	0	499	1,937	17
Wyoming ${ }^{\text {§ }}$	-	23	35	1,082	1,329	-	0	1	3	2	-	0	8	53	49
Pacific	1,656	3,344	4,362	152,922	158,846	37	41	311	2,330	2,360	-	2	16	124	82
Alaska	78	87	157	3,982	4,097	N	0	0	N	N	-	0	2	3	4
California	1,154	2,671	3,627	123,754	124,371	37	41	311	2,330	2,360	-	0	0	-	-
Hawaii	-	109	134	5,111	5,214	N	0	0	N	N	-	0	0	-	4
Oregon§	284	160	394	8,031	8,784	N	0	0	N	N	-	2	16	121	74
Washington	140	237	621	12,044	16,380	N	0	0	N	N	-	0	0	-	-
American Samoa	-	10	32	95	46	N	0	0	N	N	-	0	0	-	N
C.N.M.I.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Guam	-	15	34	661	810	-	0	0	-	-	-	0	0	-	-
Puerto Rico	-	120	543	6,536	4,681	N	0	0	N	N	N	0	0	N	N
U.S. Virgin Islands	-	3	7	76	244	-	0	0	-	-	-	0	0	-	-

[^9]U: Unavailable. -: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Incidence data for reporting year 2007 are provisional. Data for HIV/AIDS, AIDS, and TB, when available, are displayed in Table IV, which appears quarterly.

Chlamydia refers to genital infections caused by Chlamydia trachomatis.
${ }^{\text {§ }}$ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending December 1, 2007, and December 2, 2006 (48th Week)*

Reporting area	Giardiasis					Gonorrhea					Haemophilus influenzae, invasive All ages, all serotypes ${ }^{\dagger}$				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	228	311	1,513	15,949	16,450	4,111	6,802	8,941	310,389	328,416	18	42	184	2,053	2,108
New England	7	25	54	1,293	1,345	148	109	259	5,177	5,200	1	3	19	161	163
Connecticut	-	5	18	326	285	67	44	204	2,009	2,130	1	0	7	48	44
Maine ${ }^{\text {® }}$	4	3	10	180	178	1	2	8	113	121	-	0	4	13	18
Massachusetts	-	10	29	521	579	71	51	128	2,495	2,237	-	2	6	74	74
New Hampshire	-	0	3	26	24	-	2	6	133	176	-	0	2	16	13
Rhode Island ${ }^{\text {® }}$	-	0	15	78	102	9	8	16	377	468	-	0	10	7	6
Vermont ${ }^{\text {s }}$	3	3	9	162	177	-	1	4	50	68	-	0	1	3	8
Mid. Atlantic	35	57	127	2,751	3,272	461	713	1,537	34,145	31,063	4	9	27	413	441
New Jersey	-	6	11	256	447	82	119	159	5,591	5,100	-	1	5	61	80
New York (Upstate)	27	23	108	1,083	1,174	132	120	1,035	6,370	5,809	4	2	15	121	136
New York City	4	15	25	715	878	66	200	346	9,172	9,653	-	2	6	86	79
Pennsylvania	4	14	29	697	773	181	249	613	13,012	10,501	-	3	10	145	146
E.N. Central	18	47	82	2,289	2,639	766	1,269	2,588	63,085	64,721	1	6	15	265	350
Illinois	-	13	31	639	659	453	361	499	17,065	18,614	-	2	6	77	106
Indiana	N	0	0	N	N	91	164	307	8,111	8,149	-	1	7	54	72
Michigan	-	12	20	517	662	189	294	747	13,791	14,116	-	0	5	25	24
Ohio	18	15	37	761	762	33	345	1,567	18,316	17,384	1	2	5	95	84
Wisconsin	-	7	20	372	556	-	126	206	5,802	6,458	-	0	2	14	64
W.N.Central	10	21	553	1,384	1,673	111	377	514	17,213	18,009	2	3	24	127	148
lowa	5	5	23	288	274	7	39	60	1,736	1,784	-	0	1	1	2
Kansas	-	3	11	171	186	-	44	86	1,981	2,059	-	0	2	9	17
Minnesota	-	0	514	176	484	-	66	86	2,894	3,027	-	0	17	56	78
Missouri	4	9	23	481	509	98	196	266	9,147	9,333	-	1	5	38	34
Nebraska§	1	2	8	148	108	-	25	57	1,140	1,317	2	0	2	18	9
North Dakota	-	0	16	28	19	-	2	5	80	144	-	0	2	5	8
South Dakota	-	1	6	92	93	6	5	11	235	345	-	0	0	-	-
S. Atlantic	50	57	106	2,658	2,571	1,476	1,545	3,209	72,558	81,630	5	11	34	530	519
Delaware	-	1	6	39	38	26	26	43	1,213	1,371	-	0	3	8	1
District of Columbia	-	0	7	34	60	32	47	71	2,160	1,706	-	0	1	3	8
Florida	34	24	47	1,193	1,039	514	478	717	21,951	22,316	4	3	8	151	155
Georgia	10	10	42	581	604	4	269	2,068	9,641	16,622	-	2	7	107	111
Maryland ${ }^{\text {® }}$	5	4	18	236	225	104	115	227	5,651	6,670	1	1	6	77	72
North Carolina	-	0	0	-	-	386	302	675	13,340	16,223	-	0	9	51	52
South Carolina ${ }^{\text {8 }}$	1	2	8	102	103	251	202	1,361	12,015	9,758	-	1	4	43	36
Virginia ${ }^{\text {s }}$	-	9	23	427	470	159	124	220	5,750	6,074	-	1	22	65	65
West Virginia	-	0	21	46	32	-	18	37	837	890	-	0	6	25	19
E.S. Central	3	10	23	508	429	352	606	859	28,324	28,878	-	2	9	118	106
Alabama ${ }^{\text {® }}$	1	5	11	235	205	25	203	261	9,241	9,972	-	0	3	24	21
Kentucky	N	0	0	N	N	118	57	268	3,111	2,937	-	0	1	2	5
Mississippi	N	0	0	N	N	-	146	310	6,977	6,970	-	0	2	9	13
Tennessee ${ }^{\text {§ }}$	2	5	16	273	224	209	181	262	8,995	8,999	-	2	6	83	67
W.S.Central	6	7	55	356	331	441	982	1,201	46,080	46,722	1	2	34	93	79
Arkansas§	-	2	13	105	128	123	78	120	3,791	3,973	-	0	2	8	8
Louisiana	-	2	10	113	83	219	221	384	10,208	9,998	-	0	2	7	20
Oklahoma	6	3	42	138	120	99	96	235	4,538	4,395	1	1	29	70	44
Texas§	N	0	0	N	N	-	593	747	27,543	28,356	-	0	3	8	7
Mountain	36	31	69	1,670	1,580	59	247	346	11,149	14,356	3	4	12	232	197
Arizona	-	3	11	185	156	22	103	175	4,434	5,301	1	1	6	82	80
Colorado	10	10	26	537	511	-	47	93	2,183	3,482	2	1	4	54	49
Idaho§	12	3	19	189	179	10	4	19	249	191	-	0	1	7	6
Montana ${ }^{\text {§ }}$	4	2	8	106	99	-	1	48	108	186	-	0	1	2	-
Nevada ${ }^{\text {§ }}$	-	1	8	89	107	-	43	87	1,781	2,628	-	0	2	9	14
New Mexicos	-	2	5	99	75	1	31	63	1,572	1,640	-	1	4	37	30
Utah	10	7	33	425	417	26	16	35	751	810	-	0	3	36	14
Wyoming ${ }^{\text {® }}$	-	1	4	40	36	-	1	5	71	118	-	0	1	5	4
Pacific	63	61	558	3,040	2,610	297	697	875	32,658	37,837	1	3	16	114	105
Alaska	2	1	5	72	106	11	10	27	456	566	-	0	3	13	10
California	47	43	93	2,053	2,077	246	602	734	28,367	31,158	-	0	10	34	30
Hawaii	-	0	4	11	51	-	12	24	600	849	-	0	1	1	19
Oregon§	2	9	17	425	376	30	22	63	1,023	1,342	-	1	6	63	46
Washington	12	8	449	479	-	10	43	142	2,212	3,922	1	0	5	3	-
American Samoa	-	0	0	-	N	-	0	2	3	2	-	0	0	-	-
C.N.M.I.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Guam	-	0	0	-	-	-	2	13	112	96	-	0	0	-	1
Puerto Rico	-	6	21	308	241	-	5	23	284	276	-	0	1	2	3
U.S. Virgin Islands	-	0	0	-	-	-	1	3	23	39	-	0	0	-	-

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. -: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Incidence data for reporting year 2007 are provisional.
\dagger Data for H. influenzae (age <5 yrs for serotype b, nonserotype b, and unknown serotype) are available in Table I.
${ }^{\S}$ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending December 1, 2007, and December 2, 2006 (48th Week)*

Reporting area	Hepatitis (viral, acute), by type ${ }^{\dagger}$										Legionellosis				
	Current week	A				B									
		Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{gathered} \text { Cum } \\ 2006 \end{gathered}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \\ & \hline \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	29	52	201	2,512	3,211	37	78	405	3,619	4,059	33	45	106	2,174	2,568
New England	-	2	6	109	172	-	1	5	69	110	-	2	13	117	168
Connecticut	-	0	3	25	39	-	0	5	29	47	-	0	5	38	49
Maine ${ }^{\text {® }}$	-	0	1	3	8	-	0	2	12	23	-	0	1	7	10
Massachusetts	-	1	4	49	81	-	0	1	4	19	-	0	3	21	66
New Hampshire	-	0	3	12	22	-	0	1	5	9	-	0	2	8	13
Rhode Island ${ }^{\text {® }}$	-	0	2	12	14	-	0	3	14	9	-	0	6	34	22
Vermont ${ }^{\text {§ }}$	-	0	1	8	8	-	0	1	5	3	-	0	2	9	8
Mid. Atlantic	4	8	20	394	367	5	8	21	413	487	9	13	37	696	923
New Jersey	-	2	6	97	103	-	1	8	83	156	-	1	11	85	116
New York (Upstate)	2	1	11	70	88	3	2	13	85	60	7	4	22	214	308
New York City	-	3	8	140	113	-	2	6	84	111	-	2	11	115	180
Pennsylvania	2	2	5	87	63	2	3	8	161	160	2	5	21	282	319
E.N. Central	3	5	13	268	330	3	9	23	396	455	4	9	27	485	577
Illinois	-	2	5	92	99	-	2	6	101	123	-	2	12	87	118
Indiana	-	0	7	29	24	-	0	21	53	52	-	1	7	50	48
Michigan	-	1	5	77	115	1	2	8	102	130	1	3	10	144	143
Ohio	3	1	4	63	51	2	2	7	120	117	3	3	17	194	222
Wisconsin	-	0	3	7	41	-	0	3	20	33	-	0	2	10	46
W.N. Central	2	2	18	153	123	-	2	15	125	133	3	1	9	99	79
lowa	-	1	4	42	12	-	0	3	24	20	-	0	1	9	11
Kansas	-	0	1	6	26	-	0	2	9	11	-	0	1	3	9
Minnesota	-	0	17	62	17	-	0	13	18	18	2	0	6	28	24
Missouri	1	0	2	23	42	-	1	5	59	61	1	1	3	43	21
Nebraska ${ }^{\text {® }}$	1	0	2	14	17	-	0	1	10	18	-	0	2	12	9
North Dakota	-	0	3	-	-	-	0	1	-	-	-	0	1	-	-
South Dakota	-	0	1	6	9	-	0	1	5	5	-	0	1	4	5
S. Atlantic	3	10	21	461	514	9	18	56	880	1,118	8	7	25	360	446
Delaware	1	0	1	8	13	-	0	2	15	46	-	0	2	8	12
District of Columbia	-	0	5	14	8	-	0	2	1	9	-	0	2	1	32
Florida	2	3	7	143	198	4	7	14	316	381	3	2	10	141	145
Georgia	-	1	4	65	53	-	2	7	113	189	-	0	2	21	35
Maryland ${ }^{\text {® }}$	-	1	5	71	59	-	2	6	104	142	2	1	4	73	102
North Carolina	-	0	9	57	94	4	0	16	124	148	-	1	4	42	34
South Carolina ${ }^{\text {s }}$	-	0	4	17	23	1	1	5	57	87	-	0	2	17	6
Virginia ${ }^{\text {§ }}$	-	1	5	78	60	-	2	8	111	67	-	1	4	41	65
West Virginia	-	0	2	8	6	-	0	23	39	49	3	0	4	16	15
E.S. Central	3	2	5	97	117	2	7	14	323	306	2	2	6	93	104
Alabama ${ }^{\text {s }}$	-	0	3	17	13	1	2	6	112	91	1	0	1	10	9
Kentucky	-	0	2	19	31	-	1	7	67	67	-	1	3	46	46
Mississippi	-	0	4	8	9	-	0	8	25	13	-	0	1	-	4
Tennessee ${ }^{\text {§ }}$	3	1	5	53	64	1	3	8	119	135	1	1	4	37	45
W.S.Central	-	4	43	213	362	11	17	169	793	857	3	2	16	108	72
Arkansas ${ }^{\text {® }}$	-	0	2	11	45	-	1	7	60	75	-	0	3	8	4
Louisiana	-	0	3	28	33	-	1	6	72	55	-	0	1	3	10
Oklahoma	-	0	8	11	9	-	1	38	118	69	1	0	3	6	7
Texas§	-	3	39	163	275	11	12	135	543	658	2	2	13	91	51
Mountain	5	5	15	234	260	1	3	7	158	130	-	2	6	100	119
Arizona	4	3	11	165	161	-	1	4	53	U	-	0	5	34	37
Colorado	1	0	3	22	38	-	0	3	30	34	-	0	2	21	26
Idaho§	-	0	2	8	9	1	0	1	13	13	-	0	1	6	11
Montana ${ }^{\text {® }}$	-	0	2	9	11	-	0	3	-	2	-	0	1	3	6
Nevadas	-	0	2	9	11	-	0	3	29	37	-	0	2	7	10
New Mexicos	-	0	2	11	14	-	0	2	11	22	-	0	2	8	5
Utah	-	0	2	7	14	-	0	4	19	22	-	0	3	18	24
Wyoming ${ }^{\text {s }}$	-	0	1	3	2	-	0	1	3	-	-	0	1	3	-
Pacific	9	12	92	583	966	6	10	106	462	463	4	2	11	116	80
Alaska	-	0	1	4	1	-	0	2	9	8	-	0	0	-	1
California	6	10	40	503	914	5	7	31	346	370	2	1	11	87	79
Hawaii	-	0	1	1	12	-	0	1	-	7	-	0	0	-	-
Oregon§	-	1	2	28	39	-	1	4	57	78	-	0	1	9	-
Washington	3	0	52	47	-	1	1	74	50	-	2	0	2	20	-
American Samoa	-	0	0	-	-	-	0	0	-	-	N	0	0	N	N
C.N.M.I.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Guam	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-
Puerto Rico	-	1	10	52	63	-	1	9	67	63	-	0	2	5	1
U.S. Virgin Islands	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. -: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Incidence data for reporting year 2007 are provisional.
\dagger Data for acute hepatitis C, viral are available in Table I.
Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending December 1, 2007, and December 2, 2006 (48th Week)*

Reporting area	Lyme disease					Malaria					Meningococcal disease, invasive ${ }^{\dagger}$ All serogroups				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	183	273	1,261	19,312	18,373	18	20	105	1,006	1,315	11	20	87	921	1,027
New England	38	39	300	3,422	4,308	-	1	5	51	51	-	1	3	38	50
Connecticut	25	12	214	1,638	1,654	-	0	3	2	10	-	0	1	6	10
Maine ${ }^{\text {® }}$	12	4	61	471	288	-	0	2	8	4	-	0	1	7	9
Massachusetts	-	2	27	211	1,428	-	0	3	29	26	-	0	2	19	22
New Hampshire	1	8	87	809	604	-	0	4	8	9	-	0	1	1	4
Rhode Island ${ }^{\text {§ }}$	-	0	74	162	235	-	0	1	-	1	-	0	1	2	2
Vermont ${ }^{\text {¢ }}$	-	2	13	131	99	-	0	2	4	1	-	0	1	3	3
Mid. Atlantic	89	137	634	9,719	9,382	1	4	14	247	347	-	3	8	125	159
New Jersey	-	28	151	2,115	2,375	-	0	2	-	87	-	0	2	14	21
New York (Upstate)	79	55	426	3,170	3,565	1	1	5	65	45	-	1	3	35	35
New York City	-	1	25	188	299	-	3	8	146	168	-	0	4	27	57
Pennsylvania	10	45	311	4,246	3,143	-	0	4	36	47	-	1	5	49	46
E.N. Central	2	8	163	1,408	1,681	4	2	6	101	155	2	3	9	137	161
Illinois	-	1	12	126	109	-	0	6	41	80	-	1	3	42	41
Indiana	2	0	7	43	23	1	0	2	10	12	1	0	4	27	23
Michigan	-	0	6	54	55	-	0	2	16	18	-	0	3	25	27
Ohio	-	0	3	18	42	3	0	2	25	27	1	1	2	34	47
Wisconsin	-	7	147	1,167	1,452	-	0	2	9	18	-	0	2	9	23
W.N.Central	30	6	195	632	772	4	0	12	51	59	1	1	5	63	59
lowa	-	1	11	113	97	-	0	1	3	2	-	0	3	15	18
Kansas	-	0	2	9	4	-	0	1	3	7	-	0	1	2	4
Minnesota	30	2	188	472	654	4	0	11	28	38	1	0	3	19	13
Missouri	-	0	5	28	5	-	0	1	8	6	-	0	3	17	14
Nebraska ${ }^{\text {§ }}$	-	0	1	7	11	-	0	1	6	4	-	0	2	5	6
North Dakota	-	0	7	3	-	-	0	1	2	1	-	0	3	2	1
South Dakota	-	0	0	-	1	-	0	1	1	1	-	0	1	3	3
S. Atlantic	22	67	178	3,853	2,059	2	4	13	229	321	4	3	11	155	182
Delaware	5	12	34	666	457	-	0	1	4	5	-	0	1	1	4
District of Columbia	-	0	7	13	56	-	0	1	3	5	-	0	0	-	2
Florida	4	1	11	82	29	-	1	7	52	56	-	1	7	58	68
Georgia	-	0	1	3	8	-	0	5	32	87	-	0	5	24	15
Maryland ${ }^{\text {® }}$	10	32	113	2,165	1,149	1	1	5	57	75	-	0	2	20	14
North Carolina	3	0	8	46	29	1	0	4	21	28	4	0	4	22	31
South Carolina ${ }^{\text {§ }}$	-	0	3	26	18	-	0	1	6	10	-	0	2	14	21
Virginia ${ }^{\text {s }}$	-	13	61	779	299	-	1	6	52	53	-	0	2	14	18
West Virginia	-	0	14	73	14	-	0	1	2	2	-	0	2	2	9
E.S. Central	-	1	5	49	34	2	0	3	33	24	1	1	4	47	41
Alabama ${ }^{\text {§ }}$	-	0	3	12	10	-	0	1	5	9	-	0	2	9	5
Kentucky	-	0	2	5	7	-	0	1	8	4	1	0	2	12	11
Mississippi	-	0	1	1	3	-	0	1	2	6	-	0	4	10	5
Tennessee§	-	0	4	31	14	2	0	2	18	5	-	0	2	16	20
W.S.Central	-	1	6	65	24	-	1	29	76	94	-	2	15	89	89
Arkansas ${ }^{\text {§ }}$	-	0	1	1	-	-	0	1	2	4	-	0	2	9	11
Louisiana	-	0	1	2	1	-	0	2	14	8	-	0	4	25	35
Oklahoma	-	0	0	-	-	-	0	3	5	7	-	0	4	16	11
Texas ${ }^{\text {§ }}$	-	1	6	62	23	-	1	25	55	75	-	1	11	39	32
Mountain	-	1	4	38	28	1	1	6	59	74	1	1	4	60	66
Arizona	-	0	1	1	10	-	0	3	12	23	-	0	2	12	15
Colorado	-	0	1	2	-	-	0	2	23	22	-	0	2	21	20
Idaho ${ }^{\text {s }}$	-	0	2	9	6	1	0	2	4	1	1	0	2	6	4
Montana ${ }^{\text {§ }}$	-	0	2	4	-	-	0	1	3	2	-	0	1	2	5
Nevadas	-	0	2	8	3	-	0	1	2	4	-	0	1	4	6
New Mexico§	-	0	1	4	3	-	0	1	4	5	-	0	1	2	6
Utah	-	0	2	7	5	-	0	3	11	17	-	0	2	11	6
Wyoming ${ }^{\text {§ }}$	-	0	1	3	1	-	0	0	-	-	-	0	1	2	4
Pacific	2	2	16	126	85	4	3	45	159	190	2	4	48	207	220
Alaska	1	0	1	9	3	-	0	1	2	23	-	0	1	1	4
California	1	2	8	110	75	2	2	7	113	147	1	3	10	154	169
Hawaii	N	0	0	N	N	-	0	0	-	8	-	0	1	-	10
Oregon ${ }^{\text {§ }}$	-	0	1	4	7	-	0	3	17	12	-	0	3	30	37
Washington	-	0	8	3	-	2	0	43	27	-	1	0	43	22	-
American Samoa	N	0	0	N	N	-	0	0	-	-	-	0	0	-	-
C.N.M.I.	-		-	-	-	-	-	-	-	-	-	-	-	-	-
Guam	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-
Puerto Rico	N	0	0	N	N	-	0	1	4	2	-	0	1	8	7
U.S. Virgin Islands	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. -: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Incidence data for reporting year 2007 are provisional.
${ }_{\S}^{\dagger}$ Data for meningococcal disease, invasive caused by serogroups A, C, Y, \& W-135; serogroup B; other serogroup; and unknown serogroup are available in Table I.
${ }^{3}$ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending December 1, 2007, and December 2, 2006 (48th Week)*

Reporting area	Pertussis					Rabies, animal					Rocky Mountain spotted fever				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \\ & \hline \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	97	170	1,479	8,051	13,158	37	100	187	5,071	5,227	21	32	211	1,920	2,013
New England	2	27	77	1,187	1,735	5	11	22	536	458	-	0	10	5	12
Connecticut	-	1	5	59	118	2	4	10	210	198	-	0	0	-	-
Maine ${ }^{\dagger}$	-	1	13	74	143	1	2	5	80	121	-	0	1	1	N
Massachusetts	-	22	39	928	1,099	-	0	0	-	N	-	0	1	4	10
New Hampshire	-	1	6	52	213	1	1	4	52	45	-	0	0	-	1
Rhode Island ${ }^{\dagger}$	1	0	31	25	58	-	0	4	37	30	-	0	9	-	1
Vermont ${ }^{\text {a }}$	1	0	9	49	104	1	3	13	157	64	-	0	0	-	-
Mid. Atlantic	19	23	155	1,101	1,737	6	25	56	1,333	507	-	1	6	63	85
New Jersey	-	3	11	139	284	N	0	0	N	N	-	0	2	9	38
New York (Upstate)	3	10	146	512	790	6	10	20	494	N	-	0	1	3	-
New York City	-	2	6	112	104	-	1	5	42	38	-	0	3	26	23
Pennsylvania	16	7	15	338	559	-	15	44	797	469	-	0	3	25	24
E.N.Central	4	28	79	1,245	2,128	1	3	48	381	161	-	1	4	42	64
Illinois	-	3	19	134	547	-	1	15	113	46	-	0	3	25	26
Indiana	-	0	45	52	215	-	0	1	12	11	-	0	2	4	6
Michigan	1	5	17	263	588	-	1	27	179	46	-	0	1	3	5
Ohio	3	12	54	597	566	1	0	11	77	58	-	0	2	10	26
Wisconsin	-	2	24	199	212	N	0	0	N	N	-	0	0	-	1
W.N. Central	4	13	151	685	1,191	7	4	13	251	298	3	5	35	435	193
lowa	-	2	14	132	311	1	0	3	32	57	-	0	4	14	5
Kansas	-	2	12	122	287	-	2	7	101	75	-	0	1	1	1
Minnesota	1	0	119	211	161	6	0	5	38	39	1	0	1	2	3
Missouri	3	2	9	91	295	-	0	3	38	66	2	5	29	400	159
Nebraska ${ }^{\dagger}$	-	1	12	64	91	-	0	0	-	-	-	0	2	14	25
North Dakota	-	0	18	8	25	-	0	6	21	24	-	0	0	-	-
South Dakota	-	1	7	57	21	-	0	2	21	37	-	0	1	4	-
S. Atlantic	8	16	163	855	1,036	15	39	76	1,934	2,181	16	12	112	903	1,134
Delaware	-	0	2	11	3	-	0	0	-	-	-	0	2	15	21
District of Columbia	-	0	1	2	6	-	0	0	-	-	-	0	1	1	1
Florida	5	4	18	203	197	-	0	29	110	176	-	0	4	21	15
Georgia	-	0	4	27	97	8	3	34	258	253	-	0	5	35	53
Maryland ${ }^{\dagger}$	1	2	8	109	138	-	7	18	327	396	1	1	7	64	85
North Carolina	-	4	112	288	177	7	9	19	459	497	15	4	96	578	815
South Carolina ${ }^{\dagger}$	-	2	8	67	180	-	0	11	46	168	-	1	7	60	39
Virginia ${ }^{\dagger}$	2	2	11	118	195	-	13	31	658	586	-	2	11	124	102
West Virginia	-	0	19	30	43	-	0	11	76	105	-	0	3	5	3
E.S. Central	2	6	35	395	330	-	3	9	140	235	1	4	16	252	360
Alabama ${ }^{\dagger}$	-	1	18	81	84	-	0	2	-	79	-	2	9	88	85
Kentucky	-	0	4	23	58	-	0	3	18	28	-	0	2	5	3
Mississippi	-	1	32	214	35	-	0	1	1	4	-	0	2	14	9
Tennessee ${ }^{\dagger}$	2	1	7	77	153	-	2	7	121	124	1	2	10	145	263
W.S.Central	28	19	226	932	833	-	1	23	76	939	1	1	168	179	117
Arkansas ${ }^{\dagger}$	-	1	17	135	91	-	0	2	31	31	-	0	53	92	51
Louisiana	-	0	1	16	24	-	0	1	-	6	-	0	1	2	5
Oklahoma	26	0	36	49	19	-	0	22	45	61	1	0	108	49	29
Texas ${ }^{\dagger}$	2	16	174	732	699	-	0	14	-	841	-	1	7	36	32
Mountain	25	21	61	1,056	2,373	-	3	14	210	210	-	0	4	33	46
Arizona	-	4	13	194	491	-	2	12	145	137	-	0	1	7	11
Colorado	14	6	14	291	694	-	0	0	-	-	-	0	2	4	4
Idaho ${ }^{+}$	2	0	5	40	85	-	0	0	-	24	-	0	1	4	14
Montana ${ }^{\dagger}$	-	0	7	41	114	-	0	3	19	15	-	0	1	1	2
Nevada ${ }^{\dagger}$	-	0	3	12	71	-	0	1	2	5	-	0	0	-	-
New Mexico ${ }^{+}$	-	1	7	66	133	-	0	2	10	10	-	0	1	4	8
Utah	9	7	47	390	709	-	0	2	16	11	-	0	1	1	-
Wyoming ${ }^{\dagger}$	-	0	4	22	76	-	0	4	18	8	-	0	2	12	7
Pacific	5	11	547	595	1,795	3	4	10	210	238	-	0	3	8	2
Alaska	-	0	8	50	89	-	0	6	39	16	N	0	0	N	N
California	-	3	167	160	1,519	3	3	8	159	197	-	0	3	6	-
Hawaii	-	0	1	4	86	N	0	0	N	N	N	0	0	N	N
Oregon ${ }^{\dagger}$	-	2	14	111	101	-	0	3	12	25	-	0	1	2	2
Washington	5	3	377	270	-	-	0	0	-	-	N	0	0	N	N
American Samoa	-	0	0	-	-	N	0	0	N	N	N	0	0	N	N
C.N.M.I.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Guam	-	0	1	-	63	-	0	0	-	-	N	0	0	N	N
Puerto Rico	-	0	1	1	3	-	1	5	47	76	N	0	0	N	N
U.S. Virgin Islands	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. -: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Incidence data for reporting year 2007 are provisional.

Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending December 1, 2007, and December 2, 2006 (48th Week)*

Reporting area	Salmonellosis					Shiga toxin-producing E.coli(STEC) ${ }^{\dagger}$					Shigellosis				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	516	854	2,338	40,651	40,934	33	84	336	4,174	3,788	208	348	1,287	15,796	13,211
New England	1	37	408	2,052	2,165	1	4	75	282	272	-	4	45	228	261
Connecticut	-	0	393	393	503	-	0	69	69	75	-	0	42	42	67
Maine ${ }^{\text {§ }}$	-	3	14	129	129	1	0	4	39	46	-	0	5	14	4
Massachusetts	-	23	57	1,198	1,164	-	2	10	130	98	-	3	8	144	163
New Hampshire	1	3	10	153	210	-	0	4	24	26	-	0	1	5	8
Rhode Island ${ }^{\text {§ }}$	-	2	20	100	84	-	0	2	6	8	-	0	9	20	13
Vermont ${ }^{\text {® }}$	-	1	5	79	75	-	0	3	14	19	-	0	1	3	6
Mid. Atlantic	34	105	186	5,184	5,067	7	8	63	427	485	1	13	47	687	838
New Jersey	-	17	39	789	1,042	-	1	20	48	153	-	2	10	127	283
New York (Upstate)	25	28	112	1,348	1,234	6	3	15	196	156	1	3	42	149	213
New York City	3	24	51	1,277	1,195	-	1	5	45	43	-	5	11	254	257
Pennsylvania	6	33	69	1,770	1,596	1	3	47	138	133	-	2	21	157	85
E.N. Central	39	102	254	5,165	5,290	2	9	34	596	646	41	34	131	2,121	1,353
Illinois	-	31	187	1,596	1,510	-	1	10	87	102	-	11	32	518	634
Indiana	4	15	54	664	810	1	1	13	98	82	21	2	17	167	157
Michigan	6	18	41	857	933	1	1	8	96	87	2	1	7	70	148
Ohio	29	27	65	1,263	1,185	-	2	9	151	183	18	16	104	1,156	180
Wisconsin	-	16	50	785	852	-	3	10	164	192	-	3	13	210	234
W.N.Central	27	50	103	2,634	2,501	2	14	45	753	628	7	35	156	1,735	1,657
lowa	3	9	19	446	434	-	3	38	171	125	1	2	14	90	122
Kansas	-	7	20	368	350	-	1	4	53	24	-	0	3	25	135
Minnesota	12	13	44	656	653	1	4	17	241	189	-	5	24	224	225
Missouri	8	15	28	716	714	1	3	12	150	157	6	22	72	1,248	617
Nebraskas	4	5	14	254	186	-	2	6	87	77	-	0	7	25	119
North Dakota	-	0	23	43	30	-	0	12	4	6	-	0	127	8	94
South Dakota	-	3	11	151	134	-	0	5	47	50	-	1	30	115	345
S. Atlantic	246	225	431	11,182	10,759	7	15	37	671	591	49	88	177	4,246	3,226
Delaware	-	2	8	132	146	-	0	2	15	14	-	0	2	10	11
District of Columbia	-	0	4	16	60	-	0	1	1	3	-	0	5	4	17
Florida	143	88	181	4,556	4,450	1	3	13	146	83	18	41	75	2,064	1,473
Georgia	24	36	88	1,987	1,737	1	2	9	100	81	19	29	95	1,561	1,255
Maryland ${ }^{\text {§ }}$	10	15	43	835	732	-	2	6	90	120	3	2	7	105	128
North Carolina	55	28	110	1,521	1,531	5	2	24	136	106	3	0	14	97	151
South Carolina ${ }^{\text {® }}$	13	18	51	1,015	998	-	0	3	23	14	6	2	20	175	77
Virginia ${ }^{\text {s }}$	1	19	38	937	971	-	3	9	142	158	-	3	11	151	110
West Virginia	-	4	31	183	134	-	0	5	18	12	-	0	36	79	4
E.S. Central	37	61	141	3,069	2,720	3	4	26	304	290	37	45	175	2,640	800
Alabama ${ }^{\text {§ }}$	11	16	78	873	794	-	1	19	62	31	6	12	36	649	313
Kentucky	7	10	22	536	428	-	2	12	119	96	3	5	35	466	231
Mississippi	2	17	101	866	764	-	0	1	5	11	20	12	110	1,229	101
Tennessee ${ }^{\text {§ }}$	17	17	34	794	734	3	2	10	118	152	8	4	31	296	155
W.S.Central	13	81	595	3,990	4,886	-	3	73	152	228	33	41	655	1,925	1,838
Arkansas§	7	13	51	786	865	-	0	3	34	47	1	2	10	86	113
Louisiana	-	15	40	818	1,069	-	0	2	3	17	-	9	22	441	244
Oklahoma	6	10	103	609	469	-	0	3	17	43	2	2	63	126	125
Texas ${ }^{\text {§ }}$	-	39	470	1,777	2,483	-	2	68	98	121	30	25	580	1,272	1,356
Mountain	30	50	90	2,453	2,470	4	9	42	523	525	14	17	47	881	1,413
Arizona	13	18	44	934	846	-	2	8	106	104	8	9	31	515	683
Colorado	5	11	24	536	576	-	1	17	145	107	4	2	6	117	229
Idaho ${ }^{\text {§ }}$	8	3	9	145	168	4	1	16	127	100	-	0	2	12	15
Montanas	2	2	6	99	123	-	0	0	-	-	-	0	7	23	59
Nevadas	-	3	10	148	219	-	0	3	18	31	-	0	9	47	139
New Mexicos	-	5	13	247	246	-	0	3	35	46	-	2	6	98	172
Utah	2	5	18	277	248	-	1	9	92	117	2	1	5	37	69
Wyoming ${ }^{\text {§ }}$	-	1	5	67	44	-	0	0	-	20	-	0	19	32	47
Pacific	89	109	890	4,922	5,076	7	8	164	466	123	26	28	256	1,333	1,825
Alaska	-	1	5	74	72	N	0	0	N	N	-	0	2	7	7
California	71	85	260	3,874	4,351	6	4	33	250	N	25	24	84	1,111	1,657
Hawaii	-	0	12	57	251	-	0	1	6	18	-	0	1	6	45
Oregon ${ }^{\text {§ }}$	3	7	16	301	400	-	1	11	81	105	-	1	6	73	116
Washington	15	11	625	616	2	1	1	162	129	-	1	2	170	136	-
American Samoa	-	0	0	-	-	-	0	0	-	N	-	0	0	-	-
C.N.M.I.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Guam	-	0	0	-	-	N	0	0	N	N	-	0	0	-	-
Puerto Rico	-	14	66	726	631	-	0	0	-	-	-	0	4	22	38
U.S. Virgin Islands	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-

[^10]U: Unavailable. -: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Incidence data for reporting year 2007 are provisional.
${ }_{\S}^{\dagger}$ Includes E. coli O157:H7; Shiga toxin-positive, serogroup non-O157; and Shiga toxin-positive, not serogrouped.
${ }^{\S}$ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending December 1, 2007, and December 2, 2006 (48th Week)*

Reporting area	Streptococcal disease, invasive, group A					Streptococcus pneumoniae, invasive disease, nondrug resistant ${ }^{\dagger}$ Age < 5 years				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$
		Med	Max				Med	Max		
United States	62	97	261	4,392	4,840	40	31	108	1,469	1,239
New England	4	5	28	354	322	-	2	11	107	118
Connecticut	3	0	23	116	85	-	0	6	12	33
Maine ${ }^{\text {§ }}$	-	0	3	26	18	-	0	1	3	-
Massachusetts	-	3	12	155	162	-	1	6	72	67
New Hampshire	-	0	4	34	35	-	0	2	10	11
Rhode Island ${ }^{\text {§ }}$	-	0	12	6	8	-	0	,	8	7
Vermont ${ }^{\text {§ }}$	1	0	2	17	14	-	0	1	2	-
Mid. Atlantic	3	16	41	817	878	6	4	37	249	182
New Jersey	-	2	10	121	139	-	1	4	31	58
New York (Upstate)	2	5	27	263	282	6	2	15	102	92
New York City	-	4	13	191	153	-	1	35	116	32
Pennsylvania	1	5	11	242	304	N	0	0	N	N
E.N. Central	10	16	34	740	913	3	4	14	196	329
Illinois	-	4	13	203	282	-	1	5	39	93
Indiana	4	2	12	112	107	1	0	10	19	51
Michigan	1	4	10	183	190	-	1	4	67	72
Ohio	5	4	14	211	220	2	1	7	58	68
Wisconsin	-	0	5	31	114	-	0	2	13	45
W.N.Central	7	5	32	316	332	6	2	8	120	104
lowa	-	0	0	-	-	-	0	0	-	-
Kansas	-	0	3	30	52	-	0	1	3	12
Minnesota	4	0	29	153	149	5	1	6	76	64
Missouri	1	2	6	80	79	1	0	2	25	15
Nebraska ${ }^{\text {§ }}$	1	0	3	24	30	-	0	2	15	10
North Dakota	-	0	3	18	12	-	0	2	1	3
South Dakota	1	0	2	11	10	-	0	0	-	-
S. Atlantic	21	22	52	1,152	1,097	5	5	14	261	79
Delaware	-	0	1	10	10	-	0	0	-	-
District of Columbia	-	0	3	8	17	-	0	1	-	1
Florida	2	6	16	292	273	2	1	5	63	-
Georgia	5	5	13	235	244	-	0	5	44	-
Maryland§	4	4	10	198	201	1	1	5	59	66
North Carolina	5	1	22	156	149	-	0	0	-	-
South Carolina ${ }^{\text {® }}$	5	1	7	91	58	2	1	4	52	-
Virginia ${ }^{\text {s }}$	-	2	11	136	119	-	0	4	36	-
West Virginia	-	0	3	26	26	-	0	4	7	12
E.S. Central	-	4	13	192	193	-	2	6	88	18
Alabama ${ }^{\text {8 }}$	N	0	0	N	N	N	0	0	N	N
Kentucky	-	1	3	36	42	N	0	0	N	N
Mississippi	N	0	0	N	N	-	0	2	3	18
Tennessee ${ }^{\text {§ }}$	-	3	13	156	151	-	2	6	85	-
W.S.Central	7	6	90	282	363	17	4	43	231	198
Arkansas ${ }^{\text {® }}$	-	0	2	17	24	-	0	2	11	20
Louisiana	-	0	4	16	16	-	0	4	29	23
Oklahoma	1	1	23	66	99	4	1	13	56	52
Texas ${ }^{\text {§ }}$	6	3	64	183	224	13	2	27	135	103
Mountain	10	11	22	502	617	2	4	12	187	186
Arizona	2	4	11	189	318	1	2	8	110	101
Colorado	3	3	8	142	112	1	1	3	45	52
Idahos	1	0	2	18	8	-	0	1	2	3
Montanas	N	0	0	N	N	N	0	0	N	N
Nevadas	-	0	1	2	-	-	0	1	1	2
New Mexico§	-	1	4	58	115	-	0	4	22	28
Utah	4	2	7	88	60	-	0	2	7	-
Wyoming ${ }^{\text {§ }}$	-	0	1	5	4	-	0	0	-	-
Pacific	-	1	4	37	125	1	0	3	30	25
Alaska	-	0	3	30	N	1	0	3	30	N
California	N	0	0	N	N	N	0	0	N	N
Hawaii	-	0	4	7	125	-	0	1	-	25
Oregon§	N	0	0	N	N	N	0	0	N	N
Washington	N	0	0	N	N	N	0	0	N	N
American Samoa	-	0	0	-	-	N	0	0	N	N
C.N.M.I.	-	-	-	-	-	-	-	-	-	-
Guam	-	0	0	-	-	N	0	0	N	N
Puerto Rico	-	0	0	-	-	N	0	0	N	N
U.S. Virgin Islands	-	0	0	-	-	-	0	0	-	-

[^11]TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending December 1, 2007, and December 2, 2006 (48th Week)*

Reporting area	Streptococcus pneumoniae, invasive disease, drug resistant ${ }^{\dagger}$										Syphilis, primary and secondary				
	All ages					Age < 5 years									
	Previous 52 Current 			$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$	Current week	Previous 52 weeks		$\begin{gathered} \text { Cum } \\ 2007 \end{gathered}$	$\begin{aligned} & \text { Cum } \\ & 2006 \\ & \hline \end{aligned}$
	week	Med	Max				Med	Max				Med	Max		
United States	42	45	256	2,119	2,194	9	8	35	421	384	157	209	310	9,705	8,763
New England	1	2	12	90	123	-	0	3	11	5	6	5	14	246	194
Connecticut	-	1	5	50	94	-	0	2	4	-	1	0	6	33	51
Maine ${ }^{\text {® }}$	1	0	2	10	7	-	0	2	2	1	-	0	2	9	8
Massachusetts	-	0	0	-	-	-	0	0	-	-	3	3	8	147	107
New Hampshire	-	0	0	-	-	-	0	0	-	-	1	0	3	27	12
Rhode Island ${ }^{\text {§ }}$	-	0	4	15	11	-	0	1	3	1	1	0	5	28	14
Vermont ${ }^{\text {® }}$	-	0	2	15	11	-	0	1	2	3	-	0	1	2	2
Mid. Atlantic	4	2	9	116	142	1	0	5	26	22	39	29	45	1,431	1,062
New Jersey	-	0	0	-	-	-	0	0	-	-	7	4	8	202	161
New York (Upstate)	1	1	5	38	47	-	0	4	8	9	3	3	14	126	137
New York City	-	0	0	-	$\bar{\square}$	-	0	0	-	-	25	18	35	854	520
Pennsylvania	3	1	6	78	95	1	0	2	18	13	4	5	10	249	244
E.N.Central	11	10	40	512	458	3	2	8	101	77	19	15	25	741	819
Illinois	-	0	8	54	23	-	0	5	30	6	8	7	14	344	394
Indiana	2	3	31	127	132	-	0	5	23	22	-	1	6	53	89
Michigan	-	0	1	2	16	-	0	1	1	2	5	2	9	110	104
Ohio	9	5	38	329	287	3	1	5	47	47	6	4	9	184	168
Wisconsin	N	0	0	N	N	-	0	0	-	-	-	1	4	50	64
W.N.Central	1	2	124	129	93	-	0	15	11	13	1	7	14	315	263
lowa	-	0	0	-	-	-	0	0	-	-	-	0	2	16	18
Kansas	-	0	11	64	-	-	0	2	6	-	-	0	2	20	25
Minnesota	-	0	123	-	51	-	0	15	-	10	-	1	4	62	46
Missouri	1	1	5	55	37	-	0	1	1	3	1	4	11	208	154
Nebraska ${ }^{\text {s }}$	-	0	1	2	1	-	0	0	-	-	-	0	1	2	7
North Dakota	-	0	0	-	-	-	0	0	-	-	-	0	0	-	1
South Dakota	-	0	3	8	4	-	0	1	4	-	-	0	3	7	12
S. Atlantic	19	20	59	932	1,047	5	4	14	201	192	45	49	180	2,323	1,963
Delaware	-	0	1	9	-	-	0	1	2	-	-	0	3	15	17
District of Columbia	-	0	1	5	24	-	0	0	-	2	1	3	12	162	108
Florida	11	11	29	534	549	3	2	8	117	119	30	17	44	882	668
Georgia	8	7	17	326	370	2	1	7	74	71	2	9	153	384	373
Maryland ${ }^{\text {® }}$	-	0	1	1	-	-	0	0	-	-	4	6	15	286	276
North Carolina	-	0	0	-	-	-	0	0	-	-	-	5	23	293	274
South Carolina ${ }^{\text {® }}$	-	0	0	-	-	-	0	0	-	-	2	2	11	89	62
Virginia ${ }^{\text {s }}$	N	0	0	N	N	-	0	0	-	-	6	4	16	206	176
West Virginia	-	1	17	57	104	-	0	1	8	-	-	0	1	6	9
E.S. Central	6	3	9	157	170	-	1	3	36	29	10	18	31	824	657
Alabama ${ }^{\text {® }}$	N	0	0	N	N	-	0	0	-	-	6	6	17	336	292
Kentucky	2	0	2	23	32	-	0	1	3	6	-	1	7	54	65
Mississippi	-	0	2	-	24	-	0	0	-	-	-	2	9	97	68
Tennessee ${ }^{\text {§ }}$	4	2	8	134	114	-	0	3	33	23	4	7	15	337	232
W.S.Central	-	2	12	127	74	-	0	3	17	9	16	35	55	1,676	1,436
Arkansas ${ }^{\text {® }}$	-	0	1	3	10	-	0	0	-	2	2	2	10	116	75
Louisiana	-	1	4	56	64	-	0	2	7	7	12	9	23	429	294
Oklahoma	-	0	10	68	-	-	0	2	10	-	2	1	4	58	64
Texas§	-	0	0	-	-	-	0	0	-	-	-	21	39	1,073	1,003
Mountain	-	1	6	56	87	-	0	3	18	37	13	8	27	375	461
Arizona	-	0	0	-	-	-	0	0	-	-	12	3	22	183	182
Colorado	-	0	0	-	-	-	0	0	-	-	-	1	5	36	62
Idahos	N	0	0	N	N	-	0	0	-	-	-	0	1	1	3
Montana ${ }^{\text {§ }}$	-	0	0	-	-	-	0	0	-	-	-	0	2	4	1
Nevada ${ }^{\text {8 }}$	-	0	3	18	18	-	0	2	5	3	-	1	6	87	127
New Mexico ${ }^{\text {§ }}$	-	0	0	-	-	-	0	0	-	-	1	1	7	45	68
Utah	-	0	6	24	36	-	0	3	11	24	-	0	2	16	18
Wyoming ${ }^{\text {§ }}$	-	0	2	14	33	-	0	1	2	10	-	0	1	3	-
Pacific	-	0	0	-	-	-	0	0	-	-	8	40	59	1,774	1,908
Alaska	-	0	0	-	N	-	0	0	-	-	-	0	1	7	11
California	N	0	0	N	N	-	0	0	-	-	-	36	56	1,609	1,691
Hawaii	-	0	0	-	-	-	0	0	-	-	-	0	2	8	17
Oregon ${ }^{\text {§ }}$	N	0	0	N	N	-	0	0	-	-	1	0	6	16	25
Washington	N	0	0	N	N	-	0	0	-	-	7	2	12	134	164
American Samoa	N	0	0	N	N	-	0	1	1	-	-	0	4	4	-
C.N.M.I.	-	-		-	-	-	-	-	-	-	-	-	-	-	-
Guam	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-
Puerto Rico	N	0	0	N	N	-	0	0	-	-	-	3	10	146	137
U.S. Virgin Islands	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. -: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Incidence data for reporting year 2007 are provisional.

Includes cases of invasive pneumococcal disease caused by drug-resistant S. pneumoniae (DRSP) (NNDSS event code 11720).
${ }^{\S}$ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending December 1, 2007, and December 2, 2006 (48th Week)*

Reporting area	Varicella (chickenpox)					West Nile virus disease ${ }^{\dagger}$									
						Neuroinvasive					Nonneuroinvasive ${ }^{5}$				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$	Current week		$\begin{aligned} & \text { Ous } \\ & \hline \text { eeks } \end{aligned}$	Cum	Cum	Current			Cum	Cum
		Med	Max				Med	Max	2007	2006	week	Med	Max	2007	2006
United States	621	748	2,813	32,127	42,075	-	1	136	1,122	1,492	-	2	292	2,253	2,771
New England	10	15	124	666	3,946	-	0	2	7	9	-	0	2	5	3
Connecticut	-	0	76	2	1,526	-	0	2	4	7	-	0	1	1	2
Maine ${ }^{\text {¹ }}$	-	0	6	-	221	-	0	0	-	-	-	0	0	-	-
Massachusetts	-	0	1	-	1,141	-	0	2	3	2	-	0	2	3	1
New Hampshire	1	7	16	318	380	-	0	0	-	-	-	0	0	-	-
Rhode Island"	-	0	0	-	-	-	0	0	-	-	-	0	1	1	-
Vermont ${ }^{\text {I }}$	9	6	66	346	678	-	0	0	-	-	-	0	0	-	-
Mid. Atlantic	48	98	175	4,172	4,743	-	0	3	18	26	-	0	1	6	12
New Jersey	N	0	0	N	N	-	0	1	1	2	-	0	0	-	3
New York (Upstate)	N	0	0	N	N	-	0	0	-	8	-	0	0	-	4
New York City	-	0	0	-	-	-	0	3	12	8	-	0	1	2	4
Pennsylvania	48	98	175	4,172	4,743	-	0	1	5	8	-	0	1	4	1
E.N. Central	190	170	568	8,857	13,854	-	0	18	104	244	-	0	11	62	175
Illinois	-	3	11	153	131	-	0	13	60	127	-	0	8	36	88
Indiana	N	0	0	N	N	-	0	4	13	27	-	0	2	10	53
Michigan	64	83	258	3,656	4,573	-	0	5	13	43	-	0	0	-	12
Ohio	126	79	449	4,210	8,172	-	0	4	13	36	-	0	3	10	12
Wisconsin	-	15	80	838	978	-	0	2	5	11	-	0	2	6	10
W.N.Central	33	28	136	1,508	1,719	-	0	40	242	224	-	0	116	710	484
lowa	N	0	0	N	N	-	0	4	11	22	-	0	3	15	15
Kansas	-	9	52	491	318	-	0	3	13	17	-	0	7	26	13
Minnesota	-	0	0	-	-	-	0	9	45	31	-	0	12	54	34
Missouri	33	14	78	868	1,253	-	0	9	58	51	-	0	2	14	11
Nebraska ${ }^{\text {¹ }}$	N	0	0	N	N	-	0	5	18	45	-	0	15	126	219
North Dakota	-	0	60	84	45	-	0	11	49	20	-	0	48	316	117
South Dakota	-	1	15	65	103	-	0	9	48	38	-	0	32	159	75
S. Atlantic	75	96	239	4,582	4,269	-	0	12	41	18	-	0	6	35	14
Delaware	-	1	4	44	63	-	0	1	1	-	-	0	0	-	-
District of Columbia	-	0	8	14	46	-	0	0	-	-	-	0	0	-	2
Florida	34	25	76	1,168	N	-	0	1	3	3	-	0	0	-	-
Georgia	N	0	0	N	N	-	0	8	23	2	-	0	5	26	6
Maryland ${ }^{\text {n }}$	N	0	0	N	N	-	0	2	6	10	-	0	2	4	1
North Carolina	-	0	0	-	-	-	0	1	4	1	-	0	1	2	-
South Carolina ${ }^{17}$	15	21	72	988	1,121	-	0	2	2	1	-	0	1	2	-
Virginia ${ }^{\text {a }}$	$\bar{\square}$	24	190	1,306	1,632	-	0	1	2	-	-	0	1	1	5
West Virginia	26	22	50	1,062	1,407	-	0	0	-	1	-	0	0	-	-
E.S. Central	24	10	571	582	28	-	0	11	67	118	-	0	14	95	100
Alabama"	24	10	571	579	26	-	0	2	16	8	-	0	1	7	
Kentucky	N	0	0	N	N	-	0	1	4	5	-	0	0	-	1
Mississippi	-	0	2	3	2	-	0	7	42	89	-	0	12	83	93
Tennessee ${ }^{\text {T }}$	N	0	0	N	N	-	0	1	5	16	-	0	2	5	6
W.S.Central	206	159	1,640	9,259	10,846	-	0	29	213	373	-	0	13	95	235
Arkansas ${ }^{\text {a }}$	12	10	105	624	1,029	-	0	5	13	24	-	0	2	7	5
Louisiana	-	2	11	105	195	-	0	5	25	91	-	0	3	11	88
Oklahoma	-	0	0	-	N	-	0	11	55	27	-	0	7	46	21
Texas"	194	149	1,534	8,530	9,622	-	0	16	120	231	-	0	5	31	121
Mountain	35	53	131	2,466	2,670	-	0	36	271	392	-	1	140	1,001	1,486
Arizona	-	0	0	-	-	-	0	8	47	67	-	0	10	44	81
Colorado	11	21	62	990	1,392	-	0	17	96	66	-	0	65	459	279
Idaho"	N	0	0	N	N	-	0	2	8	139	-	0	19	100	857
Montana ${ }^{\text {] }}$	14	6	40	389	N	-	0	10	37	12	-	0	30	163	22
Nevada"	-	0	1	1	10	-	0	1	1	34	-	0	3	10	90
New Mexico' ${ }^{\text {¹ }}$	-	5	37	332	360	-	0	8	39	3	-	0	6	21	5
Utah	10	13	73	720	843	-	0	8	28	56	-	0	7	39	102
Wyoming ${ }^{\text {¹ }}$	-	0	9	34	65	-	0	4	15	15	-	0	33	165	50
Pacific	-	0	9	35	-	-	0	18	159	88	-	0	23	244	262
Alaska	-	0	9	35	N	-	0	0	-	-	-	0	0	-	-
California	-	0	0	-	N	-	0	17	152	81	-	0	21	225	197
Hawaii	N	0	0	N	N	-	0	0	-	-	-	0	0	-	-
Oregon ${ }^{\text {¹ }}$	N	0	0	N	N	-	0	3	7	7	-	0	4	19	62
Washington	N	0	0	N	N	-	0	0	-	-	-	0	0	-	3
American Samoa	N	0	0	N	N	-	0	0	-	-	-	0	0	-	-
C.N.M.I.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Guam	-	4	24	230	264	-	0	0	-	-	-	0	0	-	-
Puerto Rico	-	13	37	620	556	-	0	0	-	-	-	0	0	-	-
U.S. Virgin Islands	-	0	0	-	-	-	0	0	-	-	-	0	0	-	二

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. -: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.
${ }^{*}$ Incidence data for reporting year 2007 are provisional.
\dagger Updated weekly from reports to the Division of Vector-Borne Infectious Diseases, National Center for Zoonotic, Vector-Borne, and Enteric Diseases (ArboNET Surveillance). Data § for California serogroup, eastern equine, Powassan, St. Louis, and western equine diseases are available in Table I.
${ }^{\S}$ Not notifiable in all states. Data from states where the condition is not notifiable are excluded from this table, except in 2007 for the domestic arboviral diseases and influenzaIf associated pediatric mortality, and in 2003 for SARS-CoV. Reporting exceptions are available at http://www.cdc.gov/epo/dphsi/phs/infdis.htm.
Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE III. Deaths in 122 U.S. cities,* week ending December 1, 2007 (48th Week)

	All causes, by age (years)								All causes, by age (years)						
Reporting Area	$\begin{gathered} \text { All } \\ \text { Ages } \end{gathered}$	≥ 65	45-64	25-44	1-24	<1	P\&I ${ }^{+}$ Total	Reporting Area	All Ages	≥ 65	45-64	25-44	1-24	<1	P\& ${ }^{\dagger}{ }^{+}$ Total
New England	607	432	104	43	13	15	49	S. Atlantic	1,293	842	275	95	59	22	65
Boston, MA	164	110	25	15	6	8	15	Atlanta, GA	80	46	21	5	5	3	1
Bridgeport, CT	46	37	8	1	-	-	4	Baltimore, MD	159	89	40	21	7	2	16
Cambridge, MA	17	15	1	-	1	-	3	Charlotte, NC	158	114	26	11	4	3	14
Fall River, MA	21	20	1	-	-	-	6	Jacksonville, FL	137	94	27	9	5	2	3
Hartford, CT	34	25	4	5	-	-	2	Miami, FL	128	81	34	4	6	3	7
Lowell, MA	35	25	8	2	-	-	4	Norfolk, VA	80	61	9	5	4	1	4
Lynn, MA	15	10	3	2	-	-	1	Richmond, VA	72	42	17	5	6	2	2
New Bedford, MA	28	22	5	1	-	-	1	Savannah, GA	72	50	15	5	1	1	3
New Haven, CT	36	18	10	6	2	-	2	St. Petersburg, FL	61	44	10	2	4	1	3
Providence, RI	64	44	15	3	-	2	-	Tampa, FL	229	146	55	18	8	2	8
Somerville, MA	7	5	1	1	-	-	-	Washington, D.C.	97	63	14	9	9	2	-
Springfield, MA	40	31	6	1	2	-	7	Wilmington, DE	20	12	7	1	-	-	4
Waterbury, CT	31	22	6	3	-	-	1	E.S. Central	942	627	218		22	13	62
Worcester, MA	69	48	11	3	2	5	3	Birmingham, AL	$\begin{aligned} & 942 \\ & 191 \end{aligned}$	117	218 51	12	22 6	13 5	10
Mid. Atlantic	2,249	1,608	460	121	29	31	104	Chattanooga, TN	111	80	26	2	3	-	7
Albany, NY	44	32	8	3	1	-	-	Knoxville, TN	138	94	32	8	2	2	12
Allentown, PA	23	18	4	-	-	1	-	Lexington, KY	52	37	13	1	-	1	6
Buffalo, NY	94	67	24	1	1	1	7	Memphis, TN	92	64	20	5	2	1	6
Camden, NJ	22	13	2	4	3	-	-	Mobile, AL	113	79	23	8	2	1	7
Elizabeth, NJ	25	20	3	2	-	-	2	Montgomery, AL	78	58	9	7	2	2	5
Erie, PA	41	32	7	2	-	-	1	Nashville, TN	167	98	44	19	5	1	9
Jersey City, NJ	34	25	6	1	1	1	6	W.S.Central			398	103	42	48	66
New York City, NY	1,220	874	253	61	14	18	38	Austin, TX	1,627	1,036 68	398 20	103 9	+22	48 1	66 2
Newark, NJ	32	16	10	2	2	2	6	Baton Rouge, LA	51	41	6	2	2	-	2
Paterson, NJ	30	19	7	2	-	2	2	Corpus Christi, TX	64	47	10	2	2	5	1
Philadelphia, PA	165	100	43	18	3	1	7	Corpus Christi, TX	64	142	63	19	$\overline{10}$	18	9
Pittsburgh, PA§	46	31	12	2	-	1	4	Dallas, TX El Paso, TX	252 85	142 64	63 14	19 3	10 2	18 2	9
Reading, PA	33	28	4	1	-	-	3	Fort Worth, TX	142	95	35	8	2	2	5
Rochester, NY	183	132	34	11	3	3	14	Houston, TX	321	178	98	24	11	10	15
Schenectady, NY	20	15	4	1	-	-	1	Little Rock, AR	89	57	25	+ 4	1	3	15 2
Scranton, PA	28	23	4	1	-	-	4	New Orleans, LA ${ }^{\text {® }}$	U	U	U	U	U	U	U
Syracuse, NY	138	109	21	7	1	1	8	San Antonio, TX	307	196	81	15	9	6	19
Trenton, NJ Utica, NY	27	18	6	2	1		1	Shreveport, LA	57	38	14	4	1	-	3
Utica, NY Yonkers, NY	22	19	3	-	-		1	Tulsa, OK	159	110	32	13	3	1	9
Yonkers, NY	22	17	5	-	-		-	Tusa, OK							
E.N. Central	2,021	1,409	438	102	30	42	120	Mountain	1,248	833	266	79	38	31	68
Akron, OH	72	48	17	5	-	2	2	Albuquerque, NM	160	123	23	9	1	4	9
Canton, OH	26	21	4	-	-	1	1	Boise, ID	70	59	9	1	1	-	2
Chicago, IL	4	3	-	-	-	1	-	Colorado Springs, CO	56	35	13	4	1	3	4
Cincinnati, OH	102	68	24	3	-	7	13	Denver, CO	74	46	24	4	-	-	7
Cleveland, OH	256	193	49	7	5	2	11	Las Vegas, NV	296	192	70	19	9	6	19
Columbus, OH	234	154	58	15	3	4	16	Ogden, UT	36	28	6	1	1	-	5
Dayton, OH	151	114	28	5	2	2	7	Phoenix, AZ	200	94	55	21	19	10	9
Detroit, MI	212	112	65	23	6	6	9	Pueblo, CO Salt Lake City, UT	38 139	28 90	7 31	3 10	3	5	1
Evansville, IN	63	47	14	1	-	1	7	Salt Lake City, UT Tucson, AZ	139 179	138	31 28	10 7	3	5 3	7
Fort Wayne, IN	56	43	10	3	-	-	4	Tucson, AZ	179	138	28	7	3	3	7
Gary, IN	14	7	3	1	1	2	1	Pacific	1,915	1,350	395	105	37	27	174
Grand Rapids, MI	43	33	6	2	-	2	3	Berkeley, CA	24	14	7	1	-	2	1
Indianapolis, IN	251	165	57	15	8	6	19	Fresno, CA	150	109	26	10	3	2	14
Lansing, MI	66	52	9	4	-	1	3	Glendale, CA	17	14	2	1	-	-	2
Milwaukee, WI	96	74	17	4	1	-	3	Honolulu, HI	76	60	12	3	1	-	8
Peoria, IL	64	47	16	1	-	-	6	Long Beach, CA	76	46	23	4	-	3	11
Rockford, IL	76	55	12	6	-	3	5	Los Angeles, CA	268	188	46	22	8	4	35
South Bend, IN	73	48	21	2	-	2	3	Pasadena, CA	29	24	4	-	1	-	3
Toledo, OH	95	75	17	1	2	-	1	Portland, OR	115	83	22	9	1	-	4
Youngstown, OH	67	50	11	4	2	-	6	Sacramento, CA	238	174	53	8	2	1	18
W.N.Central	645	431	145	32	19	17	55	San Diego, CA	208	137	48	11	8	3	21
Des Moines, IA	40	27	11	-		2	3	San Francisco, CA	132	80	37	6	3	6	14
Duluth, MN	45	37	7	1	-	-	4	San Jose, CA	191	141	34	10	3	3	18
Kansas City, KS	22	10	9	2	1	-	1	Santa Cruz, CA	46	37	7	1	1	-	5
Kansas City, MO	110	77	24	5	3	1	10	Seattle, WA	153	104	37	9	1	2	13
Lincoln, NE	36	24	10	1	1	-	3	Spokane, WA	61	49	10	1	-	1	5
Minneapolis, MN	94	52	21	6	9	6	6	Tacoma, WA	131	90	27	9	5	-	2
Omaha, NE	89	61	20	4	1	3	14	Total	12,547**	8,568	2,699	742	289	246	763
St. Louis, MO	85	46	24	7	4	3	4								
St. Paul, MN	66	50	12	3	-	1	6								
Wichita, KS	58	47	7	3	-	1	4								

[^12]FIGURE I. Selected notifiable disease reports, United States, comparison of provisional 4-week totals December 1, 2007, with historical data

* Ratio of current 4-week total to mean of 154 -week totals (from previous, comparable, and subsequent 4-week periods
for the past 5 years). The point where the hatched area begins is based on the mean and two standard deviations of
these 4-week totals. these 4-week totals

Notifiable Disease Data Team and 122 Cities Mortality Data Team
Patsy A. Hall
Deborah A. Adams Willie J. Anderson Lenee Blanton

The Morbidity and Mortality Weekly Report (MMWR) Series is prepared by the Centers for Disease Control and Prevention (CDC) and is available free of charge in electronic format. To receive an electronic copy each week, send an e-mail message to listserv@listserv.cdc.gov. The body content should read SUBscribe mmwr$t o c$. Electronic copy also is available from CDC's Internet server at http://www.cdc.gov/mmwr or from CDC's file transfer protocol server at ftp://ftp.cdc.gov/pub/ publications/mmwr. Paper copy subscriptions are available through the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402; telephone 202-512-1800.

Data in the weekly $M M W R$ are provisional, based on weekly reports to CDC by state health departments. The reporting week concludes at close of business on Friday; compiled data on a national basis are officially released to the public on the following Friday. Data are compiled in the National Center for Public Health Informatics, Division of Integrated Surveillance Systems and Services. Address all inquiries about the MMWR Series, including material to be considered for publication, to Editor, MMWR Series, Mailstop E-90, CDC, 1600 Clifton Rd., N.E., Atlanta, GA 30333 or to www.mmwrq@cdc.gov.

All material in the $M M W R$ Series is in the public domain and may be used and reprinted without permission; citation as to source, however, is appreciated.
Use of trade names and commercial sources is for identification only and does not imply endorsement by the U.S. Department of Health and Human Services.
References to non-CDC sites on the Internet are provided as a service to $M M W R$ readers and do not constitute or imply endorsement of these organizations or their programs by CDC or the U.S. Department of Health and Human Services. CDC is not responsible for the content of these sites. URL addresses listed in $M M W R$ were current as of the date of publication.
\star U.S. Government Printing Office: 2008-723-026/41065 Region IV ISSN: 0149-2195

[^0]: *Additional information regarding NVSS is available at http://www.cdc.gov/nchs/ nvss.htm.

[^1]: ${ }^{\dagger}$ Additional information regarding the SEER program is available at http://seer. cancer.gov.
 ${ }^{\$}$ Based on International Classification of Diseases, Tenth Revision codes for leukemias (C91.0-C91.4, C91.7, C91.9, C92.0-C92.5, C92.7, C92.9, C93.0-C93.2, C93.7, C93.9, C94.0, C94.2, C94.4, C94.5, and C95.0) and brain and other nervous system neoplasms (C70-C72).
 'Additional information regarding SEER-Stat is available at http://seer.cancer.gov/ seerstat.

 ## INSIDE

 1261 Surveillance for Travel-Associated Legionnaires Disease - United States, 2005-2006

 1263 Respiratory Syncytial Virus Activity - United States, July 2006-November 2007
 1265 Notices to Readers

[^2]: N = 2,223.
 ${ }^{\dagger}$ Based on International Classification of Diseases, Tenth Revision codes for leukemias (C91.0-C91.4, C91.7, C91.9, C92.0-C92.5, C92.7, C92.9, C93.0-C93.2, C93.7, C93.9, C94.0, C94.2, C94.4, C94.5, and C95.0) and brain and other nervous system neoplasms (C70-C72).

[^3]: ${ }^{* *}$ Northeast: Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, and Vermont. Midwest. Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, and Wisconsin. South: Alabama, Arkansas, Delaware, District of Columbia, Florida, Georgia, Kentucky, Louisiana, Maryland, Mississippi, North Carolina, Oklahoma, South Carolina, Tennessee, Texas, Virginia, and West Virginia. West. Alaska, Arizona, California, Colorado, Hawaii, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, and Wyoming.

[^4]: *Available at http://www.cste.org/ps/2005pdf/final2005/05-id-01final.pdf.
 ${ }^{\dagger}$ Available at http://www.cdc.gov/legionella/files/legionella_case_report.pdf.
 ${ }^{\$}$ The 2005 CSTE position statement was used to define confirmed cases of travelassociated LD, with the following exception: LD cases were considered travel associated if patients had a history of travel in the 2 weeks, rather than 10 days, before onset of illness.

[^5]: *As defined by NREVSS, RSV national and regional season onset is the first of 2 consecutive weeks during which the median percentage of specimens testing positive for RSV antigen is $\geq 10 \%$. RSV season offset is the last of 2 consecutive weeks during which the median percentage of positive specimens is $\geq 10 \%$.
 ${ }^{\dagger}$ Northeast: Connecticut, Massachusetts, New Hampshire, New Jersey, New York, and Rhode Island; Midwest: Illinois, Indiana, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, and Wisconsin; South: Alabama, Arkansas, Delaware, District of Columbia, Georgia, Kentucky, Louisiana, Maryland, Mississippi, North Carolina, Oklahoma, South Carolina, Tennessee, Texas, and Virginia; West: Alaska, Arizona, California, Colorado, Hawaii, Montana, Washington, and Wyoming; Florida.

[^6]: \$ SDI conducts RSV surveillance with support from MedImmune, Inc. (Gaithersburg, Maryland). In fall 2006, CDC and SDI signed a memorandum of understanding to share RSV surveillance data to make the most complete RSV dataset available. The memorandum outlines the voluntary participation of laboratories, type of data shared, frequency of reporting, and approval and acknowledgements for data publication. The relationship between CDC and SDI is limited to data sharing, as outlined in the memorandum. CDC does not make recommendations regarding the administration of RSV immune prophylaxis. For additional information, contact NREVSS by e-mail at nrevss@cdc.gov.

[^7]: *Children with HIV infection likely are at increased risk for meningococcal disease, although not to the extent that they are at risk for invasive Streptococcusp peumoniae infection. The efficacy of MCV4 among HIV-infected children is unknown.

[^8]: -: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts

[^9]: C.N.M.I.: Commonwealth of Northern Mariana Islands

[^10]: C.N.M.I.: Commonwealth of Northern Mariana Islands.

[^11]: C.N.M.I.: Commonwealth of Northern Mariana Islands.

 U: Unavailable. -: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

 * Incidence data for reporting year 2007 are provisional.
 \dagger Includes cases of invasive pneumococcal disease, in children aged <5 years, caused by S. pneumoniae, which is susceptible or for which susceptibility testing is not available (NNDSS event code 11717).
 §ontains data reported through the National Electronic Disease Surveillance System (NEDSS).

[^12]: U: Unavailable. -:No reported cases.

 * Mortality data in this table are voluntarily reported from 122 cities in the United States, most of which have populations of $\geq 100,000$. A death is reported by the place of its occurrence and by the week that the death certificate was filed. Fetal deaths are not included.
 \dagger Pneumonia and influenza.
 § Because of changes in reporting methods in this Pennsylvania city, these numbers are partial counts for the current week. Complete counts will be available in 4 to 6 weeks.
 ${ }^{\text {® }}$ Because of Hurricane Katrina, weekly reporting of deaths has been temporarily disrupted.
 **Total includes unknown ages.

