
IOCost: Block IO Control for Containers in Datacenters
Tejun Heo
Meta Inc.

Menlo Park, USA
htejun@fb.com

Dan Schatzberg
Meta Inc.

Menlo Park, USA
dschatzberg@fb.com

Andrew Newell
Meta Inc.

Menlo Park, USA
newella@fb.com

Song Liu
Meta Inc.

Menlo Park, USA
songliubraving@fb.com

Saravanan Dhakshinamurthy
Meta Inc.

Menlo Park, USA
saravanand@fb.com

Iyswarya Narayanan
Meta Inc.

Menlo Park, USA
inarayanan@fb.com

Josef Bacik
Meta Inc.

Menlo Park, USA
jbacik@fb.com

Chris Mason
Meta Inc.

Menlo Park, USA
clm@fb.com

Chunqiang Tang
Meta Inc.

Menlo Park, USA
tang@fb.com

Dimitrios Skarlatos
Carnegie Mellon University

Pittsburgh, USA
dskarlat@cs.cmu.edu

ABSTRACT
Resource isolation is a fundamental requirement in datacenter en-
vironments. However, our production experience in Meta’s large-
scale datacenters shows that existing IO control mechanisms for
block storage are inadequate in containerized environments. IO
control needs to provide proportional resources to containers while
taking into account the hardware heterogeneity of storage devices
and the idiosyncrasies of the workloads deployed in datacenters.
The speed of modern SSDs requires IO control to execute with
low-overheads. Furthermore, IO control should strive for work
conservation, take into account the interactions with the memory
management subsystem, and avoid priority inversions that lead to
isolation failures.

To address these challenges, this paper presents IOCost, an IO
control solution that is designed for containerized environments
and provides scalable, work-conserving, and low-overhead IO con-
trol for heterogeneous storage devices and diverse workloads in
datacenters. IOCost performs offline profiling to build a device
model and uses it to estimate device occupancy of each IO request.
To minimize runtime overhead, it separates IO control into a fast
per-IO issue path and a slower periodic planning path. A novel
work-conserving budget donation algorithm enables containers to
dynamically share unused budget. We have deployed IOCost across
the entirety of Meta’s datacenters comprised of millions of ma-
chines, upstreamed IOCost to the Linux kernel, and open-sourced
our device-profiling tools. IOCost has been running in production

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9205-1/22/02.
https://doi.org/10.1145/3503222.3507727

for two years, providing IO control for Meta’s fleet. We describe the
design of IOCost and share our experience deploying it at scale.

CCS CONCEPTS
• Software and its engineering → Operating systems; Input /
output; • Computer systems organization→ Cloud comput-
ing.

KEYWORDS
Datacenters, Operating Systems, I/O, Containers

ACM Reference Format:
Tejun Heo, Dan Schatzberg, Andrew Newell, Song Liu, Saravanan Dhak-
shinamurthy, Iyswarya Narayanan, Josef Bacik, Chris Mason, Chunqiang
Tang, Dimitrios Skarlatos. 2022. IOCost: Block IO Control for Containers
in Datacenters. In Proceedings of the 27th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems
(ASPLOS ’22), February 28 – March 4, 2022, Lausanne, Switzerland. ACM,
New York, NY, USA, 14 pages. https://doi.org/10.1145/3503222.3507727

1 INTRODUCTION
Containers are swiftly evolving into one of the primary mecha-
nisms for virtualizing capacity in modern datacenters. Containers
virtualize resources at the operating system level and provide a
lightweight and consistent environment that can be deployed and
run anywhere with ease. Numerous container solutions are avail-
able today by all major cloud providers such as Amazon’s AWS [34],
Google’s Cloud [9], and Microsoft’s Azure [3]. Containers have also
been taking over private datacenters, with Facebook’s complete
fleet running solely on containers [39]. As containers enable higher
levels of application consolidation, it is important to build effective
control and isolation mechanisms.

Resource isolation for compute, memory and network have been
the focus of a large body of research with many improvements

https://doi.org/10.1145/3503222.3507727
https://doi.org/10.1145/3503222.3507727


ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland T. Heo, et al.

landing in Linux. However, our production experience in Meta’s
large-scale datacenters shows that existing IO control mechanisms
(e.g., BFQ [41]) for block storage are inadequate in containerized
environments.

There are several challenges in providing robust IO control for
containers. First, IO control needs to account for hardware het-
erogeneity in datacenters. Multiple generations of SSDs, spinning
disks, local/remote storage, and novel storage technologies may
all be available in a single datacenter. Hardware heterogeneity is
further amplified by their vastly different performance characteris-
tics in terms of latency and throughput, not only across different
types of devices such as SSDs and hard drives, but also within
a type. Effective control further needs to take into consideration
SSD idiosyncrasies that may over-exert their performance in short
bursts and then slow down drastically, adversely affecting a stacked
environment [5–7, 14, 19, 28, 44, 45].

Second, IO control needs to cater to the constraints of a wide
variety of applications. For instance, some applications are latency-
sensitive while others benefit primarily from increased throughput,
while yet others might perform sequential or random accesses, in
bursts or continuously. Unfortunately, identifying a balance point
between latency and throughput is particularly challenging when
device heterogeneity and application diversity are combined at the
datacenter scale.

Third, IO isolation needs to provide a set of properties required
in datacenters. Work conservation is desirable in order to deliver
high utilization and avoid idle resources. In addition, some IO con-
trol mechanisms rely on strict prioritization, which fails to provide
fairness when equal priority applications share a machine. Further-
more, application developers often cannot effectively estimate IO
needs in terms of metrics like IOPS on a per-application and per-
device basis. IO control mechanisms should be easy for application
developers to reason about and configure. Finally, IO isolation has
interactions with memory management operations such as page
reclaim and swap. IO control must be aware of these interactions
to avoid priority inversions and other isolation failures.

Previous work in IO control has mostly focused on VM-based
virtualized environments with various proposals that aim to en-
hance the hypervisor [16, 17, 22, 36]. These approaches do not take
into account the intricacies of containers such as a single shared op-
erating system, the interactions of IO with the memory subsystem,
and heavily stacked deployments. The state-of-the-art solutions in
the Linux kernel rely on either BFQ [41] or limits based on a max
bandwidth usage through IOPS or bytes [29]. However, these fail to
be sufficiently work-conserving, lack integration with the memory
subsystem or add excessive performance overheads for fast storage
devices.

In this work we introduce IOCost, a complete IO control solu-
tion that holistically addresses the challenges of heterogeneous
hardware devices and applications while satisfying the IO isolation
needs of containers at the datacenter scale, and taking into consider-
ation interactions with memory management. The primary insight
behind IOCost is that the major challenge in IO control is the lack
of understanding of device occupancy. It becomes apparent when
we compare existing IO control with CPU scheduling. CPU sched-
uling relies on techniques such as weighted fair queuing [4, 13] to
proportionally distribute CPU occupancy by measuring CPU time

consumption. In contrast, metrics like IOPS or bytes are poor mea-
sures for occupancy, particularly given the wide diversity of block
devices. Modern block devices rely heavily on internal buffering
and complicated deferred operations such as garbage collection,
which cause issues for techniques reliant on device time sharing or
ensuring fairness primarily based on IOPS or bytes.

IOCost works by estimating device occupancy of each IO request
using a device-specific model. For example, a 4KB read would have
a different cost on a high-end SSD than on a spinning disk. With a
model of occupancy and additional QoS parameters which account
for modeling inaccuracies and determine how heavily to load the
device, IOCost distributes occupancy fairly among containers. Sys-
tem administrators or container management systems configure
weights along the container hierarchy to ensure individual con-
tainers or groups of containers receive a certain proportion of IO
service. IOCost further introduces a novel work-conserving budget
donation algorithm that allows containers to efficiently transfer
their spare IO budget to other containers.

We have deployed IOCost across Meta’s fleet. Our evaluation
demonstrates that IOCost outperforms other solutions to provide
proportional, work-conserving, and memory-management-aware
IO control withminimal overhead. Specifically, we show that IOCost
successfully isolates IO operations in a stacked ZooKeeper [23]
deployment, whereas previous solutions fail to provide a workable
solution. To demonstrate the broad applicability of IOCost, we
successfully validated it in public cloud VMs using remote storage
such as AWS Elastic Block Store and Google Cloud Persistent Disk.

The contributions of this paper are as follows:
• IOCost introduces a container-aware, scalable, work-conserving,
and low-overhead IO control for modern storage devices.

• We describe a modeling technique to estimate IO device occu-
pancy for heterogeneous applications and devices. To compen-
sate for model inaccuracy, IOCost makes runtime adjustments to
IO control based on realtime statistics about cgroup usage and
IO completion latency.

• We present a working-conserving algorithm that enables con-
tainers that do not fully utilize their IO budget to donate it pro-
portionally to other containers in a cgroup hierarchy.

• To minimize runtime overhead, we separate IO control into a
fast per-IO issue path and a slower periodic planning path.

• We present a detailed evaluation of IOCost and demonstrate how
existing IO control mechanisms cannot match IOCost’s set of
features and performance.

• We have deployed IOCost across the entirety of Meta’s data-
centers comprising millions of machines, upstreamed IOCost
to the Linux kernel, and open-sourced our device-profiling and
benchmarking tools1.

2 BACKGROUND
In this section, we first provide a brief overview of cgroup [20] for
configuring per-container resource allocations. Next, we describe
the Linux block layer and existing IO control solutions. Finally,
we provide the context of modern datacenters with heterogeneous
block devices and workloads.

1https://github.com/facebookexperimental/resctl-demo



IOCost: Block IO Control for Containers in Datacenters ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

2.1 Resource Control with cgroups
Container runtimes rely on control groups (cgroups) for resource
control and isolation. Today, cgroups is the primary mechanism for
containers to organize processes hierarchically and distribute sys-
tem resources along the hierarchy in a controlled and configurable
manner.

There are two major conceptual parts. First, individual cgroups
form a hierarchy and processes belong to one cgroup. A cgroup can
contain a large collection of processes or just a single process. Sec-
ond, cgroup controllers distribute specific system resources such as
CPU, memory and IO along the tree according to the configuration.

A common way of configuring cgroup controllers are weights,
in which a resource is distributed by adding up the weights of all
sibling cgroups and giving each the ratio of its weight against the
sum.

WorkloadHost
CriticalSystem

Root

sshdchef Container 
B

Container 
A

Container 
C

Figure 1: Meta’s production cgroup hierarchy.

Figure 1 shows an example hierarchy used atMeta. The hierarchy
is partitioned into system, host critical, and workload cgroups. Sys-
tem contains all auxiliary services, e.g., chef, that typically perform
periodic actions to keep a host up to date. Host Critical contains
the processes required to keep the host running, e.g., sshd and
the container management agent.Workload holds all application
processes, which is further partitioned into child cgroups in order
to appropriately isolate different containers from one another.

2.2 Block Layer and IO Control
Applications and filesystems use the block layer to access block
devices. Figure 2 shows the Linux block layer and other components
that interact with it. Starting from the top, userspace interacts
with the kernel through system calls. Read and write operations to
filesystems propagate to the block layer as filesystem IO (FS IO).
In addition, userspace can reach the block layer through memory
operations that result in page faults, dirty page writebacks, or swap
outs. The cgroup subsystem is responsible for resource accounting
and passes control information along all the components based on
the cgroup hierarchy.

The block layer uses the bio data structure to carry information
such as the request type (e.g., read or write), the size, the target
device, the sector offset of the device, the issuing cgroup, and the
memory that data will be copied from or to. Before a request is sub-
mitted to the device driver, the block layer control and scheduling
logic can choose to throttle the bio, merge it with other requests,
etc. The Linux kernel has a number of different IO schedulers that
can be enabled. We refer to those schedulers that integrate with the
cgroup subsystem as “controllers” to distinguish from IO schedulers
which simply ensure respectable machine-wide performance.

Userspace

Kernel
File 

System

Block Layer

IO 
Control & Scheduling

Device
Driver

Memory
Management

cgroup

System Call/PF System Call

Swap IO FS IO

Dataflow Control

bio

Figure 2: IO and the block layer.

Table 1 enumerates the features of various Linux IO control
mechanisms. §4 provides a holistic comparison of these mecha-
nisms through experiments. There are three main options for IO
scheduling without cgroup control: no scheduler, mq-deadline, and
kyber. They do not guarantee IO resources to containers, but instead
ensure general performance properties, e.g., preventing asynchro-
nous writes from dominating synchronous reads.

blk-throttle [29] allows setting IO limits in the form of read/write
IOPS or bytes per second. These limits, however, are not work-
conserving and difficult to configure for heterogeneous devices and
diverse applications in datacenters.

BFQ [41] provides a work-conserving interface for proportional
control of IO, but ignores interactions with memory management,
which could lead to isolation failures. Moreover, as shown in §4.1,
it has high per-request overheads and wide latency swings. Finally,
BFQ does round-robin scheduling according to sectors read/written
per container, which is ineffective on modern devices with complex
internal operations.

In addition to IOCost, we also developed the IOLatency controller,
which allows setting IO latency targets for individual cgroups.
Specifically, it defines the maximum latency that a cgroup’s IOs may
take before other cgroups get throttled. For example, one cgroup
with a 10 ms latency target would get throttled if the IOs of another
cgroup with a 5 ms target start to take longer than 5 ms. We have
upstreamed IOLatency to the Linux kernel.

We identified several limitations of IOLatency through our pro-
duction deployment. First, the latency-based interface is suitable
only for strict prioritization, i.e., to prevent low priority workloads
from interfering with high priority workloads, but the lack of pro-
portional control makes it unsuitable for ensuring fairness among
equal-priority workloads. Second, although IOLatency is techni-
cally work-conserving, finding a configuration that is both isolating
and work-conserving for diverse devices and workloads is nearly
unmanageable.

2.3 Hardware and Workload Heterogeneity
Hardware Heterogeneity. Incremental hardware refresh and sup-

ply chain diversity lead to heterogeneous SSDs in datacenters. Fig-
ure 3 shows the device performance characteristics of various SSDs
across Meta’s fleet. The left y-axis shows IOPS for random and
sequential reads and writes. The right y-axis shows latency for
reads and writes. We use fio [2] to measure the sustainable peak
performance for each device.



ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland T. Heo, et al.

Table 1: Linux IO control mechanisms and features.

Mechanism Low Overhead Work Conserving Memory Management-aware Proportional Fairness cgroup Control
kyber, mq-deadline ✓ ✓ ✗ ✗ ✗

blk-throttle ~ ✗ ✗ ✗ ✓
BFQ ✗ ✓ ✗ ✓ ✓

IOLatency ✓ ~ ✓ ✗ ✓
IOCost ✓ ✓ ✓ ✓ ✓

The eight types of SSDs (A-H) show distinctive characteristics.
Specifically, SSDH achieves high IOPS at a low latency, SSD G offers
low IOPS and a relatively low latency, and SSD A provides moderate
IOPS with a higher latency. Each device usually represents less than
14% of the total fleet. An exception is device F with 19%. About
20% of the SSD capacity is spread over 18 devices not shown in the
figure for readability but their characteristics are captured by the
devices shown.

A B C D E F G H0K
100K
200K
300K
400K
500K

IO
Ps

read rand (iops)
write rand (iops)

read seq (iops)
write seq (iops)

0K
10K
20K
30K
40K
50K

La
te

nc
y 

(u
s)

read lat (us)
write lat (us)

Figure 3: Device heterogeneity across Meta’s fleet.

Workload Heterogeneity. Applications at Meta exhibit a large
diversity in their IO workloads. Figure 4 displays the IO demand
of several workloads at Meta. We measure the P50 over a week of
production data, and show per-second reads vs. writes and random
vs. sequential bytes. Workloads like Web A and Web B are most
typical of Meta workloads, with a moderate amount of reads and
writes mixed about equally in terms of random and sequential
operations. Serverless workloads at Meta are highly overcommitted
and exhibit a mixed amount of reads and writes. Cache A and Cache
B are in-memory caching services that use fast block devices as
a backing store for in-memory cache. Both exhibit high amounts
of sequential IOs. Furthermore, non-storage services at Meta do
relatively little explicit IO. Their IOs are often generated by paging
and periodic software updates.

Web A Web B Serverless Cache A Cache B Video101

103

105

107

109

By
te

s/
Se

c 
(lo

gs
ca

le
) read rand write rand read seq write seq

Figure 4: IO workload heterogeneity.

Overall, a major challenge of effective IO control is to be robust
against heterogeneous hardware and diverse workloads, without
requiring per-workload configuration (e.g., latency, IOPS, or bytes
per second) that is often too brittle and intractable to be used in

production at scale. An IO control mechanism needs to cater to the
compound requirements of workloads while avoiding configuration
explosion.

3 IOCOST DESIGN
IOCost’s goal is to perform IO control that takes into account het-
erogeneous hardware devices and diverse workload requirements
while providing proportional resources and strong isolation across
containers.

3.1 Overview
IOCost explicitly decouples device andworkload configurations. For
each device, IOCost introduces a cost model and a set of quality-of-
service (QoS) parameters that define and regulate device behaviors.
For workloads, IOCost leverages cgroup weights for proportional
configuration. This allows workload configuration to be made inde-
pendently of device intricacies and improves the ease and robust-
ness of large-scale configuration in heterogeneous environments.

IOCost adopts the concept of hierarchical weighted fair schedul-
ing from multicore CPUs [30]. IOCost uses per-IO cost modeling to
estimate the occupancy of an individual IO operation and then uses
this occupancy estimate to make scheduling decisions according to
the assigned weight for each cgroup. Our novel design separates
out the low-latency issue path from a periodic planning path which
allows IOCost to scale to SSDs that can reach millions of IOPS.

Figure 5 provides an overview of IOCost’s architecture. IOCost is
logically separated into the Issue Path that operates on a microsec-
ond timescales for each bio, and the Planning Path that operates
periodically at millisecond timescales. Additionally, offline work is
done to derive device cost models and QoS parameters.

Let’s briefly discuss the lifetime of a bio and its interaction with
IOCost. First, IOCost receives a bio in step 1 describing the IO
operation. In the next steps IOCost calculates the cost of the bio,
and then performs throttling decisions.

In step 2 , IOCost extracts features from the bio and calculates
the 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑐𝑜𝑠𝑡 using the cost model parameters. Cost is repre-
sented in units of time, but the cost of an IO is an occupancy metric,
not latency. A cost of 20ms indicates that the device can process 50
such requests every second but does not say anything about how
long each operation will take. We further describe feature selection
and the cost model in §3.2.

Next, in step 3 , the absolute IO cost is divided by the issuing
cgroup’s hierarchical weight (hweight) to derive the relative IO cost.
hweight is calculated by compounding the cgroup’s share of weight
among its siblings while walking up the cgroup hierarchy. hweight
represents the ultimate share of the IO device the cgroup is entitled
to. For example, a cgroup with hweight of 0.2 has 20% share of the
device, and the relative cost of an IO is 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑐𝑜𝑠𝑡

ℎ𝑤𝑒𝑖𝑔ℎ𝑡
.



IOCost: Block IO Control for Containers in Datacenters ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

Planning Path (~ms scale)Issue Path (~us scale)

QoS Control
params

Donation
Control

Device completion latencies

cgroup
usage: 0.054
hweight: 0.08 cgroup usage

bio
type: read
offset: 12GB
size: 1MB
device: A
buffer: {…}

Throttle 
Control

vrate
Control

global
vtime adjust

weights

adjust
vrate

bio relative cost

cgroup vtime

wall time

feature
extraction

Cost Model
Params
Logic

3

2

bio absolute cost

Live Model
Offline Device Models 

Profile
Benchmark

Train

Cost Model
Params

QoS 
Params

1 84

5

6

7

Figure 5: Overview of IOCost’s architecture of how a bio’s cost is assessed for throttling decisions on the left and offline cost
model and logic generation on the right.

Step 4 shows the global vtime clock which progresses along
with the wall clock at a rate specified by the virtual time rate (vrate).
Each cgroup tracks its local vtime which advances on each IO by the
IO’s relative cost. Next, step 5 represents the throttling decision
based on how far the local vtime is behind the global vtime. This
gap represents a cgroup’s current IO budget. If the budget is equal
to or larger than an IO’s relative cost, the IO is issued right away.
Otherwise, the IO has to wait until the global vtime progresses far
enough.

In the planning path, IOCost collects cgroup usage and com-
pletion latency, and makes periodic adjustments to IO control. In
step 6 , IOCost globally adjusts vrate and consequently the total
IO issued in response to device feedback. Modeling may over- or
under-estimate true device occupancy and this vrate adjustment
ensures the device is well-utilized. We further discuss vrate adjust-
ment and QoS in §3.3. Next, in step 7 , IOCost’s donation algorithm
efficiently donates excess budget to other cgroups to achieve work
conservation. §3.6 presents the algorithm in detail.

Offline in step 8 , IOCost leverages profiling, benchmarking,
and training across the deployed devices to build cost models and
QoS parameters per device model that are later used during the
production deployment.

3.1.1 Issue Path. The issue path determines the cost of an IO, the
hweight, the available budget based on the local and global vtimes,
and makes throttling decisions.

The absolute cost of a bio is calculated by applying the cost
model to the features of the bio. Each cgroup is also assigned
a weight, which represents the proportion of IO occupancy the
cgroup is guaranteed among its siblings. To avoid repeating recur-
sive operations on the hot path, the weights are compounded and
flattened into hweight which is cached and recalculated only when
the weights change.

A cgroup which does not issue IO and therefore does not con-
sume its budget will leave the device underutilized. To address
this, IOCost distinguishes active cgroups. A cgroup becomes active
when it issues an IO and inactive after a full planning period passes
without any IO. An inactive cgroup is ignored during hweight cal-
culation. This low-overhead mechanism keeps device utilization
high since idle cgroups implicitly donate their budget to the active
cgroups. As a cgroup becomes active or inactive, it increments a
weight tree generation number to indicate that weights have been

adjusted. Subsequent cgroups executing through the issue path will
notice this and recalculate their hweight.

3.1.2 Planning Path. The planning path is responsible for global
orchestration so that each cgroup operates efficiently with only
local knowledge and can converge on the desired hierarchically
weighted fair IO distribution. It runs periodically based on amultiple
of the latency targets in order to contain a sufficient number of IOs
while allowing granular control.

The planning path tallies how much IO each cgroup is using to
determine howmuch of their weight can be donated, and adjusts the
weights accordingly. Through budget donations IOCost achieves
work conservation while keeping the issue-path operations strictly
local to the cgroup. The only donation-related issue-path operation
is reducing or canceling donation if its budget runs low, which is
also a local operation.

The planning path also monitors the device behavior and adjusts
how much IO can be issued across all cgroups by adjusting vrate
to control how fast or slow the global vtime runs compared to the
wall clock. For example, if vrate is at 150%, the global vtime runs
at 1.5x speed of the wall clock and generates 1.5x more IO budget
than the device cost model specifies. The conditions and range of
vrate adjustment are configured by a system administrator through
the QoS parameters.

3.2 Device Cost Modeling
IOCost decouples device cost modeling from runtime IO control.
Cost models are generated offline for each device before deploy-
ment. For maximum flexibility, IOCost allows a cost model to be
expressed as an arbitrary eBPF program. In addition, IOCost na-
tively supports a linear model, which works as follows. IOCost
extracts the following features from a bio request: 1) read or write,
2) random or sequential relative to the cgroup’s last IO, 3) request
size. The IO cost is calculated as follows:

𝑖𝑜 𝑐𝑜𝑠𝑡 = 𝑏𝑎𝑠𝑒 𝑐𝑜𝑠𝑡 + 𝑠𝑖𝑧𝑒 𝑐𝑜𝑠𝑡 𝑟𝑎𝑡𝑒 ∗ 𝑏𝑖𝑜 𝑠𝑖𝑧𝑒 (1)

One of four𝑏𝑎𝑠𝑒 𝑐𝑜𝑠𝑡𝑠 is selected by the combination of read/write
and random/sequential. The 𝑠𝑖𝑧𝑒 𝑐𝑜𝑠𝑡 𝑟𝑎𝑡𝑒 is selected by read or
write. Thus, the linear model is composed of six parameters: the
four 𝑏𝑎𝑠𝑒 𝑐𝑜𝑠𝑡𝑠 and two 𝑠𝑖𝑧𝑒 𝑐𝑜𝑠𝑡 𝑟𝑎𝑡𝑒𝑠 .

For convenience, the configuration takes the six parameters
in a different format - read/write byte per second (bps), and 4kB
sequential and random IO per second (IOPS) for reads and writes -



ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland T. Heo, et al.

and translates them internally to base_cost and size_rate_costs as:

𝑠𝑖𝑧𝑒_𝑐𝑜𝑠𝑡_𝑟𝑎𝑡𝑒 =
1 𝑠𝑒𝑐
𝐵𝑝𝑠

(2)

𝑏𝑎𝑠𝑒_𝑐𝑜𝑠𝑡 =
1 𝑠𝑒𝑐

𝐼𝑂𝑃𝑆4𝑘𝐵
− 𝑠𝑖𝑧𝑒_𝑐𝑜𝑠𝑡_𝑟𝑎𝑡𝑒 ∗ 4𝑘𝐵 (3)

rbps=488636629 rseqiops=8932 rrandiops=8518
wbps=427891549 wseqiops=28755 wrandiops=21940

Figure 6: Example IOCost configuration.

Figure 6 shows an example configuration. For reads, this trans-
lates to 2.05ns/B of size_rate, sequential base cost of 104us and
random base cost of 109us. Accordingly, a random read bio of
32KB would cost 109𝑢𝑠 + 32 ∗ 4096 ∗ 2.05𝑛𝑠 = 352𝑢𝑠 and the device
would be able to service 2840 of them every second.

Our tools use fio and saturating workloads to infer the linear
model’s parameters for a device, e.g., issuing as many 4KB random
reads as possible to determine the 𝑏𝑎𝑠𝑒 𝑐𝑜𝑠𝑡 for random reads. Sys-
tematically modeling devices in this way is practical even with the
roughly thirty different storage devices found in Meta datacenters.
We have made our modeling tools available in the Linux source
tree.

3.3 QoS and Dynamic Vrate Adjustment
Simple linear modeling cannot capture the subtleties of modern
SSDs. Devices have complicated layers of caching, request reorder-
ing, garbage collection, and can perform in unexpected ways with
different IO mixtures. Prior research has focused on the difficulty of
accurately modeling SSD behavior [26, 48]. IOCost accommodates
device performance variation by dynamically adjusting vrate.

vrate adjustment acts on two signals: IO budget deficiency and
device saturation. The former indicates that the kernel could issue
more IO but the global budget as determined by vtime prevents it.
The latter indicates that the device cannot handle more IO. If the
system could issue more IO and the device is not saturated, vrate
is adjusted upwards. If the device is saturated, vrate is adjusted
downwards.

IOCost tracks request depletion and latency target violations to
identify device saturation. Request depletion occurs when there are
too many in-flight IOs, depleting the available IO slots and causing
a long queue at the device layer. Latency targets are set via QoS
parameters. For example, a system administrator can configure
the device to be considered saturated if the 90th percentile read
completion latency is above 10 ms.

By constraining howmuch total IO is issued to the device, IOCost
can achieve consistent latency even on devices that show bursty
behaviors, or other behaviors poorly captured by the device model.
IOCost considers latency as a device-level property. It uses QoS
parameters to regulate the device behavior and then distributes the
resulting IO occupancy. This separation simplifies workload config-
uration and is necessary to uphold the QoS targets. Hypothetically,
if we loosen device throttling for a batch workload, we might lose
control over the device and fail to meet the QoS targets when a
latency-sensitive workload becomes active.

3.4 Tuning QoS Parameters with
ResourceControlBench

The QoS parameters determine the overall throttling of the device,
which is an important trade-off of device utilization for consistent
latency. Ultimately, how to make this tradeoff is dependent on the
storage use-cases. At Meta the predominant consideration is ensur-
ing reasonable IO latencies under contention with raw throughput
as a secondary consideration.

In order to ensure that devices are throttled sufficiently, we
developed a systematic approach to determining QoS parameters
for each device in the Meta fleet. While a full description is outside
the scope of this paper, we present a simplified description.

We developed ResourceControlBench, a highly configurable syn-
thetic workload imitating the behavior of latency-sensitive services
at Meta. We leverage ResourceControlBench for QoS tuning by
observing its behavior across vrate ranges. We execute Resource-
ControlBench in two scenarios.

First, ResourceControlBench runs alone on a machine and ad-
justs its working set size until the throughput available for paging
and swap operations begins to limit ResourceControlBench’s per-
formance. As vrate is lowered, the working set size drops. Second,
ResourceControlBench runs alongside a memory-leak in another
container. As vrate is lowered, IO control improves until Resource-
ControlBench’s latency is sufficiently protected from thrashing
caused by the memory leak.

These two scenarios identify two points on the vrate range below
which no further IO control improvements are needed and above
which throughput gains result in no meaningful advantages for
memory overcommit. We bound vrate between these two points for
each device. These QoS parameters are deployed for each device
in the fleet, resulting in consistent latency control with minimal
throughput loss for all applications. ResourceControlBench and
the scenario generating tools are made available as open source
software.

3.5 Handling Priority Inversion
Consider two cgroups A and B sharing a machine with equal
weights. A is leaking memory continuously. Eventually when the
machine is low on memory, B attempts to allocate memory and
enters memory reclaim which identifies some of A’s memory for
swapping out. The swap out bio can only reasonably be charged
to A, the owner of the memory being swapped out. If charged to
B, then B gets penalized for A’s excessive memory usage, violating
resource isolation.

This swap out must complete synchronously for B to complete
its memory allocation. If A is over-budget, throttling would create
a priority-inversion where again B is penalized for A’s excessive
memory usage. Instead, IOCost simply allows A to go into debt
and issues the IO without throttling. A’s future bios are throttled
proportionally until the debt is paid off with its future budget.

However, if A leaks memory and issues no IO that can be throt-
tled, A gets an unfair amount of “free” swap-out IO, and will never
pay back its debt. To address this, IOCost adds a check before each
return to userspace. If the accumulated debt exceeds a threshold,
the thread is blocked momentarily before returning to userspace to
throttle the generation of “free” IO. As a result, memory activities



IOCost: Block IO Control for Containers in Datacenters ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

Period 1 

Container
A

Container
B

IO A1 IO A2 IO A3

Queued IOs
Donate 1/3

IO 
B1

1/3
hweight A

1/3

hweight B
2/3

Unused

Period 2 

Container
A

Container
B

Planning
Phase

1/3
hweight A

1/3

hweight B
2/3

IO B2

IO 
A2

IO 
A3

2/3

1/3

IO 
A4

IO 
A5

(a) (b)

Planning
Phase

IO A4 IO A1
No donation 

changes

IO 
A6

IO 
B1 Unused

Container
A

Container
B

1/3
hweight A

1/3

hweight B
2/3

IO B2

IO 
A2

IO 
A3

2/3

1/3

IO 
A4

IO 
A5

(c)

Issue Path
Rescind

IO A1 IO A6

IO 
B1 Unused IO B3

Donation rescind
in issue path

IO 
B4

2/3

Figure 7: Budget donation example at the planning phase (a), after the planning phase (b), and during issue path (c).

generating swap outs are throttled without causing priority inver-
sions. The same mechanism is used for shared filesystem operations
like journaling.

3.6 Budget Donation
Individual cgroups do not always issue IOs that saturate their
hweight. IOCost ensures work conservation by allowing other
cgroups to utilize the device by dynamically lowering the weights
of the donor cgroups. We explored multiple options including tem-
porarily accelerating vrate, but found that local adjustment of
weight was the only solution that met all the following require-
ments: 1) the issue path remains low overhead, 2) the total amount
of IO issued never exceeds what vrate dictates, and 3) donors can
cheaply rescind anytime.

Each planning phase identifies the donors and calculates how
much of their hweight can be given away. It then calculates their
lowered weights that compound to the after-donation hweights. The
weight calculation process is structured in a way that parent weight
adjustments are derived solely from child weight adjustments.

As donation happens through weight adjustments, the IO issue
path does not change and there is no interaction with device-level
behaviors, satisfying 1) and 2). A donor can rescind by updating
its weight and propagating the update upwards in the issue path
without any global operation, satisfying the final requirement. This
increments the weight tree generation number so subsequent is-
suers will recalculate their hweight.

High-level Donation Example. In Figure 7(a), the hweights of con-
tainers A and B are 1

3 and 2
3 , respectively. During the planning

phase, it detects that B has not used half of its budget. To avoid
leaving the device underutilized, it transfers half of B’s original
budget to A. Figure 7(b) shows how this affects the second period.
With hweight increased, A’s IOs have lower relative costs and can
be issued more frequently, while B saturates its new lowered budget.
At the end of the period, there is no need for further adjustments.
Figure 7(c) shows that in the middle of the third period, B attempts
to issue additional IOs and rescinds its donation in the issue path,
without waiting for the next planning phase. Note that a container
could also rescind only a portion of its original donation.

Weight Tree Update Algorithm. Let 𝑤 be the weight, 𝑠 be the
summed weight of siblings, ℎ be the hweight, and 𝑑 be total hweight
of all donating leaves for the subtree. Let subscript 𝑝 denote a parent
node, and an apostrophe denote the value after donation.

Figure 8 shows an overview of what occurs during budget do-
nation. Here, leaf nodes B and H have active usage that is in total
0.25 less than their configured hweights. This excess is donated to
other cgroups that can potentially use more IO proportionally to

their hweights. Most importantly, only local updates are needed as
𝑤 values are only decreased along paths from B and H to the root,
and then all other nodes can correctly calculate their new hweight
lazily in the issue path.

𝑤: 	1
ℎ: 	1

𝑑:	 .45 → .20

A

𝑤: 	10 → 3.4
ℎ:	 .1 → .05
𝑑:	 .1 → .05

B
𝑤: 20

h: . 2 →.29
d: 0

C
𝑤: 	70 → 45.4
h:	 .7 → .66
d:	 .35 → .15

D

w: 4
ℎ:	 .16 → .23

𝑑: 	0

E
𝑤: 	1

ℎ:	 .04 → 0.6
𝑑: 	0

F
𝑤: 	100

ℎ:	 .35 →.51
𝑑: 	0

G
𝑤: 100 → 29.4
ℎ:	 .35 → 	 .15
𝑑:	 .35 → .15

H

5%

20%

9%

4%

16%
2%

7%

Donate Distribute

Figure 8: B and H donate portions of their budget.

The values of 𝑑 ′ are propagated up the tree and provided as
inputs to the budget donation algorithm. Only 𝑤 ′, ℎ′ need to be
calculated down the tree along paths to B, D, and H. We describe
two invariants which we maintain to ensure non-donating nodes
do not need to be updated which lead to derivations of ℎ′, 𝑠 ′,𝑤 ′.

The first invariant enforces that the proportion of a parent’s
non-donating weight does not change with budget donation:

ℎ − 𝑑

ℎ𝑝 − 𝑑𝑝
=

ℎ′ − 𝑑 ′

ℎ′𝑝 − 𝑑 ′𝑝
(4)

The second invariant enforces that the total summed weight
𝑤 of siblings that are not donating does not change with budget
donation:

𝑠 ∗
(
ℎ𝑝 − 𝑑𝑝

ℎ𝑝

)
= 𝑠 ′ ∗

(
ℎ′𝑝 − 𝑑 ′𝑝

ℎ′𝑝

)
(5)

The following steps determine new𝑤 ′ values for paths from the
root to donating children. In our example, this is performed for
nodes B and D first, then the results for D are used to perform the
same at node H:

(1) Using the invariant of Equation (4) a new hweight is calcu-
lated from the parent’sℎ′ value:ℎ′ :=

(
ℎ−𝑑

ℎ𝑝−𝑑𝑝

)
∗(ℎ′𝑝−𝑑 ′𝑝 )+𝑑 ′

(2) The new sibling weight is calculated based on the invariant
of Equation (5): 𝑠 ′ := 𝑠 ∗

(
ℎ𝑝−𝑑𝑝
ℎ𝑝

)
∗

(
ℎ′𝑝

ℎ′𝑝−𝑑′
𝑝

)
(3) The final weight then is derived from the calculated ℎ′ and

𝑠 ′:𝑤 ′ := 𝑠 ′ ∗
(
ℎ′

ℎ′𝑝

)



ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland T. Heo, et al.

The remaining𝑤 ′, 𝑠 ′, ℎ′ values are shown for completeness on
other nodes, but they are not needed as part of budget donation.
Note that 𝑤 ′ does not change for other nodes. This efficiency is
important for large cgroup hierarchies. Just by updating𝑤 ′ along
paths from donating leaves to the root, all other node’s newℎ′ based
on these𝑤 ′ updates will receive the correct value. In the example,
0.25 hweight is freed up by B and H, which is split among E, F, and
G according to the ratio of their original hweight’s 0.16:0.04:0.35,
resulting in a donation of 0.07, 0.02, and 0.16 to E, F, and G, respec-
tively.

4 EVALUATION
This section demonstrates that IOCost provides IO control that is
low overhead, work-conserving, memory-management aware, and
allows for proportional cgroup configuration. We compare IOCost
against the state-of-the-art Linux IO control mechanisms and our
previous solution IOLatency as described in §2.2. We demonstrate
that none of these mechanisms match IOCost’s set of features and
performance.

In all experiments, except where otherwise specified, we use
a single-socket, 64 GB server with one of three different SSDs:
1) An older generation commercial SSD, 2) A newer generation
commercial SSD, 3) A high-end enterprise-grade SSD. We install the
5.6 Linux kernel, patched with the latest IOCost changes from 5.15.
Model parameters are determined using fio saturating workloads
as described in section 3.2. QoS parameters are determined using
ResourceControlBench as described in section 3.4.

4.1 Low Overhead
Controlling IO for fast SSDs in datacenters requires the controller
to impose a minimal overhead. This experiment uses an SSD with
maximum read IOPS of 750K. We use fio to generate as many 4KB
random reads as the IO subsystem can support.

none

mq-deadline
kyber

BFQ A
BFQ B

blk-throttle

IOLatency
IOCost

0.00
0.25
0.50
0.75
1.00

No
rm

al
ize

d 
IO

Ps

Figure 9: IO Control Overhead.

Figure 9 measures the maximum achievable IOPS with IO control
enabled using a number of different mechanisms. The controllers
or schedulers are not configured to perform any actual throttling
so that we can measure the induced overhead on the fast-path of
issuing IO. We use the enterprise-grade SSD for this experiment to
demonstrate overheads on one of our fastest storage devices. We
disable QoS settings for all controllers in order to simply measure
their baseline overheads when not throttling the device.

The none column is with no software scheduler or controller
running and therefore simply shows the achievable throughput of
the block layer on this device. mq-deadline is the default Linux
scheduler and has moderate overhead. kyber’s performance is in-
distinguishable from no scheduler. Neither of these IO schedulers

provides cgroup control, as they merely provide system-wide sched-
uling. bfq has severe software overheads. Despite significant tuning
we were unable to find a configuration with reasonable perfor-
mance. The remaining columns illustrate that other IO controllers
add no significant overhead. Despite having a much more complex
throttling logic than others, IOCost is able to ensure no noticeable
overhead due to its split between the issue path and the planning
path.

4.2 Proportional Control and Work
Conservation

Work-conserving IO control is important for ensuring that storage
device performance is well-utilized in the event that some con-
sumers are idle. Without work-conserving IO control we would
need to over-provision IO for infrequent activities such as OS soft-
ware updates.

To evaluate these properties, we perform two related experi-
ments where two synthetic workloads run concurrently. In the first
experiment, we run two instances of a latency-sensitive workload
continuously issuing random 4KB reads so long as the observed
p50 latency is below 200 us. These workloads simulate online ser-
vices which may load-shed if request latencies climb too high. We
configure the high-priority workload to be granted double the IO
of the low-priority workload. We perform this experiment on our
older-generation SSD, which due to its relatively lower latency, has
higher demands in terms of IO control.

blk-throttle BFQ IOLatency IOCost0
1
2
3
4

No
rm

al
ize

d 
IO

Ps Target High:Low Ratio -> 2:1
High Priority Low Priority

Figure 10: Proportional control. The target ratio of IOPS re-
ceived by the high-priority and low-priority workloads is 2.

Figure 10 shows the results of this first experiment. We focus
only on the cgroup-aware IO control mechanisms. bfq is config-
ured with weights for the desired 2:1 distribution. However, the
high-priority workload dominates at a ratio of more than 10:1. This
is because the low-priority workload suffers from poor latency and
continuously lowers its IO issue rate to remain below the 200 us
target, which in turn allows the high-priority workload to dominate
and receive much more than its fair share. blk-throttle is con-
figured to limit each workload to preserve the 2:1 ratio. It matches
IOCost’s observed latencies and behaves as expected. IOLatency
does not provide any way to configure such a distribution. Instead
we tuned per-cgroup latency targets in an attempt to achieve the
desired distribution, but the best configuration (shown in the figure)
still results in a roughly 10:1 distribution. Finally, IOCost is config-
ured with weights just as with bfq and able to precisely match the
expected 2:1 ratio.

The second experiment preserves the same configuration, but
replaces the high-priority workload with one that sequentially
issues random 4KB reads with 100 us think time, i.e., a new IO is



IOCost: Block IO Control for Containers in Datacenters ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

issued after 100 us has passed since the last IO’s completion. The
throughput achieved is a function of the latency of the reads and
substantially lower than in the previous experiment. Accordingly,
the throughput available to the low-priority workload is dependent
on the work-conserving properties of the IO controller. We expect
to see the low-priority workload saturate the remaining available
IO.

blk-throttle BFQ IOLatency IOCost
1

3

5

7

No
rm

al
ize

d 
IO

Ps

High Priority Low Priority

Figure 11: Work conserving. The low-priority workload
should use up all available capacity.

Figure 11 shows the result of this second experiment. bfq’s work-
conserving properties lead to the low-priority workload completing
a substantial amount of IO. bfq’s ability to outperform the other
mechanisms in this respect are due to its weak latency control,
which leads to the high-priority workload performing noticeably
worse. The high-priority workload sees an average of 250 us la-
tency with a standard deviation of nearly 1 ms, whereas all others
hold latency below 200 us on average with a standard deviation
around 200 us. This experiment also demonstrates the major down-
sides of non-work-conserving approaches such as blk-throttle,
which controls latency well, but does not allow the low-priority
workload to consume more IO than in the previous experiment.
IOLatency and IOCost perform comparably, controlling latency for
the high-priority workload and allowing the low-priority workload
to consume otherwise available IO. Together, these two experi-
ments demonstrate that IOCost uniquely provides proportional and
work-conserving IO control.

4.3 Spinning Disk Modeling

mq-deadline BFQ IOCost0%
20%
40%
60%
80%

100%

De
vi

ce
 P

ea
k 

IO
Ps

 % HP Rnd/Rnd
LP Rnd/Rnd

HP Rnd/Seq
LP Rnd/Seq

HP Seq/Seq
LP Seq/Seq

Figure 12: Fairness with random and sequential workloads
on a spinning disk

While SSDs make up the vast majority of the Meta fleet, IOCost
can be used with spinning disks. In contrast to SSDs, spinning
disks have high seek latencies which means random IOs have a
lower throughput (or higher occupancy cost) than sequential IOs.
We run an experiment where two workloads issue either random
4KB reads or sequential 4KB reads. One workload (high weight)
is configured with double the weight of the other workload (low
weight). We compare mq-deadline, bfq, and IOCost under three

scenarios: both workloads issuing random reads (rand/rand), the
high priority issue random reads while the low priority issues
sequential reads (rand/seq), and where both are issuing sequential
reads (seq/seq).

Figure 12 shows the results of this experiment. To visualize the
differences clearly, we normalize the throughput on the random
and sequential workloads to the peak throughput the device can
handle of each type of workload, respectively. The results show that
mq-deadline cannot provide fairness at the 2:1 ratio across any of
the workloads as it is simply a global scheduler. BFQ performs well
when both workloads issue sequential IO, maintaining the desired
2:1 ratio but struggles when both workloads issue random IO and
substantially over-allocates device occupancy to the random read
workload when mixed with a sequential workload. In comparison,
IOCost maintains the desired 2:1 ratio in all scenarios by modeling
the cost of random vs sequential IO and ensuring fairness in terms
of device occupancy. This leads to proper isolation where workloads
receive the same service from the disk regardless of the nature of
their neighbor’s disk accesses.

4.4 QoS and Vrate Adjustment

0 10 20 30 40
Time (mimutes)

50K

100K

IO
Ps

0.5x of m
odel

2x of m
odel

IOPs

0
100
200
300
400

Vr
at

e

Vrate

Figure 13: Vrate adjustment due to model inaccuracy

As discussed in section 3.3, modern SSDs have complexities
which make simple modeling approaches inaccurate and could lead
to IOCost under or over saturating a device. vrate compensates for
modeling inaccuracy by dynamically adjusting the overall issue
rate.

In Figure 13, we show the results of an experiment on our newer-
generation commercial SSD where a workload is attempting to
saturate the device with 4KB random reads and QoS settings are
configured so that IOCost will maintain a p90 read latency of 250
microseconds. Initially, the vrate remains around 100, indicating
the model parameters are appropriate for maintaining such QoS.
At the first indicated time, we issue an online update of the model
parameters which cuts their values in half (effectively claiming that
the device has half the amount of occupancy as before). In response,
the read rate drops. However, vrate quickly climbs to roughly dou-
ble the issue rate while maintaining QoS as we expect. Finally, at
the second indicated time, we issue an online update of the model
parameters to set them to double the original value (effectively
claiming that the device has twice the amount of occupancy as
before). Initially, issue rate over-saturates the device, leading to
a spike in latency which subsides as vrate drops to roughly half
the initial value in order to maintain QoS. This experiment demon-
strates that the dynamic vrate adjustment functionality of IOCost
can handle modeling inaccuracies and still preserve QoS.



ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland T. Heo, et al.

4.5 Memory-Management Awareness

mq-deadline BFQ IOLatency IOCost0.0
0.2
0.4
0.6
0.8
1.0

No
rm

al
ize

d 
RP

S

SSD D SSD F

Figure 14: Requests per second (RPS) of a latency sensitive
workload when stacked with a memory-leak workload.

Overcommitting resources is a common approach to increasing
utilization in datacenters. One method is to deploy a high-priority
workload with guaranteed resources and allow a low-priority work-
load to consume the remaining resources on the machine in a
best-effort fashion. Memory management integration is crucial to
ensure that resources are appropriately reclaimed.

We show the results from production web servers at Meta on
both our older and newer generation commercial SSDs. We launch
a memory leaking process in the system slice (see Figure 1 for the
cgroup hierarchy), which is eventually killed by the out-of-memory
(OOM) killer. Figure 14 shows that the web-server throughput is
reduced due to thrashing. With ideal resource control, the web
server should mostly maintain its throughput. mq-deadline iso-
lates poorly as it lacks any cgroup integration, but fares slightly bet-
ter with the higher end SSD simply due to having more bandwidth.
Despite BFQ’s proportional control, it performs worst, resulting in
an almost total loss of throughput due to lack of latency control
and memory management integration. IOLatency performs mod-
erately well. Finally, IOCost outperforms all the other IO control
mechanisms, and the web server drops to no lower than 80% of its
normal throughput.

In order to evaluate the particulars of the memory management
integration, we created an experiment where ResourceControl-
Bench is collocated with stress, a synthetic memory consumer
which constantly touches its configured working set. We configure
a PID controller to slowly add load to ResourceControlBench from
40% of its peak compute load to 80% while keeping p95 latency
under 75 ms. As ResourceControlBench’s load increases, its mem-
ory access frequency increases, pushing up its demand for resident
memory. In turn, the synthetic memory consumer’s memory must
be paged out to ensure sufficient memory for the high-priority
ResourceControlBench. We measure the time it takes for Resource-
ControlBench to scale from 40% of its peak load to 80%.

IOCost BFQ IOCost
stress

IOCost
root

IOCost
swap

BFQ
stress

0
100
200
300
400
500

Ti
m

e 
(s

ec
on

ds
)

Figure 15: Ramp-up time in an overcommitted environment.

Figure 15 displays the results of this experiment. The two baseline
configurations without stress show that IOCost ramps up in about
half the time as BFQ. With stress consuming memory, the IOCost
configuration is able to complete scaling up about 5x faster than
BFQ. We additionally run modified versions of IOCost. In the first
configuration, all swap out IO is charged to the root cgroup and thus
never throttled. stress runs freely regardless of howmuch swap IO
is consumed. In the second configuration, we instead throttle swap
IO according to the originating cgroup, creating a priority inversion
where ResourceControlBench may be throttled when swapping out
stress’s memory. These two configurations perform worse than
the production version of IOCost and show how IOCost’s debt
mechanism (§3.5) avoids a priority inversion while maintaining
good IO control.

4.6 Stacked Latency-Sensitive Workloads
One production use of IOCost ensures that multiple containers
receive their fair proportion of IO service. At Meta, we run a work-
load similar to Zookeeper [23] which provides a strongly-consistent
API for configuration, metadata and coordination primitives like
watches, locks and semaphores. A single operation is replicated to
several participants in an ensemble providing fault tolerance. The
service triggers a snapshot of the in-memory database after 500000
txns which results in momentary write spikes even under nominal
loads. The production service has a one second SLO for read and
write operations. This SLO makes the service a difficult candidate
to collocate with other services as slow down experienced by a par-
ticipant of the ensemble may result in an entire operation slowing
down. This service runs on machines with our enterprise-grade
SSDs

We analyzed the behavior of this service in a scenario where
twelve ensembles (of five participants each) were distributed over
five machines. No two participants of the same ensemble share a
host. This configuration allows for multiple low-traffic ensembles
to share machines with reasonable aggregate utilization.

Hour 1 Hour 3 Hour 5
Time Over Six Hours

1000

3000

5000

7000

La
te

nc
y 

(m
s)

SLO

BFQ blk-throttle IOLatency IOCost

Figure 16: Impact of different IO control methods on
ZooKeeper latency SLO violations.

The twelve ensembles receive a moderate amount of traffic, 3000
reads per second and 100 writes per second. Eleven of the twelve
ensembles average 100 KB payloads while the twelfth ensemble
behaves as a noisy neighbor with 300 KB payloads. Figure 16 shows
the P99 latency of the eleven well-behaved ensembles. SLO viola-
tions are characterized by their frequency and magnitude. With
blk-throttle, BFQ and IOLatency, the ensembles repeatedly vi-
olate their one-second SLO throughout the six-hour experiment.



IOCost: Block IO Control for Containers in Datacenters ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

Specifically, blk-throttle shows 78 violations with some lasting
tens of seconds. BFQ shows 13 violations each lasting 2-5 seconds.
Notably, while not shown in the figure, we had to run this experi-
ment several times due to the severity of BFQ throttling leading to
total system unresponsiveness. IOLatency cannot be configured
for proportional control and also shows poor behavior of 31 viola-
tions with the longest being 7.8 seconds. With IOCost, the effects
of the noisy neighbor ensemble and snapshots were appropriately
isolated, resulting in only two marginal violations of 1.5 seconds
and 1.04 seconds.

4.7 Remote Storage and VM Environments
Beyond local storage, IOCost is also useful for providing IO control
for remote block storage environments like those found in public
clouds. To evaluate the broad applicability of IOCost, we repeat the
experiment from Figure 14, replacing the production web server at
Meta with ResourceControlBench that is collocated with a high-
speed memory-leak program running in a low priority cgroup.
As before, we report the drop in ResourceControlBench’s RPS as
a measurement of how well IOCost protects the workload from
interference.

AWS A AWS B GCP A GCP B0.0
0.2
0.4
0.6
0.8
1.0

No
rm

al
ize

d 
RP

S

w/o IOCost w/ IOCost

Figure 17: Requests per second (RPS) of a latency-sensitive
workload when stacked with a memory-leak workload in
AWS EBS, and Google Cloud Persistent Storage.

We run the twoworkloads in a public cloud’s VMwhose guest OS
is configured with IOCost. Figure 17 shows the resulting protection
ratios of the four configurations—two AWS Elastic Block Store (gp3-
3000iops, io2-64000iops), and two Google Cloud Persistent Disk
configurations (balanced, SSD). While there are variances from the
different latency profiles, the experiment clearly shows that IOCost
can effectively isolate IO for all configurations whether local or
remotely attached. This experiment demonstrates that IOCost’s
approach to modeling and QoS parameterization is robust and can
be successfully applied to environments outside Meta.

4.8 Package Fetching and Container Cleanup
A major feature of IOCost in comparison to IOLatency is that the
proportional control capability allows us to ensure fair share of
IO for system services and workloads instead of enforcing strict
priority ordering. Furthermore, IOCost successfully protects ser-
vices and workloads even under extreme circumstances, when the
resources on a server are fully utilized and heavily contended.

Package fetching failures. A common operation at Meta is pack-
age fetching for containers. This works through a hostcritical ser-
vice (the container agent) asking a system service to fetch packages.
We often see instances where the communication between the two

services fails due to the system service getting starved for IO. Pack-
age fetching failures lead to container update failures which often
result in the machine being taken out of production entirely.

Week 1 Week 3 Week 5 Week 7
Time Over Two Months

0.0

0.1

0.2

0.3

0.4

Pa
ck

ag
e 

Fe
tc

hi
ng

Fa
ilu

re
s p

er
-m

in
ut

e

Figure 18: Package fetching failures reduction as a region
migrates from our previous solution IOLatency, to IOCost.

Figure 18 shows the effect of IOCost, as a region of hundreds
of thousands of servers migrates from IOLatency to IOCost over
a period of two months. As IOCost is enabled the rate of package
fetching errors drops in the region, resulting in roughly 10x fewer
errors.

Container cleanup failures. A regular operation at Meta’s data-
centers is cleanup of old containers. We rely on btrfs and its copy-
on-write semantics so this is a usually cheap operation but we still
see cases where it can take several seconds. These cases are often
caused by the main workload starving the container agent of I/O.
Cleaning up old containers is often required to ensure sufficient
disk space for subsequent containers and failures to clean can result
in a machine being functionally unusable.

Week 1 Week 3
Time Over One Month

0K

6K

12K

18K

24K

Co
nt

ai
ne

r C
le

an
up

Fa
ilu

re
s p

er
-d

ay

Figure 19: Container cleanup failures reduction as a region
migrates from our previous solution IOLatency, to IOCost.

Figure 19 shows the failure reduction of container cleanups,
those that take longer than 5 seconds, as the region migrates to
IOCost. The effect of IOCost is immediate. Specifically, we see that
IOCost achieves a 3x reduction, a major reduction of stalls. This
again shows the impact IOCost has on the ability for the container
orchestration system to successfully manage hosts.

5 LESSONS LEARNED
Meta has one the world’s largest deployment of IO control. One
initial motivation was to address isolation failures from system ser-
vice memory leaks. Memory control alone was insufficient as mem-
ory limits still resulted in reclaim which interfered with latency-
sensitive applications through IO. We could achieve comprehensive
isolation only by doing both memory and IO controls together.

We experimented with the existing IO control mechanisms and
found them ineffective for heterogeneous devices and applications



ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland T. Heo, et al.

at Meta. Assigning IO limits for each application via blk-throttle
was inefficient, brittle and ultimately intractable. BFQ showed sub-
stantial overheads and wide latency swings while failing to isolate
in real-world scenarios.

We first developed IOLatency and it revealed isolation failures
from priority inversions in memory management and filesystem op-
erations. After addressing the priority inversions, we could achieve
comprehensive isolation with tuned latency targets. However, pro-
duction configuration was difficult because the latency target is
a complex function of both the heterogeneous-device properties
and dynamic-application properties. A configuration tuned for one
scenario was often ineffective for others. Moreover, it could not
arbitrate IO across multiple competing applications of equal priori-
ties.

We then developed IOCost to address the limitations of IOLa-
tency. IOCost is easier to configure as the device configuration can
be approached systematically by first modeling device performance
using fio (§3.2) and then tuning QoS parameters using Resource-
ControlBench (§3.3). With an IO cost model per device, effective
IO control can be achieved for diverse applications with simple
proportional weights without requiring per-application offline pro-
filing or per-application configuration of IOPS, bytes, or latency
that are often too brittle and intractable to be used in production at
scale. Overall, IOCost has been running robustly in production for
two years, handling our fleet’s heterogeneous devices and diverse
applications.

Preference towards SSDs with consistent performance. At Meta’s
datacenters, we repeatedly experienced unpredictable SSD behav-
iors and found it unrealistic to cater to the behaviors of specific
devices. As diverse applications migrate across the heterogeneous
fleet, it was impractical for us to tune each application to the oddities
of the specific SSD that it happened to encounter.We abandoned our
first-generation solution IOLatency primarily because it required
fragile per-application tuning. Our current solution leverages IO-
Cost’s QoS feature to throttle SSDs to achieve acceptable latency
and consistency for diverse applications.

Overall, our experience indicates that SSDs with more consistent
behaviors, rather than ones with high but temporary and unpre-
dictable peak performance, could be effectively utilized in highly
scaled and complex environments. As such, we recommend that
SSDs striving for steady throughput and latency are better suited
for datacenters.

6 RELATEDWORK
Consistent with our findings, [18] provided a large scale study of
production storage devices and found a significant amount of perfor-
mance variability across devices. In addition, FLIN [40] found that
workload IO request patterns played a significant role in unfairness
among concurrently-executing applications.

ReFlex [27] adopts amodeling approach to account for read/write
interference in accessing remote flash devices. SSDcheck [26] con-
structs a performance model for modern SSDs in order to predict
per-request latency and in-turn schedule based on expected request
latencies. Similarly, [48] discusses the needs and challenges of mod-
eling SSD performance and advocates for reverse-engineering of
devices as opposed to black-box modeling.

The literature on virtual machine monitors has worked to ad-
dress IO fairness across several different works. PARDA [16] and
mClock [17] both explore designs for providing coarse-grained fair-
ness for VMs accessing network-attached storage. Both VMWare [42]
and NetApp [32] present IO solutions which allow for VMs to get
a configured amount of IOPS. IOCost deals with the additional
challenges of how the I/O subsystem interacts with the memory
subsystem and uniquely approaches IO fairness by modeling device
occupancy, rather than measuring and controlling in terms of IOPS
or latency. We believe that modeling device occupancy could be a
fruitful approach for virtual machine monitors to explore.

Cello [35], Argon [43], and Redline [47] all present approaches
for controlling IO in the era of slow, rotational drives with relatively
low concurrency and high seek latencies. More recently, WDT [1]
describes a cgroup-aware IO scheduler configured via weights tar-
geting high-speed SSDs which, in contrast to IOCost, distributes IO
bandwidth not occupancy. FlashBlox [21] partitions SSD channels
which allows for hardware-enforced isolation albeit at the cost of
flexibility in the number of tenants.

In [46], the authors identify the need to account for information
across different layers of the IO stack for scheduling. IOCost identi-
fies swap and journaling IO sources and introduces IO control on
memory management and filesystem journaling operations without
priority inversions.

Several works have focused on resource management [8, 10–12,
15, 24, 25, 31, 33]. These solutions aim to partition system resources
among co-located applications without violating individual SLOs.
Other works [37, 38] have proposed architectural and OS extensions
for containers. Overall, they operate at a layer above or below
IOCost and can leverage its robust IO control to further push the
co-location capabilities in datacenter environments.

7 CONCLUSION
We have identified the need for IO control in containerized en-
vironments. We presented IOCost, an IO control solution that is
designed for containerized environments and provides scalable,
work-conserving, and low-overhead IO control for heterogeneous
storage devices and diverse workloads in datacenters. Our approach
estimates device occupancy through an offline generated device
cost model. Furthermore, IOCost’s design separates IO control into
a lightweight per-IO issue path and a periodic IO planning path. A
novel cgroup tree hierarchy weight update algorithm ensures that
containers dynamically share unused IO budget with minimal over-
head. Finally, we shared our experience with IOCost and potential
future hardware directions.

ACKNOWLEDGMENTS
Dimitrios Skarlatos at CMU is funded by NSF under grant CNS
2107307 and a Meta Faculty Award.

REFERENCES
[1] Sungyong Ahn, Kwanghyun La, and Jihong Kim. 2016. Improving I/O Resource

Sharing of Linux Cgroup for NVMe SSDs on Multi-core Systems. In 8th USENIX
Workshop on Hot Topics in Storage and File Systems (HotStorage 16). USENIX
Association, Denver, CO. https://www.usenix.org/conference/hotstorage16/
workshop-program/presentation/ahn

[2] Jens Axboe. 2021. Flexible I/O Tester. https://github.com/axboe/fio.

https://www.usenix.org/conference/hotstorage16/workshop-program/presentation/ahn
https://www.usenix.org/conference/hotstorage16/workshop-program/presentation/ahn
https://github.com/axboe/fio


IOCost: Block IO Control for Containers in Datacenters ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

[3] Microsoft Azure. 2021. Container Instances. https://azure.microsoft.com/en-
us/services/container-instances.

[4] J.C.R. Bennett and Hui Zhang. 1996. WF/sup 2/Q: worst-case fair weighted
fair queueing. In Proceedings of IEEE INFOCOM ’96. Conference on Computer
Communications, Vol. 1. 120–128 vol.1. https://doi.org/10.1109/INFCOM.1996.
497885

[5] Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian Cristal, Osman S.
Unsal, and Ken Mai. 2012. Flash correct-and-refresh: Retention-aware error
management for increased flash memory lifetime. In 2012 IEEE 30th International
Conference on Computer Design (ICCD). 94–101. https://doi.org/10.1109/ICCD.
2012.6378623

[6] Feng Chen, David A. Koufaty, and Xiaodong Zhang. 2009. Understanding In-
trinsic Characteristics and System Implications of Flash Memory Based Solid
State Drives. In Proceedings of the Eleventh International Joint Conference on
Measurement and Modeling of Computer Systems (Seattle, WA, USA) (SIGMET-
RICS ’09). Association for Computing Machinery, New York, NY, USA, 181–192.
https://doi.org/10.1145/1555349.1555371

[7] Renhai Chen, YiWang, Duo Liu, Zili Shao, and Song Jiang. 2017. HeatingDispersal
for Self-Healing NAND Flash Memory. IEEE Trans. Comput. 66, 2 (2017), 361–367.
https://doi.org/10.1109/TC.2016.2595572

[8] Shuang Chen, Christina Delimitrou, and José F. Martínez. 2019. PARTIES: QoS-
Aware Resource Partitioning for Multiple Interactive Services. In Proceedings of
the Twenty-Fourth International Conference on Architectural Support for Program-
ming Languages and Operating Systems (Providence, RI, USA) (ASPLOS ’19). New
York, NY, USA, 107–120.

[9] Google Cloud. 2021. Containers at Google. https://cloud.google.com/containers.
[10] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus Fontoura,

and Ricardo Bianchini. 2017. Resource Central: Understanding and Predicting
Workloads for Improved Resource Management in Large Cloud Platforms. In
Proceedings of the 26th Symposium on Operating Systems Principles (Shanghai,
China) (SOSP ’17). Association for Computing Machinery, New York, NY, USA,
153–167. https://doi.org/10.1145/3132747.3132772

[11] Christina Delimitrou and Christos Kozyrakis. 2013. Paragon: QoS-Aware Schedul-
ing for Heterogeneous Datacenters. In Proceedings of the Eighteenth International
Conference on Architectural Support for Programming Languages and Operat-
ing Systems (Houston, Texas, USA) (ASPLOS ’13). Association for Computing
Machinery, New York, NY, USA, 77–88. https://doi.org/10.1145/2451116.2451125

[12] Christina Delimitrou and Christos Kozyrakis. 2014. Quasar: Resource-Efficient
and QoS-Aware Cluster Management. In Proceedings of the 19th International
Conference on Architectural Support for Programming Languages and Operating
Systems (Salt Lake City, Utah, USA) (ASPLOS ’14). Association for Computing Ma-
chinery, New York, NY, USA, 127–144. https://doi.org/10.1145/2541940.2541941

[13] A. Demers, S. Keshav, and S. Shenker. 1989. Analysis and Simulation of a Fair
Queueing Algorithm. SIGCOMM Comput. Commun. Rev. 19, 4 (Aug. 1989), 1–12.
https://doi.org/10.1145/75247.75248

[14] Peter Desnoyers. 2014. Analytic Models of SSD Write Performance. ACM Trans.
Storage 10, 2, Article 8 (March 2014), 25 pages. https://doi.org/10.1145/2577384

[15] Alexandra Fedorova, Margo Seltzer, and Michael D. Smith. 2007. Improving Per-
formance Isolation on Chip Multiprocessors via an Operating System Scheduler.
In Proceedings of the 16th International Conference on Parallel Architecture and
Compilation Techniques (PACT ’07). IEEE Computer Society, USA, 25–38.

[16] Ajay Gulati, Irfan Ahmad, and Carl A. Waldspurger. 2009. PARDA: Proportional
Allocation of Resources for Distributed Storage Access. In 7th USENIX Conference
on File and Storage Technologies (FAST 09). USENIX Association, San Francisco,
CA.

[17] Ajay Gulati, Arif Merchant, and Peter J. Varman. 2010. mClock: Handling
Throughput Variability for Hypervisor IO Scheduling. In 9th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 10). USENIX Association,
Vancouver, BC.

[18] Mingzhe Hao, Gokul Soundararajan, Deepak Kenchammana-Hosekote, An-
drew A. Chien, and Haryadi S. Gunawi. 2016. The Tail at Store: A Revelation from
Millions of Hours of Disk and SSDDeployments. In 14th USENIXConference on File
and Storage Technologies (FAST 16). USENIXAssociation, Santa Clara, CA, 263–276.
https://www.usenix.org/conference/fast16/technical-sessions/presentation/hao

[19] Jun He, Sudarsun Kannan, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. 2017. The Unwritten Contract of Solid State Drives. In Proceedings of
the Twelfth European Conference on Computer Systems (Belgrade, Serbia) (EuroSys
’17). Association for Computing Machinery, New York, NY, USA, 127–144. https:
//doi.org/10.1145/3064176.3064187

[20] TejunHeo. 2015. Control Group V2. https://www.kernel.org/doc/Documentation/
cgroup-v2.txt.

[21] Jian Huang, Anirudh Badam, Laura Caulfield, Suman Nath, Sudipta Sengupta,
Bikash Sharma, and Moinuddin K. Qureshi. 2017. FlashBlox: Achieving Both
Performance Isolation and Uniform Lifetime for Virtualized SSDs. In 15th USENIX
Conference on File and Storage Technologies (FAST 17). USENIX Association, Santa
Clara, CA, 375–390.

[22] Lan Huang, Gang Peng, and Tzi-cker Chiueh. 2004. Multi-Dimensional Storage
Virtualization. SIGMETRICS Perform. Eval. Rev. 32, 1 (June 2004), 14–24. https:

//doi.org/10.1145/1012888.1005692
[23] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed.

2010. ZooKeeper: Wait-free Coordination for Internet-scale Systems. In
2010 USENIX Annual Technical Conference (USENIX ATC 10). USENIX Associa-
tion. https://www.usenix.org/conference/usenix-atc-10/zookeeper-wait-free-
coordination-internet-scale-systems

[24] Harshad Kasture, Davide B. Bartolini, Nathan Beckmann, and Daniel Sanchez.
2015. Rubik: Fast analytical power management for latency-critical systems.
In 2015 48th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). 598–610. https://doi.org/10.1145/2830772.2830797

[25] Harshad Kasture and Daniel Sanchez. 2014. Ubik: Efficient Cache Sharing with
Strict Qos for Latency-Critical Workloads. In Proceedings of the 19th International
Conference on Architectural Support for Programming Languages and Operating
Systems (Salt Lake City, Utah, USA) (ASPLOS ’14). Association for Computing Ma-
chinery, New York, NY, USA, 729–742. https://doi.org/10.1145/2541940.2541944

[26] Joonsung Kim, Pyeongsu Park, Jaehyung Ahn, Jihun Kim, Jong Kim, and Jangwoo
Kim. 2018. SSDcheck: Timely and Accurate Prediction of Irregular Behaviors
in Black-Box SSDs. In 2018 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). 455–468. https://doi.org/10.1109/MICRO.2018.00044

[27] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. 2017. ReFlex: Remote Flash
≈ Local Flash. In Proceedings of the Twenty-Second International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS
’17). Association for Computing Machinery, New York, NY, USA.

[28] Junghee Lee, Youngjae Kim, Galen M. Shipman, Sarp Oral, and Jongman Kim.
2013. Preemptible I/O Scheduling of Garbage Collection for Solid State Drives.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
32, 2 (2013), 247–260. https://doi.org/10.1109/TCAD.2012.2227479

[29] Shaohua Li. 2016. block-throttle: proportional throttle. https://lwn.net/Articles/
676823/.

[30] Tong Li, Dan Baumberger, and Scott Hahn. 2009. Efficient and Scalable Multipro-
cessor Fair Scheduling Using Distributed Weighted Round-Robin. In Proceedings
of the 14th ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming (PPoPP ’09). 65–74.

[31] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ranganathan, and
Christos Kozyrakis. 2016. Improving Resource Efficiency at Scale with Heracles.
(2016), 33 pages.

[32] NetApp. 2021. Guarantee throughput with QoS overview. https:
//docs.netapp.com/us-en/ontap/performance-admin/guarantee-throughput-
qos-task.html#about-throughput-ceilings-qos-max.

[33] Andrew Newell, Dimitrios Skarlatos, Jingyuan Fan, Pavan Kumar, Maxim Khutor-
nenko, Mayank Pundir, Yirui Zhang, Mingjun Zhang, Yuanlai Liu, Linh Le,
Brendon Daugherty, Apurva Samudra, Prashasti Baid, James Kneeland, Igor
Kabiljo, Dmitry Shchukin, Andre Rodrigues, Scott Michelson, Ben Christensen,
Kaushik Veeraraghavan, and Chunqiang Tang. 2021. RAS: Continuously Opti-
mized Region-Wide Datacenter Resource Allocation. In Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Principles (Virtual Event, Germany)
(SOSP ’21). Association for Computing Machinery, New York, NY, USA, 505–520.
https://doi.org/10.1145/3477132.3483578

[34] Amazon Web Services. 2021. Containers on AWS. https://aws.amazon.com/
containers.

[35] Prashant J. Shenoy and Harrick M. Vin. 1998. Cello: A Disk Scheduling
Framework for next Generation Operating Systems. In Proceedings of the 1998
ACM SIGMETRICS Joint International Conference on Measurement and Model-
ing of Computer Systems (Madison, Wisconsin, USA) (SIGMETRICS ’98/PERFOR-
MANCE ’98). Association for Computing Machinery, New York, NY, USA, 44–55.
https://doi.org/10.1145/277851.277871

[36] Aameek Singh, Madhukar Korupolu, and Dushmanta Mohapatra. 2008. Server-
storage virtualization: Integration and load balancing in data centers. In SC ’08:
Proceedings of the 2008 ACM/IEEE Conference on Supercomputing. 1–12. https:
//doi.org/10.1109/SC.2008.5222625

[37] Dimitrios Skarlatos, Qingrong Chen, Jianyan Chen, Tianyin Xu, and Josep Tor-
rellas. 2020. Draco: Architectural and Operating System Support for System Call
Security. In 2020 53rd Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO). 42–57. https://doi.org/10.1109/MICRO50266.2020.00017

[38] Dimitrios Skarlatos, Umur Darbaz, Bhargava Gopireddy, Nam Sung Kim, and
Josep Torrellas. 2021. BabelFish: Fusing Address Translations for Containers.
IEEE Micro 41, 3 (2021), 57–62. https://doi.org/10.1109/MM.2021.3073194

[39] Chunqiang Tang, Kenny Yu, Kaushik Veeraraghavan, Jonathan Kaldor, Scott
Michelson, Thawan Kooburat, Aravind Anbudurai, Matthew Clark, Kabir Gogia,
Long Cheng, Ben Christensen, Alex Gartrell, Maxim Khutornenko, Sachin Kulka-
rni, Marcin Pawlowski, Tuomas Pelkonen, Andre Rodrigues, Rounak Tibrewal,
Vaishnavi Venkatesan, and Peter Zhang. 2020. Twine: A Unified Cluster Manage-
ment System for Shared Infrastructure. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20). USENIX Association, 787–803.
https://www.usenix.org/conference/osdi20/presentation/tang

[40] Arash Tavakkol, Mohammad Sadrosadati, Saugata Ghose, Jeremie S. Kim, Yixin
Luo, Yaohua Wang, Nika Mansouri Ghiasi, Lois Orosa, Juan Gómez-Luna, and
Onur Mutlu. 2018. FLIN: Enabling Fairness and Enhancing Performance in

https://azure.microsoft.com/en-us/services/container-instances
https://azure.microsoft.com/en-us/services/container-instances
https://doi.org/10.1109/INFCOM.1996.497885
https://doi.org/10.1109/INFCOM.1996.497885
https://doi.org/10.1109/ICCD.2012.6378623
https://doi.org/10.1109/ICCD.2012.6378623
https://doi.org/10.1145/1555349.1555371
https://doi.org/10.1109/TC.2016.2595572
https://cloud.google.com/containers
https://doi.org/10.1145/3132747.3132772
https://doi.org/10.1145/2451116.2451125
https://doi.org/10.1145/2541940.2541941
https://doi.org/10.1145/75247.75248
https://doi.org/10.1145/2577384
https://www.usenix.org/conference/fast16/technical-sessions/presentation/hao
https://doi.org/10.1145/3064176.3064187
https://doi.org/10.1145/3064176.3064187
https://www.kernel.org/doc/Documentation/cgroup-v2.txt
https://www.kernel.org/doc/Documentation/cgroup-v2.txt
https://doi.org/10.1145/1012888.1005692
https://doi.org/10.1145/1012888.1005692
https://www.usenix.org/conference/usenix-atc-10/zookeeper-wait-free-coordination-internet-scale-systems
https://www.usenix.org/conference/usenix-atc-10/zookeeper-wait-free-coordination-internet-scale-systems
https://doi.org/10.1145/2830772.2830797
https://doi.org/10.1145/2541940.2541944
https://doi.org/10.1109/MICRO.2018.00044
https://doi.org/10.1109/TCAD.2012.2227479
https://lwn.net/Articles/676823/
https://lwn.net/Articles/676823/
https://docs.netapp.com/us-en/ontap/performance-admin/guarantee-throughput-qos-task.html#about-throughput-ceilings-qos-max
https://docs.netapp.com/us-en/ontap/performance-admin/guarantee-throughput-qos-task.html#about-throughput-ceilings-qos-max
https://docs.netapp.com/us-en/ontap/performance-admin/guarantee-throughput-qos-task.html#about-throughput-ceilings-qos-max
https://doi.org/10.1145/3477132.3483578
https://aws.amazon.com/containers
https://aws.amazon.com/containers
https://doi.org/10.1145/277851.277871
https://doi.org/10.1109/SC.2008.5222625
https://doi.org/10.1109/SC.2008.5222625
https://doi.org/10.1109/MICRO50266.2020.00017
https://doi.org/10.1109/MM.2021.3073194
https://www.usenix.org/conference/osdi20/presentation/tang


ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland T. Heo, et al.

Modern NVMe Solid State Drives. In Proceedings of the 45th Annual International
Symposium on Computer Architecture (Los Angeles, California) (ISCA ’18). IEEE
Press, 397–410. https://doi.org/10.1109/ISCA.2018.00041

[41] Paolo Valente and Fabio Checconi. 2010. High throughput disk scheduling with
fair bandwidth distribution. IEEE Trans. Comput. 59, 9 (2010), 1172–1186.

[42] VMWare. 2021. Storage I/O Control Resource Shares and Limits.
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.
resmgmt.doc/GUID-D964A753-0844-4343-A96F-27A4C769F92D.html.

[43] Matthew Wachs and Michael Abd-El-Malek. 2007. Argon: Performance Insula-
tion for Shared Storage Servers. In 5th USENIX Conference on File and Storage
Technologies (FAST 07). USENIX Association, San Jose, CA. https://www.usenix.
org/conference/fast-07/argon-performance-insulation-shared-storage-servers

[44] Qi Wu, Guiqiang Dong, and Tong Zhang. 2011. Exploiting Heat-Accelerated
Flash Memory Wear-Out Recovery to Enable Self-Healing SSDs. In 3rd Workshop
on Hot Topics in Storage and File Systems (HotStorage 11). USENIX Association,
Portland, OR. https://www.usenix.org/conference/hotstorage11/exploiting-heat-
accelerated-flash-memory-wear-out-recovery-enable-self

[45] Chengen Yang, Hsing-Min Chen, Trevor Mudge, and Chaitali Chakrabarti. 2014.
Improving the Reliability of MLC NAND Flash Memories Through Adaptive Data

Refresh and Error Control Coding. Journal of Signal Processing Systems 76 (09
2014), 225–234. https://doi.org/10.1007/s11265-014-0880-5

[46] Suli Yang, Tyler Harter, Nishant Agrawal, Salini Selvaraj Kowsalya, Anand Kr-
ishnamurthy, Samer Al-Kiswany, Rini T. Kaushik, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. 2015. Split-Level I/O Scheduling. Association for
Computing Machinery, New York, NY, USA, 474–489. https://doi.org/10.1145/
2815400.2815421

[47] Ting Yang, Tongping Liu, Emery D. Berger, Scott F. Kaplan, and J. Eliot B. Moss.
2008. Redline: First Class Support for Interactivity in Commodity Operating
Systems. In Proceedings of the 8th USENIX Conference on Operating Systems Design
and Implementation (San Diego, California) (OSDI’08). USENIX Association, USA,
73–86.

[48] Aviad Zuck, Philipp Gühring, Tao Zhang, Donald E. Porter, and Dan Tsafrir. 2019.
Why and How to Increase SSD Performance Transparency. In Proceedings of
the Workshop on Hot Topics in Operating Systems (Bertinoro, Italy) (HotOS ’19).
Association for Computing Machinery, New York, NY, USA, 192–200. https:
//doi.org/10.1145/3317550.3321430

https://doi.org/10.1109/ISCA.2018.00041
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.resmgmt.doc/GUID-D964A753-0844-4343-A96F-27A4C769F92D.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.resmgmt.doc/GUID-D964A753-0844-4343-A96F-27A4C769F92D.html
https://www.usenix.org/conference/fast-07/argon-performance-insulation-shared-storage-servers
https://www.usenix.org/conference/fast-07/argon-performance-insulation-shared-storage-servers
https://www.usenix.org/conference/hotstorage11/exploiting-heat-accelerated-flash-memory-wear-out-recovery-enable-self
https://www.usenix.org/conference/hotstorage11/exploiting-heat-accelerated-flash-memory-wear-out-recovery-enable-self
https://doi.org/10.1007/s11265-014-0880-5
https://doi.org/10.1145/2815400.2815421
https://doi.org/10.1145/2815400.2815421
https://doi.org/10.1145/3317550.3321430
https://doi.org/10.1145/3317550.3321430

	Abstract
	1 Introduction
	2 Background
	2.1 Resource Control with cgroups
	2.2 Block Layer and IO Control
	2.3 Hardware and Workload Heterogeneity

	3 IOCost Design
	3.1 Overview
	3.2 Device Cost Modeling
	3.3 QoS and Dynamic Vrate Adjustment
	3.4 Tuning QoS Parameters with ResourceControlBench
	3.5 Handling Priority Inversion
	3.6 Budget Donation

	4 Evaluation
	4.1 Low Overhead
	4.2 Proportional Control and Work Conservation
	4.3 Spinning Disk Modeling
	4.4 QoS and Vrate Adjustment
	4.5 Memory-Management Awareness
	4.6 Stacked Latency-Sensitive Workloads
	4.7 Remote Storage and VM Environments
	4.8 Package Fetching and Container Cleanup

	5 Lessons Learned
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

