
The OWASP Top 10
August 4, 2022

TLP: WHITE, ID# 202208041300 1

Agenda
• OWASP and the OWASP Top 10
• Understanding the Top 10
• Data Factors
• The OWASP Top 10: 2021
• The OWASP Top 10 as a Standard

Non-Technical: Managerial, strategic
and high-level (general audience)

Technical: Tactical / IOCs; requiring
in-depth knowledge (sysadmins, IRT)

Slides Key:

2

OWASP and the OWASP Top 10

3

Source: OWASP

• Threat Brief: Web Application Attacks in
Healthcare

• Open Web Application Security Project (OWASP)
 Nonprofit foundation dedicated to improving

software security
 Operates under an “open community” model,

meaning that anyone can participate in and
contribute to OWASP-related online chats,
projects, and more

• OWASP Top 10
 A standard awareness document for developers

and web application security
 Represents a broad consensus about the most

critical security risks to web applications

https://www.hhs.gov/sites/default/files/web-application-attacks-in-healthcare.pdf

Understanding the Top 10

4

• The 10 Categories
 8 of 10 categories are contributed data
 2 of the categories come from the Top 10

community survey
• These two categories reflect what

AppSec researchers see as the highest
risks that may not be in the data (and
may never be expressed in data)

• Common Weakness Enumerations (CWEs)
 A community-developed list of software and

hardware weakness types
 Serves as a common language, a measuring

stick for security tools, and as a baseline for
weakness identification, mitigation, and
prevention efforts

Source: OWASP

Data Factors

5

Data factors are listed for each of the Top 10 categories:

• CWEs Mapped: The number of CWEs mapped to a category by the Top 10 team
• Incidence Rate: The percentage of applications vulnerable to that CWE from

the population tested by that organization for that year
• Weighted Exploit: The Exploit sub-score from CVSSv2 and CVSSv3 scores

assigned to CVEs mapped to CWEs, normalized, and placed on a 10pt scale
• Weighted Impact: The Impact sub-score from CVSSv2 and CVSSv3 scores

assigned to CVEs mapped to CWEs, normalized, and placed on a 10pt scale
• Total Occurrences: Total number of applications found to have the CWEs

mapped to a category
• Total CVEs: Total number of CVEs in the National Vulnerability Database (NVD

DB) that were mapped to the CWEs mapped to a category

The OWASP Top 10: 2021

6

A01:2021 – Broken Access Control

7

Example Scenario:
An application uses unverified data in a structured query
language (SQL) call that is accessing account
information:
pstmt.setString(1, request.getParameter("acct"));
ResultSet results = pstmt.executeQuery();

An attacker simply modifies the browser's 'acct'
parameter to send whatever account number they want.
If not correctly verified, the attacker can access any
user's account.
https://example.com/app/accountInfo?acct=notmyacct

Notable Common Weakness
Enumerations (CWEs):
• CWE-200: Exposure of Sensitive

Information to an Unauthorized Actor
• CWE-201: Insertion of Sensitive

Information Into Sent Data
• CWE-352: Cross-Site Request Forgery

CWEs
Mapped

Max Incidence
Rate

Avg Incidence
Rate

Avg Weighted
Exploit

Avg Weighted
Impact

Total
Occurrences

Total CVEs

34 55.97% 3.81% 6.92 5.93 318,487 19,013

Broken Access Control Vulnerabilities

8

• Violation of the principle of least privilege or deny by default, where access should only be granted for
particular capabilities, roles, or users, but is available to anyone.

• Bypassing access control checks by modifying the URL (parameter tampering or force browsing),
internal application state, or the HTML page, or by using an attack tool modifying API requests.

• Permitting viewing or editing someone else's account, by providing its unique identifier (insecure direct
object references).

• Accessing API with missing access controls for POST, PUT and DELETE.
• Elevation of privilege; acting as a user without being logged in or acting as an admin when logged in

as a user.
• Metadata manipulation, such as replaying or tampering with a JSON Web Token (JWT) access control

token, or a cookie or hidden field manipulated to elevate privileges or abusing JWT invalidation.
• Force browsing to authenticated pages as an unauthenticated user or to privileged pages as a

standard user.

Broken Access Control Prevention

9

• Access control is only effective in trusted server-side code or server-less application programming interface (API),
where the attacker cannot modify the access control check or metadata.

• Except for public resources, deny by default.

• Implement access control mechanisms once, and re-use them throughout the application, including minimizing
Cross-Origin Resource Sharing (CORS) usage.

• Model access controls should enforce record ownership rather than accepting that the user can create, read,
update, or delete any record.

• Unique application business limit requirements should be enforced by domain models.

• Disable web server directory listing and ensure file metadata (e.g., .git) and backup files are not present within
web roots.

• Log access control failures, alert admins when appropriate (e.g., repeated failures).

• Rate limit API and controller access to minimize the harm from automated attack tooling.

• Stateful session identifiers should be invalidated on the server after logout.

A02:2021 – Cryptographic Failures

10

CWEs
Mapped

Max Incidence
Rate

Avg Incidence
Rate

Avg Weighted
Exploit

Avg Weighted
Impact

Total
Occurrences

Total CVEs

29 46.44% 4.49% 7.29 6.81 233,788 3,075

Example Scenario:
An application encrypts credit card numbers in
a database using automatic database
encryption, but this data is automatically
decrypted when retrieved, allowing a
structured query language (SQL) injection flaw
to retrieve credit card numbers in clear text.

Notable Common Weakness Enumerations (CWEs):
• CWE-259: Use of Hard-coded Password
• CWE-327: Broken or Risky Crypto Algorithm
• CWE-331 Insufficient Entropy

Cryptographic Failure Vulnerabilities

11

• Data is transmitted in clear text.

• Old or weak cryptographic algorithms or protocols are used either by default or in older code.

• Use of default crypto keys, weak crypto keys are generated or re-used, or a proper key management or
rotation is missing.

• Encryption is not enforced, e.g., any HTTP headers (browser) security directives or headers are missing.

• Received server certificate and the trust chain are not properly validated.

• Passwords are being used as cryptographic keys in absence of a password base key derivation function.

• Deprecated hash functions such as MD5 or SHA1 in use, or non-cryptographic hash functions are used
when cryptographic hash functions are needed.

• Deprecated cryptographic padding methods such as public key cryptography standard (PKCS) number 1
v1.5 are in use.

• Cryptographic error messages or side channel information are exploitable, for example in the form of
padding oracle attacks.

Cryptographic Failure Prevention

12

• Classify data processed, stored, or transmitted by an application. Identify which data is sensitive according to privacy
laws, regulatory requirements, or business needs.

• Do not store sensitive data unnecessarily. Discard it as soon as possible or use Payment Card Industry Data Security
Standard (PCI DSS) compliant tokenization or even truncation.

• Make sure to encrypt all sensitive data at rest.
• Encrypt all data in transit with secure protocols such as TLS with forward secrecy (FS) ciphers, cipher prioritization by

the server, and secure parameters; enforce encryption using directives like HTTP Strict Transport Security (HSTS).
• Apply required security controls as per the data classification.
• Do not use legacy protocols such as file transfer protocol (FTP) and simple mail transfer protocol (SMTP) for

transporting sensitive data.
• Store passwords using strong adaptive and salted hashing functions with a work factor (delay factor).
• Keys should be generated randomly with cryptography and stored in memory as byte arrays.
• Ensure that cryptographic randomness is used where appropriate, and that it has not been seeded in a predictable

way or with low entropy.
• Avoid deprecated cryptographic functions and padding schemes, such as MD5, SHA1, PKCS number 1 v1.5.
• Verify independently the effectiveness of configuration and settings.

A03:2021-Injection

13

Notable Common Weakness
Enumerations (CWEs):
• CWE-79: Cross-site Scripting
• CWE-89: SQL Injection
• CWE-73: External Control of File Name

or Path

CWEs
Mapped

Max Incidence
Rate

Avg Incidence
Rate

Avg Weighted
Exploit

Avg Weighted
Impact

Total
Occurrences

Total CVEs

33 19.09% 3.37% 7.25 7.15 274,228 32,078

Example Scenario:
An application uses untrusted data in the
construction of the following vulnerable structured
query language (SQL) call:

String query = "SELECT * FROM accounts WHERE
custID='" + request.getParameter("id") + "'";

Injection Vulnerabilities

14

• User-supplied data is not validated, filtered, or sanitized by
the application.

• Dynamic queries or non-parameterized calls without context-
aware escaping are used directly in the interpreter.

• Hostile data is used within object-relational mapping (ORM)
search parameters to extract additional, sensitive records.

• Hostile data is directly used or concatenated; the structured
query language (SQL) or command contains the structure
and malicious data in dynamic queries, commands, or
stored procedures.

Injection Prevention

15

• The preferred option is to use a safe API, which avoids using
the interpreter entirely, provides a parameterized interface, or
migrates to Object Relational Mapping Tools (ORMs).

• Use positive server-side input validation.
• For any residual dynamic queries, escape special characters

using the specific escape syntax for that interpreter.
• Use LIMIT and other SQL controls within queries to prevent

mass disclosure of records in case of SQL injection.
• Source code review is the best method of detecting if

applications are vulnerable to injections; automated testing
of all parameters, headers, URL, cookies, JSON, SOAP, and
XML data inputs is strongly encouraged.

A04:2021 – Insecure Design

16

Example Scenario:
A movie theater chain that allows group
booking discounts requires a deposit for
groups of more than fifteen people. Attackers
threat model this flow to see if they can book
hundreds of seats across various theaters in
the chain, thereby causing thousands of
dollars in lost income.

Notable Common Weakness Enumerations (CWEs):
• CWE-209: Generation of Error Message

Containing Sensitive Information
• CWE-256: Unprotected Storage of Credentials
• CWE-501: Trust Boundary Violation
• CWE-522: Insufficiently Protected Credentials

CWEs
Mapped

Max Incidence
Rate

Avg Incidence
Rate

Avg Weighted
Exploit

Avg Weighted
Impact

Total
Occurrences

Total CVEs

40 24.19% 3.00% 6.46 6.78 262,407 2,691

Insecure Design Prevention

17

• Establish and use a secure development lifecycle with AppSec professionals to help evaluate and design
security and privacy-related controls.

• Establish and use a library of secure design patterns or paved-road, ready-to-use components.
• Use threat modeling for critical authentication, access control, business logic, and key flows.
• Integrate security language and controls into user stories.
• Integrate plausibility checks at each tier of your application (from frontend to backend).
• Write unit and integration tests to validate that all critical flows are resistant to the threat model. Compile

use-cases and misuse-cases for each tier of your application.
• Segregate tier layers on the system and network layers depending on the exposure and protection needs.
• Segregate tenants robustly by design throughout all tiers.
• Limit resource consumption by user or service.

A05:2021 – Security Misconfiguration

18

Example Scenario:
The application server comes with sample
applications not removed from the production
server. These sample applications have known
security flaws attackers use to compromise
the server. Suppose one of these applications
is the admin console, and default accounts
weren't changed. In that case, the attacker
logs in with default passwords and takes over.

Notable Common Weakness Enumerations (CWEs):
• CWE-16 Configuration
• CWE-611 Improper Restriction of XML External

Entity Reference

CWEs
Mapped

Max Incidence
Rate

Avg Incidence
Rate

Avg Weighted
Exploit

Avg Weighted
Impact

Total
Occurrences

Total CVEs

20 19.84% 4.51% 8.12 6.56 208,387 789

Secure Misconfiguration Vulnerabilities

19

• Missing appropriate security hardening across any part of the application
stack or improperly configured permissions on cloud services.

• Unnecessary features are enabled or installed (e.g., unnecessary ports,
services, pages, accounts, or privileges).

• Default accounts and their passwords are still enabled and unchanged.
• Error handling reveals stack traces or other overly informative error messages

to users.
• For upgraded systems, the latest security features are disabled or not

configured securely.
• The security settings in the application servers, application frameworks,

libraries, databases, etc., are not set to secure values.
• The server does not send security headers or directives, or they are not set to

secure values.
• The software is out of date or vulnerable.

Security Misconfiguration Prevention

20

• Development, QA, and production environments should all be configured identically, with
different credentials used in each environment.

• A minimal platform without any unnecessary features, components, documentation, and
samples; remove or do not install unused features and frameworks.

• A task to review and update the configurations appropriate to all security notes, updates,
and patches as part of the patch management process. Review cloud storage permissions
(e.g., S3 bucket permissions).

• A segmented application architecture provides effective and secure separation between
components or tenants, with segmentation, containerization, or cloud security groups.

• Sending security directives to clients, e.g., Security Headers.
• An automated process to verify the effectiveness of the configurations and settings in all

environments.

A06:2021 – Vulnerable and Outdated Components

21

Example Scenario:
Due to the volume of components used in
development, a development team might
not know or understand all the
components used in their application, and
some of those components might be out-
of-date and therefore vulnerable to attack.

Notable Common Weakness Enumerations (CWEs):
• CWE-1104: Use of Unmaintained Third-Party

Components
• CWE-937 OWASP Top 10 2013: Using Components

with Known Vulnerabilities
• CWE-1035 2017 Top 10 A9: Using Components

with Known Vulnerabilities

CWEs
Mapped

Max Incidence
Rate

Avg Incidence
Rate

Avg Weighted
Exploit

Avg Weighted
Impact

Total
Occurrences

Total CVEs

3 27.96% 8.77% 51.78 22.47 30,457 0

Vulnerable and Outdated Components Vulnerabilities

22

• Versions of components you use (both client-side and server-side) are unknown. This includes
components you directly use as well as nested dependencies.

• Software is vulnerable, unsupported, or out of date. This includes the OS, web/application server,
database management system (DBMS), applications, application programing interfaces (APIs)
and all components, runtime environments, and libraries.

• Vulnerabilities are not scanned for regularly.
• Fixes or upgrades are not implemented to the underlying platform, frameworks, and

dependencies in a risk-based, timely fashion.
• Software developers are not testing the compatibility of updated, upgraded, or patched libraries.
• Components’ configurations are not secure.

Vulnerable and Outdated Components Prevention

23

• Remove unused dependencies, unnecessary features, components, files, and documentation.
• Continuously inventory the versions of both client-side and server-side components (e.g.,

frameworks, libraries) and their dependencies using tools like versions, OWASP Dependency
Check, retire.js, etc. Continuously monitor sources like Common Vulnerability and Exposures
(CVE) and National Vulnerability Database (NVD) for vulnerabilities in the components.

• Only obtain components from official sources over secure links.
• Monitor for libraries and components that are unmaintained or do not create security patches

for older versions. If patching is not possible, consider deploying a virtual patch to monitor,
detect, or protect against the discovered issue.
 While the internet of things (IoT) is frequently difficult or impossible to patch, the importance of

patching them can be great (e.g., biomedical devices).

• Every organization must ensure an ongoing plan for monitoring, triaging, and applying updates
or configuration changes for the lifetime of the application or portfolio

A07:2021 – Identification and Authentication Failures

24

Example Scenario:
Most authentication attacks occur due to the
continued use of passwords as a sole factor.
Once considered the best practices,
password rotation and complexity
requirements encourage users to use and
reuse weak passwords. Organizations are
recommended to stop these practices per
NIST 800-63 and use multi-factor
authentication.

CWEs
Mapped

Max Incidence
Rate

Avg Incidence
Rate

Avg Weighted
Exploit

Avg Weighted
Impact

Total
Occurrences

Total CVEs

22 14.84% 2.55% 7.40 6.50 132,195 3,897

Notable Common Weakness Enumerations (CWEs):
• CWE-297: Improper Validation of Certificate with

Host Mismatch
• CWE-287: Improper Authentication
• CWE-384: Session Fixation

Identification and Authentication Failures and
Vulnerabilities

25

• Permits automated attacks such as credential stuffing, where the attacker has a list of valid
usernames and passwords.

• Permits brute force or other automated attacks.
• Permits default, weak, or well-known passwords, such as "Password1" or "admin/admin“.
• Uses weak or ineffective credential recovery and forgot-password processes, such as

"knowledge-based answers," which cannot be made safe.
• Uses plain text, encrypted, or weakly hashed passwords data stores (see A02:2021-

Cryptographic Failures).
• Has missing or ineffective multi-factor authentication.
• Exposes session identifier in the URL.
• Reuses session identifier after successful login.
• Does not correctly invalidate Session IDs.

Prevention of Identification and Authentication Failures

26

• Where possible, implement multi-factor authentication to prevent automated credential stuffing, brute
force, and stolen credential reuse attacks.

• Do not ship or deploy with any default credentials, particularly for admin users.
• Implement weak password checks, such as testing new or changed passwords against the top 10,000

worst passwords list.
• Align password length, complexity, and rotation policies with National Institute of Standards and

Technology (NIST) 800-63b's guidelines in section 5.1.1 for Memorized Secrets or other modern,
evidence-based password policies.

• Ensure registration, credential recovery, and API pathways are hardened against account enumeration
attacks by using the same messages for all outcomes.

• Limit or increasingly delay failed login attempts but be careful not to create a denial-of-service
scenario. Log all failures and alert administrators when credential stuffing, brute force, or other
attacks are detected.

• Use a server-side, secure, built-in session manager that generates a new random session ID with high
entropy after login. Session identifier should not be in the URL, be securely stored, and invalidated
after logout, idle, and absolute timeouts.

A08:2021 – Software and Data Integrity Failures

27

Example Scenario:
The SolarWinds malicious update. Nation-states
have been known to attack update mechanisms,
with a recent notable attack being the SolarWinds
Orion attack. The company that develops the
software had secure build and update integrity
processes. Still, these were able to be subverted,
and for several months, the firm distributed a
highly targeted malicious update to more than
18,000 organizations, of which around 100 or so—
including a hospital—were affected. This is one of
the most far-reaching and most significant
breaches of this nature in history.

CWEs
Mapped

Max Incidence
Rate

Avg Incidence
Rate

Avg Weighted
Exploit

Avg Weighted
Impact

Total
Occurrences

Total CVEs

10 16.67% 2.05% 6.94 7.94 47,972 1,152

Notable Common Weakness Enumerations
(CWEs):
• CWE-829: Inclusion of Functionality from

Untrusted Control Sphere
• CWE-494: Download of Code Without

Integrity Check
• CWE-502: Deserialization of Untrusted Data

Software and Data Integrity Failures Prevention

28

• Use digital signatures or similar mechanisms to verify the software or data is from the expected
source and has not been altered.

• Ensure libraries and dependencies, such as npm or Maven, are consuming trusted repositories. If
you have a higher risk profile, consider hosting an internal, known-good repository that's vetted.

• Ensure that a software supply chain security tool, such as OWASP Dependency Check or OWASP
CycloneDX, is used to verify that components do not contain known vulnerabilities.

• Ensure that there is a review process for code and configuration changes to minimize the chance
that malicious code or configuration could be introduced into your software pipeline.

• Ensure that your continuous integration and continuous deployment (CI/CD) pipeline has proper
segregation, configuration, and access control to ensure the integrity of the code flowing through
the build and deploy processes.

• Ensure that unsigned or unencrypted serialized data is not sent to untrusted clients without some
form of integrity check or digital signature to detect tampering or replay of the serialized data.

A09:2021 – Security Logging and Monitoring Failures

29

Example Scenario:
A children's health plan provider's website
operator couldn't detect a breach due to a lack
of monitoring and logging. An external party
informed the health plan provider that an
attacker had accessed and modified thousands
of sensitive health records of more than 3.5
million children. A post-incident review found
that the website developers had not addressed
significant vulnerabilities. As there was no
logging or monitoring of the system, the data
breach could have been in progress since 2013,
a period of more than seven years.

CWEs
Mapped

Max Incidence
Rate

Avg Incidence
Rate

Avg Weighted
Exploit

Avg Weighted
Impact

Total
Occurrences

Total CVEs

4 19.23% 6.51% 6.87 4.99 53,615 242

Notable Common Weakness Enumerations (CWES):
• CWE-778 Insufficient Logging

• CWE-117 Improper Output Neutralization for Logs

• CWE-223 Omission of Security-relevant Information

• CWE-532 Insertion of Sensitive Information into Log File

Security Logging and Monitoring Failures Vulnerabilities

30

• Insufficient logging, detection, monitoring, and active response
occurs any time:
 Auditable events, such as logins, failed logins, and high-value

transactions, are not logged.
 Warnings and errors generate no, inadequate, or unclear log messages.
 Logs of applications and APIs are not monitored for suspicious activity.
 Logs are only stored locally.
 Appropriate alerting thresholds and response escalation processes are

not in place or effective.
 Penetration testing and scans by dynamic application security testing

(DAST) tools (such as OWASP ZAP) do not trigger alerts.
 The application cannot detect, escalate, or alert for active attacks in

real-time or near real-time.

Security Logging and Monitoring Failures Prevention

31

• Ensure all login, access control, and server-side input validation failures can be logged with
sufficient user context to identify suspicious or malicious accounts and held for enough time to
allow delayed forensic analysis.

• Ensure that logs are generated in a format that log management solutions can easily consume.
• Ensure log data is encoded correctly to prevent injections or attacks on the logging or

monitoring systems.
• Ensure high-value transactions have an audit trail with integrity controls to prevent tampering or

deletion, such as append-only database tables or similar.
• DevSecOps teams should establish effective monitoring and alerting such that suspicious

activities are detected and responded to quickly.
• Establish or adopt an incident response and recovery plan, such as National Institute of

Standards and Technology (NIST) 800-61r2 or later.

A10:2021 – Server-Side Request Forgery (SSRF)

32

Example Scenario:
If a network architecture is unsegmented,
attackers can use connection results or
elapsed time to connect or reject server-side
request forgery (SSRF) payload connections to
map out internal networks and determine if
ports are open or closed on internal servers.

CWEs
Mapped

Max Incidence
Rate

Avg Incidence
Rate

Avg Weighted
Exploit

Avg Weighted
Impact

Total
Occurrences

Total CVEs

1 2.72% 2.72% 8.28 6.72 9,503 385

Notable Common Weakness Enumerations (CWEs):
As new entries are likely to be a single or small
cluster of CWEs for attention and awareness, the
hope is that they are subject to focus and can be
rolled into a larger category in a future edition.

Server-Side Request Forgery (SSRF) Prevention

33

• From network layer:
 Segment remote resource access functionality in separate networks to reduce the impact of SSRF.
 Enforce “deny by default” firewall policies or network access control rules to block all but essential intranet

traffic.

• From application layer:
 Sanitize and validate all client-supplied input data.
 Enforce the URL schema, port, and destination with a positive allow list.
 Do not send raw responses to clients.
 Disable HTTP redirections.
 Be aware of the URL consistency to avoid attacks such as DNS rebinding and “time of check, time of use” (TOCTOU)

race conditions.
 Do not mitigate SSRF via the use of a deny list or regular expression.

• Additional measures to consider:
 Don't deploy other security relevant services on front systems (e.g., OpenID). Control local traffic on these systems

(e.g., localhost).
 For frontends with dedicated and manageable user groups use network encryption (e.g., VPNs) on independent

systems to consider very high protection needs.

The OWASP Top 10
as a Standard

• Also use:
• OWASP Application Security

Verification Standard

34

Use Case OWASP Top 10 2021 OWASP Application
Security Verification

Standard

Awareness Yes -

Training Entry level Comprehensive

Design and architecture Occasionally Yes

Coding standard Bare minimum Yes

Secure Code review Bare minimum Yes

Peer review checklist Bare minimum Yes

Unit testing Occasionally Yes

Integration testing Occasionally Yes

Penetration testing Bare minimum Yes

Tool support Bare minimum Yes

Secure Supply Chain Occasionally Yes

https://owasp.org/www-project-application-security-verification-standard/

Reference Materials

35

References
• “Broken Access Control,” OWASP. N.d. https://owasp.org/Top10/A01_2021-Broken_Access_Control/

• “Cryptographic Failures,” OWASP. N.d. https://owasp.org/Top10/A02_2021-Cryptographic_Failures/

• “How to use the OWASP Top 10 as a standard,” OWASP. N.d.
https://owasp.org/Top10/A00_2021_How_to_use_the_OWASP_Top_10_as_a_standard/

• “Identification and Authentication Failures,” OWASP. N.d. https://owasp.org/Top10/A07_2021-
Identification_and_Authentication_Failures/

• “Injection,” OWASP. N.d. https://owasp.org/Top10/A03_2021-Injection/

• “Insecure Design,” OWASP. N.d. https://owasp.org/Top10/A04_2021-Insecure_Design/

• “OWASP Top 10,” OWASP. N.d. https://owasp.org/www-project-top-ten/

• “OWASP Top 10 2021,” Synopsys. N.d. https://www.synopsys.com/glossary/what-is-owasp-top-10.html

• “OWASP Top Ten 2021 : Related Cheat Sheets,” OWASP. N.d.
https://cheatsheetseries.owasp.org/IndexTopTen.html

36

https://owasp.org/Top10/A01_2021-Broken_Access_Control/
https://owasp.org/Top10/A02_2021-Cryptographic_Failures/
https://owasp.org/Top10/A00_2021_How_to_use_the_OWASP_Top_10_as_a_standard/
https://owasp.org/Top10/A07_2021-Identification_and_Authentication_Failures/
https://owasp.org/Top10/A03_2021-Injection/
https://owasp.org/Top10/A04_2021-Insecure_Design/
https://owasp.org/www-project-top-ten/
https://www.synopsys.com/glossary/what-is-owasp-top-10.html
https://cheatsheetseries.owasp.org/IndexTopTen.html

References
• “Security Logging and Monitoring Failures,” OWASP. N.d. https://owasp.org/Top10/A09_2021-

Security_Logging_and_Monitoring_Failures/

• “Security Misconfiguration,” OWASP. N.d. https://owasp.org/Top10/A05_2021-
Security_Misconfiguration/

• “Server Side Request Forgery,” OWASP. N.d. https://owasp.org/Top10/A10_2021-Server-
Side_Request_Forgery_%28SSRF%29/

• “Software and Data Integrity Failures,” OWASP. N.d. https://owasp.org/Top10/A08_2021-
Software_and_Data_Integrity_Failures/

• “Vulnerable and Outdated Components,” OWASP. N.d. https://owasp.org/Top10/A06_2021-
Vulnerable_and_Outdated_Components/

• “Welcome to the OWASP Top 10 - 2021,” OWASP. N.d.
https://owasp.org/Top10/A00_2021_Introduction/

37

https://owasp.org/Top10/A09_2021-Security_Logging_and_Monitoring_Failures/
https://owasp.org/Top10/A05_2021-Security_Misconfiguration/
https://owasp.org/Top10/A10_2021-Server-Side_Request_Forgery_%28SSRF%29/
https://owasp.org/Top10/A08_2021-Software_and_Data_Integrity_Failures/
https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/
https://owasp.org/Top10/A00_2021_Introduction/

Questions?

38

FAQ

Upcoming Briefing
• 8/18 – The Impact of Social Engineering

in Healthcare

Product Evaluations
Recipients of this and other Healthcare Sector
Cybersecurity Coordination Center (HC3) Threat
Intelligence products are highly encouraged to provide
feedback. To provide feedback, please complete the
HC3 Customer Feedback Survey.

Requests for Information
Need information on a specific
cybersecurity topic? Send your request for
information (RFI) to HC3@HHS.GOV.

Disclaimer
These recommendations are advisory

and are not to be considered as federal
directives or standards. Representatives

should review and apply the guidance
based on their own requirements and
discretion. The HHS does not endorse

any specific person, entity, product,
service, or enterprise.

39

https://www.surveymonkey.com/r/HC3survey
mailto:HC3@HHS.GOV

About HC3
The Health Sector Cybersecurity Coordination Center
(HC3) works with private and public sector partners to
improve cybersecurity throughout the Healthcare and
Public Health (HPH) Sector. HC3 was established in
response to the Cybersecurity Information Sharing Act
of 2015, a federal law mandated to improve
cybersecurity in the U.S. through enhanced sharing of
information about cybersecurity threats.

Sector and Victim Notifications
Direct communications to victims or potential victims

of compromises, vulnerable equipment, or PII/PHI
theft, as well as general notifications to the HPH
about current impacting threats via the HHS OIG.

Alerts and Analyst Notes
Documents that provide in-depth information on a

cybersecurity topic to increase comprehensive
situational awareness and provide risk
recommendations to a wide audience.

Threat Briefings
Presentations that provide actionable information on
health sector cybersecurity threats and mitigations.

Analysts present current cybersecurity topics, engage
in discussions with participants on current threats,
and highlight best practices and mitigation tactics.

What We Offer

40

Contacts

HHS.GOV/HC3

HC3@HHS.GOV

41

mailto:HC3@HHS.GOV
http://www.HHS.GOV/HC3

	The OWASP Top 10
	Agenda
	OWASP and the OWASP Top 10
	Understanding the Top 10
	Data Factors
	The OWASP Top 10: 2021
	A01:2021 – Broken Access Control
	Broken Access Control Vulnerabilities
	Broken Access Control Prevention
	A02:2021 – Cryptographic Failures
	Cryptographic Failure Vulnerabilities
	Cryptographic Failure Prevention
	A03:2021-Injection
	Injection Vulnerabilities
	Injection Prevention
	A04:2021 – Insecure Design
	Insecure Design Prevention
	A05:2021 – Security Misconfiguration
	Secure Misconfiguration Vulnerabilities
	Security Misconfiguration Prevention
	A06:2021 – Vulnerable and Outdated Components
	Vulnerable and Outdated Components Vulnerabilities
	Vulnerable and Outdated Components Prevention
	A07:2021 – Identification and Authentication Failures
	Identification and Authentication Failures and Vulnerabilities
	Prevention of Identification and Authentication Failures
	A08:2021 – Software and Data Integrity Failures
	Software and Data Integrity Failures Prevention
	A09:2021 – Security Logging and Monitoring Failures
	Security Logging and Monitoring Failures Vulnerabilities
	Security Logging and Monitoring Failures Prevention
	A10:2021 – Server-Side Request Forgery (SSRF)
	Server-Side Request Forgery (SSRF) Prevention
	The OWASP Top 10 as a Standard
	Slide Number 35
	References
	References
	Slide Number 38
	FAQ
	About HC3
	Slide Number 41

