Supplementary Materials

Contents

Table s1. Search strategy 8
Table s2. Best practices and suggestions for research of treatments for patients with COVID- 19. 11
Figure s1. PRISMA Flow Diagram 13
Hydroxychloroquine/Chloroquine; Hydroxychloroquine/Chloroquine plus Azithromycin 14
Table s3a. Should hospitalized patients with severe COVID-19 receive treatment with hydroxychloroquine vs. no hydroxychloroquine? 14
Table s3b. Should hospitalized patients with severe COVID-19 receive treatment with hydroxychloroquine/azithromycin vs. no hydroxychloroquine/azithromycin? 24
Figure s2a. Forest plot for the outcome of mortality point estimate demonstrating increased risk with hydroxychloroquine treatment (RR: 1.08; $95 \% \mathrm{CI}: 0.99,1.19$) 29
Figure s2b. Forest plot for the outcome of progression to mechanical ventilation demonstrating increased risk with HCQ treatment (RR: 1.10; 95\% CI: 0.92, 1.31) 29
Figure s2c. Forest plot for the outcome of adverse events demonstrating increased risk with hydroxychloroquine treatment (RR: $2.36 ; 95 \% \mathrm{CI}: 1.49,3.75$) 30
Figure s2d. Forest plot for the outcome of QT prolongation demonstrates increased risk with hydroxychloroquine treatment (RR: 2.89; 95\% CI: 1.62, 5.16) 30
Table s4a. Risk of bias for randomized controlled studies (hydroxychloroquine \pm azithromycin vs. no hydroxychloroquine \pm azithromycin) 31
Table s4b. Risk of bias for non-randomized studies (hydroxychloroquine \pm azithromycin vs. no hydroxychloroquine \pm azithromycin) 32
References 33
Hydroxychloroquine for prophylaxis 35
Table s5. Should persons exposed to COVID-19 receive post-exposure hydroxychloroquine? 35
Figure s3a. Forest plot for the outcome of SARS-CoV-2 infection at 14 days for post-exposure hydroxychloroquine vs. no hydroxychloroquine for persons exposed to COVID-19 38
Figure s3b. Forest plot for the outcome of hospitalization at 14 days for post-exposure hydroxychloroquine vs. no hydroxychloroquine for persons exposed to COVID-19 38
Figure s3c. Forest plot for the outcome of mortality at 14 days for post-exposure hydroxychloroquine vs. no hydroxychloroquine for persons exposed to COVID-19 39
Figure s3d. Forest plot for the outcome of serious adverse events at 14 days for postexposure hydroxychloroquine vs. no hydroxychloroquine for persons exposed to COVID-19 39
Table s6. Risk of bias for randomized control studies (hydroxychloroquine as post-exposure prophylaxis vs. no hydroxychloroquine for post-exposure hydroxychloroquine vs. no hydroxychloroquine for persons exposed to COVID-19) 40
References 41
Lopinavir/Ritonavir 42
Table s7. Should persons exposed to or with COVID-19 receive treatment with lopinavir/ritonavir vs. no lopinavir/ritonavir? 42
Figure s4a. Forest plot for the outcome of mortality at 28 days for lopinavir/ritonavir vs. no lopinavir/ritonavir in hospitalized patients with severe COVID-19 46
Figure s4b. Forest plot for the outcome of invasive mechanical ventilation for lopinavir/ritonavir vs. no lopinavir/ritonavir in hospitalized patients with severe COVID-19. 46
Table s8. Risk of bias for randomized controlled studies (lopinavir/ritonavir vs. no lopinavir/ritonavir) 47
References 48
Glucocorticoids 49
Table s9. Should hospitalized patients with severe COVID-19 receive treatment with corticosteroids vs. no corticosteroids? 49
Table s10. Risk of bias for randomized controlled studies (glucocorticoids vs. no glucocorticoids) 55
References 56
Inhaled Corticosteroids 57
Table s11. Should ambulatory patients with mild-to-moderate COVID-19 receive treatment with inhaled corticosteroids compared to no inhaled corticosteroids? 57
Figure s5a. Forest plot for the outcome of mortality for inhaled corticosteroids compared to no inhaled corticosteroids in patients with mild-to-moderate COVID-19 62
Figure s5b. Forest plot for the outcome of hospitalization for inhaled corticosteroids compared to no inhaled corticosteroids in patients with mild-to-moderate COVID-19 63
Figure s5c. Forest plot for the outcome of serious adverse events for inhaled corticosteroids compared to no inhaled corticosteroids in patients with mild-to-moderate COVID-19 64
Table s12. Risk of bias for randomized controlled studies (inhaled corticosteroids vs. no inhaled corticosteroids) 65
References 66
Interleukin-6 Inhibitors (Tocilizumab) 67
Table s13. Should hospitalized patients with severe COVID-19 receive treatment with tocilizumab vs. no tocilizumab? 67
Figure s6a. Forest plot for the outcome of mortality for tocilizumab vs. no tocilizumab 75
Figure s6b. Forest plot for the outcome of mortality for tocilizumab vs. no tocilizumab (sensitivity analysis for patients on mechanical ventilation for <24 hours) 76
Figure $\mathbf{s 6 c}$. Forest plot for the outcome of clinical deterioration for tocilizumab vs. no tocilizumab 77
Figure s6d. Forest plot for the outcome of severe adverse events for tocilizumab vs. no tocilizumab 78
Table s14. Risk of bias for randomized controlled studies (tocilizumab vs. no tocilizumab). 79
References 80
Convalescent Plasma 81
Table s15. Should patients (hospitalized or ambulatory) with COVID-19 receive treatment with convalescent plasma vs. no convalescent plasma? 81
Figure s7a. Forest plot for the outcome of mortality for convalescent plasma vs. no convalescent plasma in hospitalized patients 107
Figure s7b. Forest plot for the outcome of mechanical ventilation for convalescent plasma vs. no convalescent plasma in hospitalized patients 108
Figure s7c. Forest plot for the outcome of adverse events (mild to severe) for convalescent plasma vs. no convalescent plasma in hospitalized patients 108
Figure s7d. Forest plot for the outcome of mortality for convalescent plasma vs. no convalescent plasma in ambulatory patients 109
Figure s7e. Forest plot for the outcome of COVID-19-related hospitalizations for convalescentplasma vs. no convalescent plasma in ambulatory patients109
Figure s7f. Forest plot for the outcome of all-cause hospitalizations for convalescent plasma vs. no convalescent plasma in ambulatory patients 110
Figure $\mathbf{s 7 g}$. Forest plot for the outcome of serious adverse events for convalescent plasma vs. no convalescent plasma in ambulatory patients 110
Figure s7h. Forest plot for the outcome of adverse events for convalescent plasma vs. no convalescent plasma in ambulatory patients 111
Figure s7i. Forest plot for the outcome of mortality for convalescent plasma vs. no convalescent plasma in hospitalized immunocompromised patients 111
Figure $\mathbf{~} \mathbf{7 j}$. Forest plot for the outcome of SAEs for convalescent plasma vs. no convalescent plasma in hospitalized immunocompromised patients 112
Table s16a. Risk of bias for randomized controlled studies (convalescent plasma vs. no convalescent plasma) 113
Table s16b. Risk of bias for non-randomized studies (convalescent plasma vs. no convalescent plasma) 115
References 116
Remdesivir 118
Table s17. Should hospitalized patients with severe COVID-19 receive treatment with remdesivir vs. no remdesivir? 118
Table s18. Should ambulatory patients with COVID-19 receive treatment with remdesivir vs. no remdesivir? 122
Figure s8a. Forest plot for the outcome of mortality for remdesivir vs. no remdesivir in hospitalized patients with severe disease 123
Figure s8b. Forest plot for the outcome of serious adverse events (grade 3/4) for remdesivir vs. no remdesivir in hospitalized patients with severe disease 123
Figure s8c. Forest plot for the outcome of mortality for remdesivir vs. no remdesivir in hospitalized patients on invasive ventilation and/or ECMO 123
Figure s8d. Forest plot for the outcome of serious adverse events (grade 3/4) for remdesivir vs. no remdesivir in hospitalized patients on invasive ventilation and/or ECMO 124
Table s19. Risk of bias for randomized controlled studies (remdesivir vs. no remdesivir)... 125
References 126
Famotidine. 127
Table s20. Should patients with COVID-19 (ambulatory with mild-to-moderate disease, hospitalized with severe disease) receive treatment with famotidine vs. no famotidine? 127
Table s21. Risk of bias for randomized controlled studies (famotidine vs. no famotidine). 130
References 131
Janus Kinase Inhibitors (Baricitinib and Tofacitinib) 132
Table s22. Should hospitalized patients with severe COVID-19 receive treatment with remdesivir plus baricitinib vs. remdesivir alone? 132
Table s23. Risk of bias for randomized control studies (baricitinib plus remdesivir vs. remdesivir alone) 135
Table s24. Should hospitalized patients with COVID-19 receive tofacitinib vs. no tofacitinib? 136
Table s25. Risk of bias for randomized control studies (tofacitinib vs. no tofacitinib) 137
References 138
Ivermectin 139
Table s26. Should ambulatory or hospitalized patients with COVID-19 receive ivermectin vs. no ivermectin? 139
Figure s9a. Forest plot for the outcome of mortality for ivermectin vs. no ivermectin among hospitalized patients (from RCTs) 156
Figure s9b. Forest plot for the outcome of need for mechanical ventilation for ivermectin vs. no ivermectin among hospitalized patients. 156
Figure s9c. Forest plot for the outcome of viral clearance at seven days for ivermectin vs. no ivermectin among hospitalized patients (all studies) 157
Figure s9d. Forest plot for the outcome of viral clearance at seven days for ivermectin vs. no ivermectin among hospitalized patients (without Ahmed 2020) 157
Figure s9e. Forest plot for the outcome of serious adverse events for ivermectin vs. no ivermectin among hospitalized patients 158
Figure s9f. Forest plot for the outcome of mortality for ivermectin vs. no ivermectin among ambulatory patients 159
Figure s9g. Forest plot for the outcome of progression to severe disease for ivermectin vs. no ivermectin among ambulatory patients 160
Figure $\mathbf{s 9 h}$. Forest plot for the outcome of viral clearance at seven days for ivermectin vs. no ivermectin among ambulatory patients 160
Figure s9i. Forest plot for the outcome of time to recovery for ivermectin vs. no ivermectin among ambulatory patients 161
Figure $\mathbf{s 9 j}$. Forest plot for the outcome of hospitalization for ivermectin vs. no ivermectin among ambulatory patients 161
Figure s9k. Forest plot for the outcome of serious adverse events for ivermectin vs. no ivermectin among ambulatory patients 162
Table s27. Risk of bias for randomized controlled studies (ivermectin vs. no ivermectin) 163
References 165
Fluvoxamine 167
Table s28. Should ambulatory patients with COVID-19 receive fluvoxamine vs. no fluvoxamine? 167
Figure s10a. Forest plot for the outcome of mortality for fluvoxamine vs. no fluvoxamine 169
Figure s10b. Forest plot for the outcomes of hospitalization, emergency room visits (>6 hours), or oxygen saturation <92\% for fluvoxamine vs. no fluvoxamine 169
Figure s10c. Forest plot for the outcome of hospitalization for fluvoxamine vs. no fluvoxamine 170
Figure s10d. Forest plot for the outcome of serious adverse events for fluvoxamine vs. no fluvoxamine170
Table s29. Risk of bias for randomized control studies (fluvoxamine vs. no fluvoxamine). 171
References 172
Nirmatrelvir/Ritonavir 173
Table s30. Should nirmatrelvir/ritonavir vs. no nirmatrelvir/ritonavir be used for ambulatory or hospitalized patients with mild to moderate COVID-19 at high risk for progression to severe disease? 173
Table s31. Risk of bias for randomized controlled studies (nirmatrelvir/ritonavir vs. no nirmatrelvir/ritonavir in ambulatory patients with mild to moderate COVID-19 at high risk for progression to severe disease) 177
References 178
Molnupiravir 179
Table s32. Should ambulatory patients with mild to moderate COVID-19 at high risk for progression to sever disease receive molnupiravir vs. no molnupiravir? 179
Figure s11a. Forest plot for the outcome of mortality for molnupiravir vs. no molnupiravir 184
Figure s11b. Forest plot for the outcome of hospitalization for molnupiravir vs. no molnupiravir 184
Figure s11c. Forest plot for the outcome of hospitalization or death for molnupiravir vs. no molnupiravir 185
Figure s11d. Forest plot for the outcome of serious adverse events for molnupiravir vs. no molnupiravir 185
Figure s11e. Forest plot for the outcome of adverse events for molnupiravir vs. no molnupiravir 186
Table s33. Risk of bias for randomized controlled studies (molnupiravir vs. no molnupiravir) 187
References 188
Colchicine 189
Table s34. Should patients (hospitalized and ambulatory) with COVID-19 receive colchicine vs. no colchicine? 189
Figure s12a. Forest plot for the outcome of mortality for colchicine vs. no colchicine 198
Figure s12b. Forest plot for the outcome of duration of hospitalization for colchicine vs. no colchicine (hospitalized patients) 199

Figure s12c. Forest plot for the outcome of hospitalization for colchicine vs. no colchicine (ambulatory persons) 199
Figure s12d. Forest plot for the outcome of mechanical ventilation for colchicine vs. no colchicine 200
Figure s12e. Forest plot for the outcome of adverse events for colchicine vs. no colchicine (hospitalized patients) 201
Table s35. Risk of bias for randomized controlled studies (colchicine vs. no colchicine) 202
References 204
Anakinra 205
Table s36. Should hospitalized patients with severe COVID-19 receive anakinra vs. no anakinra? 205
Figure s13a. Outcome of mortality for convalescent plasma vs. no convalescent plasma in hospitalized patients 213
Figure s13b. Outcome of hospitalization duration for anakinra vs. no anakinra in hospitalized patients. 213
Figure s13c. Outcome of mechanical ventilation for anakinra vs. no anakinra in hospitalized patients 214
Figure s13d. Outcome of adverse events (mild to severe) for anakinra vs. no anakinra in hospitalized patients 214
Table s37. Randomized control studies (anakinra vs. no anakinra) 215
References 216

Table s1. Search strategy
Embase <1974 to 2021 March 31>
Ovid MEDLINE(R) and Epub Ahead of Print, In-Process, In-Data-Review \& Other Non-Indexed Citations and Daily <2017 to March 31, 2021>

1. exp coronavirus/
2. ((corona* or corono*) adj1 (virus* or viral* or virinae*)).ti,ab,kw.
3. (coronavirus* or coronovirus* or coronavirinae* or Coronavirus* or Coronovirus* or Wuhan* or
Hubei* or Huanan or "2019-nCoV" or 2019nCoV or nCoV2019 or "nCoV-2019" or "COVID-19" or
COVID19 or "CORVID-19" or CORVID19 or "WN-CoV" or WNCoV or "HCoV-19" or HCoV19 or CoV or
"2019 novel*" or Ncov or "n-cov" or "SARS-CoV-2" or "SARSCoV-2" or "SARSCoV2" or "SARS-CoV2" or
SARSCov19 or "SARS-Cov19" or "SARSCov-19" or "SARS-Cov-19" or Ncovor or Ncorona* or Ncorono*
or NcovWuhan* or NcovHubei* or NcovChina* or NcovChinese*).ti,ab,kw.
4. (((respiratory* adj2 (symptom* or disease* or illness* or condition*)) or "seafood market*" or
"food market*") adj10 (Wuhan* or Hubei* or China* or Chinese* or Huanan*)).ti,ab,kw.
5. ((outbreak* or wildlife* or pandemic* or epidemic*) adj1 (China* or Chinese* or
Huanan*)).ti,ab,kw.
6. "severe acute respiratory syndrome*".ti,ab,kw.
7. exp Coronavirus Infections/
8. 1 or 2 or 3 or 4 or 5 or 6 or 7
9. limit 8 to yr="2019-Current"
10. exp Chloroquine/
11. exp hydroxychloroquine/
12. (Hydroxychloroquine or chloroquine or chlorochin or hydroxychlorochin or Aralen or Plaquenil or
Resochin or Dawaquin or Lariago or Hydroquin or Axemal or Dolquine or Quensyl or Quinori).ti,ab,kw.
13. exp Azithromycin/
14. (Azithromycin or Sumamed or Zithromax or Zmax or Z-Pak).ti,ab,kw.
15. exp Lopinavir/
16. lopinavir.ti,ab,kw.
17. exp Receptors, Interleukin-6/ai [Antagonists \& Inhibitors]
18. exp interleukin 6 antibody/ use oemezd
19. (anti-IL-6 or (IL-6 adj2 inhibitor*) or (Anti-IL6 adj2 antibod*)).ti,ab,kw.
20. exp tocilizumab/ use oemezd
21. exp sarilumab/ use oemezd
22. exp siltuximab/ use oemezd
23. (tocilizumab or sarilumab).mp. or siltuximab.ti,ab,kw. [mp=ti, ab, hw, tn, ot, dm, mf, dv, kw, fx, dq,
nm, kf, ox, px, rx, ui, sy]
24. exp Plasma/ use ppez
25. exp plasma transfusion/ use oemezd
26. convalescent plasma.ti,ab,kw.
27. exp Adrenal Cortex Hormones/ use ppez
28. exp Pregnenediones/ use ppez
29. exp corticosteroid/ use oemezd
30. corticosteroid*.ti,ab,kw.

31. glucocorticoid*.ti,ab,kw.
32. methylprednisolone*.ti,ab,kw.
33. exp Anti-Inflammatory Agents, Non-Steroidal/ use ppez
34. exp nonsteroid antiinflammatory agent/ use oemezd
35. (nsaid* or (anti-inflammator* adj2 non-steroid*) or (antiinflammator* adj2 nonsteroid*)).ti,ab,kw.
36. exp Ribavirin/
37. (Ribavirin or Copegus or Ribasphere or Rebetol).ti,ab,kw.
38. exp Oseltamivir/
39. (Oseltamivir or Tamiflu).ti,ab,kw.
40. exp Immunoglobulins, Intravenous/ use ppez
41. exp immunoglobulin/iv [Intravenous Drug Administration]
42. (ivig or (intravenous* adj2 immunoglobulin*) or Flebogamma or Gamunex or Privigen or Octagam or Gammagard).ti,ab,kw. 43. exp Interferon-beta/ use ppez 44. exp beta interferon/ use oemezd 45. (interferon adj2 beta).ti,ab,kw. 46. exp remdesivir/ use oemezd 47. (GS-5734 or remdesivir).ti,ab,kw. 48. exp famotidine/ use oemezd 49. famotidine.ti,ab,kw. 50. antibodies, monoclonal/ or monoclonal antibod*.ti,ab,kw. 51. exp Heparin/ or heparin.mp. 52. exp Heparin, Low-Molecular-Weight/ 53. (LMWH or LMWHs or low molecular weight heparin).mp. 54. exp ivermectin/ 55. ivermectin.ti,ab,kw. 56. exp neutralizing antibody/ 57. neutralizing antibod*.ti,ab,kw. 58. (Bamlanivimab or LY-CoV555).ti,ab,kw. 59. exp casivirimab/ 60. exp imdevimab/ 61. (casivirimab or imdevimab).ti,ab,kw. 62. exp baricitinib/ 63. baricitinib.ti,ab,kw. 64. exp favipiravir/ 65. favipiravir.ti,ab,kw. 66. exp ritonavir/ 67. ritonavir.ti,ab,kw. 68. exp anakinra/ 69. anakinra.ti,ab,kw. 70. exp eculizumab/ 71. eculizumab.ti,ab,kw. 72. exp Sofosbuvir/ 73. Sofosbuvir.ti,ab,kw.

Table s2. Best practices and suggestions for research of treatments for patients with COVID-19
$\left.\begin{array}{|l|l|}\hline \text { Protocol } & \text { Favor study designs that may optimize rapid accrual (e.g., multicentric) } \\ \hline \text { Registration/ IRB-IEC } & \begin{array}{l}\text { All RCTs must still be registered at clinicaltrials.gov. } \\ \text { All studies must follow Good Clinical Practice guidelines and the provisions of the Declaration of } \\ \text { Helsinki, including IRB approval. } \\ \text { IRBs should increase resources to facilitate and accelerate study protocol review. }\end{array} \\ \hline \text { Critical elements to define a priori } \\ \hline \text { Study design } & \begin{array}{l}\text { Although RCTs are the favored study designs to evaluate new interventions, other study designs have } \\ \text { value especially when data needs to be evaluated quickly: } \\ -\quad \text { non-randomized studies (especially cohort studies) } \\ -\quad \text { single-arm studies (prospective outcome registries), especially to identify harm }\end{array} \\ \hline \text { Participants } & \begin{array}{l}\text { Depending on the aim of the study, different populations may be included: } \\ \text { Aiming to evaluate efficacy: strict inclusion/exclusion criteria (excluding patients with comorbidities }\end{array} \\ \hline \text { Outcomes } & \begin{array}{l}\text { And comedications), smaller sample size. This design decreases variability but can increase the risk of } \\ \text { slow accrual rate and results can be less generalizable. } \\ \text { Aiming to evaluate impact in real-life scenarios: broader population (including special populations such }\end{array} \\ \hline \begin{array}{ll}\text { Interventions } \\ \text { as patients with immunosuppression, HIV, cardiovascular comorbidities and pregnancy). This design } \\ \text { increases variability but makes results more generalizable to the general population with better } \\ \text { evaluation of drug-drug interactions and harms. }\end{array} \\ \hline \text { Caboratory- } \\ \text { confirmed } \\ \text { Outcomes should be objectively measured especially if the study is not blinded. Preferably, avoid } \\ \text { outcomes that are participant-or observer-reported involving judgement that reflect decision made by }\end{array}\right\}$

	the intervention providers which can be influenced by the clinical context (for example, mortality and clinical improvement based on $\mathrm{Sa02}$ or $\mathrm{FiO} 2: \mathrm{PaO} 2$ ratios should be selected as important outcomes rather than duration of mechanical ventilation or ICU stay). Also, the timing at which the outcomes will be measured should be decided a priori. In absence of directly measurable outcomes (especially if events are rare), surrogates can be used. If surrogates are used, select those which are the most closely associated with the outcome of interest (e.g., select the oxygen requirement in L/min rather than radiological improvement or reduction in viral load as a surrogate for clinical improvement).
Avoid biases	
Selection bias	Define early stoppage criteria before the onset of the study
Information bias	Blinding the participants and the clinicians will not always be possible due to the urgency of the situation, in which case, at minimum and in order to reduce information bias, outcome assessors should be blinded.
Confounders	Multiple cointerventions (such as antivirals, corticosteroids, immunomodulators) are used. Protocolize their use to ensure that studied groups received the same cointerventions and timing of administrations. If not possible, adjust the analysis for potential confounders (including time-varying confounding) and explore for interactions.
Avoid imprecision	
Sample size	Because the a priori estimation of efficacy may be unknown, it is important to readjust sample sizes prior to stopping recruitment as new evidence emerges.
Submission	
Peer-review	Peer-review remains crucial in the process. Journals should add resources to expedite reviews by increasing the number of editors and reviewers, shorten the review process, favor statistical review and adhere to reporting guidelines (i.e., CONSORT for RCTs or STROBE for non-randomized studies at equator-network.org) ${ }^{3,4,5}$

References

1. World Health Organization. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19), 202028 February.
2. Wu C, Chen X, Cai Y, et al. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern Med 2020; 180(7): 934-43.
3. Equator Network. Reporting guidelines for main study types. Available at: http://www.equator-network.org.
4. Hopewell S, Collins GS, Boutron I, et al. Impact of peer review on reports of randomised trials published in open peer review journals: retrospective before and after study. BMJ 2014; 349: g4145.
5. Keserlioglu K, Kilicoglu H, Ter Riet G. Impact of peer review on discussion of study limitations and strength of claims in randomized trial reports: a before and after study. Res Integr Peer Rev 2019; 4: 19.

Figure s1. PRISMA Flow Diagram

Hydroxychloroquine/Chloroquine; Hydroxychloroquine/Chloroquine plus Azithromycin

Table s3a. Should hospitalized patients with severe COVID-19 receive treatment with hydroxychloroquine vs. no hydroxychloroquine?

Study/ Year	Country/ Hospital	Study design	N subjects (intervention/ comparator)	$\%$ female	Age mean (SD) / Median (IQR)	Severity of disease	Intervention (study arms)	Comparator	Cointerventions	Outcomes reported	Funding source
Arshad / 2020 1	USA/ Henry Ford Health System (6 hospitals)	Retros pectiv e cohort	$\begin{aligned} & 2,541 \\ & (783 / 409 / 1202 \\ & / 147) \end{aligned}$	48.9	Mean: 63.7 (16.5) Median: 64 (53-76)	Patients with a COVID-related admission in health system; COVID-related admission defined as hospitalization during which the patient had a positive SARS-CoV-2 test	HCQ + AZ: HCQ 400 mg twice daily for 2 doses on day 1, followed by 200 mg twice daily on days 2-5 + AZ 500 mg once daily on day 1 followed by 250 mg once daily for the next 4 days	(1) SoC (2) HCQ (3) AZ	Adjunctive immunomodul atory therapy with corticosteroids and tocilizumab	In-hospital mortality Mechanical ventilation Length of hospital stay Total ICU days	N/A
Cavalc anti/ 2020^{2}	Brazil/ 55 hospitals	RCT	$\begin{aligned} & 667 \\ & (217 / 221 / 227) \end{aligned}$	41.7	$\begin{aligned} & \text { Mean: } 50.3 \\ & (14.6) \end{aligned}$	Hospitalized with suspected or confirmed Covid-19 with 14 or fewer days since symptom onset	$\mathrm{HCQ}+\mathrm{AZ}:$ HCQ 400 mg twice daily + AZ 500 mg once daily x 7 days	(1) HCQ (2) SoC	Glucocorticoid s , other immunomodul ators, antibiotic agents, antiviral agents	Mortality at day 15 Not hospitalized with no limitations on activities Duration of hospital stay (days) Hospitalized and receiving mechanical ventilation	Coalition Covid-19 Brazil EMS Pharma

Supplementary Materials

Study/ Year	Country/ Hospital	Study design	N subjects (intervention/ comparator)	$\begin{aligned} & \text { \% } \\ & \text { female } \end{aligned}$	Age mean (SD) / Median (IQR)	Severity of disease	Intervention (study arms)	Comparator	Cointerventions	Outcomes reported	Funding source
										Adverse events	
Chen J/ 2020	China/ Shanghai Public Health Clinical Center	RCT	30 $(15 / 15)$	N/A	N/A	N/A	HCQ 400mg daily $\times 5$ days	(1) SoC	Both groups received conventional treatment: bed rest, oxygen inhalation, symptomatic supportive treatment, use of antiviral drugs if necessary and if necessary antibacterial drugs All patients received nebulized alpha- interferon	Viral clearance on day 7 Duration from hospitalization to virus nucleic acid negative conservation Body temperature normalization days after hospitalization Adverse events	N/A
$\begin{aligned} & \text { Chen } \\ & \text { Z/ } \\ & 2020^{4} \end{aligned}$	China/ Renmin Hospital of Wuhan Universit y	RCT	62 (31/31)	53.20	$\begin{aligned} & \text { Mean: } 44.7 \\ & (15.3) \end{aligned}$	Diagnosis based on China National Health Commission criteria: RT-PCR positive for SARS-CoV-2; chest CT pneumonia, $\mathrm{SaO}_{2} / \mathrm{SPO}_{2}$ ratio	HCQ 400mg daily x 5 days	(1) SoC	Oxygen therapy, antiviral agents, antibacterial agents, and immunoglobuli n, with or without corticosteroids	Progressed to severe illness Fever remission time (days) Cough remission time (days) Adverse Events	Epidemiologica I Study of COVID-19 Pneumonia to Science and Technology Department of Hubei Province

Study/ Year	Country/ Hospital	Study design	N subjects (intervention/ comparator)	$\begin{aligned} & \text { \% } \\ & \text { female } \end{aligned}$	Age mean (SD) / Median (IQR)	Severity of disease	Intervention (study arms)	Comparator	Cointerventions	Outcomes reported	Funding source
						$\begin{aligned} & >93 \% \text { or } \\ & \text { PaO2/FIO2 ratio } \\ & >300 \end{aligned}$ mmHg under hospital room air conditions					
$\begin{aligned} & \text { Geleris } \\ & { }_{8} 2020 \end{aligned}$	USA/ New York- Presbyter ian Hospital (NYP)- Columbia Universit y Irving Medical Center (CUIMC)	Retros pectiv e cohort	1446 (811/635) *1376 patients included in analysis*	43.2	N/A	Moderate-tosevere respiratory illness, defined as resting SpO_{2} of less than 94% while breathing ambient air. Diagnosis confirmed RTPCR positive test for SARS-CoV-2	HCQ 600mg twice on day 1 and 400 mg once daily from days 2-5	(1) SoC	$A Z$ at dose of 500 mg day 1 and 250 mg for 4 more days was additional suggested therapeutic option	Intubation or Death Respiratory Failure Development (reported as total not based on treatment group) Respiratory failure reported as hazards ratio	Supported in part by grants from the National Institutes of Health

Study/ Year	Country/ Hospital	Study design	N subjects (intervention/ comparator)	\% female	Age mean (SD) / Median (IQR)	Severity of disease	Intervention (study arms)	Comparator	Cointerventions	Outcomes reported	Funding source
$\begin{aligned} & \text { Horby } \\ & / 2020^{9} \end{aligned}$	UK/ 176 hospitals	RCT	$\begin{aligned} & 4,716 \\ & (1561 / 3155) \end{aligned}$	38.0	$\begin{aligned} & \text { Mean: } 65.3 \\ & (15.3) \end{aligned}$	Hospitalized patients with clinically suspected or laboratory confirmed SARS-CoV-2 infection and no medical history that might, in the opinion of the attending clinician, put the patient at significant risk if they were to participate in the trial	HCQ loading dose of 4 tablets (800 mg) at zero and 6 hours, followed by 2 tablets (400 mg) starting at 12 hours after the initial dose and then every 12 hours for the next 9 days or until discharge (whichever occurred earlier)	(1) SoC	N/A	All-cause mortality at day 28 Discharged by day 28 Invasive mechanical ventilation Time until discharge alive (days) Adverse events	UK Research and Innovation/ National Institute for Health Research (NIHR) NIHR Oxford Biomedical Research Centre Wellcome The Bill and Melinda Gates Foundation Department for International Development Health Data Research UK Medical Research Council Population Health Research Unit NIHR Health Protection Unit in Emerging

Study/ Year	Country/ Hospital	Study design	N subjects (intervention/ comparator)	\% female	Age mean (SD) / Median (IQR)	Severity of disease	Intervention (study arms)	Comparator	Cointerventions	Outcomes reported	Funding source
											and Zoonotic Infections NIHR Clinical Trials Unit Support Funding
$\begin{aligned} & \hline \text { Ip/ } \\ & 2020^{10} \end{aligned}$	USA/ 13 hospitals in Hackensa ck Meridian Health network	Retros pectiv e cohort	$\begin{aligned} & \hline 2512 \\ & (1914 / 598) \end{aligned}$	37.6	$\begin{aligned} & \hline \text { Median: } 64 \\ & (52-76) \end{aligned}$	Hospitalized with positive SARS-CoV-2 diagnosis by RTPCR, did not die during first day of hospitalization, and Were not discharged to home within 24h	HCQ (doses not specified)	$\text { (1) } \mathrm{HCQ}+\mathrm{AZ}$ (2) SoC	N/A	Unadjusted 30-day mortality Association between survival and treatment (hazards ratio) Adverse events	N/A
Magan oli/ 2020^{11}	USA/ All Veterans Health Administr ation	Retros pectiv e Cohor t	$\begin{aligned} & \hline 807 \\ & (198 / 215 / 395) \\ & \text { Subcohort of } \\ & 425 \\ & (114 / 148 / 163) \end{aligned}$	N/A	N/A	Hospitalization with positive SARS-CoV-2 laboratory test	HCQ	$\begin{aligned} & \text { (1) } \mathrm{HCQ} \\ & +\mathrm{AZ} \\ & \text { (2) SoC } \end{aligned}$	ACE inhibitors, angiotensin II receptor blockers, mechanical ventilation	Mortality Discharged	University of Virginia Strategic Investment Fund

Study/ Year	Country/ Hospital	Study design	N subjects (intervention/ comparator)	\% female	Age mean (SD) / Median (IQR)	Severity of disease	Intervention (study arms)	Comparator	Cointerventions	Outcomes reported	Funding source
	medical centres		had dispositions of death or discharge by end of study period							Risk of ventilation (adjusted hazards ratio) Length of hospital stay (days)	
Mahév as/ 2020^{12}	France/ 4 tertiary care centers providing care to patients with COVID-19	Retros pectiv e cohort	$\begin{aligned} & 181 \\ & (84 / 181) \end{aligned}$	29.9	$\begin{aligned} & \text { Median: } 60 \\ & (52-68) \end{aligned}$	Adults with SARS-CoV-2 pneumonia and requiring oxygen ≥ 2 L/min (required oxygen by mask or nasal prongs)	HCQ 600 mg daily; first dose provided within 48h of admission	(1) $\mathrm{SoC}(\mathrm{HCO}$ not given within 48 h of admission)	17 received concomitant AZ and 64 received concomitant amoxicillin and clavulanic acid in treatment group	Mortality at day 7 Death or transfer to ICU Occurrence of ARDS Adverse Events	No financial support
Rosen berg/ 2020^{14}	USA/25 hospitals	Retros pectiv e cohort	$\begin{aligned} & 1438 \\ & \\ & (735 / 271 / 211 / \\ & 221) \end{aligned}$	40.3	N/A	Information collected on COVID-19 diagnosis, patient demographics, pre-existing medical conditions, initial vital signs and laboratory test results within 24 hours of admission, and chest imaging findings	HCQ Investigators recorded the first three prescriptions for each medication. The majority of patients received HCQ dose of 200 $\mathrm{mg}, 400 \mathrm{mg}$, or 600 mg once or twice a day	(1) SoC (2) $H C Q+A Z$ (3) AZ The majority of patients received AZ dose of 200 $\mathrm{mg}, 250 \mathrm{mg}$, 400 mg , or 500 mg once, once a day or twice a day	Patients receiving neither drug received few other abstracted medications; the most common were aspirin (19.8\%) and lisinopril (6.7\%)	Mortality Abnormal ECG findings Risk of cardiac arrest Adverse events	N/A

Study/ Year	Country/ Hospital	Study design	N subjects (intervention/ comparator)	\% female	Age mean (SD) / Median (IQR)	Severity of disease	Intervention (study arms)	Comparator	Cointerventions	Outcomes reported	Funding source
$\begin{aligned} & \text { Self/ } \\ & 2020^{15} \end{aligned}$	USA/ 34 hospitals	RCT	479 (242/237)	44.3	$\begin{aligned} & \text { Median: } 57 \\ & (44-68) \end{aligned}$	Hospitalized patients with \geq 1 symptom of respiratory illness (cough, fever, sore throat, or shortness of breath, defined as respiratory rate $\geq 22 / \mathrm{min}$, $\mathrm{SpO}_{2}>92 \%$ on RA, or new supplemental O_{2} requirement) for less than 10 days	HCQ 400mg twice daily for 1 day, followed by 200 mg twice daily for 4 days	(1) SoC	Allowed at discretion of provider, included: azithromycin, remdesivir, corticosteroids	Mortality at day 14 and 28 Clinical status at day 14 Time to recovery Adverse events	National Heart, Lung, and Blood Institute National Center for Advancing Translational Sciences Harvard Catalyst/ Harvard Clinical and Translational Science Center Sandoz (provided study drug and placebo)
$\begin{aligned} & \hline \text { Tang/ } \\ & 2020^{16} \end{aligned}$	China/ 16 governm ent- designate d COVID- 19 treatmen t centers	RCT	$\begin{aligned} & \hline 150 \\ & (75 / 75) \end{aligned}$	45.3	$\begin{aligned} & \text { Mean: } 46.1 \\ & (14.7) \end{aligned}$	Hospitalized patients Disease severity determined by chest CT examination	HCQ loading dose of 200 mg daily $\times 3$ days followed by maintained dose of 800 mg daily for remaining days (2 weeks for mild/moderate , 3 weeks for severe patients)	(1) SoC	SoC aligning indications from the updating National clinical practice guidelines for COVID-19 in China	Mortality Negative conversion rate of SARS-CoV-2 Time to negative conversion (days) Time to alleviation of clinical symptoms (days) Adverse events	Emergent Projects of National Science and Technology National Natural Science Foundation of China National Jet Research and Development

Study/ Year	Country/ Hospital	Study design	N subjects (intervention/ comparator)	\% female	Age mean (SD) / Median (IQR)	Severity of disease	Intervention (study arms)	Comparator	Cointerventions	Outcomes reported	Funding source
											Program of China Shanghai Municipal Key Clinical Specialty Shanghai Key Discipline for Respiratory Diseases National Major Scientific and Technological Special Project for Significant New Drugs Development Key Projects in the National Science and Technology Pillar Program
$\begin{aligned} & \text { Ulrich/ } \\ & 2020^{17} \end{aligned}$	USA/ NYU Langone Health (3 hospitals) , NYC Health and Hospitals Bellevue Hospital	RCT	128 (67/61)	40.6	$\begin{aligned} & \text { Mean: } 66.2 \\ & (16.2) \end{aligned}$	Hospitalized patients with \geq 1 symptom associated with COVID-19 infection, but not in the ICU, on mechanical ventilation, ECMO, or	HCQ 400mg twice daily for 1 day, followed by 200 mg twice daily for 4 days	(1) SoC	Concomitant antibacterial therapy and off-label agents with SARS-CoV-2 were allowed at discretion of providers (included zinc, corticosteroids	Mortality at day 30 Progression to severe disease Change in clinical status Length of hospitalization	New York University Grossman School of Medicine NYU CTSA grant from National Center for Advancing

Study/ Year	Country/ Hospital	Study design	N subjects (intervention/ comparator)	\% female	Age mean (SD) / Median (IQR)	Severity of disease	Intervention (study arms)	Comparator	Cointerventions	Outcomes reported	Funding source
	Center, State Universit y of New York Downstat e Medical Center					receiving vasopressors			, tocilizumab, lopinavir/riton avir, remdesivir), as well as coenrollment in other COVID19 therapeutic trials (included convalescent plasma, clazakizumab, remdesivir)	Viral clearance Adverse events	Translational Sciences
WHO Solidar ity Trial Consor tium/ 2021^{18}	30 countries / 405 hospitals	RCT	$\begin{aligned} & 2771 \\ & (1399 / 1372) \end{aligned}$	38.0	N/A	≥ 18 years, hospitalized with a diagnosis of COVID-19, not known to have received any study drug, without anticipated transfer elsewhere within 72 hours, and, in the physician's view, with no contraindication to any study drug	Lopinavir/riton avir 400/200mg orally every 12 hrs $\times 14$ days	(1) SoC	N/A	Mortality Ventilation	N/A
$\begin{aligned} & \mathrm{Yu} / \\ & 2020^{19} \end{aligned}$	China/	Retros pectiv	550 $(48 / 502)$	37.5	$\begin{aligned} & \text { Median: } 68 \\ & (59-77) \end{aligned}$	Critically ill patients had to meet one of the following	HCQ 200 mg tablet twice	(1) SoC	antiviral drugs (Lopinavir and Ritonavir, Entecavir	Mortality	Ministry of Science and

Supplementary Materials

Study/ Year	Country/ Hospital	Study design	N subjects (intervention/ comparator)	\% female	Age mean (SD) / Median (IQR)	Severity of disease	Intervention (study arms)	Comparator	Cointerventions	Outcomes reported	Funding source
	Tongji Hospital	e cohort				criteria: (i) patients had respiratory failure and needed mechanical ventilation; (ii) patients had septic shock during hospitalization; (iii) patients with other organ failures that required monitoring and treatment by ICU	daily $\times 7$ to 10 days		hydrate, or Ribavirin), intravenous immunoglobuli n , antibiotics, immunoenhan cer, oxygen therapy	Average length of hospital stay (days) Hospital stay time before death (days) IL-6 levels in plasma after treatment	Technology of China National Natural Science Foundation of China Emergency Project Fund of Chinese Academy of Sciences Chinese Academy of Engineering Ma Yun Foundation

SpO $_{2}$: oxygen saturation; CQ: chloroquine; IV: intravenous; AZ: azithromycin; HCQ: hydroxychloroquine; SoC: standard of care; RT-PCR: reverse transcription polymerase chain reaction; $\mathrm{PaO}_{2} / \mathrm{FIO}_{2}$: ratio of arterial oxygen partial pressure to fractional inspired oxygen; CT: computerized tomography; ECG: electrocardiogram; ICU: intensive care unit; IL-6: interleukin 6

Table s3b. Should hospitalized patients with severe COVID-19 receive treatment with hydroxychloroquine/azithromycin vs. no hydroxychloroquine/azithromycin?

Study/ year	Country/ Hospital	Study design	N subjects (intervention /comparator)	\% female	Age mean (SD) / Median (IQR)	Severity of disease	Intervention (study arms)	Comparator	Cointerventions	Outcomes reported	Funding source
Arshad /2020 ${ }^{1}$	USA/ Henry Ford Health System (6 hospitals)	Retrospectiv e cohort	$\begin{aligned} & 2,541 \\ & (783 / 409 / 120 \\ & 2 / 147) \end{aligned}$	48.9	Mean: 63.7 (16.5) Median: 64 (53-76)	Patients with a COVID-related admission in health system; COVID-related admission defined as hospitalization during which the patient had a positive SARS-CoV-2 test	HCQ + AZ: HCQ 400 mg twice daily for 2 doses on day 1 , followed by 200 mg twice daily on days 2-5 + AZ 500 mg once daily on day 1 followed by 250 mg once daily for the next 4 days	(1) SoC (2) HCQ (3) AZ	Adjunctive immunomodula tory therapy with corticosteroids and tocilizumab	In-hospital mortality Mechanical ventilation Length of hospital stay Total ICU days	N/A
$\begin{aligned} & \text { Cavalca } \\ & \text { nti } \\ & / 2020^{2} \end{aligned}$	Brazil/ 55 hospitals	RCT	$\begin{aligned} & 667 \\ & (217 / 221 / 227 \\ &) \end{aligned}$	41.7	$\begin{aligned} & \text { Mean: } 50.3 \\ & \text { (14.6) } \end{aligned}$	Hospitalized with suspected or confirmed Covid-19 with 14 or fewer days since symptom onset	HCQ + AZ: HCQ 400 mg twice daily + AZ 500 mg once daily x 7 days	(1) HCQ (2) SoC	Glucocorticoids , other immunomodula tors, antibiotic agents, antiviral agents	Mortality at day 15 Not hospitalized with no limitations on activities Duration of hospital stay (days) Hospitalized and receiving mechanical ventilation	Coalition Covid-19 Brazil EMS Pharma

Study/ year	Country/ Hospital	Study design	N subjects (intervention /comparator)	\% female	Age mean (SD) / Median (IQR)	Severity of disease	Intervention (study arms)	Comparator	Cointerventions	Outcomes reported	Funding source
										Adverse events	
Chorin/ 2020^{5}	USA/ NYU Langone medical center	Retrospectiv e cohort	84 (84/84)	26.0	Mean: 63 (15)	hospitalized with a positive SARS-CoV-2 diagnosis	HCQ + AZ	N/A	N/A	Mortality New severe QTc prolongation of $>500 \mathrm{~ms}$ Average time of ECG followup Maximal value of QTc interval prolongation (ms)	No financial disclosures
Ciprian i/ 2020 6	Italy/ Azienda Ospedalie ra- Università di Padov	Retrospectiv e casecontrol	22	18.0	Median: 64 $(56-70)$	Non-critically ill patients affected by COVID-19; SARS-Cov-2 infection was diagnosed according to the WHO guidance, after positive results of RT-PCR assay of nasal and pharyngeal swabs	$\mathrm{HCQ}+\mathrm{AZ}:$ HCQ 200 mg twice daily + AZ 500 mg once daily	N/A	N/A	Mortality Arrythmias Heart Rate QT interval	N/A

Supplementary Materials

Study/ year	Country/ Hospital	Study design	N subjects (intervention /comparator)	\% female	Age mean (SD) / Median (IQR)	Severity of disease	Intervention (study arms)	Comparator	Cointerventions	Outcomes reported	Funding source
Gautre t/ 2020 7	France/ University Hospital Institute Méditerra née Infection	Retrospectiv e cohort	80 (80/80)	46.2	Median: $52.5(42-62)$	PCR- documented SARS-CoV-2 RNA from a nasopharyngeal sample and CT chest for pneumonia compatibility	HCQ + AZ given to all participants: HCQ 200mg three times a day x 10 days + AZ 500mg on day 1 and 250 mg daily days 2-5	N/A	Broad spectrum antibiotic (ceftriaxone) and oxygen added as needed	Mortality Hospital Discharge Time from treatment to discharge (days) Length of stay in infectious diseases ward (days) Adverse events	French Government under the Investments for the Future program managed by the Agence Nationale de la Recherche
$\begin{aligned} & \text { Ip/ } \\ & 2020^{10} \end{aligned}$	USA/ 13 hospitals in Hackensa ck Meridian Health network	Retrospectiv e cohort	$\begin{aligned} & 2512 \\ & (1914 / 598) \end{aligned}$	37.6	$\begin{aligned} & \text { Median: } 64 \\ & (52-76) \end{aligned}$	Hospitalized with positive SARS-CoV-2 diagnosis by RT-PCR, did not die during first day of hospitalization, and Were not discharged to home within 24h	$\mathrm{HCQ}+\mathrm{AZ}$ (doses not specified)	(1) HCQ (2) SoC	N/A	Unadjusted 30day mortality Association between survival and treatment (hazards ratio) Adverse events	N/A
Magan oli/ 2020^{11}	USA/ All Veterans	Retrospectiv e Cohort	807	N/A	N/A	Hospitalization with positive	HCQ	$\begin{aligned} & \text { (1) } \mathrm{HCQ}+ \\ & \mathrm{AZ} \end{aligned}$	ACE inhibitors, angiotensin II receptor blockers,	Mortality Discharged	University of Virginia Strategic

Study/ year	Country/ Hospital	Study design	N subjects (intervention /comparator)	\% female	Age mean (SD) / Median (IQR)	Severity of disease	Intervention (study arms)	Comparator	Cointerventions	Outcomes reported	Funding source
	Health Administr ation medical centers		(198/215/395) Subcohort of 425 (114/148/163) had dispositions of death or discharge by end of study period			SARS-CoV-2 laboratory test		(2) SoC	mechanical ventilation	Risk of ventilation (adjusted hazards ratio) Length of hospital stay (days)	Investment Fund
$\begin{aligned} & \text { Molina } \\ & \text { / } 2020 \end{aligned}$ 13	France/ Saint- Louis Hospital *assumed based on author info at bottom*	Prospective cohort	11	57.1	Mean: 58.7 (SD not reported)	Patients hospitalized for COVID-19	$\mathrm{HCQ}+\mathrm{AZ}:$ -HCQ 600mg daily x 10 days -AZ 500mg day 1 then 250 mg daily on days 2-5	N/A	10/11 had fever and received nasal oxygen therapy, 8 had comorbidities that they were likely receiving treatment for as well	Mortality Positive for SARS-CoV2 RNA 5/6 days after treatment initiation Adverse events	N/A
Rosenb erg/ 2020^{14}	USA/ 25 hospitals	Retrospectiv e cohort	$\begin{aligned} & \hline 1438 \\ & (735 / 271 / 211 \\ & / 221) \end{aligned}$	40.3	N/A	Information collected on COVID-19 diagnosis, patient demographics, pre-existing medical	$\mathrm{HCQ}+\mathrm{AZ}$ *patients were given different dosages (details in supplemental table)	(1) HCQ (2) AZ (3) SoC	Patients receiving neither drug received few other abstracted medications; the most	Mortality Abnormal ECG findings Risk of cardiac arrest	N/A

DSA Guideline on the Treatment and Management of COVID-19

Supplementary Materials

Study/ year	Country/ Hospital	Study design	N subjects (intervention /comparator)	\% female	Age mean (SD) / Median (IQR)	Severity of disease	Intervention (study arms)	Comparator	Cointerventions	Outcomes reported	Funding source
						conditions, initial vital signs and laboratory test results within 24 hours of admission, and chest imaging findings			common were aspirin (19.8\%) and lisinopril (6.7\%)	Adverse events	

RT-PCR: reverse transcriptase polymerase chain reaction; HCQ: hydroxychloroquine; AZ: azithromycin; QTc: corrected QT interval; CT: computerized tomography; PCR: polymerase chain reaction; WHO: World Health Organization; CQ: chloroquine; SoC: standard of care; ECG: electrocardiogram

Figure s2a. Forest plot for the outcome of mortality point estimate demonstrating increased risk with hydroxychloroquine treatment (RR: 1.08; 95\% CI: 0.99, 1.19)

Figure s2b. Forest plot for the outcome of progression to mechanical ventilation demonstrating increased risk with HCQ treatment (RR: 1.10; 95\% CI: 0.92, 1.31)

Figure s2c. Forest plot for the outcome of adverse events demonstrating increased risk with hydroxychloroquine treatment (RR: 2.36; 95\% CI: 1.49, 3.75)

Figure s2d. Forest plot for the outcome of QT prolongation demonstrates increased risk with hydroxychloroquine treatment (RR: 2.89; 95\% CI: 1.62, 5.16)

	HCQ		Control		Risk Ratio			Risk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95\% CI	M-H, Fixed, 95\% CI			
Mahevas 2020	7	84	0	90	3.3\%	16.06 [0.93, 276.90]				
Rosenberg 2020	39	271	13	221	96.7\%	$2.45[1.34,4.47]$				
Total (95\% CI)		355		311	100.0\%	2.89 [1.62, 5.16]			\longrightarrow	
Total events	46		13							
Heterogeneity: Chi^{2} Test for overall effec	$\begin{aligned} & 1.69, \mathrm{df}= \\ & Z=3.59 \end{aligned}$	$1(P=0$ $P=0.0$	$\begin{aligned} & 0.19) ; I^{2}= \\ & 1003) \end{aligned}$				$\stackrel{5}{0.01}$	$\begin{aligned} & 1.1 \\ & 0.1 \\ & \text { [experimental] } \end{aligned}$		100

DSA Guideline on the Treatment and Management of COVID-19

Supplementary Materials

Table s4a. Risk of bias for randomized controlled studies (hydroxychloroquine \pm azithromycin vs. no hydroxychloroquine \pm azithromycin)

Study	Random sequence generation	Allocation concealment	Blinding of participants and personnel	Blinding of outcome assessment	Incomplete outcome data	Selective reporting	Other bias
Cavalcanti 2020 ${ }^{2}$							
Chen J 2020 ${ }^{3}$							
Chen Z $2020{ }^{4}$							
Horby $2020{ }^{9}$							
Self $2020{ }^{15}$							
Tang $2020{ }^{16}$							
Ulrich $2020{ }^{17}$							
WHO Solidarity Trial Consortium (Pan) $2020{ }^{18}$							

Low	High	Unclear

Table s4b. Risk of bias for non-randomized studies (hydroxychloroquine \pm azithromycin vs. no hydroxychloroquine \pm azithromycin)

Study	Bias due to confounding	Selection Bias	Bias in classification of interventions	Bias due to deviations from interventions	Bias due to missing data	Bias in measurement of outcomes
Arshad 2020^{1}				Bias in selection of reported results		
Geleris 2020^{8}						
Ip 2020^{10}						
Maganoli 2020^{11}						
Mahévas 2020^{12}						
Rosenberg 2020^{14}						
Yu 2020 ${ }^{19}$						

References

1. Arshad S, Kilgore P, Chaudhry ZS, et al. Treatment with hydroxychloroquine, azithromycin, and combination in patients hospitalized with COVID-19. Int J Infect Dis 2020; 97: 396-403.
2. Cavalcanti AB, Zampieri FG, Rosa RG, et al. Hydroxychloroquine with or without Azithromycin in Mild-to-Moderate Covid-19. N Engl J Med 2020; 383: 2041-52.
3. Chen J, Liu D, Liu L, et al. A pilot study of hydroxychloroquine in treatment of patients with moderate COVID-19. Journal of Zhejiang University (Medical Sciences) 2020; 49(2): 215-9.
4. Chen Z, Hu J, Zhang Z, et al. Efficacy of hydroxychloroquine in patients with COVID-19: results of a randomized clinical trial. medRxiv 2020; Available at: https://doi.org/10.1101/2020.03.22.20040758 [Preprint 10 April 2020].
5. Chorin E, Dai M, Shulman E, et al. The QT Interval in Patients with SARS-CoV-2 Infection Treated with Hydroxychloroquine/Azithromycin. medRxiv 2020; Available at: https://doi.org/10.1101/2020.04.02.20047050 [Preprint 3 April 2020].
6. Cipriani A, Zorzi A, Ceccato D, et al. Arrhythmic profile and 24 -hour QT interval variability in COVID-19 patients treated with hydroxychloroquine and azithromycin. Int J Cardiol 2020; 316: 280-4.
7. Gautret P, Lagier JC, Parola P, et al. Clinical and microbiological effect of a combination of hydroxychloroquine and azithromycin in 80 COVID-19 patients with at least a six-day follow up: A pilot observational study. Travel Med Infect Dis 2020; 34: 101663.
8. Geleris J, Sun Y, Platt J, et al. Observational Study of Hydroxychloroquine in Hospitalized Patients with Covid-19. N Engl J Med 2020; 382(25): 2411-8.
9. Horby P, Mafham M, Linsell L, et al. Effect of Hydroxychloroquine in Hospitalized Patients with COVID-19: Preliminary results from a multi-centre, randomized, controlled trial. medRxiv 2020: Available at: https://doi.org/10.1101/2020.07.15.20151852 [Preprint 15 July 2020].
10. Ip A, Berry DA, Hansen E, et al. Hydroxychloroquine and Tocilizumab Therapy in COVID-19 Patients-An Observational Study. medRxiv 2020: Available at: https://doi.org/10.1101/2020.05.21.20109207 [Preprint 25 May 2020].
11. Magagnoli J, Narendran S, Pereira F, et al. Outcomes of hydroxychloroquine usage in United States veterans hospitalized with Covid-19. medRxiv 2020: Available at: https://doi.org/10.1101/2020.04.16.20065920 [Preprint 23 April 2020].
12. Mahévas M, Tran V-T, Roumier M, et al. No evidence of clinical efficacy of hydroxychloroquine in patients hospitalized for COVID-19 infection with oxygen requirement: results of a study using routinely collected data to emulate a target trial. medRxiv 2020; Available at: https://doi.org/10.1101/2020.04.10.20060699 [Preprint 14 April 2020].
13. Molina JM, Delaugerre C, Goff J, et al. No Evidence of Rapid Antiviral Clearance or Clinical Benefit with the Combination of Hydroxychloroquine and Azithromycin in Patients with Severe COVID-19 Infection. Médecine et Maladies Infectieuses 2020; 50(4): 384.
14. Rosenberg ES, Dufort EM, Udo T, et al. Association of treatment with hydroxychloroquine or azithromycin with in-hospital mortality in patients with COVID-19 in New York state. JAMA 2020; 323(4): 2493:502.
15. Self WH, Semler MW, Leither L, et al. Effect of hydroxychloroquine on clinical status at 14 days in hospitalized patients with COVID-19: A randomized clinical trial. JAMA 2020; 324(21): 2165-76.
16. Tang W, Cao Z, Han M, et al. Hydroxychloroquine in patients with mainly mild to moderate coronavirus disease 2019: open label, randomised controlled trial. BMJ 2020; 369: m1849.
17. Ulrich RJ, Troxel AB, Carmody E, et al. Treating COVID-19 With Hydroxychloroquine (TEACH): A Multicenter, Double-Blind Randomized Controlled Trial in Hospitalized Patients Open Forum Infect Dis 2020; 7(10): ofaa446.
18. WHO Solidarity Trial Consortium, Pan H, Peto R, et al. Repurposed Antiviral Drugs for Covid19 - Interim WHO Solidarity Trial Results. N Engl J Med 2021; 384(6): 497-511.
19. Yu B, Li C, Chen P, et al. Low dose of hydroxychloroquine reduces fatality of critically ill patients with COVID-19. Sci China Life Sci 2020; 63(10): 1515-21.

Hydroxychloroquine for prophylaxis

Table s5. Should persons exposed to COVID-19 receive post-exposure hydroxychloroquine?

Study /year	Country/ Hospital	Study design	N subjects (intervention /comparator)	\% female	Age mean (SD) / Median (IQR)	Severity of disease	Intervention (study arms)	Comparator	Cointerventions	Outcomes reported	Funding source
Barna bas/ 2021^{1}	US/ Nationwi de outreach from 7 institutio nal centers	RCT	$\begin{aligned} & 689 \\ & (353 / 336) \end{aligned}$	60	Median: 39 (24)	Asymptomatic patients with negative SARS-CoV-2 test at baseline, who had close contact with person with recent COVID19 infection within 96 hours	Hydroxychloroqui ne 400 mg daily for 3 days, followed by 200 mg daily for 11 days	Placebo (ascorbic acid 500 mg daily for 3 days, followed by 250 mg daily for 11 days	None	Symptomatic COVID-19 disease through day 14 PCR-confirmed SARS-CoV-2 infection through day 14 Safety	Bill \& Melinda Gates Foundation
Boul ware/ 2020²	US (Nationwi de) Canada (Quebec, Manitoba , Alberta)	RCT	$\begin{aligned} & 821 \\ & (414 / 407) \end{aligned}$	51.6	$\begin{aligned} & \text { Median: } 40 \\ & \text { (17) } \end{aligned}$	Asymptomatic patients with negative SARS-CoV-2 test at baseline, who had close contact with person with confirmed COVID-19 infection within 4 days	Hydroxychloroqui ne 800 mg once, followed by 600 mg 6-8 hours later, followed by 600 mg daily for 4 days	Placebo	None	Mortality Hospitalizations Symptomatic COVID-19 disease through day 14 PCR-confirmed SARS-CoV-2 infection through day 14 Safety	David Baszucki and Jan Ellison Baszucki Minnesota Chinese Chamber of Commerce University of Minnesota Clinical Practice Assessment Unit of the McGill University Health Centre McGill Interdisciplinary Initiative in

Study /year	Country/ Hospital	Study design	N subjects (intervention /comparator)	\% female	Age mean (SD) / Median (IQR)	Severity of disease	Intervention (study arms)	Comparator	Cointerventions	Outcomes reported	Funding source
											Infection and Immunity Emergency Covid-19 Research Funding Program Manitoba Medical Service Foundation Research Manitoba Northern Alberta Clinical Trials Research Centre Covid-19 Clinical Research Grant
$\begin{array}{\|l\|} \hline \text { Mitijà } \\ / \\ 2020^{3} \end{array}$	Spain (Cataloni a)	RCT	$\begin{aligned} & \hline 2313 \\ & (1115 / 1198) \end{aligned}$	73	$\begin{aligned} & \hline \text { Mean: } 48.6 \\ & \text { (19) } \end{aligned}$	Asymptomatic patients with close contact with person with confirmed COVID-19 infection within 7 days	Hydroxychloroqui ne 800 mg on day 1, followed by 400 mg daily for 6 days	None	None	PCR-confirmed, symptomatic COVID-19 infection within 14 days Incidence of COVID-19 infection (PCR detection or symptoms compatible with COVID-19) Safety	YoMeCorono crowdfunding campaign Generalitat de Catalunya Zurich Seguros Synlab Diagnósticos Laboratorios Rubió

IDSA Guideline on the Treatment and Management of COVID-19
Supplementary Materials

Study /year	Country/ Hospital	Study design	N subjects (intervention /comparator)	$\begin{aligned} & \hline \% \\ & \text { female } \end{aligned}$	Age mean (SD) / Median (IQR)	Severity of disease	Intervention (study arms)	Comparator	Cointerventions	Outcomes reported	Funding source
											Laboratorios Gebro Pharma

Figure s3a. Forest plot for the outcome of SARS-CoV-2 infection at 14 days for post-exposure hydroxychloroquine vs. no hydroxychloroquine for persons exposed to COVID-19

Figure s3b. Forest plot for the outcome of hospitalization at 14 days for post-exposure hydroxychloroquine vs. no hydroxychloroquine for persons exposed to COVID-19

Figure s3c. Forest plot for the outcome of mortality at 14 days for post-exposure hydroxychloroquine vs. no hydroxychloroquine for persons exposed to COVID-19

Figure s3d. Forest plot for the outcome of serious adverse events at 14 days for post-exposure hydroxychloroquine vs. no hydroxychloroquine for persons exposed to COVID-19

IDSA Guideline on the Treatment and Management of COVID-19
Supplementary Materials

Table s6. Risk of bias for randomized control studies (hydroxychloroquine as post-exposure prophylaxis vs. no hydroxychloroquine for post-exposure hydroxychloroquine vs. no hydroxychloroquine for persons exposed to COVID-19)

Study	Random sequence generation	Allocation concealment	Blinding of participants and personnel	Blinding of outcome assessment	Incomplete outcome data	Selective reporting
Barnabas 2021^{1}					Other bias	

Low	High	Unclear

References

1. Barnabas RV, Brown ER, Bershteyn A, et al. Hydroxychloroquine as Postexposure Prophylaxis to Prevent Severe Acute Respiratory Syndrome Coronavirus 2 Infection : A Randomized Trial. Ann Intern Med 2021; 174(3): 344-52.
2. Boulware DR, Pullen MF, Bangdiwala AS, et al. A Randomized Trial of Hydroxychloroquine as Postexposure Prophylaxis for Covid-19. N Engl J Med 2020; 383(6): 517-25.
3. Mitja O, Corbacho-Monne M, Ubals M, et al. A Cluster-Randomized Trial of Hydroxychloroquine for Prevention of Covid-19. N Engl J Med 2021; 384(5): 417-27.

Lopinavir/Ritonavir

Table s7. Should persons exposed to or with COVID-19 receive treatment with lopinavir/ritonavir vs. no lopinavir/ritonavir?

Study/ year	Country/ Hospital	Study design	N subjects (intervention/ comparator)	$\begin{aligned} & \hline \% \\ & \text { female } \end{aligned}$	Age mean (SD) / Median (IQR)	Severity of disease	Intervention (study arms)	Comparator	Cointerventions	Outcomes reported	Funding source
$\begin{aligned} & \mathrm{Cao} / \\ & 2020^{1} \end{aligned}$	China/ Jin Yin- Tan Hospital	RCT	$\begin{aligned} & 199 \\ & (99 / 100) \end{aligned}$	39.7	$\begin{aligned} & \text { Median: } 58 \\ & (49-68) \end{aligned}$	Severe COVID: had pneumonia confirmed by chest imaging, and had oxygen saturation of 94\% or less while breathing ambient air or a ratio of partial pressure of oxygen to the fraction of inspired oxygen at or below 300 mg Hg	Lopinavir/ritona vir 400/100mg orally twice daily x 14 days	(1) SoC	N/A	Mortality at day 28 Clinical improvement at days $7,14,28$ Adverse events	Major Projects of National Science and Technology on New Drug Creation and Development The Chinese Academy of Medical Sciences (CAMS) Emergency Project of Covid-19 National Science Grant for Distinguished Young Scholars
Labhardt / 2021^{2}	Brazil and Switzerla nd/4 centers	RCT	$\begin{aligned} & 318 \\ & (209 / 109) \end{aligned}$	49.4	Median: 39 (28-50)	Asymptomatic with documented exposure as a close contact with a person with confirmed	Lopinavir 400 $\mathrm{mg} /$ ritonavir 100 mg twice daily for 5 days	Surveillance and no PeP	None	Incidence of COVID-19 at day 21 Severity of COVID19	Swiss National Science Foundation Private Foundation of Geneva

$\begin{aligned} & \text { Study/ } \\ & \text { year } \end{aligned}$	Country/ Hospital	Study design	N subjects (intervention/ comparator)	\% female	Age mean (SD) / Median (IQR)	Severity of disease	Intervention (study arms)	Comparator	Cointerventions	Outcomes reported	Funding source
						SARS CoV-2 infection				Serious adverse events Acceptability of PeP Adherence Drug levels at day 5	University Hospitals
	United Kingdom / 176 hospitals	RCT	$\begin{aligned} & 5040 \\ & (1616 / 3424) \end{aligned}$	N/A	N/A	Clinically suspected or laboratory confirmed SARS-CoV-2 infection and no medical history that might, in the opinion of the attending clinician, put the patient at substantial risk if they were to participate in the trial	Lopinavir/ritona vir 400/100mg orally every 12 hrs $\times 10$ days or until discharge	(1) SoC	N/A	Mortality at day 28 Discharged from hospital within 28 days Invasive mechanical ventilation Adverse events	UK Research and Innovation and NIHR NIHR Oxford Biomedical Research Centre Wellcome The Bill \& Melinda Gates Foundation UK Department for International Development Health Data Research UK Medical Research Council (MRC)

$\begin{aligned} & \text { Study/ } \\ & \text { year } \end{aligned}$	Country/ Hospital	Study design	N subjects (intervention/ comparator)	\% female	Age mean (SD) / Median (IQR)	Severity of disease	Intervention (study arms)	Comparator	Cointerventions	Outcomes reported	Funding source
											Population Health Research Unit NIHR Health Protection Unit in Emerging and Zoonotic Infections NIHR Clinical Trials Unit Support Funding
$\begin{aligned} & \text { Reis/ } \\ & 2021^{4} \end{aligned}$	Brazil/10 cities	RCT	685 $(244 / 227)$ Additional 214 patients randomized to HCQ alone	55\%	$\begin{aligned} & \text { Median: } 53 \\ & (18-94) \end{aligned}$	Adults with symptom onset of flu-like symptoms within 8 days or CT chest consistent with COVID-19 AND one criterion for high risk to progression to severe disease	Lopinavir 800 $\mathrm{mg} /$ ritonavir 200 mg , then lopinavir 400 $\mathrm{mg} /$ ritonavir 100 mg every 12 hours for an additional 9 days	Placebo	None	Mortality COVID-associated hospitalization Hospital admissions Proportion of patients with negative swab at days 3,7 , and 14 Treatmentemergent adverse events	Bill and Melinda Gates Foundation
WHO Solidarit y Trial Consorti	30 countrie	RCT	$\begin{aligned} & 2771 \\ & (1399 / 1372) \end{aligned}$	38.0	N/A	≥ 18 years, hospitalized with a diagnosis of COVID-19,	Lopinavir/ritona vir 400/200mg	(1) SoC	N/A	Mortality Ventilation	N/A

DSA Guideline on the Treatment and Management of COVID-19

Supplementary Materials

$\begin{aligned} & \text { Study/ } \\ & \text { year } \end{aligned}$	Country/ Hospital	Study design	N subjects (intervention/ comparator)	$\begin{aligned} & \hline \% \\ & \text { female } \end{aligned}$	Age mean (SD) / Median (IQR)	Severity of disease	Intervention (study arms)	Comparator	Cointerventions	Outcomes reported	Funding source
um (Pan)/ 2020^{5}	s/ 405 hospitals					not known to have received any study drug, without anticipated transfer elsewhere within 72 hours, and, in the physician's view, with no contraindication to any study drug	orally every 12 hrs x 14 days				

Figure s4a. Forest plot for the outcome of mortality at 28 days for lopinavir/ritonavir vs. no lopinavir/ritonavir in hospitalized patients with severe COVID-19

Figure s4b. Forest plot for the outcome of invasive mechanical ventilation for lopinavir/ritonavir vs. no lopinavir/ritonavir in hospitalized patients with severe COVID-19

DSA Guideline on the Treatment and Management of COVID-19

Supplementary Materials

Table s8. Risk of bias for randomized controlled studies (lopinavir/ritonavir vs. no lopinavir/ritonavir)

Study	Random sequence generation	Allocation concealment	Blinding of participants and personnel	Blinding of outcome assessment	Incomplete outcome data	Selective reporting
${\text { Cao } 2020^{1}}^{\text {Labhardt 2021 }}{ }^{2}$						
RECOVERY Collaborative Group (Horby) 2020^{3}						
Reis 20214						
WHO Solidarity Trial Consortium (Pan) 2020^{5}						
Low						

References

1. Cao B, Wang Y, Wen D, et al. A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. N Engl J Med 2020; 382(19): 1787-99.
2. Labhardt ND, Smit M, Petignat I, et al. Post-exposure Lopinavir-Ritonavir Prophylaxis versus Surveillance for Individuals Exposed to SARS-CoV-2: The COPEP Pragmatic Open-Label, Cluster Randomized Trial. EClinicalMedicine 2021; 42: 101188.
3. RECOVERY Collaborative Group, Horby PW, Mafham M, et al. Lopinavir-ritonavir in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, openlabel, platform trial. The Lancet 2020; 396(10259): 1345-52.
4. Reis G, Moreira Silva E, Medeiros Silva DC, et al. Effect of Early Treatment With Hydroxychloroquine or Lopinavir and Ritonavir on Risk of Hospitalization Among Patients With COVID-19: The TOGETHER Randomized Clinical Trial. JAMA Netw Open 2021; 4(4): e216468.
5. WHO Solidarity Trial Consortium, Pan H, Peto R, et al. Repurposed Antiviral Drugs for Covid19 - Interim WHO Solidarity Trial Results. N Engl J Med 2021; 384: 497-511.

Glucocorticoids

Table s9. Should hospitalized patients with severe COVID-19 receive treatment with corticosteroids vs. no corticosteroids?

Study/ year	Country/ Hospital	Study design	N subjects (intervention / comparator)	$\begin{aligned} & \% \\ & \text { female } \end{aligned}$	Age mean (SD) / Median (IQR)	Severity of disease	Intervention (study arms)	Comparator	Cointerventions	Outcomes reported	Funding source
Corral- Gudin o/ 2020^{1}	Spain/ 5 hospitals	RCT with additio nal patient s prefere ntially assigne d to the treatm ent arm by investig ators	85 (56/29)	42.4	$\begin{aligned} & \text { Mean (SD): } 69 \\ & \text { (12) } \end{aligned}$	Hospitalized patients with a laboratory confirmed diagnosis of SARS-CoV-2 infection; additional criteria: symptom duration of at least 7 days, radiological evidence of lung disease in chest X-ray or CT scan, moderate-to-severe disease with abnormal gas exchange ($\mathrm{PaO} 2 / \mathrm{FiO} 2$ <300 or SaO2/FiO2 < 400), and laboratory parameters suggesting a hyperinflammatory state (serum CRP >15 $\mathrm{mg} / \mathrm{dl}$, D-dimer > 800 $\mathrm{mg} /$ dl, ferritin > 1000 $\mathrm{mg} / \mathrm{dl}$ or IL-6 levels > $20 \mathrm{pg} / \mathrm{ml}$)	Methylprednisol one 40 mg intravenously every 12 hours for 3 days and then 20 mg every 12 hours for 3 days (median time to steroid treatment from symptom onset not reported)	(1) SoC	Acetaminoph en, oxygen therapy, thrombosis prophylaxis with low molecular weight heparin, and antibiotics for co-infection AZ, HCQ, lopinavir plus ritonavir	Composite endpoint (inhospital allcause mortality, escalation to ICU admission, or progression of respiratory insufficiency that required non-invasive ventilation) Biomarkers levels Adverse events	N/A
$\begin{aligned} & \text { Fadel/ } \\ & 2020^{2} \end{aligned}$	USA/five hospitals in southeast and south-	Quasiexperi mental	$\begin{aligned} & 213 \\ & (132 / 81) \end{aligned}$	48.8	Median (IQR): $62 \text { (51-62) }$	18 years of age or older, had confirmed COVID-19 infection, with radiographic evidence of bilateral pulmonary infiltrates, and	Methylprednisol one 0.5 to $1 \mathrm{mg} / \mathrm{kg}$ twice daily divided into 2 doses	(1) SoC: with or without a combination of lopinavir/rit onavir and	HCQ 400 mg twice daily for 2 doses on day 1 , followed by 200 mg twice	Mortality Respiratory failure requiring	N/A

Study/ year	Country/ Hospital	Study design	N subjects (intervention / comparator)	$\begin{aligned} & \text { \% } \\ & \text { female } \end{aligned}$	Age mean (SD) / Median (IQR)	Severity of disease	Intervention (study arms)	Comparator	Cointerventions	Outcomes reported	Funding source
	central Michigan					required oxygen by nasal cannula, HFNC or mechanical ventilation Treatment (at baseline): 9.1\% required mechanical ventilation Comparator (at baseline): 12.3% required mechanical ventilation	3 days for patients with moderate COVID 3 to 7 days for ICU patients (median time to steroid treatment from symptom onset of 8 days)	ribavirin or HCQ	daily on days 2-5 SoC: supplemental oxygen, HFNC, invasive ventilation, antibiotic agents, antiviral agents, vasopressor support, and renalreplacement therapy	mechanical ventilation ARDS Length of hospital stay (days) Duration of mechanical ventilation (days) Shock AKI Adverse events	
Fernan dez- Cruz/ 2020³	Spain/ Hospital Puerta de Hierro- Majadah onda	Retrosp ective cohort	463 (396/67)	31.5	Mean (SD): 65.4 (12.9) in intervention/ 68.1 (15.7) in comparator	Adult patients diagnosed with COVID-19 pneumonia according to WHO interim guidance, and complicated with ARDS and/or an hyperinflammatory syndrome	IV methylprednisol one or equivalent 1 $\mathrm{mg} / \mathrm{kg} /$ day (78.3\%), or IV methylprednisol one pulses (21.7\%, for a median of 3 pulses) (median time to steroid treatment from symptom onset	(1) SoC	HCQ, AZ, Lopinavir/Rito navir, Interferon, TCZ, Anakinra, ritonavirboosted darunavir/dox ycycline/clarit hromycin and other antibiotics	Mortality	N/A

Study/ year	Country/ Hospital	Study design	N subjects (intervention / comparator)	$\begin{aligned} & \% \\ & \text { female } \end{aligned}$	Age mean (SD) / Median (IQR)	Severity of disease	Intervention (study arms)	Comparator	Cointerventions	Outcomes reported	Funding source
							$\begin{aligned} & \text { of } 10(8-13) \\ & \text { days) } \end{aligned}$				
Horby / 2021	UK/ 176 NHS hospital organizati ons	RCT	$\begin{aligned} & 6425 \\ & (2104 / 4321) \end{aligned}$	36.4	Mean (SD): 66.9 (15.4) in intervention/ 65.8 (15.8) in comparator)	Hospitalized patients with clinically suspected or laboratory confirmed SARS-CoV-2 infection and no medical history that might, in the opinion of the attending clinician, put the patient at significant risk if they were to participate Treatment (at baseline): 24\% did not receive any $\mathrm{O}_{2}, 61 \%$ received O_{2} only and 15 \% received invasive mechanical ventilation. Comparator (at baseline): 24\% did not receive any $\mathrm{O}_{2}, 60 \%$ received O_{2} only and 16% received invasive mechanical ventilation	Dexamethasone 6 mg once daily for up to 10 days (median treatment duration was 6 days) (median time to steroid treatment from symptom onset of 8 (5-13) days)	(1) SoC	AZ (24\%) HCQ, lopinavir- ritonavir, interleukin-6 antagonists (in very few patients)	Mortality (Day 28) Hospital discharge within day 28 Risk of invasive mechanical ventilation or death Median duration of hospitalization (days) Receipt of renal hemodialysis or hemofiltration Major cardiac arrhythmia Receipt and duration of ventilation	Medical Research Council and National Institute for Health Research
Lu/ 2020^{5}	China/	Retrosp ective cohort	244 (151/93)	48.0	$\begin{aligned} & \text { Median (IQR): } \\ & 62 \text { (50-71) } \end{aligned}$	Critically ill patients: those who were admitted to intensive care wards and	Steroids: hydrocortisoneequivalent dosage range:	(1) SoC	Antiviral therapy (oseltamivir, arbidol,	Mortality at day 28	Supported by the National Key R\&D Program of

$\begin{aligned} & \text { Study/ } \\ & \text { year } \end{aligned}$	Country/ Hospital	Study design	N subjects (intervention / comparator)	\% female	Age mean (SD) / Median (IQR)	Severity of disease	Intervention (study arms)	Comparator	Cointerventions	Outcomes reported	Funding source
	Tongji Hospital					required mechanical ventilation (either invasive or noninvasive), or with ARDS $\left(\mathrm{PaO}_{2} / \mathrm{FIO}_{2}\right.$ $\leq 300 \mathrm{mmHg}$; when PaO_{2} is not available, $\mathrm{SpO}_{2} / \mathrm{FiO}_{2} \leq 315$ suggests ARDS), or sepsis with acute organ dysfunction Treatment (at baseline): 52\% received mechanical ventilation Comparator (at baseline): 4\% received mechanical ventilation	$100-800 \mathrm{mg} /$ day (median [IQR] administration duration of 8 days [4-12]) (median time to steroid treatment from symptom onset not reported)		lopinavir/rito navir, ganciclovir, interferon-a), antibacterials, gamma globulin, mechanical ventilation, muscle relaxant, HFNC	Overall cohort mortality (odds ratio) Adverse events	China, the National Natural Science Foundation of China, the "Double First-Class" University Project, the China Postdoctoral Science Foundation, the Science Foundation of Jiangsu Commission of Health, and the Emergency Project for the Prevention and Control of the Novel Coronavirus Outbreak in Suzhou.
$\begin{aligned} & \text { Salton } \\ & \text { /2020 } \end{aligned}$	Italy/ 14 Respirato ry High	Observ ational longitu dinal	173 (83/90)	30.6	Mean (SD): 64.4 (10.7) in intervention / 67.1 (8.2) in comparator	Hospitalized patients with SARS-CoV-2 positive (on swab or bronchial wash), PaO2: FiO2 <250 mmHg , bilateral	Methylprednisol one loading dose of 80 $\mathrm{mg} / \mathrm{kg}$ iv at study entry, followed by an	(1) SoC	N/A Use of tocilizumab or other experimental	Mortality Transfer to ICU Duration of invasive	Supported with the resources and use of facilities at the

Study/ year	Country/ Hospital	Study design	N subjects (intervention / comparator)	$\%$ female	Age mean (SD) / Median (IQR)	Severity of disease	Intervention (study arms)	Comparator	Cointerventions	Outcomes reported	Funding source
	Depende ncy Units					infiltrates, CRP >100 mg / L, and/or diagnosis of ARDS	infusion of 80 $\mathrm{mg} /$ day in 240 mL normal saline at 10 mL / h until achieving either a $\mathrm{PaO} 2: \mathrm{FiO} 2>$ 350 mmHg or a CRP $<20 \mathrm{mg} / \mathrm{L}$. After which, oral administration at 16 mg or 20 mg iv twice daily until CRP reached < 20\% of normal range or a PaO2:FiO2 > 400 (alternative SatHbO2 $\geq 95 \%$ on room air) (median time to steroid treatment from symptom onset not reported)		treatment was considered an exclusion criterion	mechanical ventilation (days) Risk of composite primary endpoint Adverse events	University Hospital of Trieste and Memphis VA Medical Center
Wang/ 20207	China/ Union Hospital of Huazhon g	Retrosp ective cohort	46 (26/20)	43.0	$\begin{aligned} & \text { Median: } 54 \\ & (48-64) \end{aligned}$	Severe COVID: resp rate ≥ 30, in resting rate $\mathrm{SpO}_{2} \leq 93 \%$, $\mathrm{PaO}_{2} / \mathrm{FIO}_{2} \leq$ 300 mmHg , other conditions such as $60+$	Methylprednisol one1$2 \mathrm{mg} / \mathrm{kg} /$ day once a day x 5-7 days	(1) SoC	Oxygen therapy, antiviral therapy (ainterferon, lopinavir/rito	Mortality Hospital Discharge	Natural Science Foundation of China

Study/ year	Country/ Hospital	Study design	N subjects (intervention / comparator)	$\%$ female	Age mean (SD) / Median (IQR)	Severity of disease	Intervention (study arms)	Comparator	Cointerventions	Outcomes reported	Funding source
	Universit y of Science and Technolo gy					with complication of hypertension, diabetes, coronary disease, cancer, pulmonary heart disease, structural lung disease and immunosuppressed	(median time to steroid treatment from symptom onset not reported)		navir), immunoenha ncement therapy (thymosin), prevention of bacterial infection, relieving cough eliminating phlegm and nutritional support	Number of days for no fever Use of supplemental oxygen therapy	
Yuan/ 2020^{8}	China/ Central Hospital of Wuhan, Tongji Medical College, Huazhon g Universit y of Science and Technolo gy	Retrosp ective Cohort	$\begin{aligned} & 132 \\ & (74 / 58) \end{aligned}$	57.6	Median (IQR): 43.7 (3.0-56.3 in intervention / 52.0 (31.8- 67.0) in comparator	diagnosed as nonsevere COVID-19 pneumonia and discharged with recovered symptoms or developed to severe cases in the hospitalization were included	Matched corticosteroid therapy maximum dose: 50.6 (40.0-50.0) and median duration of therapy: 10.7 (812.3) (median time (IQR) to steroid treatment from symptom onset of 8.3 (5.0-10.0) days)	(1) SoC	Ribavirin, lopinavir/rito navir and arbidol	Progressing to Severe Cases Secondary Infection Time for Fever Hospital Stay Duration of Viral Shedding After Illness Onset	N/A

CRP: C-reactive protein; NHS: National Health Service; AZ: azithromycin; HCQ: hydroxychloroquine; RT-PCR: reverse transcription polymerase chain reaction; SpO ${ }_{2}$: oxygen saturation; TCZ: tocilizumab; HFNC: high-flow nasal cannula; ICU: intensive care unit; SoC: standard of care; WHO: World Health Organization; ARDS: acute respiratory distress syndrome; NCP: novel coronavirus pneumonia

Table s10. Risk of bias for randomized controlled studies (glucocorticoids vs. no glucocorticoids)

Study	Random sequence generation	Allocation concealment	Blinding of participants and personnel	Blinding of outcome assessment	Incomplete outcome data	Selective reporting
Horby 2020^{4}						

References

1. Corral-Gudino L, Bahamonde A, Arnaiz delas Revillas F, et al. GLUCOCOVID: A controlled trial of methylprednisolone in adults hospitalized with COVID-19 pneumonia. medRxiv 2020: Available at: https://doi.org/10.1101/2020.06.17.20133579 [Preprint 18 June 2020].
2. Fadel R, Morrison AR, Vahia A, et al. Early Short Course Corticosteroids in Hospitalized Patients with COVID-19. Clin Infect Dis 2020; 71(16): 2114-20.
3. Fernandez-Cruz A, Ruiz-Antoran B, Munoz-Gomez A, et al. Impact of Glucocorticoid Treatment in SARS-CoV-2 Infection Mortality: A retrospective controlled cohort study. 2020: Available at: https://doi.org/10.1101/2020.05.22.20110544 [Preprint 26 May 2020].
4. Horby P, Lim WS, Emberson J, et al. Effect of Dexamethasone in Hospitalized Patients with COVID-19 - Preliminary Report. medRxiv 2020: Available at: https://doi.org/10.1101/2020.06.22.20137273 [Preprint 22 June 2020].
5. Lu X, Chen T, Wang Y, et al. Adjuvant corticosteroid therapy for critically ill patients with COVID-19. medRxiv 2020: Available at: https://doi.org/10.1101/2020.04.07.20056390 [Preprint 11 April 2020].
6. Salton F, Confalonieri P, Santus P, et al. Prolonged low-dose methylprednisolone in patients with severe COVID-19 pneumonia. medRxiv 2020: Available at: https://doi.org/10.1101/2020.06.17.20134031 [Preprint 25 June 2020].
7. Wang Y , Jiang $\mathrm{W}, \mathrm{He} \mathrm{Q}$, et al. Early, low-dose and short-term application of corticosteroid treatment in patients with severe COVID-19 pneumonia: single-center experience from Wuhan, China. medRxiv 2020: Available at: https://doi.org/10.1101/2020.03.06.20032342 [Preprint 12 March 2020].
8. Yuan M, Xu X, Xia D, et al. Effects of Corticosteroid Treatment for Non-Severe COVID-19 Pneumonia: A Propensity Score-Based Analysis. Shock 2020; 54(5): 638-43.

Inhaled Corticosteroids

Table s11. Should ambulatory patients with mild-to-moderate COVID-19 receive treatment with inhaled corticosteroids compared to no inhaled corticosteroids?

Study/ year	Country/ Hospital	Study design	N subjects (intervention / comparator)	$\begin{aligned} & \text { \% } \\ & \text { female } \end{aligned}$	Age mean (SD) / Median (IQR)	Severity of disease	Intervention (study arms)	Comparator	Cointerventions	Outcomes reported	Funding source
ACTIV6/ 2022^{1}	United States/9 3 sites	RCT	$\begin{aligned} & 1277 \\ & (656 / 621) \end{aligned}$	63.2	Mean age: $47 \text { (12) }$	Non- hospitalized adults aged ≥ 30 years, experiencing ≥ 2 symptoms of acute infection for ≤ 7 days	Inhaled fluticasone furoate $200 \mu \mathrm{~g}$ once daily	Placebo	Not specified	Time to recovery Hospitalization or death by day 28 Time unwell with ongoing symptoms COVID-19 clinical progression scale on days 7, 14, 28 Mortality though day 28 Urgent care visit, emergency department visit, or hospitalization through day 28	National Center for Advancing Translational Sciences Federal funds from the Office of the Assistant Secretary for Preparedness and Response, Biomedical Advanced Research and Development Authority
$\begin{aligned} & \text { Agusti/ } \\ & 2022^{2} \end{aligned}$	Spain Argentin a	RCT	120 (58/62)	52.9	Mean age: $51.1 \text { (13.7) }$	PCR-confirmed SARS-CoV-2 infection, with radiological evidence (plain chest radiography) of pneumonia	Inhaled budesonide 400 $\mu \mathrm{g} / 12 \mathrm{~h}$ via Pulmicort Turbuhaler	SoC	Not Specified	Proportion of patients with disease progression Adverse events	AstraZeneca GlaxoSmithKlin e Menarini Chiesi

Study/ year	Country/ Hospital	Study design	N subjects (intervention / comparator)	\% female	Age mean (SD) / Median (IQR)	Severity of disease	Intervention (study arms)	Comparator	Cointerventions	Outcomes reported	Funding source
											Sanofi Novartis Boehringer Ingelheim
Cleme ncy/ 2021 ${ }^{3}$	$\begin{aligned} & \text { U.S./ } 10 \\ & \text { centers } \end{aligned}$	RCT	400 (197/203)	55.3	Mean age: $43.3 \text { (16.9) }$	Positive SARS-CoV-2 antigen test within 72 hours, nonhospitalized, not hypoxic, with at least 1 symptom of COVID-19 (fever, cough, dyspnea)	Ciclesonide MDI 160 mcg/actuation, 2 puffs twice daily plus standard supportive care for 30 days	(1) SoC	Supportive care at discretion of treating provider (4 patients received antivirals, 1 patient monoclonal antibodies)	Time to alleviation of all COVID-19 symptoms ED visits Hospitalizations All-cause mortality Proportion of patients with alleviation of COVID-19 symptoms Adverse events	Covis Pharma GmbH National Center for Advancing Translational Sciences National Heart, Lung, and Blood Institute
Duvign aud/ 2022^{4}	France/1 4 trial centres	RCT	217 (110/107)	51.2\%	Median (range): 63 (50-86)	COVID-19 with first symptoms ≤ 7 days earlier; positive SARS-CoV-2 nasopharyngeal RT-PCR or antigen test	10-day treatment with ALVESCO 160 mg , two puffs twice a day using an inhalation chamber (640 mg of ciclesonide per day)	Control: 10day treatment with a combination of vitamins and trace elements (Azinc Vitality, 2 pills per day).	Not specified	Grade 3-4-5 adverse events. Hospitalization Death Adverse events of any grade WHO Ordinal Scale for Clinical Improvement	French Ministry of Health French National Research Agency University of Bordeaux Inserm/REACTi ng

Study/ year	Country/ Hospital	Study design	N subjects (intervention / comparator)	$\begin{aligned} & \% \\ & \text { female } \end{aligned}$	Age mean (SD) / Median (IQR)	Severity of disease	Intervention (study arms)	Comparator	Cointerventions	Outcomes reported	Funding source
$\begin{aligned} & \hline \text { Ezer/ } \\ & 2021^{5} \end{aligned}$	Canada/ Centers across 3 province (Quebec, Ontario, British Columbi a)	RCT	203 (105/98)	53.7	Median age: 35 (27-47)	Positive SARS-CoV-2 PCR test within 5-6 days, unvaccinated, nonhospitalized, with at least 1 symptom of fever, cough, or shortness of breath	Inhaled ciclesonide 600 mcg twice daily plus intranasal ciclesonide 200 $\mathrm{mcg} /$ day for 14 days	Placebo	Not specified	Proportion with resolution of fever and respiratory symptoms at day 7 Hospitalizations COVID-19 mortality Resolution of fever and respiratory symptoms at day 14 Improvement in overall feeling at day 7 and 14 Adverse events	McGill University Health Centre Foundation McGill Interdisciplinar y Initiative in Infection and Immunity
Ramak rishna n/ $2021{ }^{6}$	Oxfordsh ire, United Kingdom	RCT	139 (70/69)	57.6	Mean age: Interventio n: 44 (No SD reported) Control: 46 (No SD reported)	Onset of COVID-19 symptoms within 7 days of trial enrollment and nonhospitalized	Budesonide dry powder inhaler 400 mcg/actuation, 2 puffs twice daily plus supportive care per NHS guidelines until patient felt better or the primary outcome was achieved	Supportive care	Not specified	COVID-19 related urgent care visit, ER visit, or hospitalization Time to symptom resolution Viral symptoms measure by Common Cold Questionnaire Influenza Patientreported Outcome questionnaire Oxygen saturation Body temperature	National Institute for Health Research Biomedical Research Centre AstraZeneca

Study/ year	Country/ Hospital	Study design	N subjects (intervention / comparator)	\% female	Age mean (SD) / Median (IQR)	Severity of disease	Intervention (study arms)	Comparator	Cointerventions	Outcomes reported	Funding source
										Viral load Adverse events	
$\begin{aligned} & \text { Song/ } \\ & 2021^{7} \end{aligned}$	South Korea/ 6 hospitals	RCT	61 (35/26)	53	Median age: 53 (35-61)	Hospitalized patients with positive SARS-CoV-2 PCR within 3 days of diagnosis or 7 days from symptom onset, with mild-moderate disease (National Early Warning Score of 0-4 and O_{2} sat $\geq 95 \%$ on RA)	Ciclesonide 320 mcg inhaler twice daily for 14 days plus standard of care	(1) SoC	Hydroxychlor oquine 400mg daily for 14 days (8 patients in ciclesonide group)	SARS-CoV-2 eradication rate based on qRT-PCR on day 14 SARS-CoV-2 eradication rate at day 7 and 10 Rate of clinical improvement at day 7, 10, 14 Rate of clinical failure within 28 days Adverse events	National Research Foundation of Korea Korea University Guro Hospital
$\begin{aligned} & \hline \mathrm{Yu} \\ & 2021^{8} \end{aligned}$	United Kingdom	RCT	$\begin{aligned} & 1959 \\ & (833 / 1126) \end{aligned}$	51.8	Mean age: $64.2 \text { (7.6) }$	Patients in the community age ≥ 65 or ≥ 50 with comorbidities with suspected or confirmed COVID-19 within 14 days with ongoing symptoms (fever, cough, or loss of taste or smell)	Budesonide 800 mcg inhaler twice daily for 14 days plus standard of care	(1) SoC	None	COVID-19 related hospital admission or death within 28 days Time to first reported recovery Time to sustained recovery Time to alleviation of symptoms Oxygen use ICU admission	National Institute of Health Research United Kingdom Research Innovation

IDSA Guideline on the Treatment and Management of COVID-19

Supplementary Materials

Study/ year	Country/ Hospital	Study design	N subjects (intervention / comparator)	\% female	Age mean (SD) / Median (IQR)	Severity of disease	Intervention (study arms)	Comparator	Cointerventions	Outcomes reported	Funding source
										Mechanical ventilation WHO-5 Wellbeing Index New household infections Adverse events	

Figure s5a. Forest plot for the outcome of mortality for inhaled corticosteroids compared to no inhaled corticosteroids in patients with mild-to-moderate COVID-19

	Inhaled steroids		No inhaled steroids			Risk Ratio		Risk Ratio M-H, Random, $95 \% \mathrm{Cl}$		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, $95 \% \mathrm{Cl}$				
26.2.1 Budesonide										
Agusti 2022	1	58	1	62	10.8\%	1.07 [0.07, 16.70]				
Yu 2021	6	787	10	799	80.3\%	0.61 [0.22, 1.67]				
Subtotal (95\% CI)		845		861	91.1\%	0.65 [0.25, 1.68]				
Total events	7		11							
Heterogeneity: $\mathrm{Tau}^{2}=0.00 ; \mathrm{Chi}^{2}=0.14, \mathrm{df}=1(\mathrm{P}=0.71) ; \mathrm{F}^{2}=0 \%$										
Test for overall effect: $Z=0.89$ ($\mathrm{P}=0.37$)										
26.2.2 Ciclesonide										
Clemency 2021	0	197	0	203		Not estimable				
Duvignaud 2022	0	110	2	107	8.9\%	0.19 [0.01, 4.01]				
Ezer 2021	0	108	0	107		Not estimable				
Song 2021	0	35	0	26		Not estimable				
Subtotal (95\% CI)		450		443	8.9\%	0.19 [0.01, 4.01]				
Total events	0		2							
Heterogeneity: Not applicable										
Test for overall effect: $Z=1.06$ ($\mathrm{P}=0.29$)										
26.2.3 Fluticasone furoate										
ACTIV-6 2022 Subtotal (95\% CI)	0	$\begin{aligned} & 656 \\ & 656 \end{aligned}$	0	621		Not estimable Not estimable				
Total events	0		0							
Heterogeneity: Not applicable										
Test for overall effect: Not applicable										
Total (95\% CI)		1951		1925	100.0\%	0.58 [0.24, 1.44]				
Total events	7		13							
Heterogeneity: $\mathrm{Tau}^{2}=0.00 ; \mathrm{Chi}^{2}=0.71, \mathrm{df}=2(\mathrm{P}=0.70) ; \mathrm{F}^{2}=0 \%$ Test for overall effect: $Z=1.17(P=0.24)$ Test for subaroup differences: $\mathrm{Chi}^{2}=0.56 . \mathrm{df}=1(\mathrm{P}=0.46) . \mathrm{I}^{2}=0 \%$										100

Figure s5b. Forest plot for the outcome of hospitalization for inhaled corticosteroids compared to no inhaled corticosteroids in patients with mild-to-moderate COVID-19

Figure s5c. Forest plot for the outcome of serious adverse events for inhaled corticosteroids compared to no inhaled corticosteroids in patients with mild-to-moderate COVID-19

	Inhaled steroids		No inhaled steroids			Risk Ratio		Risk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, $95 \% \mathrm{Cl}$		M-H, Rand	m, 95\% Cl	
26.4.1 Budesonide										
Yu 2021	2	787	4	799	20.7\%	0.51 [0.09, 2.76]				
Subtotal (95\% CI)		787		799	20.7\%	0.51 [0.09, 2.76]		-		
Total events	2		4							
Heterogeneity: Not applicable										
Test for overall effect: $Z=0.78$ ($\mathrm{P}=0.43$)										
26.4.2 Ciclesonide										
Duvignaud 2022	26	103	11	194	30.3\%	4.45 [2.29, 8.64]			-	
Ezer 2021	5	106	5	103	25.3\%	0.97 [0.29, 3.26]				
Song 2021	0	35	0	26		Not estimable				
Subtotal (95\% CI)		244		323	55.7\%	2.27 [0.52, 10.00]				
Total events										
Heterogeneity: $\mathrm{Tau}^{2}=0.91 ; \mathrm{Chi}^{2}=4.68, \mathrm{df}=1(\mathrm{P}=0.03) ; \mathrm{I}^{2}=79 \%$										
Test for overall effect: $Z=1.08(P=0.28)$										
26.4.3 Fluticasone furoate										
ACTV-6 2022	3	640	6	605	23.7\%	0.47 [0.12, 1.88]				
Subtotal (95\% CI)				605	23.7\%	0.47 [0.12, 1.88]				
Total events	3		6							
Heterogeneity: Not applicable										
Test for overall effect: $Z=1.06$ ($\mathrm{P}=0.29$)										
Total (95\% CI)		1671		1727	100.0\%	1.14 [0.32, 3.99]				
Total events	36									
Heterogeneity: $\mathrm{Tau}^{2}=1.24 ; \mathrm{Chi}^{2}=13.72, \mathrm{df}=3(\mathrm{P}=0.003) ; \mathrm{I}^{2}=78 \% \quad 15$										
Test for overall effect: $Z=0.20$ ($\mathrm{P}=0.84$)			ff					nhaled steroids	Favours control	100
Test for subaroup differences: $\mathrm{Chi}^{2}=2.73, \mathrm{df}=2(\mathrm{P}=0.26) . \mathrm{I}^{2}=26.7 \%$										

IDSA Guideline on the Treatment and Management of COVID-19

Supplementary Materials

Table s12. Risk of bias for randomized controlled studies (inhaled corticosteroids vs. no inhaled corticosteroids)

Study	Random sequence generation		Allocation concealment	Blinding of participants and personnel	Blinding of outcome assessment	Incomplete outcome data	Selective reporting	Other bias
ACTIV-6 2022^{1}								
Agusti 2022^{2}								
$\begin{aligned} & \text { Clemency } \\ & 2021^{3} \end{aligned}$								
$\begin{aligned} & \hline \text { Duvignaud } \\ & 2022^{4} \end{aligned}$								
Ezer $2021{ }^{5}$								
Ramakrishnan $2021{ }^{6}$								
Song 2021 ${ }^{7}$								
Yu $2021{ }^{8}$								
Low	High	Unclear						

References

1. Accelerating Covid-19 Therapeutic I, Vaccines -6Study G, Naggie S. Inhaled Fluticasone for Outpatient Treatment of Covid-19: A Decentralized, Placebo-controlled, Randomized, Platform Clinical Trial. medRxiv 2022.
2. Agusti A, De Stefano G, Levi A, et al. Add-on inhaled budesonide in the treatment of hospitalised patients with COVID-19: a randomised clinical trial. Eur Respir J 2022; 59(3).
3. Clemency BM, Varughese R, Gonzalez-Rojas Y, et al. Efficacy of Inhaled Ciclesonide for Outpatient Treatment of Adolescents and Adults With Symptomatic COVID-19: A Randomized Clinical Trial. JAMA Intern Med 2022; 182(1): 42-9.
4. Duvignaud A, Lhomme E, Onaisi R, et al. Inhaled ciclesonide for outpatient treatment of COVID-19 in adults at risk of adverse outcomes: a randomised controlled trial (COVERAGE). Clin Microbiol Infect 2022; 28(7): 1010-6.
5. Ezer N, Belga S, Daneman N, et al. Inhaled and intranasal ciclesonide for the treatment of covid-19 in adult outpatients: CONTAIN phase II randomised controlled trial. BMJ 2021; 375: e068060.
6. Ramakrishnan S, Nicolau DV, Jr., Langford B, et al. Inhaled budesonide in the treatment of early COVID-19 (STOIC): a phase 2, open-label, randomised controlled trial. Lancet Respir Med 2021; 9(7): 763-72.
7. Song JY, Yoon JG, Seo YB, et al. Ciclesonide Inhaler Treatment for Mild-to-Moderate COVID-19: A Randomized, Open-Label, Phase 2 Trial. J Clin Med 2021; 10(16): 3545.
8. Yu LM, Bafadhel M, Dorward J, et al. Inhaled budesonide for COVID-19 in people at high risk of complications in the community in the UK (PRINCIPLE): a randomised, controlled, open-label, adaptive platform trial. Lancet 2021; 398(10303): 843-55.

Interleukin-6 Inhibitors (Tocilizumab)

Table s13. Should hospitalized patients with severe COVID-19 receive treatment with tocilizumab vs. no tocilizumab?

Study/ year	Country/ Hospital	Study design	N subjects (intervention/ comparator)	$\begin{aligned} & \hline \% \\ & \text { female } \end{aligned}$	Age mean (SD) / Median (IQR)	Severity of disease	Intervention (study arms)	Comparator	Cointerventions	Outcomes reported	Funding source
Hermi ne/ 2020^{1}	France/9 hospitals	RCT	131 (63/67)	32.0	Median (IQR): 64.0 (57.1- 74.3)	Patients were included in the CORIMUNO-19 cohort if they had confirmed SARS-CoV-2 infection (positive on rRTPCR and/or typical chest computed tomographic [CT] scan) with moderate, severe, or critical pneumonia (O2 >3 L/min, WHO Clinical Progression Scale [WHO-CPS] score ≥ 5	TCZ ($8 \mathrm{mg} / \mathrm{kg}$ infusion, maximum 800 mg) *administration of an additional fixed dose of TCZ, 400 mg IV, on day 3 was recommended if oxygen requirement was not decreased by more than 50%, but decision was left to the treating physician.	(1) SoC	Antibiotic agents, antiviral agents, corticosteroid s , vasopressor support, anticoagulant s	Mortality (Day 28) Mechanical ventilation or death (Day 14) Adverse events	Ministry of Health, Programme Hospitalier de Recherche Clinique Foundation for Medical Research AP-HP Foundation The Reacting program
$\begin{aligned} & \hline \text { Horby/ } \\ & 2021^{2} \end{aligned}$	United Kingdom/ National Health Service (NHS) hospitals	RCT	$\begin{aligned} & N=4116 \\ & (2022 / 2094) \end{aligned}$	33\%	Mean (SD): 63.6 (13.7)	Up to 21 days after the main randomization and regardless of treatment allocation, participants with clinical evidence of progressive COVID (Sa02 < 92\% on RA or receiving oxygen therapy	Tocilizumab x 1 dose; A second dose could be given 12-24 hours at the discretion of the attending clinician. Tocilizumab dosing was weight based: >90 KG (800 mg) $>65-\leq 90$ KG (600	Usual care	Co- interventions according to main randomizatio n and use of steroids were permitted; 82\% of participants in each arm received	Mortality at day 28 Receipt of mechanical ventilation or death Successful cessation of invasive	UK Research and Innovation (Medical Research Council) and National Institute of Health Research

Study/ year	Country/ Hospital	Study design	N subjects (intervention/ comparator)	\% female	Age mean (SD) / Median (IQR)	Severity of disease	Intervention (study arms)	Comparator	Cointerventions	Outcomes reported	Funding source
						and CRP ≥ 75) could be considered for randomization to tocilizumab or usual care	$\begin{aligned} & \mathrm{mg}) \\ & >40 \leq 65(400 \mathrm{mg} \end{aligned}$		systemic corticosteroid s	mechanical ventilation	
REMA P-CAP Investi gators/ 2021 ${ }^{3}$	113 sites open to randomiza tion to sarilumab and/or tocilizuma b domain: UK (98) Netherlan ds (7) Australia (3) New Zealand (2) Ireland (2) Saudi Arabia (1)	RCT	353 tocilizumab/ 48 sarilumab/ 402 control	27.4	Mean age: Tocilizum ab: 61.5 (12.5) Sarilumab : 63.4 (13.4) Control: 61.1 (12.8)	Critically ill patients admitted to an intensive care unit and receiving respiratory or cardiovascular organ support. Respiratory support defined as invasive or noninvasive mechanical ventilation, including high flow nasal cannula with flow rate >30 $\mathrm{L} /$ min and FiO_{2} >0.4 Cardiovascular support defined as IV infusion of any vasopressor or inotrope	Tocilizumab: $8 \mathrm{mg} / \mathrm{kg}$ infusion (maximum of 800mg) administered as IV infusion over 1 hour; dose could be repeated after 12-24 hours at discretion of treating clinician Sarilumab: 400 mg IV infusion once	(1) SoC	Standard of care at trial site, could also be randomized to another domain of investigationa I treatments in REMAPCAP. Most patients enrolled after results of the RECOVERY trial published, which then allowed corticosteroid s as standard of care. 79.8\% of patients in the immune modulation domain (690/865) received	Organsupport free days 90-day survival Time to ICU and hospital discharge World Health Organization ordinal scale for clinical status at day 14 Adverse events	Platform for European Preparedness Against (Re-) emerging Epidemics consortium by the European Union Rapid European COVID-19 Emergency Research response consortium by the European Union's Horizon 2020 research and innovation programme Australian National Health and Medical Research Council Health Research Council of New Zealand

Study/ year	Country/ Hospital	Study design	N subjects (intervention/ comparator)	\% female	Age mean (SD) / Median (IQR)	Severity of disease	Intervention (study arms)	Comparator	Cointerventions	Outcomes reported	Funding source
									corticosteroid s overall. Remdesivir use recorded in 32.8% of patients (265/807)		Canadian Institute of Health UK National Institute for Health Research Health Research Board of Ireland UPMC Learning While Doing Program Breast Cancer Research Foundation French Ministry of Health Minderoo Foundation and Wellcome Trust
$\begin{aligned} & \text { Rosas/ } \\ & 2020^{4} \end{aligned}$	Canada, Denmark, France, Germany, Italy, Netherlan ds, Spain, UK, US/ Multicente r	RCT	438 (294/144)	N/A	N/A	Severe COVID-19 pneumonia confirmed by positive polymerase chain reaction test in any body fluid and evidenced by bilateral chest infiltrates on chest x-ray or computed tomography were enrolled. Eligible	$\begin{aligned} & \text { TCZ }(8 \mathrm{mg} / \mathrm{kg} \\ & \text { infusion, } \\ & \text { maximum } 800 \mathrm{mg} \text {) } \end{aligned}$	(1) SoC	Antiviral treatments, low-dose steroids, CP, supportive care	Mortality (Day 28) Incidence of mechanical ventilation among patients not on mechanical ventilation at	F. Hoffmann-La Roche Ltd. Department of Health and Human Services Office of the Assistant Secretary for Preparedness and Response

Study/ year	Country/ Hospital	Study design	N subjects (intervention/ comparator)	\% female	Age mean (SD) / Median (IQR)	Severity of disease	Intervention (study arms)	Comparator	Cointerventions	Outcomes reported	Funding source
						patients had blood oxygen saturation <93\% or partial pressure of oxygen/fraction of inspired oxygen $<300 \mathrm{~mm} / \mathrm{Hg}$				randomizati on Primary endpoint: clinical status based on 7category ordinal scale at day 28 , median (95\% CI) Time to hospital discharge or "ready to discharge" (d ays) Median/95\% CI" Adverse events	Biomedical Advanced Research and Development Authority
$\begin{aligned} & \hline \text { Salama } \\ & / 2021^{5} \end{aligned}$	US, Mexico, Kenya, South Africa, Peru Brazil/ Global study sites	RCT	389 (249/128)	40.8	Mean (SD): 55.9 (14.4)	Patients hospitalized with COVID-19 pneumonia confirmed by a positive polymerase chain reaction test and radiographic imaging were eligible. Patients	TCZ ($8 \mathrm{mg} / \mathrm{kg}$ infusion, maximum 800 mg) *if patient's clinical signs or symptoms worsened or did not improve (reflected by	(1) SoC	Corticosteroid s , antivirals, dexamethaso ne, remdesivir	Cumulative proportion (95\% CI) of patients requiring mechanical ventilation or who had died by Day 28	Genentech

Study/ year	Country/ Hospital	Study design	N subjects (intervention/ comparator)	\% female	Age mean (SD) / Median (IQR)	Severity of disease	Intervention (study arms)	Comparator	Cointerventions	Outcomes reported	Funding source
						had a blood oxygen saturation <94\% on ambient air but were excluded if they required continuous positive airway pressure, bilevel positive airway pressure, or mechanical ventilation	sustained fever or worsening status on the 7-category ordinal scale), an additional infusion could be administered 8 to 24 hours after the first			Time to hospital discharge or ready for discharge (days) Time to improvemen t in ordinal clinical status to Day 28 (days) Adverse events	
Salvara ni/ 2020^{6}	Italy/24 hospitals	RCT	126 (60/66)	38.9	Median (IQR): 60.0 (53.0- 72.0)	Hospitalized patients with instrumental diagnosis of COVID-19 pneumonia confirmed by positive reversetranscriptase polymerase chain reaction as- say for SARS-CoV-2 in a respiratory tract specimen. Other inclusion criteria were the presence of acute respiratory failure	TCZ ($8 \mathrm{mg} / \mathrm{kg}$ infusion, maximum 800 mg) followed by a second dose after 12 hours	(1) SoC	HCQ , heparin and LMWH, antiretrovirals , AZ	Mortality (Day 30) Clinical worsening at day 14 Discharge at day 30 Admissions to ICU Day 30 Adverse events	Italian Ministry of Health "Fondi Ricerca Corrente Linea 1, progetto 4" Roche provided the drug and its distribution to the centers

Study/ year	Country/ Hospital	Study design	N subjects (intervention/ comparator)	\% female	Age mean (SD) / Median (IQR)	Severity of disease	Intervention (study arms)	Comparator	Cointerventions	Outcomes reported	Funding source
						with a partial pressure of arterial oxygen to fraction of inspired oxygen (PaO2/FIO2) ratio between 200 and $300 \mathrm{~mm} / \mathrm{Hg}$, an inflammatory phenotype defined by a temperature greater than 38 ${ }^{\circ} \mathrm{C}$ during the last 2 days, and/or serum C-reactive protein (CRP) levels of 10 $\mathrm{mg} / \mathrm{dL}$ or greater and/or CRP level increased to at least twice the admission measurement					
$\begin{aligned} & \hline \text { Stone/ } \\ & 2020^{7} \end{aligned}$	USA/ 7 hospitals	RCT	243 (161/82)	42	Median (IQR): 59.8 (45.3- 69.4)	SARS-CoV-2 infection confirmed by either nasopharyngeal swab polymerase chain reaction or serum IgM antibody assay. Patients had to have at least two	TCZ $(8 \mathrm{mg} / \mathrm{kg}$ infusion, maximum 800 mg)	(1) SoC	Remdesivir, antiviral therapy, HCQ, glucocorticoi ds	Mortality (Day 28) Ventilation Clinical worsening on ordinal scale	Genentech

Study/ year	Country/ Hospital	Study design	N subjects (intervention/ comparator)	$\begin{aligned} & \hline \% \\ & \text { female } \end{aligned}$	Age mean (SD) / Median (IQR)	Severity of disease	Intervention (study arms)	Comparator	Cointerventions	Outcomes reported	Funding source
						of the following signs: fever (body temperature $>38^{\circ} \mathrm{C}$) within 72 hours before enrollment, pulmonary infiltrates, or a need for supplemental oxygen in order to maintain an oxygen saturation higher than 92\%. At least one of the following laboratory criteria also had to be fulfilled: a Creactive protein level higher than 50 mg per liter, a ferritin level higher than 500 ng per milliliter, a d-dimer level higher than 1000 ng per milliliter, or a lactate dehydrogenase level higher than 250 U per liter				Hospital initial discharge Adverse events	
$\begin{aligned} & \hline \text { Veiga/ } \\ & 2021^{8} \end{aligned}$	Brazil/ 9 hospitals	RCT	129	32	Mean (SD): 57 (14)	Severe or critical COVID-19 adult patients with a positive RT-PCR	TCZ $(8 \mathrm{mg} / \mathrm{kg}$ infusion,	SOC	Co treatments or previous treatments	Mortality at day 28	Beneficência Portuguesa de São Paulo

Study/ year	Country/ Hospital	Study design	N subjects (intervention/ comparator)	$\begin{aligned} & \hline \% \\ & \text { female } \end{aligned}$	Age mean (SD) / Median (IQR)	Severity of disease	Intervention (study arms)	Comparator	Cointerventions	Outcomes reported	Funding source
						with symptoms for 3 or more days; with evidence of pulmonary infiltrates confirmed by chest CT or x-ray and receiving supplemental 02 to maintain 02 > 93% or had been on MV for < 24 hours before analysis	maximum 800 mg)		could include, hydroxychlor oquine, azithromycin, steroids, other immunosuppr essants, heparin; remdesivir was not available	In hospital mortality Clinical status at day 15 and day 29 on 7-level ordinal scale; composite of death or mechanical ventilation Duration of hospital stay Ventilator free days within 29 days Time to independenc e from supplement al oxygen	

RT-PCR: reverse transcriptase polymerase chain reaction; TCZ: tocilizumab; SoC: standard of care; CP: convalescent plasma

IDSA Guideline on the Treatment and Management of COVID-19

Supplementary Materials

Figure s6a. Forest plot for the outcome of mortality for tocilizumab vs. no tocilizumab

Figure s6b. Forest plot for the outcome of mortality for tocilizumab vs. no tocilizumab (sensitivity analysis for patients on mechanical ventilation for <24 hours)

IDSA Guideline on the Treatment and Management of COVID-19

Supplementary Materials

Figure s6c. Forest plot for the outcome of clinical deterioration for tocilizumab vs. no tocilizumab

DSA Guideline on the Treatment and Management of COVID-19

Supplementary Materials

Figure s6d. Forest plot for the outcome of severe adverse events for tocilizumab vs. no tocilizumab

IDSA Guideline on the Treatment and Management of COVID-19

Supplementary Materials

Table s14. Risk of bias for randomized controlled studies (tocilizumab vs. no tocilizumab)

Study	Random sequence generation	Allocation concealment	Blinding of participants and personnel	Blinding of outcome assessment	Incomplete outcome data	Selective reporting
Hermine 2020^{1}						
Horby 2021^{2}						
REMAP-CAP Investigators 2021^{3}						
Rosas 2020^{4}						
Salama 2021^{5}						
Salvarani 2020^{6}						
Stone 2020^{7}						
Veiga 2021^{8}						

```
Low

\section*{References}
1. Hermine O, Mariette X, Tharaux PL, et al. Effect of Tocilizumab vs Usual Care in Adults Hospitalized With COVID-19 and Moderate or Severe Pneumonia: A Randomized Clinical Trial. JAMA Intern Med 2020; 181(1): 32-40.
2. Horby PW, Pessoa-Amorim G, Peto L, et al. Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): preliminary results of a randomised, controlled, open-label, platform trial. Lancet 2021; 397(10285): 1637-45.
3. REMAP-CAP Investigators, Gordon AC, Mouncey PR, et al. Interleukin-6 Receptor Antagonists in Critically III Patients with Covid-19. N Engl J Med 2021; 384(16): 1491-502.
4. Rosas I, Bräu N, Waters M, et al. Tocilizumab in hospitalized patients with COVID-19 pneumonia. medRxiv 2020: Available at: https://doi.org/10.1101/2020.08.27.20183442 [Preprint 12 September 2020].
5. Salama C, Han J, Yau L, et al. Tocilizumab in Patients Hospitalized with Covid-19 Pneumonia. N Engl J Med 2021; 384(1): 20-30.
6. Salvarani C, Dolci G, Massari M, et al. Effect of Tocilizumab vs Standard Care on Clinical Worsening in Patients Hospitalized With COVID-19 Pneumonia: A Randomized Clinical Trial. JAMA Intern Med 2020; 181(1): 24-31.
7. Stone JH, Frigault MJ, Serling-Boyd NJ, et al. Efficacy of Tocilizumab in Patients Hospitalized with Covid-19. N Engl J Med 2020; 383: 2333-44.
8. Veiga VC, Prats J, Farias DLC, et al. Effect of tocilizumab on clinical outcomes at 15 days in patients with severe or critical coronavirus disease 2019: randomised controlled trial. BMJ 2021; 372: n84.

IDSA Guideline on the Treatment and Management of COVID-19

\section*{Convalescent Plasma}

Table s15. Should patients (hospitalized or ambulatory) with COVID-19 receive treatment with convalescent plasma vs. no convalescent plasma?
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & \begin{tabular}{l}
Country/ \\
Hospital
\end{tabular} & Study design & N subjects (intervention / comparator) & \%
female & Age mean (SD) / Median (IQR) & Severity of disease & Intervention (study arms) & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline \begin{tabular}{l}
Agarwal/ \\
\(2020^{1}\)
\end{tabular} & \begin{tabular}{l}
India/ 39 \\
tertiary \\
care \\
hospitals
\end{tabular} & RCT & 464 (235/229) & 23.7 & \begin{tabular}{l}
Median : 52 \\
(42-60)
\end{tabular} & \begin{tabular}{l}
Hospitalized patients with moderate disease defined as having \(\mathrm{PaO}_{2} / \mathrm{FiO}_{2}\) \\
between 200-300 \\
mmHg , or respiratory rate \(>24 /\) min with \(\mathrm{SpO}_{2}<94 \%\) on RA
\end{tabular} & \begin{tabular}{l}
CP: \\
2 units of ABOcompatible \(\mathrm{CP}, 200 \mathrm{~mL}\) each, infused 24 hours apart
\end{tabular} & (1) SoC & Antivirals, broad spectrum antibiotics, immunomodulat ors, other supportive management per institutional protocol, dictated by best available evidence at the time and guidance issued by Indian government & \begin{tabular}{l}
Composite of progression to severe disease or all-cause mortality at day 28 \\
Symptom resolution \\
Oxygen requirement \\
Duration of respiratory support \\
Clinical status \\
Biomarker levels \\
Adverse events
\end{tabular} & Indian Counci of Medical Research \\
\hline AlQahtani/ \(2021^{2}\) & Bahrain/ 2 medical centers & RCT & 40 (20/20) & 20.0 & \begin{tabular}{l}
Interve ntion: \\
Mean of 52.6 \\
(14.9)
\end{tabular} & Hospitalized patients with hypoxia \(\left(\mathrm{SpO}_{2} \leq\right.\) \(92 \%\) on air, or \(\mathrm{PaO}_{2}<60 \mathrm{mmHg}\), or \(\mathrm{PaO}_{2} / \mathrm{FiO}_{2} \leq 300\) & \begin{tabular}{l}
CP: \\
2 units of ABOcompatible \(\mathrm{CP}, 200 \mathrm{~mL}\)
\end{tabular} & (1) SoC & Standard supportive treatment, including antipyretics, antivirals, & \begin{tabular}{l}
Invasive or noninvasive ventilation \\
Duration of ventilation
\end{tabular} & \begin{tabular}{l}
Ministry of Health Bahrain \\
College of Surgeons in
\end{tabular} \\
\hline
\end{tabular}

IDSA Guideline on the Treatment and Management of COVID-19
Supplementary Materials
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & Country/ Hospital & Study design & N subjects (intervention / comparator) & \[
\begin{aligned}
& \hline \% \\
& \text { female }
\end{aligned}
\] & Age mean (SD) / Median (IQR) & Severity of disease & Intervention (study arms) & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline & & & & & \begin{tabular}{l}
Control \\
: Mean \\
of 50.7 \\
(12.5)
\end{tabular} & \begin{tabular}{l}
mmHg ) and receiving supplemental oxygen \\
Excluded patients receiving invasive or non-invasive ventilation
\end{tabular} & \begin{tabular}{l}
each, infused \\
over 2 \\
successive days
\end{tabular} & & tocilizumab, and antibacterial medication & \begin{tabular}{l}
Biomarker levels \\
Adverse events
\end{tabular} & IrelandBahrain \\
\hline \begin{tabular}{l}
Avendaño- \\
Solà/ \(2021^{3}\)
\end{tabular} & \begin{tabular}{l}
Spain/ 14 \\
hospitals
\end{tabular} & RCT & 350 (179/171) & 34.6 & \[
\begin{aligned}
& \hline \text { Median } \\
& : 62.0 \\
& (53.0- \\
& 75.0)
\end{aligned}
\] & \begin{tabular}{l}
Hospitalized patients with radiographic evidence of pulmonary infiltrates or clinical evidence plus \(\mathrm{SpO}_{2} \leq 94 \%\) on RA \\
Excluded patients on mechanical ventilation or high-flow oxygen
\end{tabular} & \[
\begin{aligned}
& \hline \text { CP: } \\
& 1 \text { unit, 250- } \\
& 300 \mathrm{~mL}
\end{aligned}
\] & (1) SoC & Supportive therapy and specific therapy with off-label marketed medications according to local or national guidelines & \begin{tabular}{l}
Mortality at day 15 and 29 \\
Clinical status at day 15 \\
Length of hospitalization \\
Days free from mechanical ventilation or oxygen support \\
Adverse events
\end{tabular} & \begin{tabular}{l}
Government of Spain, Ministry of Science and Innovation \\
European Regional Development Fund
\end{tabular} \\
\hline Balcells/2021 & Single center, Santiago, Chile & RCT & 58 (28/30) & 50 & Mean age: 65.8 (range: 27-92) & Hospitalized patients > 18 years old who are less than 7 days from symptom onset with positive SARS-CoV-2 PCR or & \begin{tabular}{l}
Early \\
convalescent \\
(initiated at \\
enrollment) \\
plasma: 2 \\
units ( 200 ml \\
each)
\end{tabular} & Deferred convalescen t plasma only if a prespecified worsening respirator function & Antivirals, antibiotics, heparin thromboprophyl axis, and immunomodulat ors & Composite of Inhospital mortality, mechanical ventilation, or hospital stay > 14 days & \begin{tabular}{l}
Fondo de \\
Adopción \\
Tecnológica \\
SiEmpre, \\
SOFOFA Hub, and \\
Ministerio de Ciencia,
\end{tabular} \\
\hline
\end{tabular}

IDSA Guideline on the Treatment and Management of COVID-19
Supplementary Materials
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & Country/ Hospital & Study design & N subjects (intervention / comparator) & \% female & \begin{tabular}{l}
Age mean (SD) / \\
Median (IQR)
\end{tabular} & Severity of disease & \begin{tabular}{l}
Intervention \\
(study arms)
\end{tabular} & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline & & & & & & \begin{tabular}{l}
pending PCR \\
results with \\
imaging consistent \\
with COVID-19 \\
pneumonia and confirmed COVID- \\
19 close contact \\
and CALL score \(\geq 9\) \\
points and \\
baseline ECOG \\
performance \\
status of 0-2
\end{tabular} & \begin{tabular}{l}
separated by \\
24 hours
\end{tabular} & \begin{tabular}{l}
(Pa02/FiO2 < \\
200) or if \\
still in \\
hospital for \\
> 7 days \\
after \\
enrollment; \\
2 units \\
(200ml \\
each) \\
separated \\
by 24 hours
\end{tabular} & & \begin{tabular}{l}
30 day mortality \\
Days of mechanical ventilation, high flow nasal cannula \\
Viral clearance \\
Time to respiratory failure development \\
Serious adverse events \\
TRAILI
\end{tabular} & Tecnología, Conocimiento e Innovación, Chile \\
\hline Bégin/ \(2021{ }^{5}\) & \begin{tabular}{l}
Canada \\
(47 sites) \\
US (3 \\
sites)
\end{tabular} & RCT & 938 (625/313) & 40.9 & \[
\begin{aligned}
& \text { Median } \\
& : 69 \\
& (58-79)
\end{aligned}
\] & Hospitalized patient with confirmed COVID19 infection on supplemental oxygen, and within 12 days of symptom onset & \begin{tabular}{l}
1 unit of 500 \\
mL of ABO- \\
compatible CP \\
from one \\
donor, or 2 \\
units of 250 \\
mL of CP from \\
two donors
\end{tabular} & Soc & None & \begin{tabular}{l}
All-cause mortality within 30 days \\
Intubation or death within 30 days \\
Time to intubation or death \\
Ventilator-free days \\
Length of stay \\
Need for organ support \\
QALY
\end{tabular} & \begin{tabular}{l}
Canadian Institutes of Health Research \\
Ontario COVID-19 \\
Rapid Research Fund \\
Toronto COVID-19 \\
Action Initiative 2020
\end{tabular} \\
\hline
\end{tabular}

IDSA Guideline on the Treatment and Management of COVID-19
Supplementary Materials
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & \begin{tabular}{l}
Country/ \\
Hospital
\end{tabular} & Study design & N subjects (intervention / comparator) & \% female & \begin{tabular}{l}
Age mean (SD) / \\
Median (IQR)
\end{tabular} & Severity of disease & Intervention (study arms) & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline & & & & & & & & & & Adverse effects & \begin{tabular}{l}
Fondation du CHU SteJustine \\
Ministére de l'Economie et de I'Innovation du Québec \\
Fonds de Recherche du Québec \\
University \\
Health \\
Network \\
Emergent \\
Access \\
Innovation \\
Fund \\
University \\
Health \\
Academic \\
Health Science \\
Centre \\
Alternative \\
Funding Plan
\end{tabular} \\
\hline
\end{tabular}

IDSA Guideline on the Treatment and Management of COVID-19
Supplementary Materials
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & Country/ Hospital & Study design & N subjects (intervention / comparator) & \% female & \begin{tabular}{l}
Age mean (SD) / \\
Median (IQR)
\end{tabular} & Severity of disease & Intervention (study arms) & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline & & & & & & & & & & & \begin{tabular}{l}
Saskatchewan \\
Ministry of \\
Health \\
University of \\
Alberta \\
Hospital \\
Foundation \\
Alberta Health \\
Services \\
COVID-19 \\
Foundation \\
Competition \\
Sunnybrook \\
Health \\
Sciences \\
Centre \\
Foundation \\
Fondation du \\
CHUM \\
Ottawa \\
Hospital \\
Academic \\
Medical \\
Organization \\
Ottawa \\
Hospital \\
Foundation
\end{tabular} \\
\hline
\end{tabular}

IDSA Guideline on the Treatment and Management of COVID-19
Supplementary Materials
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & \begin{tabular}{l}
Country/ \\
Hospital
\end{tabular} & Study design & N subjects (intervention / comparator) & \begin{tabular}{l}
\[
\%
\] \\
female
\end{tabular} & Age mean (SD) / Median (IQR) & Severity of disease & Intervention (study arms) & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline & & & & & & & & & & & \begin{tabular}{l}
COVID-19 \\
Research Fund \\
Sinai Health System Foundation \\
McMaster University
\end{tabular} \\
\hline \begin{tabular}{l}
Bennett- \\
Guerrero/ \\
\(2021{ }^{6}\)
\end{tabular} & \begin{tabular}{l}
US/ \\
Stony \\
Brook \\
Universit \\
y \\
Hospital
\end{tabular} & RCT & 74 (59/15) & 40.5 & \begin{tabular}{l}
Interve ntion: \\
Mean of 67 \\
(15.8) \\
Control \\
: Mean of 64 \\
(17.4)
\end{tabular} & Patients hospitalized with positive SARS-CoV-2 PCR test & 2 units of ABOcompatible CP (about 480 mL ). Each unit infused over 2-14 hours & 2 units of standard plasma & Therapies for COVID-19 treatment at discretion of providers, including glucocorticoids, remdesivir, hydroxychloroq uine, tocilizumab, sarilumab & \begin{tabular}{l}
All-cause mortality at 90 days \\
Ventilator-free days at day 28 \\
WHO clinical severity scale \\
Antibody levels \\
Adverse effects
\end{tabular} & Stony Brook Medicine \\
\hline \[
\begin{aligned}
& \text { Denkinger/ } \\
& 2023^{7}
\end{aligned}
\] & Germany & RCT & 134 (68/66) & 32.1 & \begin{tabular}{l}
Mean \\
(SD): \\
68.5 \\
(11.3)
\end{tabular} & \begin{tabular}{l}
PCR-confirmed infection with SARS-CoV-2 in a respiratory tract sample \\
Oxygen saturation on ambient air of
\end{tabular} & Received two units of ABOcompatible plasma (238337 ml each from two different donors) on the day of & \begin{tabular}{l}
None \\
(delayed intervention )
\end{tabular} & \begin{tabular}{l}
Anti- \\
inflammatories, antiviral, antibiotics, anticoagulants, other concomitant
\end{tabular} & \begin{tabular}{l}
Clinical improvement assessed using a seven-point ordinal scale \\
Time to discharge
\end{tabular} & \begin{tabular}{l}
Federal \\
Ministry of Education and Research, Germany (emergency
\end{tabular} \\
\hline
\end{tabular}

IDSA Guideline on the Treatment and Management of COVID-19
Supplementary Materials
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & Country/ Hospital & Study design & N subjects (intervention / comparator) & \begin{tabular}{l}
\% \\
female
\end{tabular} & Age mean (SD) / Median (IQR) & Severity of disease & Intervention (study arms) & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline & & & & & & \begin{tabular}{l}
\(\leq 94 \%\) or a partial oxygen pressure inspired oxygen fraction ratio of \(<300 \mathrm{mmHg}\) \\
Meeting at least one high-risk criterion to define the patient group (see the study protocol described in the \\
Supplementary Information): Group 1 (cancer): patients with preexisting or concurrent hema tological cancer and/or receiving active cancer therapy for any cancer (including chemotherapy, radiotherapy and surgical treat ments) within the past 24 months Group 2 (immunosuppressi on): patients experiencing chronic
\end{tabular} & randomization (day 1) and on a later day intravenously & & medications not detailed & \begin{tabular}{l}
Overall survival \\
Adverse Events
\end{tabular} & \begin{tabular}{l}
research \\
funding FKZ)
\end{tabular} \\
\hline
\end{tabular}

IDSA Guideline on the Treatment and Management of COVID-19
Supplementary Materials
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & Country/ Hospital & Study design & N subjects (intervention / comparator) & \[
\begin{aligned}
& \hline \% \\
& \text { female }
\end{aligned}
\] & Age mean (SD) / Median (IQR) & Severity of disease & Intervention (study arms) & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline & & & & & & \begin{tabular}{l}
immunosuppressio \\
n, either \\
pharmacological \\
or due to \\
underlying \\
diseases not \\
meeting group 1 \\
criteria \\
Group 3 \\
(lymphopenia/elev ated d-dimers): \\
patients aged >50 \\
years and \(\leq 75\) \\
years and not \\
meeting group 1 \\
or 2 criteria who \\
had lym- phopenia \\
( \(<0.8 \times 10^{9}\) cells \\
per liter) and/or d- \\
dimers (>1 \(\mu \mathrm{g}\) \\
\(\mathrm{ml}^{-1}\) ) Group 4 \\
(age >75 years): \\
patients aged >75 \\
years and not \\
meeting group 1, 2 \\
or 3 criteria
\end{tabular} & & & & & \\
\hline Gharbharan/
\[
2021{ }^{10}
\] & \begin{tabular}{l}
Netherla \\
nds/ 14 \\
secondar \\
\(y\) and \\
academi
\end{tabular} & RCT & \begin{tabular}{l}
86 \\
(43/43)
\end{tabular} & 28 & \[
\begin{aligned}
& \text { Median } \\
& : 63 \\
& (56-74)
\end{aligned}
\] & Eligible patients were at least 18 years, admitted to a study site for COVID-19 and had clinical COVID-19 disease proven by & \begin{tabular}{l}
CP: 300ml of plasma with anti-SARS- \\
CoV-2 \\
neutralizing antibody titers of at
\end{tabular} & (1) SoC & Off-label use of EMA-approved drugs (e.g., chloroquine, azithromycin, lopinavir/ritonav & \begin{tabular}{l}
Mortality \\
Improvement in WHO COVID-19 disease severity score on day 15
\end{tabular} & Erasmusfound ation \\
\hline
\end{tabular}

IDSA Guideline on the Treatment and Management of COVID-19
Supplementary Materials
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & \begin{tabular}{l}
Country/ \\
Hospital
\end{tabular} & Study design & N subjects (intervention / comparator) & \[
\begin{aligned}
& \hline \% \\
& \text { female }
\end{aligned}
\] & Age mean (SD) / Median (IQR) & Severity of disease & Intervention (study arms) & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline & c hospitals & & & & & \begin{tabular}{l}
a positive SARS- \\
CoV-2 reverse transcriptase polymerase chain reaction (RT-PCR) test in the previous 96 hours
\end{tabular} & \begin{tabular}{l}
least 1:80; \\
"Patients \\
without a \\
clinical \\
response and \\
a persistently \\
positive RT- \\
PCR could \\
receive a \\
second \\
plasma unit \\
after five \\
days."
\end{tabular} & & ir, tocilizumab, anakinra) & \begin{tabular}{l}
Time to discharge \\
Hazard ratio/95\% CI
\end{tabular} & \\
\hline Joyner, Senefeld, et al/ \(2020^{11}\) & \begin{tabular}{l}
USA/280 \\
7 acute \\
care \\
facilities \\
in the US \\
and \\
territorie \\
s
\end{tabular} & \begin{tabular}{l}
Open- \\
label, \\
Expan \\
ded \\
Access \\
Progra \\
m
\end{tabular} & 35,322 & 39.7 & N/A & Hospitalized with a laboratory confirmed diagnosis of infection with SARS-CoV-2, and had (or were judged by a healthcare provider to be at high risk of progression to) severe or lifethreatening COVID-19 & IV Minimum of one unit approximately 200 mL = one unit (Low IgG, Medium IgG and High IgG) & N/A & angiotensin receptor blocker, ACE inhibitor, AZ, remdesivir, steroids, chloroquine, HCQ & \begin{tabular}{l}
Mortality at Day 7 \\
(Days to Transfusion \\
\(\leq 3\) days and 4+ \\
Days) \\
Mortality at Day 30 \\
(Days to Transfusion \\
\(\leq 3\) days and 4+ \\
Days)
\end{tabular} & \begin{tabular}{l}
Department of Health and Human Services \\
Office of the Assistant Secretary Preparedness and Response \\
Biomedical \\
Advanced \\
Research and \\
Development \\
National \\
Center for
\end{tabular} \\
\hline
\end{tabular}

IDSA Guideline on the Treatment and Management of COVID-19
Supplementary Materials
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & Country/ Hospital & Study design & N subjects (intervention / comparator) & \begin{tabular}{l}
\% \\
female
\end{tabular} & \begin{tabular}{l}
Age \\
mean \\
(SD) / \\
Median \\
(IQR)
\end{tabular} & Severity of disease & Intervention (study arms) & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline & & & & & & & & & & & \begin{tabular}{l}
Advancing \\
Translational \\
Sciences \\
(NCATS) grant \\
National \\
Heart, Lung, \\
and Blood \\
Institute \\
(NHLBI) \\
National \\
Institute of \\
Diabetes and \\
Digestive and \\
Kidney \\
Diseases \\
(NIDDK) \\
Natural \\
Sciences and \\
Engineering \\
Research \\
Council of \\
Canada \\
(NSERC) \\
National \\
Institute of \\
Allergy and \\
Infectious
\end{tabular} \\
\hline
\end{tabular}

IDSA Guideline on the Treatment and Management of COVID-19
Supplementary Materials
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & \begin{tabular}{l}
Country/ \\
Hospital
\end{tabular} & Study design & N subjects (intervention / comparator) & \% female & \begin{tabular}{l}
Age mean \\
(SD) / \\
Median (IQR)
\end{tabular} & Severity of disease & Intervention (study arms) & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline & & & & & & & & & & & \begin{tabular}{l}
Disease \\
(NIAID) \\
National Heart \\
Lung and \\
Blood \\
Institute \\
National Institute on \\
Aging (NIA) \\
Schwab \\
Charitable \\
Fund (Eric E \\
Schmidt, \\
Wendy \\
Schmidt \\
donors) \\
United Health \\
Group \\
National \\
Basketball \\
Association \\
(NBA) \\
Millennium \\
Pharmaceutic als
\end{tabular} \\
\hline
\end{tabular}

IDSA Guideline on the Treatment and Management of COVID-19
Supplementary Materials
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & Country/ Hospital & Study design & N subjects (intervention / comparator) & \begin{tabular}{l}
\% \\
female
\end{tabular} & Age mean (SD) / Median (IQR) & Severity of disease & Intervention (study arms) & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline & & & & & & & & & & & \begin{tabular}{l}
Octapharma USA, Inc \\
The Mayo Clinic
\end{tabular} \\
\hline \begin{tabular}{l}
Joyner, \\
Wright, et al/ \\
\(2020^{12}\)
\end{tabular} & \begin{tabular}{l}
USA/ \\
Over \\
2,000 \\
acute \\
care \\
facilities \\
registere \\
d
\end{tabular} & \begin{tabular}{l}
Retros \\
pectiv \\
e \\
cohort
\end{tabular} & 5000 & 36.5 & \begin{tabular}{l}
Median \\
: 62.3 \\
(18.5- \\
97.8)
\end{tabular} & \begin{tabular}{l}
Severe or lifethreatening COVID-19 or judged by a healthcare provider to be at high risk of progression to severe or lifethreatening COVID-19 \\
Severe or lifethreatening COVID-19 is defined by one or more of the following: dyspnea, respiratory frequency \(\geq 30\) breaths/min, \(\mathrm{SpO}_{2}\) \(\leq 93 \%\), lung infiltrates >50\% within 24-28h of enrollment,
\end{tabular} & IV 200-500 mL ABOcompatible COVID-19 CP & N/A & N/A & \begin{tabular}{l}
Mortality over first 7 days after CP transfusion \\
Adverse events
\end{tabular} & \begin{tabular}{l}
Mayo Clinic \\
Biomedical \\
Advanced \\
Research and \\
Development \\
Authority \\
National \\
Center for \\
Advancing \\
Translational \\
Sciences \\
National \\
Heart, Lung, \\
and Blood \\
Institute \\
National \\
Institute of \\
Diabetes and \\
Digestive and \\
Kidney \\
Diseases
\end{tabular} \\
\hline
\end{tabular}

IDSA Guideline on the Treatment and Management of COVID-19
Supplementary Materials
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & \begin{tabular}{l}
Country/ \\
Hospital
\end{tabular} & Study design & N subjects (intervention / comparator) & \% female & \begin{tabular}{l}
Age mean (SD) / \\
Median (IQR)
\end{tabular} & Severity of disease & \begin{tabular}{l}
Intervention \\
(study arms)
\end{tabular} & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline & & & & & & respiratory failure, septic shock, and multiple organ dysfunction or failure & & & & & \begin{tabular}{l}
Natural \\
Sciences and \\
Engineering \\
Research \\
Council \\
National \\
Institute of \\
Allergy and \\
Infectious \\
Diseases \\
Schwab \\
Charitable \\
Fund \\
United Health Group \\
National \\
Basketball \\
Association \\
(NBA) \\
Millennium \\
Pharmaceutic \\
als, \\
Octopharma USA, Inc
\end{tabular} \\
\hline
\end{tabular}

IDSA Guideline on the Treatment and Management of COVID-19
Supplementary Materials
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & Country/ Hospital & Study design & N subjects (intervention / comparator) & \[
\begin{aligned}
& \hline \% \\
& \text { female }
\end{aligned}
\] & Age mean (SD) / Median (IQR) & Severity of disease & Intervention (study arms) & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline Kirenga/
\[
2021^{13}
\] & \begin{tabular}{l}
Uganda/ \\
Mulago \\
National \\
Referral \\
Hospital
\end{tabular} & RCT & 136 (69/67) & 28.7 & \begin{tabular}{l}
Median \\
: 50 \\
(38.5- \\
62)
\end{tabular} & Patients with positive SARS-CoV-2 PCR test & 2 units of ABOcompatible CP infused over 2-3 hours at a rate of 1.4 to \(2 \mathrm{~mL} / \mathrm{min}\), with 3 hours between infusions. & \begin{tabular}{l}
SoC \\
(Ugandan \\
National Guidelines)
\end{tabular} & Most recent Uganda National Treatment Guidelines available (last updated April 2020) include hydroxychloroq uine, vitamin C, zinc, thiamine, empiric antibiotics, heparin, and statins & \begin{tabular}{l}
Time to viral clearance \\
Time to symptom resolution \\
Clinical status on WHO ordinal scale \\
Progression to severe/critical condition \(\left(\mathrm{SpO}_{2}\right.\) <93\% or needing supplemental \(\mathrm{O}_{2}\) ) \\
Adverse events
\end{tabular} & \begin{tabular}{l}
Makerere \\
University \\
Research and Innovation Fund
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { Korley/ } 2021 \\
& 14
\end{aligned}
\] & \begin{tabular}{l}
USA/ 48 \\
Emergen \\
cy \\
departm \\
ents \\
across 21 \\
states
\end{tabular} & RCT & 511 (257/254) & 54 & \begin{tabular}{l}
Median : 54 \\
(41-62)
\end{tabular} & Positive SARS-CoV-2 NAAT, symptom onset within 7 days of enrollment, and either greater than 50 years old or have at least 1 risk factor for disease progression & 1 unit of hightiter ABOcompatible CP & Placebo & None & \begin{tabular}{l}
All-cause mortality within 30 days \\
Disease progression within 15 days \\
WHO illness severity scale \\
Time until worsening of symptoms
\end{tabular} & \begin{tabular}{l}
National Heart, Lung, and Blood Institute \\
National Institute of Neurological Disorders and Stroke \\
Biomedical \\
Advanced \\
Research and Development
\end{tabular} \\
\hline
\end{tabular}

IDSA Guideline on the Treatment and Management of COVID-19
Supplementary Materials
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & Country/ Hospital & Study design & N subjects (intervention / comparator) & \[
\begin{aligned}
& \hline \% \\
& \text { female }
\end{aligned}
\] & Age mean (SD) / Median (IQR) & Severity of disease & Intervention (study arms) & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline & & & & & & & & & & \begin{tabular}{l}
Hospital-free days within 15 days \\
Adverse events
\end{tabular} & Authority Operation Warp Speed \\
\hline \[
\begin{aligned}
& \text { Körper/ } 2021 \\
& 15
\end{aligned}
\] & \begin{tabular}{l}
Germany \\
(13 \\
hospitals )
\end{tabular} & RCT & 105 (53/52) & 26.7 & \begin{tabular}{l}
Median : 60 \\
(53-66)
\end{tabular} & Patients with a positive SARS-CoV-2 PCR test between 18-75 years old, with severe COVID-19 disease (RR \(\geq 30\) on ambient air, requirement of any respiratory support, or need of ICU treatment) & One unit of CP given on day 1,3 and 5 . CP collected from donors had a 50\% plaque reduction neutralization test titer of at least 1:20. & Soc & Other antiviral treatments and/or supportive treatments according to institutional protocols & \begin{tabular}{l}
Mortality \\
Treatment success day 21 (survival, no ventilation support, no ICU treatment, and \(R R<30\) ) \\
Time to clinical improvement of \(\geq 2\) points on an ordinal severity scale \\
Duration of ventilatory support \\
Length of hospitalization \\
Time to ICU discharge \\
Time until negative SARS-CoV-2 PCR \\
Adverse events
\end{tabular} & \begin{tabular}{l}
German \\
Federal \\
Ministry of Health
\end{tabular} \\
\hline
\end{tabular}

IDSA Guideline on the Treatment and Management of COVID-19

\section*{Supplementary Materials}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & Country/ Hospital & Study design & N subjects (intervention / comparator) & \[
\begin{aligned}
& \hline \% \\
& \text { female }
\end{aligned}
\] & \begin{tabular}{l}
Age \\
mean \\
(SD) / \\
Median \\
(IQR)
\end{tabular} & Severity of disease & Intervention (study arms) & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline \[
\begin{aligned}
& \text { Lacombe/ } \\
& 2022^{16}
\end{aligned}
\] & France & RCT & 120 (60/60) & 37 & \begin{tabular}{l}
Median (IQR): \\
Convale \\
scent \\
plasma: \\
64.5 \\
(55.7- \\
76.6) \\
Usual \\
care: \\
67.0 \\
(58.3- \\
78.9)
\end{tabular} & \begin{tabular}{l}
Positive SARS- \\
CoV-2 \\
nasopharyngeal \\
PCR and/or CT \\
scan prior to randomization, onset of symptoms <9 days \\
Illness of mild or moderate severity according to the WHO clinical progression scale (CPS) \\
(hospitalized, mild disease: no oxygen need; hospitalized, moderate disease: oxygen needed)
\end{tabular} & \begin{tabular}{l}
4 units of plasma over 2 days ( \(\approx 840\) ml ) \\
After the first 3 patients received 2 units of ABOcompatible CCP as per protocol, all subsequent patients randomized to the CCP arm received 4 units of CCP (200-220 ml/unit, 2 units/day over 2 consecutive days) provided by different donors
\end{tabular} & None & Usual care: the use of dexamethasone, tocilizumab, supportive care including supplemental oxygen, antivirals, and antibiotics & \begin{tabular}{l}
Proportion of patients with a WHO-Clinical Progression Score (CPS) \(\geq 6\) on the \(10-\) point scale on day 4 \\
Survival without ventilation or additional immunomodulatory treatment by day 14 \\
WHO-Clinical Progression Score (CPS) at 4, 7 and 14 days after randomization, \\
Overall survival at 14 and 28 days after randomization \\
Time to discharge \\
Time to oxygen supply independency \\
Evolution of a series of biological parameters at days
\end{tabular} & \begin{tabular}{l}
Programme \\
Hospitalier de \\
Recherche \\
Clinique / \\
DGOS; \\
Fondation \\
pour la \\
Recherche \\
Médicale ; \\
Sorbonne \\
Université \\
Paris; \\
Emergency \\
support \\
instrument, \\
DG Santé, \\
European \\
Commission
\end{tabular} \\
\hline
\end{tabular}

IDSA Guideline on the Treatment and Management of COVID-19
Supplementary Materials
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & \begin{tabular}{l}
Country/ \\
Hospital
\end{tabular} & Study design & N subjects (intervention / comparator) & \begin{tabular}{l}
\% \\
female
\end{tabular} & Age mean (SD) / Median (IQR) & Severity of disease & Intervention (study arms) & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline & & & & & & & & & & 4, 7 and 14 after randomization & \\
\hline Li/ \(2020{ }^{17}\) & China/ 7 medical centers & RCT & 103 (52/51) & 41.7 & \[
\begin{aligned}
& \text { Median } \\
& : 70 \\
& (62-78)
\end{aligned}
\] & \begin{tabular}{l}
Hospitalized patients with severe and/or lifethreatening COVID-19: \\
Severe: \\
respiratory \\
distress ( \(\geq 30\) \\
breaths/min; in resting state, \(\mathrm{SpO}_{2}\) of \(93 \%\) or less on room air; or \(\mathrm{PaO}_{2} / \mathrm{FIO}_{2}\) of 300 or less; \\
Life-threatening: respiratory failure requiring mechanical ventilation; shock; or other organ failure (apart from lung) requiring ICU monitoring
\end{tabular} & \begin{tabular}{l}
CP: \\
transfusion dose approximately 4 to \(13 \mathrm{~mL} / \mathrm{kg}\); approximately 10 mL for the first 15 minutes, which was then increased to approximately 100 mL per hour with close monitoring
\end{tabular} & (1) SoC & \begin{tabular}{l}
Possible \\
treatments included antiviral medications, antibacterial medications, steroids, human immunoglobulin , Chinese herbal medicines, and other medications
\end{tabular} & \begin{tabular}{l}
Mortality at day 28 \\
Clinical improvement at day 28 \\
Time to clinical improvement (days) \\
Time from hospitalization to discharge \\
Adverse events
\end{tabular} & \begin{tabular}{l}
Chinese \\
Academy of \\
Medical \\
Sciences \\
Innovation \\
Fund for \\
Medical \\
Sciences \\
Nonprofit \\
Central \\
Research \\
Institute Fund \\
of Chinese \\
Academy of \\
Medical \\
Sciences
\end{tabular} \\
\hline
\end{tabular}

IDSA Guideline on the Treatment and Management of COVID-19
Supplementary Materials
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & Country/ Hospital & Study design & N subjects (intervention / comparator) & \[
\begin{aligned}
& \hline \% \\
& \text { female }
\end{aligned}
\] & Age mean (SD) / Median (IQR) & Severity of disease & Intervention (study arms) & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline Liu/ \(2020^{18}\) & \begin{tabular}{l}
USA/ \\
The \\
Mount \\
Sinai \\
Hospital
\end{tabular} & \begin{tabular}{l}
Retros \\
pectiv \\
e \\
cohort \\
with \\
matchi \\
ng
\end{tabular} & 39 & 36.0 & Mean:
\[
55 \text { (13) }
\] & Hospitalized patients; disease severity assessed by \(\mathrm{O}_{2}\) supplementation required and laboratory parameters & CP 2 units of ABO-type matched CP once, each unit 250 mL infused over 1 to 2 hrs & (1) SoC & Antimicrobial agents (AZ), broad spec antibiotics, HCQ ; investigational antivirals); therapeutic anticoagulation; antiinflammatory agents & \begin{tabular}{l}
Mortality \\
Worsened clinical condition by day 14 \\
Follow-up time \\
Hazard ratio for plasma
\end{tabular} & N/A \\
\hline \[
\begin{aligned}
& \text { Libster/ } 2021 \\
& 19
\end{aligned}
\] & \begin{tabular}{l}
Argentin a/ 13 \\
centers
\end{tabular} & RCT & 160 (80/80) & 62.5\% & \[
\begin{aligned}
& 77.2 \\
& (8.6)
\end{aligned}
\] & Ambulatory patients 65 or older with at least one of each sign or symptom in the following two categories for less than 48 hours: temp >37.5, unexplained sweating, or chills; and dry cough, dyspnea, fatigue, myalgia, anorexia, sore throat, dysgeusia, anosmia, or rhinorrhea. & Convalescent Plasma 250 ml with IgG titer >1:1000 against SARS-CoV-2 \(\times 1\) dose & Placebo & None & \begin{tabular}{l}
Mortality \\
Development of severe respiratory disease at day 15 \\
Life-threatening respiratory disease \\
Critical systemic illness
\end{tabular} & \begin{tabular}{l}
Bill and \\
Melinda Gates \\
Foundation \\
Fundación \\
INFANT \\
Pandemic \\
Fund
\end{tabular} \\
\hline
\end{tabular}

IDSA Guideline on the Treatment and Management of COVID-19
Supplementary Materials
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & Country/ Hospital & Study design & N subjects (intervention / comparator) & \[
\begin{aligned}
& \hline \% \\
& \text { female }
\end{aligned}
\] & Age mean (SD) / Median (IQR) & Severity of disease & Intervention (study arms) & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline \[
\begin{aligned}
& \text { O’Donnell/ } \\
& 2021^{20}
\end{aligned}
\] & \begin{tabular}{l}
5 \\
hospitals in New York City (USA) and Rio de Janeiro (Brazil)
\end{tabular} & RCT & 223 (150/73) & 34 & Median age: 61 years & Hospitalize d patients \(\geq 18\) years with positive SARS-CoV-2 within 14 days of randomization, with infiltrates on chest imaging and oxygen saturation \(\leq 94 \%\) on RA on oxygen, mechanical ventilation, or ECMO & A single unit of convalescent plasma given over 2 hours & Control & Patients could receive steroids, remdesivir, hydroxychloroq uine, and antibacterial agents & \begin{tabular}{l}
Time to clinical improvement \\
Clinical status at day 28 \\
Adverse events through day 28
\end{tabular} & Amazon Foundation \\
\hline Pouladzadeh
\[
\text { / } 202121
\] & \begin{tabular}{l}
Iran/ \\
Ravi \\
Hospital, \\
Ahvaz
\end{tabular} & RCT & 60 (30/30) & 45 & \begin{tabular}{l}
Interve \\
ntion: \\
Mean \\
of 53.5 \\
(10.3) \\
Control \\
: Mean \\
of 57.2 \\
(17)
\end{tabular} & Patients with a positive SARS-CoV-2 PCR test, positive changes on CT scan, were within 7 days of symptom onset, SpO2 <94\% on room air, and WHO severity score > 4 & One unit of CP given within 4 hours of admission. Second unit given at discretion of physician if no improvement & SoC & SoC included chloroquine phosphate and lopinavir/ritonav ir & \begin{tabular}{l}
2-month mortality \\
Length of hospitalization \\
Improvement in WHO severity score \\
Change in cytokine levels \\
Adverse effects
\end{tabular} & \begin{tabular}{l}
Ahvaz \\
University of Medical Sciences
\end{tabular} \\
\hline
\end{tabular}

IDSA Guideline on the Treatment and Management of COVID-19
Supplementary Materials
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & \begin{tabular}{l}
Country/ \\
Hospital
\end{tabular} & Study design & N subjects (intervention / comparator) & \[
\begin{aligned}
& \hline \% \\
& \text { female }
\end{aligned}
\] & Age mean (SD) / Median (IQR) & Severity of disease & Intervention (study arms) & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline Ray/ \(2020{ }^{22}\) & \begin{tabular}{l}
India/ ID \\
\& BG \\
Hospital, \\
Kolkata
\end{tabular} & RCT & 80 (40/40) & 28.8 & \begin{tabular}{l}
Female: \\
Mean \\
of 61.4 \\
(11.3) \\
Male: \\
Mean \\
of 61.4 \\
(12.2)
\end{tabular} & Hospitalized patients with severe disease (fever or suspected respiratory infection plus one of the following: respiratory rate >30/min, severe respiratory distress, or \(\mathrm{SpO}_{2}\) <90\% on RA) with mild-moderate ARDS \(\left(\mathrm{PaO}_{2} / \mathrm{FiO}_{2}\right.\) \(100-300 \mathrm{mmHg}\) ) not on mechanical ventilation & \begin{tabular}{l}
CP: \\
2 units of ABO-matched CP, 200 mL each, administered on 2 successive days
\end{tabular} & (1) SoC & \begin{tabular}{l}
Most patients received hydroxychloroq uine for 5 days, azithromycin for 5 days, ivermectin for 5 days, and doxycycline for 10 days. \\
Standard of care at trial site for patients with ARDS also included: corticosteroids and anticoagulation in addition to indicated supportive therapy. Several patients also received remdesivir and one patient received tocilizumab.
\end{tabular} & \begin{tabular}{l}
30-day mortality \\
\(\mathrm{SpO}_{2} / \mathrm{FiO}_{2}\) ratio over 10 days \\
Length of hospitalization \\
Biomarker levels
\end{tabular} & \begin{tabular}{l}
Council of \\
Scientific \\
Industrial \\
Research, \\
Government \\
of India \\
Fondation \\
Botnar
\end{tabular} \\
\hline
\end{tabular}

IDSA Guideline on the Treatment and Management of COVID-19

\section*{Supplementary Materials}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & Country/ Hospital & Study design & N subjects (intervention / comparator) & \[
\begin{aligned}
& \hline \% \\
& \text { female }
\end{aligned}
\] & Age mean (SD) / Median (IQR) & Severity of disease & Intervention (study arms) & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline \begin{tabular}{l}
RECOVERY \\
Collaborative \\
Group \\
(Horby)/ \\
\(2021{ }^{23}\)
\end{tabular} & \begin{tabular}{l}
United \\
Kingdom \\
/Nationa \\
I Health \\
Service \\
(NHS) \\
hospitals
\end{tabular} & RCT & \[
\begin{aligned}
& N=11558 \\
& (5795 / 5763)
\end{aligned}
\] & 36 & \begin{tabular}{l}
Mean: 63.5 \\
(14.7)
\end{tabular} & Hospitalized patients of any age with clinical suspected or laboratory confirmed SARS-CoV-2 & Usual care plus convalescent plasma, first unit of 275 ml convalescent plasma given as soon as possible after randomization and a second unit of 275 ml the following day (at least 12 hours after the first) & Usual care & Co-interventions according to main randomization and use of steroids were permitted; 93\% of participants in the CP arm received steroids vs \(92 \%\) of usual care participants & \begin{tabular}{l}
Mortality at day 28 \\
Time to hospital discharge \\
Receipt of mechanical ventilation or death \\
Transfusion elated adverse events at 72 hours \\
Cause-specific mortality \\
Major cardiac arrhythmia
\end{tabular} & UK Research and Innovation (Medical Research Council) and National Institute of Health Research \\
\hline \[
\begin{aligned}
& \text { Sekine/ } 2021 \\
& 24
\end{aligned}
\] & \begin{tabular}{l}
Brazil/ \\
Hospital \\
de \\
Clínicas \\
de Porto \\
Alegre
\end{tabular} & RCT & 160 (80/80) & 41.9 & \[
\begin{aligned}
& \text { Median } \\
& : 60.5 \\
& (48-68)
\end{aligned}
\] & Patients with positive SARS-CoV-2 PCR test and within 15 days of symptom onset, with severe disease (RR > 30 breaths/min, SpO2 \(\leq 93 \%\) in RA, PaO2/FIO2 \(\leq 300\), supplemental oxygen) & 2 infusions 48 hours apart of 300 mL of CP & SoC & Glucocorticoids, "other immunomodulat ors", antibiotics, antivirals & \begin{tabular}{l}
All-cause mortality at 14 and 28 days \\
Proportion with clinical improvement at 28 days \\
RT-PCR for SARS-CoV-2
\end{tabular} & \begin{tabular}{l}
Fundação de \\
Amparo à \\
Pesquisa do \\
Estado do Rio \\
Grande do Sul \\
Fundação de \\
Amparo à \\
Pesquisa do \\
Estado de São \\
Paulo
\end{tabular} \\
\hline
\end{tabular}

IDSA Guideline on the Treatment and Management of COVID-19
Supplementary Materials
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & Country/ Hospital & Study design & N subjects (intervention / comparator) & \[
\begin{aligned}
& \hline \% \\
& \text { female }
\end{aligned}
\] & Age mean (SD) / Median (IQR) & Severity of disease & Intervention (study arms) & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline & & & & & & & & & & \begin{tabular}{l}
Clinical status using a 6-level ordinal scale \\
Time to hospital discharge \\
Days free from oxygen support \\
SOFA and NEWS 2 scores \\
Length of ventilator support \\
Adverse events
\end{tabular} & \begin{tabular}{l}
Instituto \\
Cultural \\
Floresta
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { Simonovich/ } \\
& 2021^{25}
\end{aligned}
\] & \begin{tabular}{l}
Argentin \\
a/ 12 \\
clinical \\
sites
\end{tabular} & RCT & 334 (228/105) & 32.3 & \[
\begin{aligned}
& \text { Median } \\
& : 62 \\
& (52-72)
\end{aligned}
\] & \begin{tabular}{l}
Hospitalized patients with at least one of the following: \(\mathrm{SaO}_{2}<\) \(93 \%\) on RA, \(\mathrm{PaO}_{2} / \mathrm{FiO}_{2}<300\) mmHg, SOFA or mSOFA score 2 or more points above baseline status \\
Excluded patients on mechanical
\end{tabular} & \begin{tabular}{l}
CP: \\
IV 5-10 mL/kg with limit of 400 mL for those with body weight < 70 kg and limit of 600 mL for those with body weight \(>70 \mathrm{~kg}\)
\end{tabular} & (1) SoC & Allowed to receive antiviral agents, glucocorticoids, or other therapies for COVID-19 according to standard of care at institution & \begin{tabular}{l}
Clinical status at day 7,14 , and 30 (including mortality) \\
Time to hospital discharge \\
Time to discharge from ICU \\
Adverse events
\end{tabular} & \begin{tabular}{l}
Research \\
Council of the \\
Hospital \\
Italiano de \\
Buenos Aires
\end{tabular} \\
\hline
\end{tabular}

IDSA Guideline on the Treatment and Management of COVID-19
Supplementary Materials
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & Country/ Hospital & Study design & N subjects (intervention / comparator) & \[
\begin{aligned}
& \hline \% \\
& \text { female }
\end{aligned}
\] & Age mean (SD) / Median (IQR) & Severity of disease & Intervention (study arms) & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline & & & & & & ventilation or multiorgan failure & SARS-CoV-2 \(\lg\) antibody titer > 1:800 & & & & \\
\hline \[
\begin{aligned}
& \text { Sullivan } 2021 \\
& 26
\end{aligned}
\] & \[
\begin{aligned}
& \text { US/23 } \\
& \text { sites }
\end{aligned}
\] & RCT & \[
\begin{aligned}
& 1225 \\
& (592 / 589)
\end{aligned}
\] & 57\% & \begin{tabular}{l}
CP: 42 \\
(31.5- \\
54) \\
Control \\
: 44 \\
(33-55)
\end{tabular} & Adult patients who were positive for SARS CoV-2 who within 8 days of symptom onset & \begin{tabular}{l}
Convalescent \\
plasma with \\
minimum \\
titers of \(\geq\) \\
1:320
\end{tabular} & Control plasma & Allowed to receive steroids. Monoclonals prior to plasma were not permitted however were allowed after plasma receipt. & \begin{tabular}{l}
COVID-19 related hospitalization at day 28 \\
Mortality \\
SAEs
\end{tabular} & \begin{tabular}{l}
US \\
Department of Defense \\
Defense \\
Health Agency \\
Bloomberg Philanthropies \\
State of Maryland \\
\(\mathrm{NIH} / \mathrm{NIAID}\) \\
NCATS \\
Moriah Fund \\
Octapharma \\
HealthNetwor \\
k Foundation \\
Shear Family \\
Foundation
\end{tabular} \\
\hline
\end{tabular}

IDSA Guideline on the Treatment and Management of COVID-19
Supplementary Materials
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & Country/ Hospital & Study design & N subjects (intervention / comparator) & \% female & Age mean (SD) / Median (IQR) & Severity of disease & Intervention (study arms) & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline Writing Committee for the REMAP-CAP Investigators (Estcourt), et al/ \(2021{ }^{27}\) & \begin{tabular}{l}
Australia \\
, Canada, UK, US
\end{tabular} & RCT & \begin{tabular}{l}
1987 \\
(1078/909)
\end{tabular} & 32.3 & \begin{tabular}{l}
CP: \\
Median \\
61 (52- \\
69) \\
SoC: 61 \\
(52-70)
\end{tabular} & Adult, hospitalized patient with confirmed SARS-CoV-2 infection with moderate or severe illness & CP: High titer, ABO compatible & SoC & \begin{tabular}{l}
Standard of care at trial site, could also be randomized to another domain of investigational treatment in REMAP-CAP. \\
94\% of patients were treated with glucorticoids \\
45\% of patients received remdesivir
\end{tabular} & \begin{tabular}{l}
In hospital \\
mortality, day 28 \\
and 90 day mortality, \\
Respiratory and cardiovascular organ-free support days by day 21 \\
Progression to invasive mechanical ventilation, ECMO, or death \\
ICU and hospital length of stay \\
WHO ordinal scale at day 14 \\
VTE at day 90 and SAEs
\end{tabular} & \begin{tabular}{l}
Monash University \\
Utrececht \\
Medical \\
Center \\
St. Michaels \\
Hospital \\
Global \\
Coalition for \\
Adaptive \\
Research \\
Platform for \\
European \\
Preparedness \\
Against (Re-) \\
emerging \\
Epidemics \\
Australian \\
National \\
Health and \\
Medical \\
Research \\
Council \\
Health \\
Research
\end{tabular} \\
\hline
\end{tabular}

IDSA Guideline on the Treatment and Management of COVID-19
Supplementary Materials
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & \begin{tabular}{l}
Country/ \\
Hospital
\end{tabular} & Study design & N subjects (intervention / comparator) & \% female & Age mean (SD) / Median (IQR) & Severity of disease & Intervention (study arms) & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline & & & & & & & & & & & \begin{tabular}{l}
Council of \\
New Zealand \\
Canadian \\
Institute of \\
Health \\
National \\
Institute For \\
Health \\
Research \\
The EU \\
programme \\
Emergency \\
Support \\
Instrument \\
UPMC \\
Learning \\
While Doing \\
Program \\
Breast Cancer \\
Research \\
Foundation \\
French \\
Ministry of \\
Health \\
Minderoo \\
Foundation
\end{tabular} \\
\hline
\end{tabular}

\section*{IDSA Guideline on the Treatment and Management of COVID-19}

Supplementary Materials
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & \begin{tabular}{l}
Country/ \\
Hospital
\end{tabular} & Study design & N subjects (intervention / comparator) & \% female & \begin{tabular}{l}
Age \\
mean \\
(SD) / \\
Median \\
(IQR)
\end{tabular} & Severity of disease & Intervention (study arms) & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline & & & & & & & & & & & Wellcome Trust \\
\hline
\end{tabular}

IDSA Guideline on the Treatment and Management of COVID-19

\section*{Supplementary Materials}

Figure s7a. Forest plot for the outcome of mortality for convalescent plasma vs. no convalescent plasma in hospitalized patients


\section*{IDSA Guideline on the Treatment and Management of COVID-19}

\section*{Supplementary Materials}

Figure s7b. Forest plot for the outcome of mechanical ventilation for convalescent plasma vs. no convalescent plasma in hospitalized patients


Figure s7c. Forest plot for the outcome of adverse events (mild to severe) for convalescent plasma vs. no convalescent plasma in hospitalized patients


\section*{IDSA Guideline on the Treatment and Management of COVID-19}

Supplementary Materials

Figure s7d. Forest plot for the outcome of mortality for convalescent plasma vs. no convalescent plasma in ambulatory patients
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Convalescent plasma} & \multicolumn{2}{|l|}{Control} & \multicolumn{2}{|r|}{Risk Ratio} & \multicolumn{4}{|c|}{Risk Ratio} \\
\hline Study or Subgroup & Events & Total & Events & Total & Weight & M-H, Random, \(95 \% \mathrm{Cl}\) & & M-H, Rand & om, \(95 \% \mathrm{Cl}\) & \\
\hline Korley 2021 & 1 & 257 & 0 & 254 & 17.1\% & 2.97 [0.12, 72.45] & & & - & \\
\hline Libster 2021 & 2 & 80 & 4 & 80 & 62.9\% & 0.50 [0.09, 2.65] & & - & & \\
\hline Sullivan 2021 & 0 & 592 & 3 & 589 & 20.0\% & 0.14 [0.01, 2.75] & & & & \\
\hline Total (95\% CI) & & 929 & & 923 & 100.0\% & 0.53 [0.14, 1.98] & & \(\square\) & & \\
\hline Total events & 3 & & 7 & & & & & & & \\
\hline \begin{tabular}{l}
Heterogeneity: Tau \({ }^{2}\) \\
Test for overall effect
\end{tabular} & \[
\begin{aligned}
& 0.00 ; \mathrm{Chi}^{2}=1 \\
& Z=0.95(\mathrm{P}=0
\end{aligned}
\] & \[
\text { If }=2(\mathrm{P}
\] & \[
=0.39) ;
\] & \[
\left.\right|^{2}=0 \%
\] & & & \(\frac{1}{0.01}\) & \begin{tabular}{l}
\[
\frac{1}{0.1}
\] \\
Favours CP
\end{tabular} & 10
Favours no CP & \(\frac{1}{100}\) \\
\hline
\end{tabular}

Figure s7e. Forest plot for the outcome of COVID-19-related hospitalizations for convalescent plasma vs. no convalescent plasma in ambulatory patients


\section*{IDSA Guideline on the Treatment and Management of COVID-19}

Supplementary Materials

Figure s7f. Forest plot for the outcome of all-cause hospitalizations for convalescent plasma vs. no convalescent plasma in ambulatory patients


Figure \(\mathbf{~} \mathbf{7 g}\). Forest plot for the outcome of serious adverse events for convalescent plasma vs. no convalescent plasma in ambulatory patients


\section*{IDSA Guideline on the Treatment and Management of COVID-19}

Supplementary Materials

Figure \(\mathbf{~ s 7 h}\). Forest plot for the outcome of adverse events for convalescent plasma vs. no convalescent plasma in ambulatory patients


Figure s7i. Forest plot for the outcome of mortality for convalescent plasma vs. no convalescent plasma in hospitalized immunocompromised patients


\section*{IDSA Guideline on the Treatment and Management of COVID-19}

Supplementary Materials

Figure \(\mathbf{~} \mathbf{7 j}\). Forest plot for the outcome of SAEs for convalescent plasma vs. no convalescent plasma in hospitalized immunocompromised patients


IDSA Guideline on the Treatment and Management of COVID-19

\section*{Supplementary Materials}

Table s16a. Risk of bias for randomized controlled studies (convalescent plasma vs. no convalescent plasma)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Study & Random sequence generation & Allocation concealment & Blinding of participants and personnel & Blinding of outcome assessment & Incomplete outcome data & Selective reporting & Other bias \\
\hline Agarwal 2020 \({ }^{1}\) & & & & & & & \\
\hline AlQahtani \(2021{ }^{2}\) & & & & & & & \\
\hline Avendaño-Solà \(2021{ }^{3}\) & & & & & & & \\
\hline Balcells \(2021{ }^{4}\) & & & & & & & \\
\hline Bégin \(2021{ }^{5}\) & & & & & & & \\
\hline Bennett-Guerrero \(2021{ }^{6}\) & & & & & & & \\
\hline Denkinger \(2023{ }^{7}\) & & & & & & & \\
\hline Devos \(2021{ }^{8}\) & & & & & & & \\
\hline Gharbharan \(2021{ }^{10}\) & & & & & & & \\
\hline Kirenga \(2021{ }^{13}\) & & & & & & & \\
\hline Korley \(2021{ }^{14}\) & & & & & & & \\
\hline Körper \(2021{ }^{15}\) & & & & & & & \\
\hline Lacombe \(2022{ }^{16}\) & & & & & & & \\
\hline Li \(2020{ }^{17}\) & & & & & & & \\
\hline Libster \(2021{ }^{19}\) & & & & & & & \\
\hline O'Donnell \(2021{ }^{20}\) & & & & & & & \\
\hline
\end{tabular}

IDSA Guideline on the Treatment and Management of COVID-19
Supplementary Materials
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Study & \begin{tabular}{l} 
Random \\
sequence \\
generation
\end{tabular} & \begin{tabular}{l} 
Allocation \\
concealment
\end{tabular} & \begin{tabular}{l} 
Blinding of \\
participants and \\
personnel
\end{tabular} & \begin{tabular}{l} 
Blinding of \\
outcome \\
assessment
\end{tabular} & \begin{tabular}{l} 
Incomplete \\
outcome data
\end{tabular} & \begin{tabular}{l} 
Selective \\
reporting
\end{tabular} \\
\hline Pouladzadeh \(2021^{21}\) & & & & & \\
\hline Ray \(2020^{22}\) & & & & & \\
\hline \begin{tabular}{l} 
RECOVERY Collaborative \\
Group (Horby) \(2021^{23}\)
\end{tabular} & & & & & \\
\hline Sekine 2021 \({ }^{24}\) & & & & & \\
\hline Simonovich \(2021^{25}\) & & & & & \\
\hline Sullivan 2021 \({ }^{26}\) & & & & & \\
\hline \begin{tabular}{l} 
Writing Committee for \\
the REMAP-CAP \\
Investigators (Estcourt) \\
2021
\end{tabular} & & & & \\
\hline
\end{tabular}

\section*{IDSA Guideline on the Treatment and Management of COVID-19}

Supplementary Materials

Table s16b. Risk of bias for non-randomized studies (convalescent plasma vs. no convalescent plasma)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Study & \begin{tabular}{l} 
Bias due to \\
confounding
\end{tabular} & Selection bias & \begin{tabular}{l} 
Bias in \\
classification of \\
interventions
\end{tabular} & \begin{tabular}{l} 
Bias due to \\
deviations from \\
interventions
\end{tabular} & \begin{tabular}{l} 
Bias due to \\
missing data
\end{tabular} & \begin{tabular}{l} 
Bias in \\
measurement \\
of outcomes
\end{tabular} \\
\hline Duan \(2020^{9}\) & & & & \begin{tabular}{l} 
Bias in selection \\
of reported \\
results
\end{tabular} \\
\hline \begin{tabular}{l} 
Joyner, Senefeld, et al \\
\(2020^{11}\)
\end{tabular} & & & & & \\
\hline \begin{tabular}{l} 
Joyner, Wright, et al 2020 \\
12
\end{tabular} & & & & & \\
\hline Liu \(2020^{17}\) & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Low & Moderate & Serious & Critical \\
\hline
\end{tabular}

\section*{References}
1. Agarwal A, Mukherjee A, Kumar G, et al. Convalescent plasma in the management of moderate covid-19 in adults in India: open label phase II multicentre randomised controlled trial (PLACID Trial). BMJ 2020; 371: m4232.
2. AIQahtani M, Abdulrahman A, AIMadani A, et al. Randomized controlled trial of convalescent plasma therapy against standard therapy in patients with severe COVID-19 disease. Sci Rep 2021; 11: 9927.
3. Avendaño-Solà C, Ramos-Martinez A, Munez-Rubio E, et al. A multicenter randomized open-label clinical trial for convalescent plasma in patients hospitalized with COVID-19 pneumonia. J Clin Invest 2021; 131(20).
4. Balcells ME, Rojas L, Le Corre N, et al. Early versus deferred anti-SARS-CoV-2 convalescent plasma in patients admitted for COVID-19: A randomized phase II clinical trial. PLoS Med 2021; 18(3): e1003415.
5. Bégin P, Callum J, Jamula E, et al. Convalescent plasma for hospitalized patients with COVID-19: an open-label, randomized controlled trial. Nat Med 2021: Available at: https://doi.org/10.1038/s41591-021-01488-2 [Epub ahead of print 9 September 2021].
6. Bennett-Guerrero E, Romeiser JL, Talbot LR, et al. Severe Acute Respiratory Syndrome Coronavirus 2 Convalescent Plasma Versus Standard Plasma in Coronavirus Disease 2019 Infected Hospitalized Patients in New York: A Double-Blind Randomized Trial. Crit Care Med 2021; 49(7): 1015-25.
7. Denkinger CM, Janssen M, Schakel U, et al. Anti-SARS-CoV-2 antibody-containing plasma improves outcome in patients with hematologic or solid cancer and severe COVID-19: a randomized clinical trial. Nat Cancer 2023; 4(1): 96-107.
8. Devos T, Van Thillo Q, Compernolle V, et al. Early high antibody-titre convalescent plasma for hospitalised COVID-19 patients: DAWn-plasma. Eur Respir J 2021: 2101724.
9. Duan K, Liu B, Li C, et al. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci U S A 2020; 117(17): 9490-6.
10. Gharbharan A, Jordans CC, Geurts van Kessel C, et al. Effects of potent neutralizing antibodies from convalescent plasma in patients hospitalized for severe SARS-CoV-2 infection. Nat Commun 2021; 12(3189).
11. Joyner MJ, Senefeld JW, Klassen SA, et al. Effect of convalescent plasma on mortality among hospitalized patients with COVID-19: initial three-month experience. medRxiv 2020: Available at: https://doi.org/10.1101/2020.08.12.20169359 [Preprint 12 August 2020].
12. Joyner M, Wright RS, Fairweather D, et al. Early safety indicators of COVID-19 convalescent plasma in 5000 patients. J Clin Invest 2020; 130(9): 4791-7.
13. Kirenga B, Byakika-Kibwika P, Muttamba W, et al. Efficacy of convalescent plasma for treatment of COVID-19 in Uganda. BMJ Open Respir Res 2021; 8(1): e001017.
14. Korley FK, Durkalski-Mauldin V, Yeatts SD, et al. Early Convalescent Plasma for High-Risk Outpatients with Covid-19. N Engl J Med 2021; 385(21): 1951-60.
15. Körper S, Weiss M, Zickler D, et al. High Dose Convalescent Plasma in COVID-19: Results from the randomized Trial CAPSID. medRxiv 2021: Available at: https://doi.org/10.1101/2021.05.10.21256192 [Preprint 10 May 2021].
16. Lacombe K, Hueso T, Porcher R, et al. COVID-19 convalescent plasma to treat hospitalised COVID-19 patients with or without underlying immunodeficiency. medRxiv 2022: Available at: https://doi.org/10.1101/2022.08.09.22278329 [Preprint 27 October 2022].
17. Li L, Zhang W, Hu Y, et al. Effect of Convalescent Plasma Therapy on Time to Clinical Improvement in Patients With Severe and Life-threatening COVID-19: A Randomized Clinical Trial. JAMA 2020; 324(5): 460-70.
18. Liu ST, Lin H-M, Baine I, et al. Convalescent plasma treatment of severe COVID-19: a propensity score-matched control study. Nat Med 2020; 26(11): 1708-13.
19. Libster R, Perez Marc G, Wappner D, et al. Early High-Titer Plasma Therapy to Prevent Severe Covid-19 in Older Adults. N Engl J Med 2021; 384(7): 610-8.
20. O'Donnell MR, Grinsztejn B, Cummings MJ, et al. A randomized double-blind controlled trial of convalescent plasma in adults with severe COVID-19. J Clin Invest 2021; 131(13): e150646.
21. Pouladzadeh M, Safdarian M, Eshghi P, et al. A randomized clinical trial evaluating the immunomodulatory effect of convalescent plasma on COVID-19-related cytokine storm. Intern Emerg Med 2021; 16(8): 2181-91.
22. Ray Y, Paul SR, Bandopadhyay P, et al. Clinical and immunological benefits of convalescent plasma therapy in severe COVID-19: insights from a single center open label randomised control trial. medRxiv 2020: Available at: https://doi.org/10.1101/2020.11.25.20237883 [Preprint 29 November 2020].
23. RECOVERY Collaborative Group. Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial. Lancet 2021; 397(10289): 2049-59.
24. Sekine L, Arns B, Fabro BR, et al. Convalescent plasma for COVID-19 in hospitalised patients: an open-label, randomised clinical trial. Eur Respir J 2021; 58(5): 2101471.
25. Simonovich VA, Burgos Pratx LD, Scibona P, et al. A Randomized Trial of Convalescent Plasma in Covid-19 Severe Pneumonia. N Engl J Med 2021; 384(7): 619-29.
26. Sullivan DJ, Gebo KA, Shoham S, et al. Randomized Controlled Trial of Early Outpatient COVID-19 Treatment with High-Titer Convalescent Plasma. medRxiv 2021: Available at: https://doi.org/10.1101/2021.12.10.21267485 [Preprint 21 December 2021].
27. Writing Committee for the REMAP-CAP Investigators, Estcourt LJ, Turgeon AF, et al. Effect of Convalescent Plasma on Organ Support-Free Days in Critically III Patients With COVID-19: A Randomized Clinical Trial. JAMA 2021; 326(17): 1690-702.

\section*{Remdesivir}

Table s17. Should hospitalized patients with severe COVID-19 receive treatment with remdesivir vs. no remdesivir?
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study /year & \begin{tabular}{l}
Country/ \\
Hospital
\end{tabular} & Study design & N subjects (intervention /comparator) & \[
\begin{aligned}
& \hline \% \\
& \text { female }
\end{aligned}
\] & \begin{tabular}{l}
Age mean \\
(SD) / \\
Median \\
(IQR)
\end{tabular} & Severity of disease & Intervention (study arms) & Comparator & Co-interventions & Outcomes reported & Funding source \\
\hline \[
\begin{aligned}
& \text { Beigel } \\
& / 2020
\end{aligned}
\] & \begin{tabular}{l}
USA, \\
Denmark, UK, Greece, Germany, Korea, Mexico, Spain, Japan, Singapore / 60 trial sites and 13 subsites
\end{tabular} & RCT & \[
\begin{aligned}
& 1062 \\
& (541 / 521)
\end{aligned}
\] & 35.6 & Mean: 58.9
(15) & Met one of the following criteria suggestive of lower respiratory tract infection at the time of enrollment: radiographic infiltrates by imaging study, \(\mathrm{SpO}_{2}\) <94\% on room air, or requiring supplemental oxygen, mechanical ventilation, or extracorporea I membrane oxygenation & Remdesivir 200mg loading dose once day \(1,100 \mathrm{mg}\) maintenance dose once daily days 2 10 & (1) Placebo 200 mg once day 1 , 100 mg once daily days 210 & Supportive care according to the standard of care for the trial site hospital; if a hospital had a written policy or guideline for use of other treatments for COVID-19, patients could receive those treatments & \begin{tabular}{l}
Mortality at day 14 \\
Number of recoveries \\
Time to recovery (days) \\
Hazard ratio of mortality \\
Hospital discharge \\
Adverse events
\end{tabular} & \begin{tabular}{l}
National \\
Institute of \\
Allergy and \\
Infectious \\
Diseases \\
National \\
Institutes of \\
Health, \\
Bethesda, MD \\
Governments of Japan, Mexico, Denmark, and Singapore. \\
Seoul National University Hospital. \\
United Kingdom \\
Medical \\
Research \\
Council
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study /year & \begin{tabular}{l}
Country/ \\
Hospital
\end{tabular} & Study design & N subjects (intervention /comparator) & \% female & \begin{tabular}{l}
Age mean \\
(SD) / \\
Median \\
(IQR)
\end{tabular} & Severity of disease & Intervention (study arms) & Comparator & Co-interventions & Outcomes reported & Funding source \\
\hline \begin{tabular}{l}
Gold \\
man/ \\
\(2020^{2}\)
\end{tabular} & \begin{tabular}{l}
United \\
States, \\
Italy, \\
Spain, \\
Germany, \\
Hong \\
Kong, \\
Singapore \\
, South \\
Korea, \\
and \\
Taiwan/ \\
55 \\
hospitals
\end{tabular} & RCT & \[
\begin{aligned}
& 397 \\
& (200 / 197)
\end{aligned}
\] & N/A & N/A & Radiographic evidence of pulmonary infiltrates and either had \(\mathrm{SpO}_{2}\) of \(94 \%\) or less while they were breathing ambient air or were receiving supplemental oxygen & Remdesivir (5-Day Group) 200mg once daily day \(1,100 \mathrm{mg}\) once daily days 2-5 & \begin{tabular}{l}
(1) \\
Remdesivir \\
(10-Day \\
Group): \\
200mg once \\
daily day 1 , \\
100 mg once \\
daily days 2- \\
10
\end{tabular} & Supportive therapy received at the discretion of the investigator & \begin{tabular}{l}
Mortality at day 14 \\
Clinical improvement (days 5, 7, 11, 14) \\
Duration of hospitalization among patients discharge on or before day 14 \\
Time to recovery \\
Adverse Events
\end{tabular} & Gilead Sciences \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Study \\
/year
\end{tabular} & \begin{tabular}{l}
Country/ \\
Hospital
\end{tabular} & Study design & N subjects (intervention /comparator) & \% female & \begin{tabular}{l}
Age mean \\
(SD) / \\
Median \\
(IQR)
\end{tabular} & Severity of disease & Intervention (study arms) & Comparator & Co-interventions & Outcomes reported & Funding source \\
\hline Spinn er/ \(2020^{4}\) & \begin{tabular}{l}
United \\
States, \\
Europe, and Asia/ 105 hospitals
\end{tabular} & RCT & \[
\begin{aligned}
& 584 \\
& (193 / 191 / 200 \\
& )
\end{aligned}
\] & N/A & N/A & Moderate COVID-19 pneumonia (defined as any radiographic evidence of pulmonary infiltrates and oxygen saturation >94\% on room air) & Remdesivir (5-Day Group) 200mg once daily day \(1,100 \mathrm{mg}\) once daily days 2-5 via IV & \begin{tabular}{l}
(1) \\
Remdesivir (10-Day Group): 200mg once daily day 1 , 100 mg once daily days 210 via IV \\
(2) SoC
\end{tabular} & Steroids, HCQ , Lopinavirritonavir, TCZ, AZ & \begin{tabular}{l}
Day 11 clinical status on 7point scale, \\
No. (\%) \\
(Includes \\
Mortality at Day \\
11) \\
Clinical improvement (at Day 5, 7, 11, 14, 28) \\
Recovery (at Day 5, 7, 11, 14, 28) \\
Adverse Events
\end{tabular} & Gilead Sciences \\
\hline \[
\begin{aligned}
& \text { Wang } \\
& \text { / } 2020
\end{aligned}
\] & \begin{tabular}{l}
China/ \\
10 \\
hospitals
\end{tabular} & RCT & \[
\begin{aligned}
& 237 \\
& (158 / 78)
\end{aligned}
\] & N/A & Median: 65
(56-71) & Hospitalized patients with pneumonia confirmed by chest imaging, \(\mathrm{SpO}_{2}\) \(\leq 94 \%\) on room air, \(\mathrm{PaO}_{2} / \mathrm{FIO}_{2} \leq\) 300 mmHg & Remdesivir 200 mg infusion once on day \(1,100 \mathrm{mg}\) daily on days 2-10 & (1) Placebo infusions 200mg day 1, 100mg days 2-10 & Lopinavir/ritonavi \(r\), interferons, and corticosteroids & \begin{tabular}{l}
Mortality on day 28 \\
Clinical improvement (days 7, 14, 28) \\
Duration of invasive mechanical ventilation (days) \\
Hospitalization days
\end{tabular} & \begin{tabular}{l}
Chinese \\
Academy of \\
Medical \\
Sciences \\
Emergency \\
Project of \\
COVID-19 \\
National Key \\
Research \\
Development \\
Program of China
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study /year & \begin{tabular}{l}
Country/ \\
Hospital
\end{tabular} & Study design & N subjects (intervention /comparator) & \begin{tabular}{l}
\% \\
female
\end{tabular} & \begin{tabular}{l}
Age mean \\
(SD) / \\
Median \\
(IQR)
\end{tabular} & Severity of disease & Intervention (study arms) & Comparator & Co-interventions & Outcomes reported & Funding source \\
\hline & & & & & & & & & & Adverse events leading to treatment discontinuation & Beijing Science and Technology Project \\
\hline \begin{tabular}{l}
WHO \\
Solida \\
rity \\
Trial \\
Conso \\
rtium \\
(Pan)/ \\
\(2021{ }^{6}\)
\end{tabular} & \begin{tabular}{l}
\[
30
\] \\
countries
\end{tabular} & RCT & \begin{tabular}{l}
11266 (total) \\
(Remdesivir \\
2743/2708)
\end{tabular} & 38.0 & N/A & \begin{tabular}{l}
Age \(\geq 18\) \\
years, hospitalized with a diagnosis of COVID-19, not known to have received any study drug, without anticipated transfer elsewhere within 72 hours, and, in the physician's view, with no contraindicati on to any study drug
\end{tabular} & Remdesivir 200 mg once daily day 0 , 100 mg once daily days 1-9 & (1) SoC & Corticosteroids, convalescent plasma, anti-IL-6 drug, non-trial interferon, nontrial antiviral & \begin{tabular}{l}
Mortality at day 28 \\
Ventilation in those not already being ventilated at the time of randomization
\end{tabular} & Participating countries covered almost all local costs and WHO covered all other study costs, receiving no extra funding \\
\hline
\end{tabular}
\(\mathrm{PaO}_{2} / \mathrm{FIO}_{2}\) : ratio of arterial oxygen partial pressure to fractional inspired oxygen; \(\mathbf{S p O}_{\mathbf{2}}\) : oxygen saturation

Table s18. Should ambulatory patients with COVID-19 receive treatment with remdesivir vs. no remdesivir?
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study /year & \begin{tabular}{l}
Country/ \\
Hospital
\end{tabular} & Study design & N subjects (intervention /comparator) & \% female & Age mean (SD)/ Median (IQR) & Severity of disease & Intervention (study arms) & Comparator & Co-interventions & Outcomes reported & Funding source \\
\hline Gottli eb/ 20213 & 64 sites in US, Spain, Denmark, and UK & RCT & 562 (279/283) & 47.9 & 50 (15) & \begin{tabular}{l}
SARS CoV-2 \\
PCR positive within 4 days prior to screening with at least one symptom and symptom onset for \(\leq 7\) days
\end{tabular} & \begin{tabular}{l}
Remdesivir \\
\(200 \mathrm{mg} \times 1\) \\
day, then 100 \\
mg daily for 2 \\
days
\end{tabular} & Placebo & None & \begin{tabular}{l}
Mortality \\
All cause hospitalization \\
COVID-19 related hospitalization \\
COVID-19 related medically attended visits \\
Change in nasopharyngeal viral load \\
Serious adverse events
\end{tabular} & Gilead \\
\hline
\end{tabular}

Figure s8a. Forest plot for the outcome of mortality for remdesivir vs. no remdesivir in hospitalized patients with severe disease


Figure s8b. Forest plot for the outcome of serious adverse events (grade 3/4) for remdesivir vs. no remdesivir in hospitalized patients with severe disease


Figure s8c. Forest plot for the outcome of mortality for remdesivir vs. no remdesivir in hospitalized patients on invasive ventilation and/or ECMO


Figure s8d. Forest plot for the outcome of serious adverse events (grade 3/4) for remdesivir vs. no remdesivir in hospitalized patients on invasive ventilation and/or ECMO


\section*{IDSA Guideline on the Treatment and Management of COVID-19}

Supplementary Materials

Table s19. Risk of bias for randomized controlled studies (remdesivir vs. no remdesivir)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Study & Random sequence generation & Allocation concealment & Blinding of participants and personnel & Blinding of outcome assessment & Incomplete outcome data & Selective reporting & Other bias \\
\hline Beigel \(2020{ }^{1}\) & & & & & & & \\
\hline Goldman 2020 \({ }^{2}\) & & & & & & & \\
\hline Gottlieb 2021 \({ }^{3}\) & & & & & & & \\
\hline Spinner \(2020{ }^{4}\) & & & & & & & \\
\hline Wang 2020 \({ }^{5}\) & & & & & & & \\
\hline WHO Solidarity Trial Consortium (Pan) \(2021^{6}\) & & & & & & & \\
\hline
\end{tabular}

\section*{References}
1. Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the Treatment of Covid-19-Final Report. N Engl J Med 2020; 383(19): 1813-26.
2. Goldman JD, Lye DCB, Hui DS, et al. Remdesivir for 5 or 10 Days in Patients with Severe Covid-19. N Engl J Med 2020; 383: 1827-37.
3. Gottlieb RL, Vaca CE, Paredes R, et al. Early Remdesivir to Prevent Progression to Severe Covid-19 in Outpatients. N Engl J Med 2021: Available at:
https://doi.org/10.1056/nejmoa2116846 [Epub ahead of print 22 December 2021].
4. Spinner CD, Gottlieb RL, Criner GJ, et al. Effect of Remdesivir vs Standard Care on Clinical Status at 11 Days in Patients With Moderate COVID-19: A Randomized Clinical Trial. JAMA 2020; 324(11): 1048-57.
5. Wang Y, Zhang D, Du G, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet 2020; 395(10236): 1569-78.
6. WHO Solidarity Trial Consortium, Pan H, Peto R, et al. Repurposed Antiviral Drugs for Covid19 - Interim WHO Solidarity Trial Results. N Engl J Med 2021; 384: 497-511.

\section*{Famotidine}

Table s20. Should patients with COVID-19 (ambulatory with mild-to-moderate disease, hospitalized with severe disease) receive treatment with famotidine vs. no famotidine?
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & Country/ hospital & Study design & N subjects (intervention /comparator) & \% female & Age mean (SD)/ median (IQR) & Severity of disease & Intervention (study arms) & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline \[
\begin{aligned}
& \text { Brennan/ } \\
& 2022^{1}
\end{aligned}
\] & \begin{tabular}{l}
U.S./ \\
Northwe \\
II Health; \\
New \\
York City \\
Health \\
and \\
Hospitals \\
Corporat ion
\end{tabular} & RCT & 55 (27/28) & 63.6 & \begin{tabular}{l}
Median age: 35.0 \\
(15-50)
\end{tabular} & Unvaccinated adults with a positive SARS-CoV-2 PCR test within 72 hours and a minimum of three symptoms of moderate severity for 17 days & Famotidine 80 mg by mouth three times a day for 14 days & Placebo & None & \begin{tabular}{l}
Time to symptom resolution (symptom score \(\leq 3\) and no individual symptoms \(>1\) for 2 consecutive days) \\
Decreasing rate of symptom resolution from day 0 to 28 \\
Cumulative incidence of symptom resolution (symptom score
\end{tabular} & \begin{tabular}{l}
Pershing Square \\
Foundation \\
Emergent \\
Ventures Fast \\
Grant \\
Dr. Lee \\
MacCormick \\
Edwards \\
Charitable \\
Foundation \\
Cancer Centre \\
Support Grant
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & Country/ hospital & Study design & N subjects (intervention /comparator) & \begin{tabular}{l}
\% \\
female
\end{tabular} & Age mean (SD)/ median (IQR) & Severity of disease & Intervention (study arms) & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline & & & & & & & & & & \begin{tabular}{l}
decreased to \(\leq 1\) for 2 consecutive days) of each individual symptom that is \(>1\) at baseline \\
Relative change in CRP, ferritin \\
Adverse events
\end{tabular} & \\
\hline \[
\begin{aligned}
& \text { Pahwani/ } \\
& 2022^{2}
\end{aligned}
\] & \begin{tabular}{l}
Pakistan \\
/ Jinnah \\
Sindh \\
Medical \\
Universit \\
y
\end{tabular} & RCT & 178 (89/89) & 39.3 & \begin{tabular}{l}
Mean: \\
Interve ntion: 52 (11) \\
Control: 51 (12)
\end{tabular} & Patients 18-65 hospitalized with PCRconfirmed COVID-19 infection & Famotidine 40 mg daily plus standard of care & Standard of care & None & \begin{tabular}{l}
Mortality \\
Need for ICU care \\
Need for mechanical ventilation
\end{tabular} & None \\
\hline
\end{tabular}

Supplementary Materials
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & Country/ hospital & Study design & N subjects (intervention /comparator) & \begin{tabular}{l}
\% \\
female
\end{tabular} & Age mean (SD)/ median (IQR) & Severity of disease & Intervention (study arms) & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline & & & & & & & & & & \begin{tabular}{l}
Length of hospitalizati on \\
Time to resolution of symptoms
\end{tabular} & \\
\hline
\end{tabular}

\section*{IDSA Guideline on the Treatment and Management of COVID-19}

Supplementary Materials

Table s21. Risk of bias for randomized controlled studies (famotidine vs. no famotidine)
\(\left.\begin{array}{|l|l|l|l|l|l|l|}\hline \text { Study } & \begin{array}{l}\text { Random } \\ \text { sequence } \\ \text { generation }\end{array} & \begin{array}{l}\text { Allocation } \\ \text { concealment }\end{array} & \begin{array}{l}\text { Blinding of } \\ \text { participants and } \\ \text { personnel }\end{array} & \begin{array}{l}\text { Blinding of } \\ \text { outcome } \\ \text { assessment }\end{array} & \begin{array}{l}\text { Incomplete } \\ \text { outcome data }\end{array} & \begin{array}{l}\text { Selective } \\ \text { reporting }\end{array} \\ \hline \text { Brennan } 2022^{1} & & & & & \text { Other bias }\end{array}\right\}\)
\begin{tabular}{|l|l|l|}
\hline Low & High & Unclear \\
\hline
\end{tabular}

\section*{References}
1. Brennan CM, Nadella S, Zhao \(X\), et al. Oral famotidine versus placebo in non-hospitalised patients with COVID-19: a randomised, double-blind, data-intense, phase 2 clinical trial. Gut 2022; 71(5): 879-88.
2. Pahwani S, Kumar M, Aperna F, et al. Efficacy of Oral Famotidine in Patients Hospitalized With Severe Acute Respiratory Syndrome Coronavirus 2. Cureus 2022; 14(2): e22404.

\section*{Janus Kinase Inhibitors (Baricitinib and Tofacitinib)}

Table s22. Should hospitalized patients with severe COVID-19 receive treatment with remdesivir plus baricitinib vs. remdesivir alone?
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & Country/ hospital & Study design & N subjects (intervention/ comparator) & \begin{tabular}{l}
\[
\%
\] \\
female
\end{tabular} & Age mean (SD) / median (IQR) & Severity of disease & Intervention (study arms) & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline \[
\begin{aligned}
& \hline \text { Ely/ } \\
& 2021^{1}
\end{aligned}
\] & \begin{tabular}{l}
18 \\
institution \\
sin 4 \\
countries \\
(Argentina \\
, Brazil, \\
Mexico, \\
United \\
States)
\end{tabular} & RCT & 101 (51/50) & 45.5 & Mean:
\[
58.6 \text { (13.8) }
\] & \begin{tabular}{l}
Invasive \\
mechanical ventilation or extracorpore al membrane oxygenation at randomizatio n with at least one elevated marker of inflammation
\end{tabular} & Baricitinib 4mg daily (or 2 mg daily if eGFR \(\geq\) 30 to < 60 \(\mathrm{mL} / \mathrm{min} / 1.73\) m2) crushed and given via nasogastric tube (or by mouth when feasible) for 14 days or until discharge plus SoC & SoC & SoC based on clinical practice at trial hospital, including use of corticosteroids , antivirals, VTE prophylaxis, or other treatments & Mortality at day 28 and day 60 & Ely/ 2021 \\
\hline \[
\begin{aligned}
& \text { Kalil/ } \\
& 2021^{2}
\end{aligned}
\] & \begin{tabular}{l}
United \\
States (55 \\
sites), \\
Singapore \\
(4), South \\
Korea (2), \\
Mexico \\
(2), Japan \\
(1), Spain \\
(1), United \\
Kingdom \\
(1), \\
Denmark \\
(1)
\end{tabular} & RCT & \[
\begin{aligned}
& 1033 \\
& (515 / 518)
\end{aligned}
\] & 36.9 & Mean :
\[
55.4 \text { (15.7) }
\] & Met at least one of the following criteria suggestive of lower respiratory tract infection at enrollment: radiographic infiltrates by imaging study, \(\mathrm{SpO}_{2} \leq\) 94\% on room air, requiring & \begin{tabular}{l}
Baricitinib 4mg \\
daily (or 2 mg \\
daily if eGFR < \\
\(60 \mathrm{~mL} / \mathrm{min}\) ) for \\
14 days or until \\
discharge plus \\
remdesivir \\
200mg loading \\
dose once day \\
\(1,100 \mathrm{mg}\) \\
maintenance \\
dose once daily \\
days 2-10 or \\
until discharge
\end{tabular} & Remdesivir 200mg loading dose once day 1, 100 mg maintenanc e dose once daily days 210 or until discharge and matching placebo tablets & Supportive care according to the standard of care for the trial site hospital; if a hospital had a written policy or guideline for use of other treatments for COVID-19, patients could receive those treatments. All patients & \begin{tabular}{l}
Mortality at day 14 and day 28 \\
Time to recovery (days) \\
Clinical status at day 15 \\
Hazard ratio of mortality \\
Incidence of death or invasive ventilation
\end{tabular} & \begin{tabular}{l}
National Institute of Allergy and Infectious Diseases \\
National Institutes of Health, Bethesda, MD \\
Governments of Japan, Mexico, Singapore, and Denmark \\
Seoul National University Hospital
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & Country/ hospital & Study design & N subjects (intervention/ comparator) & \% female & \begin{tabular}{l}
Age mean \\
(SD) / \\
median \\
(IQR)
\end{tabular} & Severity of disease & Intervention (study arms) & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline & & & & & & supplemental oxygen, mechanical ventilation, or extracorpore al membrane oxygenation & & & \begin{tabular}{l}
without \\
contraindicatio \\
ns received \\
VTE \\
prophylaxis. In \\
absence of \\
policy, other \\
specific \\
treatments for \\
COVID-19 \\
prohibited, \\
including \\
corticosteroids \\
, which were permitted only for other standard indications in that case.
\end{tabular} & Adverse events & United Kingdom Medical Research Council \\
\hline \[
\begin{aligned}
& \text { Marcon } \\
& \text { i/ } 2021 \\
& 3
\end{aligned}
\] & \begin{tabular}{l}
101 \\
centers \\
from 12 \\
countries \\
(Argentina \\
, Brazil, \\
Germany, \\
India, Italy, \\
Japan, \\
South \\
Korea, \\
Mexico, \\
Russia, \\
Spain, \\
United \\
Kingdom,
\end{tabular} & RCT & \[
\begin{aligned}
& 1525 \\
& (764 / 761)
\end{aligned}
\] & 36.9 & Mean:
\[
57.6 \text { (14.1) }
\] & Hospitalized with evidence of pneumonia or active, symptomatic COVID-19, and had \(\geq 1\) elevated inflammatory marker (C reactive protein, Ddimer, lactate dehydrogena se, ferritin) & Baricitinib 4mg by mouth daily (or 2 mg daily for eGFR < 60 \(\mathrm{mL} / \mathrm{min} / 1.73 \mathrm{~m}^{2}\) ) for up to 14 days or until hospital discharge plus standard of care & Standard of care plus matching placebo tablets & Standard of care according to local clinical practice, and could include: corticosteroids (including dexamethason e), antibiotics, antivirals (including remdesivir), antifungals, and antimalarials. VTE prophylaxis & \begin{tabular}{l}
Mortality at day 28 \\
Disease progression by day 28 \\
Time to recovery (days) \\
Clinical improvement on disease severity scale
\end{tabular} & Eli Lilly and Company \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & Country/ hospital & Study design & N subjects (intervention/ comparator) & \% female & \begin{tabular}{l}
Age mean \\
(SD) / \\
median \\
(IQR)
\end{tabular} & Severity of disease & Intervention (study arms) & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline & United States) & & & & & & & & required unless contraindicate d & \begin{tabular}{l}
Length of hospitalization \\
Ventilator-free days \\
Adverse events
\end{tabular} & \\
\hline \begin{tabular}{l}
RECOV \\
ERY \\
Collabo \\
rative \\
Group/ \\
\(2022^{4}\)
\end{tabular} & \begin{tabular}{l}
United \\
Kingdom \\
(156 \\
hospitals)
\end{tabular} & RCT & \[
\begin{aligned}
& \hline 8156 \\
& (4148 / 4008)
\end{aligned}
\] & 34.1 & Mean:
\[
58.1 \text { (15.5) }
\] & Patients at least 2 years old admitted to the hospital with clinically suspected or laboratory confirmed SARS-CoV-2 & \begin{tabular}{l}
Baricitinib 4mg \\
daily for 10 \\
days or until \\
discharge plus \\
standard of \\
care (or 2 mg \\
daily if eGFR \(\geq\) \\
30 to < 60 \\
\(\mathrm{mL} / \mathrm{min} / 1.73\) \\
\(\mathrm{m}^{2}, 2 \mathrm{mg}\) every \\
other day if \\
eGFR \(\geq 15\) to < \\
\(30 \mathrm{~mL} / \mathrm{min} / 1.73\) \\
\(\mathrm{m}^{2}\), or 2 mg \\
every other day \\
for pediatric \\
patients if eGFR \\
\(\geq 30\) to < 60 \\
\(\mathrm{mL} / \mathrm{min} / 1.73\) \\
\(\mathrm{m}^{2}\) )
\end{tabular} & SoC & \begin{tabular}{l}
Tocilizumab in 23\% patients at \\
randomization \\
Also eligible for other platform trial treatments colchicine, aspirin, dimethyl fumarate, casirivimab/ imdevimab, empagliflozin
\end{tabular} & \begin{tabular}{l}
Mortality at day 28 \\
Time to hospital discharge \\
Composite of mechanical ventilation or death \\
Adverse events
\end{tabular} & \begin{tabular}{l}
UK Research and Innovation \\
National Institute of Health Research
\end{tabular} \\
\hline
\end{tabular}

\section*{IDSA Guideline on the Treatment and Management of COVID-19}

Supplementary Materials

Table s23. Risk of bias for randomized control studies (baricitinib plus remdesivir vs. remdesivir alone)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Study & Random sequence generation & Allocation concealment & Blinding of participants and personnel & Blinding of outcome assessment & Incomplete outcome data & Selective reporting & Other bias \\
\hline Ely \(2021{ }^{1}\) & & & & & & & \\
\hline Kalil \(2020{ }^{2}\) & & & & & & & \\
\hline Marconi \(2021{ }^{3}\) & & & & & & & \\
\hline RECOVERY Collaborative Group \(2022^{4}\) & & & & & & & \\
\hline Low \(\quad\) High & Unclear & & & & & & \\
\hline
\end{tabular}

Table s24. Should hospitalized patients with COVID-19 receive tofacitinib vs. no tofacitinib?
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & Country/ hospital & Study design & N subjects (intervention/ comparator) & \% female & \begin{tabular}{l}
Age mean \\
(SD) / \\
median \\
(IQR)
\end{tabular} & Severity of disease & Intervention (study arms) & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline \[
\begin{aligned}
& \text { Guimaraes/ } \\
& 2021^{5}
\end{aligned}
\] & 15 study sites in Brazil & RCT & 289 (144/145) & 34.9\% & \begin{tabular}{l}
Mean: 56 \\
(14)
\end{tabular} & Patients \(\geq 18\) with RT-PCR positive for SARS-CoV-2 with evidence of COVID-19 pneumonia on radiographic imaging and who had been hospitalized for < 72 hours. & Tofacitinib 10 mg twice daily for up to 14 days or until hospital discharge & Placebo & Patients treated according to local standards which included glucocorticoids, antibiotic agents, anticoagulants, and antiviral agents & \begin{tabular}{l}
Death or respiratory failure through day 28 \\
Clinical deterioration \\
Avoidance of mechanical ventilation or ECMO at day 14 and day 28 \\
Scores on the NIAID ordinal scare of disease severity at day 14 and day 28 \\
Adverse events
\end{tabular} & Pfizer \\
\hline
\end{tabular}

IDSA Guideline on the Treatment and Management of COVID-19
Supplementary Materials

Table s25. Risk of bias for randomized control studies (tofacitinib vs. no tofacitinib)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Study & \begin{tabular}{l} 
Random \\
sequence \\
generation
\end{tabular} & \begin{tabular}{l} 
Allocation \\
concealment
\end{tabular} & \begin{tabular}{l} 
Blinding of \\
participants and \\
personnel
\end{tabular} & \begin{tabular}{l} 
Blinding of \\
outcome \\
assessment
\end{tabular} & \begin{tabular}{l} 
Incomplete \\
outcome data
\end{tabular} & \begin{tabular}{l} 
Selective \\
reporting
\end{tabular} \\
\hline Guimaraes \(2021^{5}\) & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Low & High & Unclear \\
\hline
\end{tabular}

\section*{References}

\section*{Baricitinib}
1. Ely EW, Ramanan AV, Kartman CE, et al. Efficacy and safety of baricitinib plus standard of care for the treatment of critically ill hospitalised adults with COVID-19 on invasive mechanical ventilation or extracorporeal membrane oxygenation: an exploratory, randomised, placebo-controlled trial. Lancet Respir Med 2022; 10(4): 327-36.
2. Kalil AC, Patterson TF, Mehta AK, et al. Baricitinib plus Remdesivir for Hospitalized Adults with Covid-19. N Engl J Med 2021; 384: 795-807
3. Marconi VC, Ramanan AV, de Bono S, et al. Efficacy and safety of baricitinib for the treatment of hospitalised adults with COVID-19 (COV-BARRIER): a randomised, doubleblind, parallel-group, placebo-controlled phase 3 trial. Lancet Respir Med 2021; 9(12): 1407-18.
4. RECOVERY Collaborative Group, Horby PW, Emberson JR, et al. Baricitinib in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial and updated meta-analysis. medRxiv 2022: Available at: https://doi.org/10.1101/2022.03.02.22271623 [Preprint 3 March 2022].

\section*{Tofacitinib}
5. Guimaraes PO, Quirk D, Furtado RH, et al. Tofacitinib in Patients Hospitalized with Covid-19 Pneumonia. N Engl J Med 2021; 385(5): 406-15.

\section*{Ivermectin}

Table s26. Should ambulatory or hospitalized patients with COVID-19 receive ivermectin vs. no ivermectin?
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & Country/ Hospital & Study design & N subjects (intervention/ comparator) & \% female & \begin{tabular}{l}
Age mean \\
(SD) / \\
Median \\
(IQR)
\end{tabular} & Severity of disease & Intervention (study arms) & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline \begin{tabular}{l}
Abbas/ \\
\(2022^{1}\)
\end{tabular} & \begin{tabular}{l}
China/ \\
China \\
Universi \\
ty of \\
Medical \\
Science \\
s \\
hospital \\
s
\end{tabular} & RCT & 202 (99/103) & 42 & \begin{tabular}{l}
Mean: \\
Interventi \\
on: 38.33 \\
(6.84) \\
Control: \\
37.33 \\
(5.84)
\end{tabular} & Patients age 1850 years old with COVID-19 & Ivermectin 300 \(\mathrm{mcg} / \mathrm{kg} /\) day divided into 2 doses by mouth for 5 days & Placebo & None & \begin{tabular}{l}
All-cause mortality \\
Time to complete symptom resolution \\
Deterioration of WHO clinical status scale by 2 or more points \\
Development of fever \\
Escalation of care \\
Adverse events
\end{tabular} & Unspecified \\
\hline \begin{tabular}{l}
Abd- \\
Elsalam/ \\
\(2021^{2}\)
\end{tabular} & Egypt/ 2 hospital s & RCT & 164 (82/82) & 50 & \begin{tabular}{l}
Interventi on: Mean of 42.4 (16) \\
Control: \\
Mean of
\end{tabular} & Hospitalized mild-moderate disease (no definition given) & Ivermectin 12 mg by mouth every day for 3 days and SoC & SoC & Paracetamol oseltamivir, hydrocortiso ne & \begin{tabular}{l}
Mortality at one month \\
Length of hospital stay
\end{tabular} & None \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & Country/ Hospital & Study design & N subjects (intervention/ comparator) & \begin{tabular}{l}
\% \\
female
\end{tabular} & \begin{tabular}{l}
Age mean \\
(SD) / \\
Median \\
(IQR)
\end{tabular} & Severity of disease & Intervention (study arms) & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline & & & & & \[
\begin{aligned}
& \hline 39.4 \\
& (16.9)
\end{aligned}
\] & & & & & Progression to mechanical ventilation Safety & \\
\hline ACTIV6/ 2022 3 & USA & RCT & \[
\begin{aligned}
& 1591 \\
& (817 / 774)
\end{aligned}
\] & 58.6 & \begin{tabular}{l}
Median: \\
47.0 \\
(39.0- \\
56.0)
\end{tabular} & Patients \(\geq 30\) years old with confirmed SARS-CoV-2 infection within 10 days, and experiencing \(\geq 2\) symptoms of acute COVID-19 for \(\leq 7\) days from enrollment & Ivermectin 400 \(\mu \mathrm{g} / \mathrm{kg}\) for 3 days & Placebo & N/A & \begin{tabular}{l}
Time to sustained recovery \\
Hospitalization pr death by day 28 \\
COVID clinical progression scale on days 7, 14 and 28 \\
Mortality \\
Hospitalization, urgent care, or emergency department visit \\
Adverse events
\end{tabular} & National Center for Advancing Translation al Sciences \\
\hline \[
\begin{aligned}
& \text { Ahmed/ } \\
& 2020^{4}
\end{aligned}
\] & Banglad esh & RCT & \begin{tabular}{l}
68: \\
ivermectin \\
alone vs. \\
ivermectin \\
plus \\
doxycycline
\end{tabular} & 54 & Mean: 42 & Hospitalized with a fever, cough, or sore throat & \begin{tabular}{l}
Ivermectin alone (12mg once daily for 5 days) \\
Ivermectin plus doxycycline combination
\end{tabular} & Placebo & N/A & \begin{tabular}{l}
Length of hospitalization \\
Incidence of hypoxia
\end{tabular} & \begin{tabular}{l}
Beximco \\
Pharmaceu \\
tical \\
Limited
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Study/ } \\
& \text { year }
\end{aligned}
\] & \begin{tabular}{l}
Country/ \\
Hospital
\end{tabular} & Study design & N subjects (intervention/ comparator) & \% female & \begin{tabular}{l}
Age mean \\
(SD) / \\
Median \\
(IQR)
\end{tabular} & Severity of disease & Intervention (study arms) & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline & & & \[
\begin{aligned}
& \text { vs. placebo } \\
& (22 / 23 / 23)
\end{aligned}
\] & & & & therapy (12mg ivermectin single dose plus doxycycline 200 mg once, followed by 100mg twice daily for 4 days) & & & \begin{tabular}{l}
Time to virologic clearance \\
Biomarker levels \\
Adverse events
\end{tabular} & \\
\hline \begin{tabular}{l}
Angkase \\
kwinai/ \\
\(2022^{5}\)
\end{tabular} & \begin{tabular}{l}
Thailan \\
d/ \\
Siriraj \\
Hospital
\end{tabular} & RCT & \[
\begin{aligned}
& 1000 \\
& (500 / 500)
\end{aligned}
\] & 57.4 & \begin{tabular}{l}
Mean
\[
\text { (SD): } 38.4
\] \\
(12.1)
\end{tabular} & \begin{tabular}{l}
Suspected of having SARS- \\
CoV-2 infection because of respiratory tract symptoms or because had a history of contact with a confirmed COVID-19 patient (also had documented positive or negative test for SARS-CoV-2 (RT-PCR) from a nasopharyngeal swab sample taken on the enrollment day)
\end{tabular} & Ivermectin 400\(600 \mu \mathrm{~g} / \mathrm{kg} /\) day & Placebo & None & \begin{tabular}{l}
Proportion of patients with positive RT-PCR within 14 days after enrollment among those with negative RT-PCR result at enrollment \\
Proportion of patients with oxygen desaturation (oxygen saturation <96\% or decreased from baseline \(\geq 3 \%\) after exertion) \\
Changes in the WHO 10-point clinical progression
\end{tabular} & \begin{tabular}{l}
Siriraj \\
Foundation \\
, Faculty of \\
Medicine \\
Siriaj \\
Hospital, \\
Mahidol \\
University
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Study/ } \\
& \text { year }
\end{aligned}
\] & \begin{tabular}{l}
Country/ \\
Hospital
\end{tabular} & Study design & N subjects (intervention/ comparator) & \% female & \begin{tabular}{l}
Age mean \\
(SD) / \\
Median \\
(IQR)
\end{tabular} & Severity of disease & Intervention (study arms) & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline & & & & & & & & & & \begin{tabular}{l}
score on Day 3, Day 7, and Day 14 \\
Absence of all symptoms at Day 3, Day 7, and Day 14 \\
Hospitalization within 14 days \\
28-day mortality \\
Adverse effects
\end{tabular} & \\
\hline \begin{tabular}{l}
Beltran \\
Gonzale \\
z/ \(2021{ }^{6}\)
\end{tabular} & \begin{tabular}{l}
Mexico/ \\
Hospital \\
Centena \\
rio \\
Miguel \\
Hidalgo
\end{tabular} & RCT & \begin{tabular}{l}
106 (33 \\
hydroxychlor oquine/ 36 ivermectin/ 37 placebo)
\end{tabular} & 37.8 & \[
\begin{aligned}
& \hline \text { Mean: } \\
& 53.8 \\
& (16.9)
\end{aligned}
\] & COVID-19
pneumonia
requiring
hospitalization
and recently
established
hypoxemic
respiratory
failure or acute
worsening of
pre-existing
lung or heart
disease, but not
requiring
mechanical
ventilation & \begin{tabular}{l}
Ivermectin 12 mg ( \(<80 \mathrm{~kg}\) ) or 18 mg ( \(>80 \mathrm{~kg}\) ) by mouth once \\
Hydroxychloroqu ine 400 mg by mouth every 12 hours on day 1 , followed by 200 mg every 12 hours for 4 days \\
Both groups in addition to SoC
\end{tabular} & SoC & Dexamethas one, pharmacolo gic thrombopro phylaxis & \begin{tabular}{l}
In-hospital mortality \\
Length of hospital stay \\
Discharge without respiratory deterioration or death \\
Time to respiratory deterioration or death
\end{tabular} & Aguascalien es State Health Institute \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & Country/ Hospital & Study design & N subjects (intervention/ comparator) & \[
\begin{aligned}
& \hline \% \\
& \text { female }
\end{aligned}
\] & \begin{tabular}{l}
Age mean \\
(SD) / \\
Median \\
(IQR)
\end{tabular} & Severity of disease & Intervention (study arms) & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline \[
\begin{aligned}
& \hline \text { Biber/ } \\
& 2021^{7}
\end{aligned}
\] & Israel/ hotels in 3 cities designa ted as isolatio n areas & RCT & 89 (47/42) & 21.6 & Median:
\[
35 \text { (20-71) }
\] & Mild-moderate disease (nonhospitalized and not requiring oxygen) & Ivermectin 12 mg ( \(40-69 \mathrm{~kg}\) ) or 15 mg ( \(\geq 70 \mathrm{~kg}\) ) by mouth every day for 3 days & Placebo & None & \begin{tabular}{l}
Proportion with viral clearance at day 6 \\
Culture viability days 2-6 \\
Safety
\end{tabular} & None \\
\hline Bramant e/ 2022 8 & \begin{tabular}{l}
United \\
States/ \\
6 \\
instituti ons
\end{tabular} & RCT & 1431 (1431 metformin analysis/880 ivermectin analysis/721 fluvoxamine analysis) & 56.0 & Median:
\[
46 \text { (37-55) }
\] & SARS-CoV-2 infection within the past 3 days; and an onset of symptoms within 7 days before randomization & \begin{tabular}{l}
Ivermectin 390\(470 \mu \mathrm{~g} / \mathrm{kg}\) per day for 3 days \\
Immediate release metformin with increase in dose over 6 days to \(1500 \mathrm{mg} / \mathrm{d}\) for 14 days \\
Fluvoxamine 50 mg BID for 14 days
\end{tabular} & Placebo & None & \begin{tabular}{l}
Severe COVID-19 through 14 days (composite of hypoxemia, emergency department visit, hospitalization, or death) \\
Daily symptom severity \\
Total symptom score \\
Drug discontinuations
\end{tabular} & \begin{tabular}{l}
Parsemus \\
Foundation \\
Rainwater \\
Charitable \\
Foundation \\
Fast Grants \\
UnitedHeal \\
th Group \\
Foundation
\end{tabular} \\
\hline Bukhari/ 2021 \({ }^{9}\) & \begin{tabular}{l}
Pakistan / \\
Combin ed Military
\end{tabular} & RCT & 86 (41/45) & 15.1 & \begin{tabular}{l}
Mean age: \\
Interventi \\
on: \(42.2 \pm\)
\[
12.0
\]
\end{tabular} & Mild-moderate disease. Mild disease defined as clinical symptoms ,excluding dyspnea or & Ivermectin 12 mg once plus standard of care & (1) SoC & Standard of care, which consisted of Vitamin C 500 mg daily, Vitamin D3 50,000 units & \begin{tabular}{l}
Negative PCR test by day 3,7 and 14 \\
Adverse reactions
\end{tabular} & None \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & \begin{tabular}{l}
Country/ \\
Hospital
\end{tabular} & Study design & N subjects (intervention/ comparator) & \begin{tabular}{l}
\% \\
female
\end{tabular} & \begin{tabular}{l}
Age mean \\
(SD) / \\
Median \\
(IQR)
\end{tabular} & Severity of disease & Intervention (study arms) & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline & Hospital Lahore & & & & Comparat or: \(39.0 \pm\) 12.6 & gasping, with no imaging findings of pneumonia. Moderate disease defined as fever, respiratory symptoms, and imaging findings of pneumonia. & & & weekly, and paracetamol 500 mg as needed. & & \\
\hline Buonfra te/ 2022 10 & Italy/ 4 outpati ent centers & RCT & 87 (30 highdose/28 lowdose/29 placebo) & 41.9 & Median:
\[
47 \text { (31-58) }
\] & Adult outpatients with newly diagnosed SARS-CoV-2 infection by RTPCR not requiring supplemental oxygen or hospitalization & \begin{tabular}{l}
Ivermectin 1200 \(\mathrm{mcg} / \mathrm{kg} /\) day for 5 days \\
OR \\
Ivermectin 600 \(\mathrm{mcg} / \mathrm{kg} /\) day for 5 days
\end{tabular} & Placebo & Unspecified therapies related to COVID-19 treatment (61.3\% overall) & \begin{tabular}{l}
Change in viral load at day 7 \\
Severe adverse drug reactions \\
Trend in quantitative viral load \\
Proportion of patients with virologic clearance day 14 and 30 \\
Hospitalizations \\
COVID-19 \\
severity score \\
day 14 and 30
\end{tabular} & \begin{tabular}{l}
Italian \\
Ministry of Health
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & \begin{tabular}{l}
Country/ \\
Hospital
\end{tabular} & Study design & N subjects (intervention/ comparator) & \% female & \begin{tabular}{l}
Age mean \\
(SD) / \\
Median \\
(IQR)
\end{tabular} & Severity of disease & Intervention (study arms) & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline \[
\begin{aligned}
& \hline \text { Chaccou } \\
& \text { r/ } 2021 \\
& 11
\end{aligned}
\] & \begin{tabular}{l}
Spain/ \\
Clínica \\
Universi \\
dad de \\
Navarra
\end{tabular} & RCT & 24 (12/12) & 50\% & \begin{tabular}{l}
Median (IQR) \\
Ivermecti \\
n: 26 \\
years (19- \\
36) \\
Placebo: \\
26 years \\
(21-44)
\end{tabular} & RT-PCR positive for SARS-CoV-2 and non-severe symptoms compatible with COVID-19 and symptom onset < 72 hours & Ivermectin 400 \(\mathrm{mcg} / \mathrm{kg} \times\) one dose & \begin{tabular}{l}
Placebo \\
(not \\
matched)
\end{tabular} & Symptomati c treatments & \begin{tabular}{l}
Mortality \\
Viral clearance at day 7 \\
Progression to severe disease \\
Viral load at days \\
\(4,7,14\), and 21 \\
Symptom resolution at days \(4,7,14\), and 21 \\
Seroconversion day 21
\end{tabular} & \begin{tabular}{l}
ISGlobal \\
and \\
University \\
of Navarra
\end{tabular} \\
\hline Chachar / \(2020^{12}\) & Pakistan /Fatima Memori al Hospital & RCT & \(50(25 / 25)\) & 38\% & \begin{tabular}{l}
Mean: 41.84 \\
(15.7)
\end{tabular} & Outpatients with positive RT-PCR & Ivermectin 12 mg every 12 hours x 3 doses total & No ivermectin & Symptomati c treatment & \begin{tabular}{l}
Symptom improvement at day 7 \\
Rate of heartburn
\end{tabular} & N/A \\
\hline Elshafie \(2022^{13}\) & Egypt & RCT & \[
\begin{aligned}
& \hline 303 \text { (104 } \\
& \text { ivermectin/8 } \\
& 7 \mathrm{HCO} / 102 \\
& \text { placebo) }
\end{aligned}
\] & 47.5 & \begin{tabular}{l}
Mean (SD): \\
Patients receiving ivermecti \\
n: 59.84 \\
(16.3)
\end{tabular} & Hospitalized moderate to severe COVID19 patients & Ivermectin orally 36 mg dose on day 1, 3, 6 & \begin{tabular}{l}
Placebo \\
HCQ orally \\
400 mg \\
loading \\
dose on \\
day 1 , \\
followed by \\
a 200 mg
\end{tabular} & All patients who required supplement al oxygen received steroids in the form of dexamethas & Recovery (hospital discharge or improvement in clinical condition by 2 WHO ordinal scales) & None \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & Country/ Hospital & Study design & N subjects (intervention/ comparator) & \[
\begin{aligned}
& \hline \% \\
& \text { female }
\end{aligned}
\] & \begin{tabular}{l}
Age mean \\
(SD) / \\
Median \\
(IQR)
\end{tabular} & Severity of disease & Intervention (study arms) & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline & & & & & \begin{tabular}{l}
Patients \\
receiving \\
HCQ: \\
61.13 \\
(18.8) \\
Patients \\
receiving \\
placebo: \\
59.06 \\
(16.7)
\end{tabular} & & & maintenan ce dose on day 2 until day 5 & \begin{tabular}{l}
one 6 mg IV \\
for 10 days \\
or \\
solumedrol \\
1-2 \\
\(\mathrm{mg} / \mathrm{kg} /\) day \\
IV infusion \\
in severe \\
cases \\
complicated \\
with adult \\
respiratory \\
distress \\
syndrome \\
Antibiotics \\
were given \\
to cases \\
clinically \\
diagnosed \\
with \\
secondary \\
bacterial \\
infection \\
based on \\
radiological \\
and \\
laboratory \\
findings \\
Enoxaparin with \\
prophylactic \\
dose was
\end{tabular} & \begin{tabular}{l}
Mortality \\
Adverse events
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Study/ } \\
& \text { year }
\end{aligned}
\] & Country/ Hospital & Study design & N subjects (intervention/ comparator) & \[
\%
\]
female & \begin{tabular}{l}
Age mean \\
(SD) / \\
Median \\
(IQR)
\end{tabular} & Severity of disease & Intervention (study arms) & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline & & & & & & & & & used in all patients unless there were indications for therapeutic dose & & \\
\hline \[
\begin{aligned}
& \text { George/ } \\
& 2022^{14}
\end{aligned}
\] & India/C hristian Medical College & RCT & \begin{tabular}{l}
112 (38 \\
ivermectin 12 \\
mg/35 \\
ivermectin 24 \\
\(\mathrm{mg} / 39 \mathrm{SoC}\) )
\end{tabular} & 29 & \begin{tabular}{l}
Median (range): \\
Patients receiving ivermecti \\
n 12 mg : 38.5 (6- \\
70) \\
Patients \\
receiving \\
ivermecti \\
n 24 mg: \\
42.3 (4- \\
73) \\
Standard \\
of care: \\
43.2 (3- \\
77)
\end{tabular} & \begin{tabular}{l}
Patients with hematological disorders with positive rRTPCR for SARS CoV-2 \\
(asymptomatic, mild, or moderate COVID-19 illness as per the interim WHO definitions in May 2020)
\end{tabular} & \begin{tabular}{l}
Ivermectin 12mg x one dose \\
Ivermectin 24 \(\mathrm{mg} x\) one dose
\end{tabular} & SoC & None & \begin{tabular}{l}
Proportion of patients negative for SARS-CoV-2 RNA by rRT-PCR on day 7 posttreatment \\
Viral load on days 3,5 and 7 post treatment \\
Proportion of patients with symptom progression as judged by the WHO ordinal scale \\
Incidence of adverse events attributable to ivermectin
\end{tabular} & \begin{tabular}{l}
COVID \\
grant from the Science and Engineering Board [SERB], \\
Departmen t of Science and Technology Governmen t of India
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & Country/ Hospital & Study design & N subjects (intervention/ comparator) & \% female & \begin{tabular}{l}
Age mean \\
(SD) / \\
Median \\
(IQR)
\end{tabular} & Severity of disease & Intervention (study arms) & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline & & & & & & & & & & All-cause mortality at discharge from COVID ward & \\
\hline \[
\begin{aligned}
& \hline \text { Hashim/ } \\
& 2020^{15}
\end{aligned}
\] & Iraq/ Alkarkh and Alforat hospital s & RCT & 140 (70/70) & 48 & \begin{tabular}{l}
Range: \\
Total \\
populatio \\
n: 16-86 \\
Mean \\
(SD): \\
Patients \\
receiving \\
ivermecti \\
n/doxy: \\
50.1 (9.3) \\
Patients \\
not \\
receiving \\
ivermecti \\
n: 47.2 \\
(7.8)
\end{tabular} & Mild, moderate, severe, or critical disease defined according to WHO guidelines & Ivermectin 200 \(\mathrm{mcg} / \mathrm{kg}\) daily for 2 days, with a possible 3rd dose 7 days after the first dose based on clinical improvement, plus doxycycline 100 mg twice daily for 5-10 days, based on clinical improvement & (1) SoC & Standard of care, according to clinical status of the patients, which could include: acetaminop hen as needed, Vitamin C, zinc, Vitamin D3, azithromyci n , dexamethas one, oxygen therapy/me chanical ventilation if needed & \begin{tabular}{l}
Mortality \\
Disease progression after 3 days \\
Time to recovery
\end{tabular} & \begin{tabular}{l}
Baghdad- \\
Alkarkh \\
General \\
Directorate of Health
\end{tabular} \\
\hline Krolewie cki/ \(2021{ }^{16}\) & \begin{tabular}{l}
Argenti \\
na/ 4 \\
hospital \\
s
\end{tabular} & RCT & 45 (30/15) & 44 & Interventi on: Mean of 38.1 (11.7) & Hospitalized but not receiving intensive care & Ivermectin 600 \(\mathrm{mcg} / \mathrm{kg}\) by mouth every day for 5 days & SoC & None & Proportion with viral clearance at day 5 & Grant from Agencia Nacional de Promoción de la Investigació \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & \begin{tabular}{l}
Country/ \\
Hospital
\end{tabular} & Study design & N subjects (intervention/ comparator) & \[
\begin{aligned}
& \hline \% \\
& \text { female }
\end{aligned}
\] & \begin{tabular}{l}
Age mean \\
(SD) / \\
Median \\
(IQR)
\end{tabular} & Severity of disease & Intervention (study arms) & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline & & & & & \begin{tabular}{l}
Control: \\
Mean of \\
42.3 \\
(12.8)
\end{tabular} & & & & & Clinical evolution at day 7 and 30 Safety & \[
\begin{aligned}
& \mathrm{n}, \\
& \text { Argentina }
\end{aligned}
\] \\
\hline Lim/
\[
2022^{17}
\] & \begin{tabular}{l}
Malaysi \\
a (20 \\
hospital \\
s, 1 \\
quarant ine center)
\end{tabular} & RCT & \[
\begin{aligned}
& 490 \\
& (241 / 249)
\end{aligned}
\] & 54.5 & Mean:
\[
62.5 \text { (8.7) }
\] & Mild-moderate disease (at least 1 symptom but not on supplemental oxygen) within 7 days of laboratoryconfirmed SARS-CoV-2 infection, considered high risk for progression ( \(\geq\) 50 years old with \(\geq 1\) comorbidity) & Ivermectin 0.4 \(\mathrm{mg} / \mathrm{kg} /\) day for 5 days plus standard of care & Standard of care & Therapies considered standard of care per Malaysia guidelines (steroids, tocilizumab, convalescen t plasma, anticoagula nts) & \begin{tabular}{l}
28-day inhospital allcause mortality \\
Proportion of patients progressing to severe COVID-19 \\
Time of progression to severe disease \\
Mechanical ventilation rate \\
ICU admissions \\
Length of hospitalization \\
Adverse events
\end{tabular} & Institute for Clinical Research, Ministry of Health Malaysia \\
\hline \begin{tabular}{l}
López- \\
Medina/ \(2021{ }^{18}\)
\end{tabular} & \begin{tabular}{l}
Columbi \\
a/ \\
Centro \\
de \\
Estudios \\
en \\
Infectol
\end{tabular} & RCT & \[
\begin{aligned}
& 398 \\
& (200 / 198)
\end{aligned}
\] & 58 & Median (IQR): 37 (29-48) & Mild disease (Home or hospitalized but not receiving high-flow nasal oxygen or mechanical & Ivermectin 300 \(\mu \mathrm{g} / \mathrm{kg} /\) day for 5 days & Placebo & N/A & \begin{tabular}{l}
Mortality \\
Time to symptom resolution
\end{tabular} & Grant from Centro de Estudios en Infectología Pediátrica \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & Country/ Hospital & Study design & N subjects (intervention/ comparator) & \begin{tabular}{l}
\% \\
female
\end{tabular} & \begin{tabular}{l}
Age mean \\
(SD) / \\
Median \\
(IQR)
\end{tabular} & Severity of disease & Intervention (study arms) & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline & ogía Pedíatri ca & & & & & \begin{tabular}{l}
ventilation) \\
within 5 days of illness onset
\end{tabular} & & & & \begin{tabular}{l}
Clinical deterioration \\
Hospitalization \\
Oxygen supplementation \\
Adverse events
\end{tabular} & \\
\hline \begin{tabular}{l}
Mahmu \\
d/ 2021 \\
19
\end{tabular} & Banglad esh/ Dhaka Medical College & RCT & \[
\begin{aligned}
& \hline 400 \\
& (200 / 200)
\end{aligned}
\] & 41 & Mean: 40 & Mild-moderate disease (patients excluded if: >30 breaths/min, <90\% SpO2 or requiring supplemental oxygenation, admitted to intensive care) & Ivermectin 12 mg by mouth every day for 5 days and doxycycline 100mg twice a day for 5 days in addition to SoC & SoC & \begin{tabular}{l}
Antihistamin es, \\
paracetamol , vitamins, low molecular weight heparin, remdesivir, "other antiviral drugs"
\end{tabular} & \begin{tabular}{l}
Mortality \\
Disease progression \\
Time to clinical recovery \\
Proportion with positive test on day 14 \\
Safety
\end{tabular} & None \\
\hline Manom aipiboon / \(2022^{20}\) & \begin{tabular}{l}
Thailan \\
d/ \\
Vajira \\
Hospital
\end{tabular} & RCT & 72 (36/36) & 62.5 & \begin{tabular}{l}
Mean age: 48.57 \\
(14.8)
\end{tabular} & Patients age 1880 years with mild (cough, runny nose, anosmia, fever, or diarrhea, without dyspnea or tachycardia) or moderate (pneumonia & Ivermectin 12 mg by mouth once daily for 5 days plus standard of care & SoC & Favipiravir, andrograph olide, cetirizine & \begin{tabular}{l}
All-cause mortality \\
Viral clearance on day 7 and 14 \\
Length of hospitalization
\end{tabular} & Grant from Navamindr adhiraj University \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & \begin{tabular}{l}
Country/ \\
Hospital
\end{tabular} & Study design & N subjects (intervention/ comparator) & \% female & \begin{tabular}{l}
Age mean \\
(SD) / \\
Median \\
(IQR)
\end{tabular} & Severity of disease & Intervention (study arms) & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline & & & & & & with oxygen saturation > 90\%) COVID-19 & & & & \begin{tabular}{l}
Frequency of clinical worsening \\
Mechanical ventilation \\
Adverse events
\end{tabular} & \\
\hline \begin{tabular}{l}
Mirahm adizade \\
h/ 2022 \\
21
\end{tabular} & \begin{tabular}{l}
Iran/ 14 \\
specializ \\
ed \\
COVID- \\
19 \\
outpati \\
ent \\
treatme \\
nt \\
centres
\end{tabular} & RCT & \[
\begin{aligned}
& \hline 393 \text { (131 } \\
& \text { single dose } \\
& \text { ivermectin/1 } \\
& 31 \text { double } \\
& \text { dose } \\
& \text { ivermectin/1 } \\
& 31 \text { placebo) }
\end{aligned}
\] & 45.8 & \begin{tabular}{l}
Median (IQR): \\
Single \\
dose: 39.5 \\
(16.5) \\
Double \\
dose: 39 \\
(17) \\
Placebo: \\
39.5 \\
(17.5)
\end{tabular} & \begin{tabular}{l}
Mild \\
symptomatic COVID- 19 confirmed by RT-PCR test, had symptom onset-to-visit interval of less than 48 h , were aged 18-80 years and had oxygen saturation levels of at least 93\% in room air
\end{tabular} & \begin{tabular}{l}
Single dose ivermectin: 3 mg tablet x 4 tablets \\
+ placebo tablets \\
x 4, at the \\
second day \\
Double dose ivermectin: 3 mg tablet x 4 tablets x 2 days
\end{tabular} & Placebo & None & \begin{tabular}{l}
Proportion of subjects who required hospitalization up to 28 days follow-up \\
Proportion of subjects with resolution of symptoms, required machine ventilation or deceased, as well as time to resolution of symptoms \\
Trend of change in severity scale \\
Adverse events
\end{tabular} & \begin{tabular}{l}
Shiraz \\
University of Medical Sciences
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Study/ } \\
& \text { year }
\end{aligned}
\] & Country/ Hospital & Study design & N subjects (intervention/ comparator) & \% female & \begin{tabular}{l}
Age mean \\
(SD) / \\
Median \\
(IQR)
\end{tabular} & Severity of disease & Intervention (study arms) & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline \begin{tabular}{l}
Mohan/ \\
\(2021{ }^{22}\)
\end{tabular} & \begin{tabular}{l}
India/ \\
All India \\
Institut \\
e of \\
Medical \\
Science \\
s
\end{tabular} & RCT & \begin{tabular}{l}
Ivermectin \\
24 mg vs \\
12 mg vs \\
placebo: \\
mITT \\
population \\
(40/40/45)
\end{tabular} & 11.2 & \[
\begin{aligned}
& \hline \text { Mean: } \\
& 35.3 \\
& (10.4)
\end{aligned}
\] & Non-severe COVID-19 (SpO2 on room air > 90\%, no hypotension, no mechanical ventilation) & Ivermectin elixir at a dose of 12 mg or 24 mg once & Placebo & Hospital standard protocol, which included some patients receiving hydroxychlo roquine, favipiravir, remdesivir, dexamethas one, dalteparin, antibiotics & \begin{tabular}{l}
Reduction in viral load \\
Conversion to negative PCR by day 5 \\
Time to clinical resolution \\
Clinical status on day 14 on WHO ordinal scale \\
Hospital-free days on day 28 \\
Adverse effects
\end{tabular} & Research grant from Departmen t of Science and Technology Governmen t of India \\
\hline Podder/
\[
2020^{23}
\] & \[
\begin{aligned}
& \text { Banglad } \\
& \text { esh/ } \\
& \text { Debidw } \\
& \text { ar } \\
& \text { Upazila } \\
& \text { Health } \\
& \text { Comple }
\end{aligned}
\] & RCT & 62 (32/30) & 29\% & \begin{tabular}{l}
Mean (SD) \\
Total enrolled populatio n: 39.16 (12.07) \\
Ivermecti \\
n: 38.41 \\
(11.02) \\
Control: \\
39.97 \\
(13.24)
\end{tabular} & Positive RT-PCR with mild (no evidence of pneumonia and \(\mathrm{SpO}_{2}>93 \%\) on RA) to moderate COVID-19 (signs of pneumonia with \(\mathrm{SpO}_{2}\) >90\%) & Ivermectin 200 \(\mathrm{mcg} / \mathrm{kg}\) on day 1 & SOC & Symptomati c treatment with doxycycline 100 mg every 12 hours for 7 days & \begin{tabular}{l}
Viral clearance at day 10 \\
Duration of symptoms \\
Time to resolution of symptoms
\end{tabular} & None \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & Country/ Hospital & Study design & N subjects (intervention/ comparator) & \[
\begin{aligned}
& \hline \% \\
& \text { female }
\end{aligned}
\] & Age mean (SD) / Median (IQR) & Severity of disease & Intervention (study arms) & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline \[
\begin{aligned}
& \text { Ravikirti } \\
& \text { / } 20211^{24}
\end{aligned}
\] & \begin{tabular}{l}
India/ \\
All India \\
Institut \\
e of \\
Medical \\
Science \\
s
\end{tabular} & RCT & 112 (55/57) & 27.7 & Mean age:
\[
\begin{aligned}
& 52.5 \pm \\
& 14.7
\end{aligned}
\] & \begin{tabular}{l}
Mild-moderate \\
disease. Mild \\
defined as \\
having no \\
evidence of breathlessness or hypoxia. Moderate defined as breathlessness and/or hypoxia (90-95\% SpO2 on room air), respiratory rate \(>23\), no features of severe disease.
\end{tabular} & Ivermectin 12mg daily for 2 days & Placebo & Hydroxychlo roquine, corticosteroi ds, enoxaparin, antibiotics, remdesivir, convalescen t plasma, tocilizumab & \begin{tabular}{l}
In-hospital mortality \\
PCR positivity rate at day 6 \\
Symptom resolution \\
Discharge by day \\
10 \\
Admission for ICU \\
Mechanical ventilation
\end{tabular} & All India Institute of Medical Sciences \\
\hline \[
\begin{aligned}
& \text { Reis/ } \\
& 2022^{25}
\end{aligned}
\] & \begin{tabular}{l}
Brazil/ \\
12 \\
public \\
health \\
clinics
\end{tabular} & RCT & \[
\begin{aligned}
& \hline 1358 \\
& (679 / 679)
\end{aligned}
\] & 58.2 & Median:
49
\((38-57)\) & \begin{tabular}{l}
Adult \\
outpatients not requiring hospitalization with laboratoryconfirmed SARS- CoV-2 infection within 7 days with \(\geq 1\) risk factor for progression
\end{tabular} & Ivermectin 400 \(\mathrm{mcg} / \mathrm{kg} /\) day for 3 days plus standard of care & Standard of care & None specified & \begin{tabular}{l}
All-cause mortality \\
Hospitalization or ED visit by day 28 due to COVID-19 \\
SARS-CoV-2 viral clearance \\
Length of hospitalization
\end{tabular} & \begin{tabular}{l}
FastGrants \\
Rainwater \\
Charitable \\
Foundation
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & \begin{tabular}{l}
Country/ \\
Hospital
\end{tabular} & Study design & N subjects (intervention/ comparator) & \% female & \begin{tabular}{l}
Age mean \\
(SD) / \\
Median \\
(IQR)
\end{tabular} & Severity of disease & Intervention (study arms) & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline & & & & & & & & & & \begin{tabular}{l}
Mechanical ventilation \\
Health-related quality of life \\
Adverse reactions
\end{tabular} & \\
\hline \[
\begin{aligned}
& \text { Rezai/ } \\
& 2022^{26}
\end{aligned}
\] & Iran/ 6 trial sites & RCT & \[
\begin{aligned}
& \hline 891 \\
& (447 / 444)
\end{aligned}
\] & 35.7 & \begin{tabular}{l}
Mean \\
(SD): \\
53.79 \\
(15.3)
\end{tabular} & Patients with positive diagnostic by RT-PCR assay for SARS-CoV-2 using a nasopharyngeal swab \(\leq 4\) days prior to screening or positive rapid COVID-19 test, without evidence of viral pneumonia or hypoxia & Ivermectin 0.4 \(\mathrm{mg} / \mathrm{kg} \times 3\) days & Placebo & None & \begin{tabular}{l}
Time to resolution of symptoms \\
Time to recovery including complete recovery and relative recovery \\
Progression (needing hospitalization) \\
Negative RT-PCR result at 5 days \\
ICU admission \\
Drug-induced adverse events \\
Death
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & \begin{tabular}{l}
Country/ \\
Hospital
\end{tabular} & Study design & N subjects (intervention/ comparator) & \begin{tabular}{l}
\% \\
female
\end{tabular} & \begin{tabular}{l}
Age mean \\
(SD) / \\
Median \\
(IQR)
\end{tabular} & Severity of disease & Intervention (study arms) & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline \[
\begin{aligned}
& \hline \text { Vallejos/ } \\
& 2021^{27}
\end{aligned}
\] & \begin{tabular}{l}
Argenti \\
na
\end{tabular} & RCT & \[
\begin{aligned}
& \hline 501 \\
& (250 / 251)
\end{aligned}
\] & 47 & \begin{tabular}{l}
Interventi on: Mean of 42.6 (15.3) \\
Control: \\
Mean of 42.4 \\
(15.8)
\end{tabular} & RT-PCR positive and nonhospitalized and not requiring home oxygen & Ivermectin weight-based dosing at 12 mg , 18 mg , or 24 mg every day for 2 days, plus SoC & SoC & Supplement s including zinc and vitamin c & \begin{tabular}{l}
Mortality \\
All-cause hospitalization \\
Mechanical ventilation \\
Proportion with viral clearance at day 12 \\
Adverse events
\end{tabular} & None \\
\hline
\end{tabular}

Figure s9a. Forest plot for the outcome of mortality for ivermectin vs. no ivermectin among hospitalized patients (from RCTs)


Figure s9b. Forest plot for the outcome of need for mechanical ventilation for ivermectin vs. no ivermectin among hospitalized patients


Figure s9c. Forest plot for the outcome of viral clearance at seven days for ivermectin vs. no ivermectin among hospitalized patients (all studies)


Figure s9d. Forest plot for the outcome of viral clearance at seven days for ivermectin vs. no ivermectin among hospitalized patients (without Ahmed 2020)


Figure s9e. Forest plot for the outcome of serious adverse events for ivermectin vs. no ivermectin among hospitalized patients


Figure s9f. Forest plot for the outcome of mortality for ivermectin vs. no ivermectin among ambulatory patients


Figure s9g. Forest plot for the outcome of progression to severe disease for ivermectin vs. no ivermectin among ambulatory patients


Figure s9h. Forest plot for the outcome of viral clearance at seven days for ivermectin vs. no ivermectin among ambulatory patients


Figure s9i. Forest plot for the outcome of time to recovery for ivermectin vs. no ivermectin among ambulatory patients


Figure s9j. Forest plot for the outcome of hospitalization for ivermectin vs. no ivermectin among ambulatory patients


Figure s9k. Forest plot for the outcome of serious adverse events for ivermectin vs. no ivermectin among ambulatory patients


IDSA Guideline on the Treatment and Management of COVID-19
Supplementary Materials

Table s27. Risk of bias for randomized controlled studies (ivermectin vs. no ivermectin)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Study & Random sequence generation & Allocation concealment & Blinding of participants and personnel & Blinding of outcome assessment & Incomplete outcome data & Selective reporting & Other bias \\
\hline Abbas \(2022{ }^{1}\) & & & & & & & \\
\hline Abd-EIsalam 2021 \({ }^{2}\) & & & & & & & \\
\hline ACTIV-6 \(2022{ }^{3}\) & & & & & & & \\
\hline Ahmed 2020 \({ }^{4}\) & & & & & & & \\
\hline Angkasekwinai \(2022{ }^{5}\) & & & & & & & \\
\hline Beltran Gonzalez \(2022{ }^{6}\) & & & & & & & \\
\hline Biber \(2021{ }^{7}\) & & & & & & & \\
\hline Bramante \(2022{ }^{\text {8 }}\) & & & & & & & \\
\hline Bukhari \(2021{ }^{\text {9 }}\) & & & & & & & \\
\hline Buonfrate \(2022{ }^{10}\) & & & & & & & \\
\hline Chaccour \(2021{ }^{11}\) & & & & & & & \\
\hline Chachar \(2020{ }^{12}\) & & & & & & & \\
\hline Elshafie \(2022{ }^{13}\) & & & & & & & \\
\hline George \(2022{ }^{14}\) & & & & & & & \\
\hline Hashim \(2020{ }^{15}\) & & & & & & & \\
\hline Krolewiecki \(2021{ }^{16}\) & & & & & & & \\
\hline \(\operatorname{Lim} 2022^{17}\) & & & & & & & \\
\hline López-Medina \(2021{ }^{18}\) & & & & & & & \\
\hline
\end{tabular}

IDSA Guideline on the Treatment and Management of COVID-19
Supplementary Materials


\section*{References}
1. Abbas KU, Muhammad S, Ding SF. The Effect of Ivermectin on Reducing Viral Symptoms in Patients with Mild COVID-19. Indian J Pharm Sci 2022; 84(1): Spl Issue 87-91.
2. Abd-Elsalam S, Noor RA, Badawi R, et al. Clinical study evaluating the efficacy of ivermectin in COVID-19 treatment: A randomized controlled study. J Med Virol 2021; 93(10): 5833-8.
3. Accelerating COVID-19 Therapeutic Interventions and Vaccines (ACTIV)-6 Study Group, Naggie S. Ivermectin for Treatment of Mild-to-Moderate COVID-19 in the Outpatient Setting: A Decentralized, Placebo-controlled, Randomized, Platform Clinical Trial. medRxiv 2022: Available at: https://doi.org/10.1101/2022.06.10.22276252 [Preprint 12 June 2022].
4. Ahmed S, Karim MM, Ross AG, et al. A five-day course of ivermectin for the treatment of COVID-19 may reduce the duration of illness. Int J Infect Dis 2020; 103: 214-6.
5. Angkasekwinai N, Rattanaumpawan P, Chayakulkeeree M, et al. Safety and Efficacy of Ivermectin for the Prevention and Treatment of COVID-19: A Double-Blinded Randomized Placebo-Controlled Study. Antibiotics (Basel) 2022; 11(6).
6. Beltran Gonzalez JL, Gonzalez Gamez M, Mendoza Enciso EA, et al. Efficacy and Safety of Ivermectin and Hydroxychloroquine in Patients with Severe COVID-19: A Randomized Controlled Trial. Infect Dis Rep 2022; 14(2): 160-8.
7. Biber A, Harmelin G, Lev D, et al. The effect of ivermectin on the viral load and culture viability in early treatment of nonhospitalized patients with mild COVID-19-a double-blind, randomized placebo-controlled trial. Int J Infect Dis 2022; 122: 733-40.
8. Bramante CT, Huling JD, Tignanelli CJ, et al. Randomized Trial of Metformin, Ivermectin, and Fluvoxamine for Covid-19. N Engl J Med 2022; 387(7): 599-610.
9. Bukhari SKHS, Asghar A, Perveen N, et al. Efficacy of Ivermectin in COVID-19 Patients with Mild to Moderate Disease. medRxiv 2021: Available at: https://doi.org/10.1101/2021.02.02.21250840 [Preprint 5 February 2021].
10. Buonfrate D, Chesini F, Martini D, et al. High-dose ivermectin for early treatment of COVID19 (COVER study): a randomised, double-blind, multicentre, phase II, dose-finding, proof-of-concept clinical trial. Int J Antimicrob Agents 2022; 59(2):106516.
11. Chaccour C, Casellas A, Blanco-Di Matteo A, et al. The effect of early treatment with ivermectin on viral load, symptoms and humoral response in patients with non-severe COVID-19: A pilot, double-blind, placebo-controlled, randomized clinical trial. EClinicalMedicine 2021; 32: 100720.
12. Chachar AZK, Khan KA, Asif M, Tanveer K, Khaqan A, Basri R. Effectiveness of Ivermectin in SARS-CoV-2/COVID-19 Patients. Int J Sci 2020; 9(09): 31-5.
13. Elshafie AH, Elsawah HK, Hammad M, et al. Ivermectin role in COVID-19 treatment (IRICT): single-center, adaptive, randomized, double-blind, placebo-controlled, clinical trial. Expert Rev Anti Infect Ther 2022; 20(10): 1341-50.
14. George B, Moorthy M, Kulkarni U, et al. Single Dose of Ivermectin is not Useful in Patients with Hematological Disorders and COVID-19 IIIness: A Phase II B Open Labelled Randomized Controlled Trial. Indian J Hematol Blood Transfus 2022; 38(4): 615-22.
15. Hashim HA, Maulood MF, Rasheed AM, Fatak DF, Kabah KK, Abdulamir AS. Controlled randomized clinical trial on using Ivermectin with Doxycycline for treating COVID-19 patients in Baghdad, Iraq. medRxiv 2020: Available at: https://doi.org/10.1101/2020.10.26.20219345 [Preprint 27 October 2020].
16. Krolewiecki A, Lifschitz A, Moragas M, et al. Antiviral effect of high-dose ivermectin in adults with COVID-19: A proof-of-concept randomized trial. EClinicalMedicine 2021; 37: 100959.
17. Lim SCL, Hor CP, Tay KH, et al. Efficacy of Ivermectin Treatment on Disease Progression Among Adults With Mild to Moderate COVID-19 and Comorbidities: The I-TECH Randomized Clinical Trial. JAMA Intern Med 2022; 182(4): 426-35.
18. López-Medina E, Lopez P, Hurtado IC, et al. Effect of Ivermectin on Time to Resolution of Symptoms Among Adults With Mild COVID-19: A Randomized Clinical Trial. JAMA 2021; 325(14): 1426-35.
19. Mahmud R, Rahman MM, Alam I, et al. Ivermectin in combination with doxycycline for treating COVID-19 symptoms: a randomized trial. J Int Med Res 2021; 49(5): 300060521101355.
20. Manomaipiboon A, Pholtawornkulchai K, Pupipatpab S, et al. Efficacy and safety of ivermectin in the treatment of mild-to-moderate COVID-19 infection: A randomized, double blind, placebo, controlled trial. Research Square 2022: Available at: https://doi.org/10.21203/rs.3.rs-1290999/v1 [Preprint 2 February 2022].
21. Mirahmadizadeh A, Semati A, Heiran A, et al. Efficacy of single-dose and double-dose ivermectin early treatment in preventing progression to hospitalization in mild COVID-19: A multi-arm, parallel-group randomized, double-blind, placebo-controlled trial. Respirology 2022; 27(9): 758-66.
22. Mohan A, Tiwari P, Suri T, Mittal S, Patel AA, Jain A. Ivermectin in mild and moderate COVID-19 (RIVET-COV): a randomized, placebo-controlled trial. Research Square 2021: Available at: https://doi.org/10.21203/rs.3.rs-191648/v1 [Preprint 2 February 2021].
23. Podder CS, Chowdhury N, Sina MI, UI Haque WMM. Outcome of ivermectin treated mild to moderate COVID-19 cases: a single-centre, open-label, randomised controlled study. IMC J Med Sci 2020; 14(2): 11-8.
24. Ravikirti, Roy R, Pattadar C, et al. Ivermectin as a potential treatment for mild to moderate COVID-19-A double blind randomized placebo-controlled trial. medRxiv 2021: Available at: https://doi.org/10.1101/2021.01.05.21249310 [Preprint 9 January 2021].
25. Reis G, Silva E, Silva DCM, et al. Effect of Early Treatment with Ivermectin among Patients with Covid-19. N Engl J Med 2022; 386(18): 1721-31.
26. Rezai S. COVID-19 Update: Ivermectin. Available at: https://rebelem.com/covid-19-updateivermectin/. Accessed 10 February 2021.
27. Vallejos J, Zoni R, Bangher M, et al. Ivermectin to prevent hospitalizations in patients with COVID-19 (IVERCOR-COVID19) a randomized, double-blind, placebo-controlled trial. BMC Infect Dis 2021; 21(1): 635.

Fluvoxamine
Table s28. Should ambulatory patients with COVID-19 receive fluvoxamine vs. no fluvoxamine?
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & \begin{tabular}{l}
Country/ \\
Hospital
\end{tabular} & Study design & N subjects (intervention/ comparator) & \begin{tabular}{l}
\% \\
female
\end{tabular} & \begin{tabular}{l}
Age mean \\
(SD) / \\
Median \\
(IQR)
\end{tabular} & Severity of disease & Intervention (study arms) & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline \[
\begin{aligned}
& \hline \text { Lenze/ } \\
& 2020^{1}
\end{aligned}
\] & \begin{tabular}{l}
US/ St. \\
Louis \\
greater \\
metropol \\
itan area
\end{tabular} & RCT & 152 (80/72) & 71.7 & \begin{tabular}{l}
Mean: 46 \\
(13)
\end{tabular} & Outpatients with positive SARS-CoV2 test within 7 days of enrollment and symptoms of COVID-19, who were not severe enough at baseline to meet trial's clinical worsening criteria (dyspnea and/or hospitalization for shortness of breath or pneumonia in addition to oxygen saturation \(<92 \%\) or on \(\mathrm{SpO}_{2}\) ) & Fluvoxamine 50 mg by mouth for 1 day, followed by 100 mg by mouth twice a day for 2 days as tolerated, followed by 100 mg by mouth three times a day as tolerated through day 15 & Placebo & None & Proportion of patients with clinical deterioration & \begin{tabular}{l}
Taylor Family Institute for Innovative Psychiatric Treatment at Washington University \\
COVID-19 Early Treatment Fund \\
Center for Brain Research in Mood Disorders at Washington University \\
Bantly Foundation \\
National Institutes of Health Grant
\end{tabular} \\
\hline \[
\begin{aligned}
& \hline \text { Reis/ } \\
& 2021^{2}
\end{aligned}
\] & Brazil/ 11 cities in state of Minas Gerais & RCT & 1472 (739/733) & 57.5 & \[
\text { Median: } 50
\]
(18) & \begin{tabular}{l}
Outpatients with positive SARS-CoV- \\
2 test and \\
symptoms consistent with COVID-19 within 7 days of trial enrollment, who were considered at high-risk of
\end{tabular} & Fluvoxamine 100mg twice a day for 10 days & Placebo & None & All-cause mortality & \begin{tabular}{l}
FastGrants \\
The Rainwater Foundation
\end{tabular} \\
\hline
\end{tabular}

IDSA Guideline on the Treatment and Management of COVID-19
Supplementary Materials
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \begin{tabular}{l} 
Study/ \\
year
\end{tabular} & \begin{tabular}{l} 
Country/ \\
Hospital
\end{tabular} & \begin{tabular}{l} 
Study \\
design
\end{tabular} & \begin{tabular}{l} 
N subjects \\
(intervention/ \\
comparator)
\end{tabular} & \begin{tabular}{l} 
\% \\
female
\end{tabular} & \begin{tabular}{l} 
Age mean \\
(SD) / \\
Median \\
(IQR)
\end{tabular} & Severity of disease & \begin{tabular}{l} 
Intervention \\
(study arms)
\end{tabular} & Comparator & \begin{tabular}{l} 
Co- \\
interventions
\end{tabular} & \begin{tabular}{l} 
Outcomes \\
reported
\end{tabular} \\
\hline & & & & & \begin{tabular}{l} 
disease \\
progression
\end{tabular} & & & \\
\hline
\end{tabular}

Figure s10a. Forest plot for the outcome of mortality for fluvoxamine vs. no fluvoxamine


Figure s10b. Forest plot for the outcomes of hospitalization, emergency room visits (>6 hours), or oxygen saturation <92\% for fluvoxamine vs. no fluvoxamine


Figure s10c. Forest plot for the outcome of hospitalization for fluvoxamine vs. no fluvoxamine


Figure s10d. Forest plot for the outcome of serious adverse events for fluvoxamine vs. no fluvoxamine


\section*{IDSA Guideline on the Treatment and Management of COVID-19}

Supplementary Materials

Table s29. Risk of bias for randomized control studies (fluvoxamine vs. no fluvoxamine)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Study & \begin{tabular}{l} 
Random \\
sequence \\
generation
\end{tabular} & \begin{tabular}{l} 
Allocation \\
concealment
\end{tabular} & \begin{tabular}{l} 
Blinding of \\
participants and \\
personnel
\end{tabular} & \begin{tabular}{l} 
Blinding of \\
outcome \\
assessment
\end{tabular} & \begin{tabular}{l} 
Incomplete \\
outcome data
\end{tabular} & \begin{tabular}{l} 
Selective \\
reporting
\end{tabular} \\
\hline Lenze \(2020^{1}\) & & & & & Other bias
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Low & High & Unclear \\
\hline
\end{tabular}

\section*{References}
1. Lenze EJ, Mattar C, Zorumski CF, et al. Fluvoxamine vs Placebo and Clinical Deterioration in Outpatients With Symptomatic COVID-19: A Randomized Clinical Trial. JAMA 2020; 324(22): 2292-300.
2. Reis G, dos Santos Moreira Silva EA, Medeiros Silva DC, et al. Effect of early treatment with fluvoxamine on risk of emergency care and hospitalisation among patients with COVID-19: the TOGETHER randomised, platform clinical trial. Lancet 2021; S2214-109X(21): 00448-4.

\section*{Nirmatrelvir/Ritonavir}

Table s30. Should nirmatrelvir/ritonavir vs. no nirmatrelvir/ritonavir be used for ambulatory or hospitalized patients with mild to moderate COVID-19 at high risk for progression to severe disease?
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & Country/ hospital & Study design & N subjects (intervention/ comparator) & \[
\begin{aligned}
& \hline \% \\
& \text { female }
\end{aligned}
\] & Age mean (SD)/ median (IQR) & Severity of disease & Intervention (study arms) & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline \begin{tabular}{l}
Pfizer- \\
FDA \\
EUA/ \\
\(2021^{1}\)
\end{tabular} & 359 multinational sites & RCT & \[
\begin{aligned}
& \hline 2224 \\
& (1109 / 1115)
\end{aligned}
\] & 49 & 46 years & Ambulatory patients with mild to moderate symptoms at high risk for progression to severe disease who had confirmed SARS CoV-2 infection within 5 days prior to randomization & \begin{tabular}{l}
Nirmatrelvir 300 \\
\(\mathrm{mg} /\) Ritonavir 100 mg (or renally adjusted for moderate renal disease) every 12 hours for 5 days
\end{tabular} & Placebo & Neutralizing monoclonal antibody treatments were balanced in each group & \begin{tabular}{l}
Mortality \\
COVID-19 \\
related \\
hospitalizat \\
ion \\
Serious \\
adverse \\
events \\
Proportion \\
of patients \\
requiring \\
discontinua \\
tion for \\
adverse \\
events
\end{tabular} & Pfizer \\
\hline \[
\begin{aligned}
& \hline \text { Liu } \\
& 2023^{2}
\end{aligned}
\] & China/ 5 COVID-19designate d hospitals & Parallel RCT & 264 (132/132) & 46.2 & \begin{tabular}{l}
Mean (SD): \\
Paxlovid + \\
standard \\
care: 71.50 \\
(11.61) \\
Standard \\
treatment: \\
69.20 \\
(14.43)
\end{tabular} & Hospitalized patients aged from 18 to 90 years old, had severe comorbidities, confirmed SARSCoV-2 infection by positive of realtime PCR within & \begin{tabular}{l}
Received \\
Paxlovid at a \\
dose of 300 mg \\
nirmatrelvir \\
[two tablets] + \\
100 mg ritonavir \\
[one tablet], \\
orally \\
administered
\end{tabular} & Standard care including: antivirus, anticoagulant therapy, prone position ventilation, awake prone positioning, corticosteroid therapy, and & Standard care including: antivirus, anticoagula nt therapy, prone position ventilation, awake prone & \begin{tabular}{l}
28-day allcause mortality \\
Risk of death assessed in subgroup participan ts based
\end{tabular} & \begin{tabular}{l}
National \\
Natural \\
Science \\
Foundation \\
of China
\end{tabular} \\
\hline
\end{tabular}


\section*{IDSA Guideline on the Treatment and Management of COVID-19}

Supplementary Materials


IDSA Guideline on the Treatment and Management of COVID-19
Supplementary Materials
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline & & & & & & & \begin{tabular}{l} 
treatment \\
period
\end{tabular} & & & & \\
\hline
\end{tabular}

\section*{IDSA Guideline on the Treatment and Management of COVID-19}

Supplementary Materials

Table s31. Risk of bias for randomized controlled studies (nirmatrelvir/ritonavir vs. no nirmatrelvir/ritonavir in ambulatory patients with mild to moderate COVID-19 at high risk for progression to severe disease)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Study & \begin{tabular}{l} 
Random \\
sequence \\
generation
\end{tabular} & \begin{tabular}{l} 
Allocation \\
concealment
\end{tabular} & \begin{tabular}{l} 
Blinding of \\
participants and \\
personnel
\end{tabular} & \begin{tabular}{l} 
Blinding of \\
outcome \\
assessment
\end{tabular} & \begin{tabular}{l} 
Incomplete \\
outcome data
\end{tabular} & \begin{tabular}{l} 
Selective \\
reporting
\end{tabular} \\
\hline Pfizer/FDA EUA 2021 \({ }^{1}\) & & & & & & \\
\hline Liu \(2023^{2}\) & & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Low & High & Unclear \\
\hline
\end{tabular}

\section*{References}
1. U.S. Food and Drug Administration. Fact Sheet for Healthcare Providers: Emergency Use Authorization for Paxlovid \({ }^{\text {M }}\). Available at: https://www.fda.gov/media/155050/download. Accessed 22 December 2021.
2. Liu J, Pan X, Zhang S, et al. Efficacy and safety of Paxlovid in severe adult patients with SARS-Cov-2 infection: a multicenter randomized controlled study. Lancet Reg Health West Pac 2023; 33: 100694.

\section*{Molnupiravir}

Table s32. Should ambulatory patients with mild to moderate COVID-19 at high risk for progression to sever disease receive molnupiravir vs. no molnupiravir?
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & Country/ hospital & Study design & N subjects (intervention/ comparator) & \% female & Age mean (SD)/ median (IQR) & Severity of disease & Intervention (study arms) & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline \[
\begin{aligned}
& \text { Butler } \\
& 2023^{2}
\end{aligned}
\] & UK & RCT & \[
\begin{aligned}
& \hline 25783 \\
& (12821 / 12962)
\end{aligned}
\] & 58.6 & \begin{tabular}{l}
Mean (range): \\
56.6 (18 to \\
99)
\end{tabular} & Adults with comorbidities had ongoing symptoms from COVID19 that had started within the previous five days and a positive polymerase chain reaction (PCR) or rapid antigen SARS-CoV-2 test within the past seven days & Molnupiravir 800 mg twice daily for 5 days & Usual care & Usual care & \begin{tabular}{l}
All-cause, non- \\
elective hospital \\
admission and/or \\
death within 28 \\
days of \\
randomization \\
Time to self- \\
reported \\
recovery \\
Time to early \\
sustained \\
recovery \\
(recovered by \\
day 14 and \\
remained \\
recovered until \\
day 28) \\
Time to sustained recovery (date participant first Reported recovery and subsequently remained well until 28 days) \\
Rating from 0-10 of how well participants felt
\end{tabular} & NIHR \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & Country/ hospital & Study design & N subjects (intervention/ comparator) & \[
\begin{aligned}
& \hline \% \\
& \text { female }
\end{aligned}
\] & Age mean (SD)/ median (IQR) & Severity of disease & Intervention (study arms) & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline & & &  & & & & & & & \begin{tabular}{l}
Time to initial alleviation of symptoms (date symptoms first reported as minor or none) \\
Time to sustained alleviation of symptoms (date symptoms first reported as minor or none and subsequently remained minor or none until 28 days) \\
Time to initial reduction of severity of symptoms \\
Contacts with health and social services \\
Hospital assessment without admission \\
Oxygen administration \\
New household COVID-19 infections
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & Country/ hospital & Study design & N subjects (intervention/ comparator) & \[
\begin{aligned}
& \hline \% \\
& \text { female }
\end{aligned}
\] & Age mean (SD)/ median (IQR) & Severity of disease & Intervention (study arms) & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline & & & & & & & & & & Safety outcome measures & \\
\hline \[
\begin{aligned}
& \hline \text { Fisher } \\
& 2021^{4}
\end{aligned}
\] & 10 sites in US & RCT & 202 & 51.5 & \begin{tabular}{l}
Age: Median (range by treatment arm) \\
Molnupiravir \\
200 mg : 32 \\
(19-65) \\
Molnupiravir \\
400 mg : 42.5 \\
(19-82) \\
Molnupiravir \\
800 mg : 42 \\
(18-68) \\
Placebo: 39 \\
(19-71)
\end{tabular} & Unvaccinated adults if they had a positive test for SARS-CoV-2 infection within 96 hours and had onset of symptoms within 7 days of treatment initiation & \begin{tabular}{l}
Molnupiravir 200 mg \\
every 12 \\
hours \(\times 5\) \\
days \\
Molnupiravir \\
400 mg \\
every 12 \\
hours x 5 \\
days \\
Molnupiravir \\
800 mg \\
every 12 \\
hours day \(x\) \\
5 days
\end{tabular} & Placebo & None & \begin{tabular}{l}
Mortality \\
Change in SARS-CoV-2 viral load from baseline \\
Median time to COVID-19 symptom resolution \\
Isolation of infectious virus \\
SAEs
\end{tabular} & Merck and Ridgeback Biotherapeutics \\
\hline Jayk \(2021^{1}\) & 107 sites in 20 countries & RCT & 1433 (716/717) & 51.3 & 43.0 (Range: 18-90) & Ambulatory adults with mild or moderate COVID-19 (at least 1 symptom) with a positive SARS-CoV-2 test within 5 days and at least one risk factor for the development & Molnupiravir 800 mg twice daily for 5 days & Placebo & Standard of care including: antipyretics, antiinflammatory agents, glucocorticoids) & \begin{tabular}{l}
Mortality \\
Hospitalization \\
Rate of hospitalization \\
Clinical improvement \\
Serious adverse events
\end{tabular} & Merck \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & Country/ hospital & Study design & N subjects (intervention/ comparator) & \% female & Age mean (SD)/ median (IQR) & Severity of disease & Intervention (study arms) & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline & & & & & & of severe disease & & & & & \\
\hline \[
\begin{aligned}
& \text { Khoo } \\
& 2023^{3}
\end{aligned}
\] & UK & RCT & \[
\begin{aligned}
& 180 \\
& (90 / 90)
\end{aligned}
\] & 57.0 & Median: 43 & \begin{tabular}{l}
Adult out- \\
patients \\
(50/50 \\
vaccinated) \\
with PCR- \\
confirmed \\
SARS-CoV-2 \\
infection \\
within five \\
days of \\
symptom \\
onset
\end{tabular} & Molnupiravir at 800 mg twice daily for 10 doses over 5 days & Matching placebo twice daily for 10 doses over 5 days & Standard of care (symptomatic relief including antipyretics) & \begin{tabular}{l}
Time from randomization to negative PCR with an exploratory virological endpoint of change in viral titer \\
Change in viral titer at day 5 \\
Clinical progression: WHO Clinical Progression Scale for COVID-19, NEWS2 score (UK Royal College of Physicians measuring acute illness, the FLUPRO \\
Patient reported outcome measures: presence and severity of influenza-like symptoms across 6 domains of nose, throat, eyes,
\end{tabular} & \begin{tabular}{l}
Ridgeback \\
Biotherapeutics, \\
UK National \\
Institute for \\
Health and Care \\
Research, \\
Medical \\
Research \\
Council and The \\
Wellcome Trust
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & Country/ hospital & Study design & N subjects (intervention/ comparator) & \% female & Age mean (SD)/ median (IQR) & Severity of disease & Intervention (study arms) & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline & & & & & & & & & & \begin{tabular}{l}
chest/respiratory, gastrointestinal and body/system at day 15 and 29 \\
Overall survival (time-to-event) \\
Safety and tolerability
\end{tabular} & \\
\hline \[
\begin{aligned}
& \text { Zou } \\
& 2022^{5}
\end{aligned}
\] & \begin{tabular}{l}
China/Thir \\
d People's \\
Hospital \\
of \\
Shenzhen
\end{tabular} & RCT & \[
\begin{aligned}
& \hline 108 \\
& (77 / 31)
\end{aligned}
\] & 44.4 & \begin{tabular}{l}
Median (range) molnupiravir: \(39(20,63)\) \\
Median (range) Control: 42 \((22,61)\)
\end{tabular} & \begin{tabular}{l}
Adults with mild/moderat \\
e COVID-19 \\
who tested positive for SARS-CoV-2 \\
Omicron \\
variant and \\
had initial \\
onset of symptoms for \(\leq 5\) days prior to the day of treatment
\end{tabular} & Molnupiravir ( 800 mg twice per day) plus basic treatment for 5 days & Basic treatment for 5 days & Basic treatment, which consisted of vitamin C, lianhuaqingwen granule, and nasal irrigation & \begin{tabular}{l}
Time of viral RNA \\
Percentage of patients who were negative for SARS-CoV-2 infectious virus on days 5, 7, and 10 \\
Duration of fever, time of symptom alleviation and laboratory test results (AST, ALT, CK, CK-MB, LDH, IL-6, CRP, Bun, Cr) \\
Serious adverse events
\end{tabular} & \begin{tabular}{l}
National Key \\
Research and \\
Development \\
Project, \\
Shenzhen \\
Science and \\
Technology \\
Research and \\
Development \\
Project and in \\
part from the \\
National Science \\
and Technology \\
Major Projects
\end{tabular} \\
\hline
\end{tabular}

Figure s11a. Forest plot for the outcome of mortality for molnupiravir vs. no molnupiravir


Figure s11b. Forest plot for the outcome of hospitalization for molnupiravir vs. no molnupiravir


Figure s11c. Forest plot for the outcome of hospitalization or death for molnupiravir vs. no molnupiravir


Figure s11d. Forest plot for the outcome of serious adverse events for molnupiravir vs. no molnupiravir


Figure s11e. Forest plot for the outcome of adverse events for molnupiravir vs. no molnupiravir


IDSA Guideline on the Treatment and Management of COVID-19
Supplementary Materials

Table s33. Risk of bias for randomized controlled studies (molnupiravir vs. no molnupiravir)
\begin{tabular}{|l|l|l|l|l|l|}
\hline Study & \begin{tabular}{l} 
Bias in randomization \\
process
\end{tabular} & \begin{tabular}{l} 
Bias due to deviations \\
from intended \\
interventions
\end{tabular} & \begin{tabular}{l} 
Bias due to missing \\
outcome data
\end{tabular} & \begin{tabular}{l} 
Bias in measurement of \\
outcome
\end{tabular} & \begin{tabular}{l} 
Bias in selection of the \\
reported result
\end{tabular} \\
\hline Butler \(2023^{2}\) & & & & & \\
\hline Fischer \(2021^{4}\) & & & & \\
\hline Jayk \(2021^{1}\) & & & & \\
\hline Khoo \(2023^{3}\) & & & & \\
\hline Zou \(2022^{5}\) & & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Low & High & \begin{tabular}{l} 
Some \\
concerns
\end{tabular} \\
\hline
\end{tabular}

\section*{References}
1. Jayk Bernal A, Gomes da Silva MM, Musungaie DB, et al. Molnupiravir for Oral Treatment of Covid-19 in Nonhospitalized Patients. N Engl J Med 2021: Available at: https://doi.org/10.1056/nejmoa2116044 [Epub ahead of print 16 December 2021].
2. Butler CC, Hobbs FDR, Gbinigie OA, et al. Molnupiravir plus usual care versus usual care alone as early treatment for adults with COVID-19 at increased risk of adverse outcomes (PANORAMIC): an open-label, platform-adaptive randomised controlled trial. Lancet 2023; 401(10373): 281-93.
3. Khoo SH, FitzGerald R, Saunders G, et al. Molnupiravir versus placebo in unvaccinated and vaccinated patients with early SARS-CoV-2 infection in the UK (AGILE CST-2): a randomised, placebo-controlled, double-blind, phase 2 trial. Lancet Infect Dis 2023; 23(2): 183-95.
4. Fischer WA, 2nd, Eron JJ, Jr., Holman W, et al. A Phase 2a clinical trial of Molnupiravir in patients with COVID-19 shows accelerated SARS-CoV-2 RNA clearance and elimination of infectious virus. Sci Transl Med 2021: eabI7430. Available at: https://doi.org/10.1126/scitranslmed.abl7430 [Epub ahead of print 23 December 2021].
5. Zou R, Peng L, Shu D, et al. Antiviral Efficacy and Safety of Molnupiravir Against Omicron Variant Infection: A Randomized Controlled Clinical Trial. Front Pharmacol 2022; 13: 939573.

\section*{Colchicine}

Table s34. Should patients (hospitalized and ambulatory) with COVID-19 receive colchicine vs. no colchicine?
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & Country/ hospital & Study design & N subjects (intervention/ comparator) & female & Age mean (SD)/ median (IQR) & Severity of disease & \begin{tabular}{l}
Intervention \\
(study arms)
\end{tabular} & Comparator & Co-interventions & Outcomes reported & Funding source \\
\hline \begin{tabular}{l}
Absalón- \\
Aguilar 2022 \\
1
\end{tabular} & \begin{tabular}{l}
Mexico/ \\
Instituto \\
Nacional \\
de Ciencias \\
Médicas y \\
Nutrición \\
Salva- \\
dor Zubirán \\
and at \\
Instituto \\
Nacional \\
de \\
Cardiología \\
Ignacio \\
Chávez
\end{tabular} & RCT & 116 (56/60) & 34.4 & \begin{tabular}{l}
Median \\
(IQR): \\
53 (44- \\
62)
\end{tabular} & Hospitalized with severe disease ( \(\mathrm{SpO}_{2}\) క93\%) & (1) Colchicine 1.5 mg PO at baseline (day of recruitment) and then 0.5 mg PO BID for 10 days & (2) Placebo & N/A & \begin{tabular}{l}
Death or progression to critical disease (multiple organ failure, shock, or need for invasive mechanical ventilation) \\
Length of hospital admission \\
Adverse events
\end{tabular} & \begin{tabular}{l}
Instituto \\
Nacional de Ciencias Médicas y Nutrición \\
Salvador Zubirán
\end{tabular} \\
\hline \begin{tabular}{l}
Asultan 2021 \\
2
\end{tabular} & \begin{tabular}{l}
Syria/ AI \\
Assad \\
University \\
Hospital
\end{tabular} & RCT & 49 (14/14/21) & 61.2 & N/A & Hospitalized with severe disease ( \(\mathrm{SpO}_{2}\) క93\%) & (1) Supportive care plus colchicine (colchicine 1.5 mg PO followed by 0.5 mg after hour in day 1 , then 0.5 mg BID for the next 4 days) & \begin{tabular}{l}
(2) Supportive care plus budesonide inhaler (200 mcg BID for 5 days in an inhalation chamber) \\
(3) Supportive care only
\end{tabular} & \begin{tabular}{l}
All patients received \\
appropriate \\
supportive care with \\
oxygen \\
supplementation, \\
vitamins, \\
anticoagulants, dexamethasone, prone position, noninvasive
\end{tabular} & \begin{tabular}{l}
Hospitalization days \\
ICU/Death
\end{tabular} & N/A \\
\hline
\end{tabular}

IDSA Guideline on the Treatment and Management of COVID-19
Supplementary Materials
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & Country/ hospital & Study design & N subjects (intervention/ comparator) & \% female & Age mean (SD)/ median (IQR) & Severity of disease & \begin{tabular}{l}
Intervention \\
(study arms)
\end{tabular} & Comparator & Co-interventions & Outcomes reported & Funding source \\
\hline & & & & & & & & & ventilation (CPAP or BIPAP), antibiotics, and fluids. Vitamins consist of vitamin C, vitamin D, and zinc. All patients had taken anticoagulants & & \\
\hline \[
\begin{aligned}
& \text { Deftereos } \\
& 2020^{3}
\end{aligned}
\] & \begin{tabular}{l}
Greece/ 16 \\
tertiary \\
care \\
hospitals
\end{tabular} & RCT & \begin{tabular}{l}
105 \\
(55/50)
\end{tabular} & 41.9 & \begin{tabular}{l}
Median \\
(IQR): \\
64 (54- \\
76)
\end{tabular} & Hospitalized with mild to moderate disease (WHO scale 3/4) & \begin{tabular}{l}
(1) Loading dose of colchicine 1.5 mg \\
PO followed by 0.5 \\
mg colchicine 60 \\
minutes later if no \\
adverse \\
gastrointestinal \\
effects were \\
observed, 0.5 mg \\
colchicine BID \\
(reduced to QD \\
among patients \\
with body weight \\
\(<60 \mathrm{~kg}\) ) until \\
hospital discharge \\
or a maximum of \\
21 days \\
In the case of \\
azithromycin \\
coadministration, a \\
single 1.0 mg \\
loading dose of
\end{tabular} & (2) Medical treatment for COVID-19 per local protocols & Chloroquine or hydroxychloroquine, azithromycin, lopinavir or ritonavir, tocilizumab & \begin{tabular}{l}
2-grade increase on WHO ordinal clinical scale \\
Requiring mechanical ventilation \\
All-cause mortality \\
Adverse events
\end{tabular} & \begin{tabular}{l}
ELPEN \\
Pharmaceuticals \\
Acarpia \\
Pharmaceuticals \\
Karian \\
Pharmaceuticals
\end{tabular} \\
\hline
\end{tabular}

IDSA Guideline on the Treatment and Management of COVID-19
Supplementary Materials
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & Country/ hospital & Study design & N subjects (intervention/ comparator) & \% female & Age mean (SD)/ median (IQR) & Severity of disease & \begin{tabular}{l}
Intervention \\
(study arms)
\end{tabular} & Comparator & Co-interventions & Outcomes reported & Funding source \\
\hline & & & & & & & colchicine was administered & & & & \\
\hline Diaz 20214 & \begin{tabular}{l}
Argentina/ \\
42 centers
\end{tabular} & RCT & \[
\begin{aligned}
& 1279 \\
& (640 / 639)
\end{aligned}
\] & 35.1 & \begin{tabular}{l}
Mean \\
(SD): \\
61.8 \\
(14.6)
\end{tabular} & Hospitalized with severe disease ( \(\mathrm{SpO}_{2}\) క93\%) & \begin{tabular}{l}
(1) Colchicine \\
loading dose of 1.5 \\
mg PO, followed \\
by 0.5 mg PO \\
within 2 hours of the initial dose, and subsequently 0.5 mg BID for 14 days or discharge, whichever occurred first \\
The colchicine dose was reduced in patients with kidney or liver dysfunction or if drugs that could interact were used concomitantly
\end{tabular} & (2) usual care & Corticosteroids, anticoagulant drugs, convalescent plasma, ivermectin, antiplatelet drugs, oseltamivir, hydroxychloroquine, lopinavir/ritonavir & \begin{tabular}{l}
Intubation for mechanical ventilation \\
28-day mortality \\
Adverse events
\end{tabular} & \begin{tabular}{l}
Population \\
Health Research \\
Institute \\
Fundacion ECLA
\end{tabular} \\
\hline Dorward
\[
2021^{5}
\] & UK/ multicentre & RCT & \[
\begin{aligned}
& 314 \\
& (174 / 140)
\end{aligned}
\] & 53.5 & N/A & Ambulatory care & (1) Colchicine 500 \(\mu \mathrm{g}\) daily for 14 days & (2) SoC largely focused on managing symptoms with antipyretics and inhaled budesonide on an off-label, case-by-case basis & SoC & \begin{tabular}{l}
Death \\
Hospitalization \\
Duration of hospitalization
\end{tabular} & \begin{tabular}{l}
UK Research and Innovation \\
Department of Health and Social Care through the National
\end{tabular} \\
\hline
\end{tabular}

IDSA Guideline on the Treatment and Management of COVID-19
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & Country/ hospital & Study design & N subjects (intervention/ comparator) & \[
\%
\]
female & Age mean (SD)/ median (IQR) & Severity of disease & \begin{tabular}{l}
Intervention \\
(study arms)
\end{tabular} & Comparator & Co-interventions & Outcomes reported & Funding source \\
\hline & & & & & & & & for people aged \(\geq 65\) years or 50-65 with comorbidities & & Mechanical ventilation & Institute for Health Research \\
\hline \begin{tabular}{l}
Gaitán- \\
Duarte 2022 \\
6
\end{tabular} & \begin{tabular}{l}
Colombia/ \\
6 referral hospitals
\end{tabular} & RCT & \[
\begin{aligned}
& 633 \\
& (160 / 153 / \\
& 159 / 161)
\end{aligned}
\] & 32.0 & \begin{tabular}{l}
Mean \\
(SD): \\
55.4 \\
(12.8)
\end{tabular} & Hospitalized with severe disease (with pneumonia; \(85 \%\) of patients on non-invasive support or no oxygen, \(15 \%\) on highflow cannula or mechanical ventilation) & \begin{tabular}{l}
(1) Emtricitabine/ Tenofovir (200/300 mg PO for 10 days) \\
(2) Colchicine + Rosuvastatin (0.5 mg and 40 mg PO for 14 days) \\
(3) Emtricitabine/ \\
Tenofovir + Colchicine + Rostuvastin (200/300 mg, 0.5 mg and 40 mg PO)
\end{tabular} & (4) SoC based on the recommendations of the Colombian consensus for hospitalized patients with COVID-19 that included the use of dexamethasone, ivermectin or albendazole as prophylaxis for Strongyloides infection, enoxaparin, acetaminophen, oxygen as needed, and mechanical ventilation, or dialysis, if required & SoC & \begin{tabular}{l}
All-cause \\
mortality within 28 days \\
Mechanical ventilation \\
Adverse events
\end{tabular} & \begin{tabular}{l}
Colombian \\
Ministry of \\
Science and \\
Technology
\end{tabular} \\
\hline Gorial \(2022{ }^{7}\) & Iraq/ Alkarkh hospital & RCT & \begin{tabular}{l}
160 \\
(80/80)
\end{tabular} & 46.9 & \begin{tabular}{l}
Median \\
(IQR): \\
49 (37- \\
60.5)
\end{tabular} & Ambulatory and hospitalized with moderate to severe & (1) Colchicine 0.5 mg tablet BID for 1 week followed by 0.5 mg tablet QD for another week & (2) SoC with acetaminophen 500 mg on need, vitamin c 1000 mg BID, zing 75-125 \(\mathrm{mg} /\) day, vitamin d3 & SoC & \begin{tabular}{l}
Death \\
Adverse events
\end{tabular} & None \\
\hline
\end{tabular}

IDSA Guideline on the Treatment and Management of COVID-19
Supplementary Materials
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & Country/ hospital & Study design & N subjects (intervention/ comparator) & \% female & Age mean (SD)/ median (IQR) & Severity of disease & \begin{tabular}{l}
Intervention \\
(study arms)
\end{tabular} & Comparator & Co-interventions & Outcomes reported & Funding source \\
\hline & & & & & & \begin{tabular}{l}
COVID-19 \\
(WHO \\
classification)
\end{tabular} & & 5000IU/day, azithromycin 250 \(\mathrm{mg} /\) day for 5 days, oxygen therapy/Cpap if needed, dexamethasone 6 \(\mathrm{mg} /\) day or methylprednisolone 40 mg BID, if needed, and mechanical ventilation, if needed & & & \\
\hline Lopes \(2021{ }^{8}\) & Brazil & RCT & \[
72
\]
\[
(36 / 36)
\] & 54.2 & N/A & Hospitalized with severe disease ( \(\mathrm{SpO}_{2}\) క92\%) & \begin{tabular}{l}
(1) Colchicine 0.5 mg PO TID for 5 days, then 0.5 mg BID for 5 days; if body weight \(\geq 80 \mathrm{~kg}\), the first dose was 1.0 mg \\
Whether a patient had chronic kidney disease, with glomerular filtration rate under \(30 \mathrm{~mL} / \mathrm{min} / 1.73 \mathrm{~m} 2\), colchicine dose was reduced to 0.25 mg TID for 5 days, then 0.25 mg
\end{tabular} & (2) Institutional treatment with azithromycin 500 mg QD for up to 7 days, hydroxychloroquine 400 mg BID for 2 days, then 400 mg QD for up to 8 days and unfractionated heparin 5000 UI TID until the end of hospitalization & Institutional treatment & \begin{tabular}{l}
Time of hospitalization \\
Death rate \\
Adverse events
\end{tabular} & \begin{tabular}{l}
Fundação de \\
Amparo à \\
Pesquisa do \\
Estado de São \\
Paulo
\end{tabular} \\
\hline
\end{tabular}

IDSA Guideline on the Treatment and Management of COVID-19
Supplementary Materials
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & Country/ hospital & Study design & N subjects (intervention/ comparator) & \% female & Age mean (SD)/ median (IQR) & Severity of disease & \begin{tabular}{l}
Intervention \\
(study arms)
\end{tabular} & Comparator & Co-interventions & Outcomes reported & Funding source \\
\hline & & & & & & & BID for 5 days, no matter the body weight & & & & \\
\hline \[
\text { Mareev } 2021
\] & Russia & RCT & \[
43
\]
\[
(21 / 22)
\] & 30.2 & N/A & Hospitalized with severe disease (pneumonia + elevated CRP \(>60 \mathrm{mg} / \mathrm{l}\) + fever \(>37.5^{\circ} \mathrm{C}\); persistent cough; dyspnea with the respiratory rate (RR) >20 brpm and / or SaO 2 <94\% when breathing atmospheric air) & (1) Colchicine 1 mg during first 1-3 days followed by \(0.5 \mathrm{mg} /\) day & (2) Control & N/A & \begin{tabular}{l}
Change in SHOCS-COVID score \\
Death \\
Hospitalization duration
\end{tabular} & \begin{tabular}{l}
MSU Medical \\
Research and Educational Center
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { Pascual-Figal } \\
& 2021^{10}
\end{aligned}
\] & Spain & RCT & \begin{tabular}{l}
103 \\
(52/51)
\end{tabular} & 47.6 & \begin{tabular}{l}
Mean \\
(SD): \\
51.0 \\
(12.0)
\end{tabular} & Hospitalized with mild to moderate disease (WHO scale 3/4) & (1) Initial load dose of colchicine 1.5 mg PO ( 1 mg and 0.5 mg two hours after), followed by 0.5 mg every 12 hours during the & \begin{tabular}{l}
(2) SoC: \\
- dexamethasone ( 6 mg QD for 10 days) for patients who required
\end{tabular} & SoC & \begin{tabular}{l}
WHO 7-points ordinal clinical scale \\
Death
\end{tabular} & "Cardiology Research group" at the IMIBArrixaca and the University of \\
\hline
\end{tabular}

\section*{IDSA Guideline on the Treatment and Management of COVID-19}

Supplementary Materials
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & Country/ hospital & Study design & N subjects (intervention/ comparator) & \begin{tabular}{l}
\% \\
female
\end{tabular} & Age mean (SD)/ median (IQR) & Severity of disease & \begin{tabular}{l}
Intervention \\
(study arms)
\end{tabular} & Comparator & Co-interventions & Outcomes reported & Funding source \\
\hline & & & & & & & \begin{tabular}{l}
next 7 days and 0.5 mg every 24 hours until the completion of 28 days of total treatment \\
The dose was reduced by half in patients receiving ritonavir or lopinavir or with at least one of the following: reduced renal clearance ( \(<50 \mathrm{~mL} / \mathrm{min}\) / 1.37 m 2 ), weight <70 kg or age >75 years old
\end{tabular} & \begin{tabular}{l}
supplemental oxygen (WHO scale \(\geq 4\) ) \\
- remdesivir for 5 days (time from symptoms onset <7 days; two or more measurements of oxygen saturation below 94\% on room air, respiratory rate >24 breaths/min without supplemental oxygen or Pa02/FiO2<30 \\
tocilizumab single dose of 600 mg and baricitinib at 4 mg /day for 14 days (need for tocilizumab or baricitinib established according to physician on care criteria)
\end{tabular} & & \begin{tabular}{l}
Mechanical ventilation \\
Adverse events
\end{tabular} & \begin{tabular}{l}
Murcia, Murcia, Spain \\
Centro \\
Nacional de Investigaciones Cardiovasculares \\
Spanish Ministry of Economy and Competitiveness (MINECO) \\
Pro-CNIC \\
Foundation
\end{tabular} \\
\hline
\end{tabular}

IDSA Guideline on the Treatment and Management of COVID-19
Supplementary Materials
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & Country/ hospital & Study design & N subjects (intervention/ comparator) & \% female & Age mean (SD)/ median (IQR) & Severity of disease & \begin{tabular}{l}
Intervention \\
(study arms)
\end{tabular} & Comparator & Co-interventions & Outcomes reported & Funding source \\
\hline \begin{tabular}{l}
RECOVERY \\
Collaborative \\
Group 2021 \\
11
\end{tabular} & \begin{tabular}{l}
177 \\
hospitals in UK, 2 \\
hospitals in Indonesia, 2 hospitals in Nepal
\end{tabular} & RCT & \[
\begin{aligned}
& 11340 \\
& (5610 / 5730)
\end{aligned}
\] & 30.3 & \begin{tabular}{l}
Mean (SD): \\
63.4 \\
(13.8)
\end{tabular} & Hospitalized with severe disease (68\% of patients on non or simple oxygen, 27\% on noninvasive ventilation, and \(5 \%\) on invasive mechanical ventilation) & \begin{tabular}{l}
(1) Colchicine 1 mg followed by \(500 \mu \mathrm{~g}\) 12 h later and then \(500 \mu \mathrm{~g}\) BID orally or by nasogastric tube for 10 days in total or until discharge, whichever occurred first \\
Dose frequency was halved for patients receiving a moderate CYP3A4 inhibitor (eg, diltiazem), those who had renal impairment (estimated glomerular filtration rate <30 \(\mathrm{mL} / \mathrm{min}\) per 1.73 m 2 ), and patients with an estimated body weight of less than 70 kg
\end{tabular} & (2) SoC & Corticosteroids, remdesivir & \begin{tabular}{l}
28-day mortality \\
Median time to being discharged alive \\
Discharged from hospital within 28 days \\
Invasive mechanical ventilation \\
Adverse events
\end{tabular} & \begin{tabular}{l}
UK Research and Innovation (Medical Research Council) \\
National Institute of Health Research \\
Wellcome Trust
\end{tabular} \\
\hline Tardif 2021
12 & Canada/ led by the Montreal & RCT & \[
\begin{aligned}
& 4488 \\
& (2235 / 2253)
\end{aligned}
\] & 53.9 & N/A & Ambulatory care with at least one & (1) 0.5 mg BID for the first 3 days and then QD for 27 days thereafter & (2) Placebo & N/A & Composite of death or hospital & The Government of Quebec, the Bill \& Melinda Gates Foundation, the \\
\hline
\end{tabular}

IDSA Guideline on the Treatment and Management of COVID-19
Supplementary Materials
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & Country/ hospital & Study design & N subjects (intervention/ comparator) & \% female & Age mean (SD)/ median (IQR) & Severity of disease & \begin{tabular}{l}
Intervention \\
(study arms)
\end{tabular} & Comparator & Co-interventions & Outcomes reported & Funding source \\
\hline & Heart Institute & & & & & high risk characteristic & & & & \begin{tabular}{l}
admission for COVID-19 \\
Need for mechanical ventilation \\
Serious \\
adverse \\
events
\end{tabular} & \begin{tabular}{l}
National Heart, Lung, and Blood \\
Institute of the US National Institutes of Health, the Montreal Heart Institute Foundation, the NYU Grossman School \\
of Medicine, the Rudin Family Foundation, and philanthropist Sophie Desmarais.
\end{tabular} \\
\hline
\end{tabular}

\section*{Supplementary Materials}

Figure s12a. Forest plot for the outcome of mortality for colchicine vs. no colchicine


\section*{IDSA Guideline on the Treatment and Management of COVID-19}

Supplementary Materials

Figure s12b. Forest plot for the outcome of duration of hospitalization for colchicine vs. no colchicine (hospitalized patients)


Figure s12c. Forest plot for the outcome of hospitalization for colchicine vs. no colchicine (ambulatory persons)


\section*{IDSA Guideline on the Treatment and Management of COVID-19}

\section*{Supplementary Materials}

Figure s12d. Forest plot for the outcome of mechanical ventilation for colchicine vs. no colchicine


\section*{IDSA Guideline on the Treatment and Management of COVID-19}

\section*{Supplementary Materials}

Figure s12e. Forest plot for the outcome of adverse events for colchicine vs. no colchicine (hospitalized patients)


IDSA Guideline on the Treatment and Management of COVID-19

\section*{Supplementary Materials}

Table s35. Risk of bias for randomized controlled studies (colchicine vs. no colchicine)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Study & Risk of bias arising from the randomization process & Risk of bias due to deviations from the intended interventions & Risk of bias due to missing outcome data & Risk of bias in measurement of the outcome & Risk of bias in selection of the reported result \\
\hline Abalsón-Aguila \(2022{ }^{1}\) & & & & & \\
\hline Alsultan 2021 \({ }^{2}\) & & & & & \\
\hline Deftereos \(2020^{3}\) & & & & & \\
\hline Diaz \(2021{ }^{4}\) & & & & & \\
\hline Dorward 2021 \({ }^{5}\) & & & & & \\
\hline Gaitan-Duarte \(2022{ }^{6}\) & & & & & \\
\hline Gorial \(2022^{7}\) & & & & & \\
\hline Lopes \(2021{ }^{8}\) & & & & & \\
\hline Mareev \(2021{ }^{\text {9 }}\) & & & & & \\
\hline Pascual-Figal \(2021{ }^{10}\) & & & & & \\
\hline RECOVERY Collaborative Group \(2021^{11}\) & & & & & \\
\hline
\end{tabular}

IDSA Guideline on the Treatment and Management of COVID-19
Supplementary Materials

\begin{tabular}{|l|l|l|}
\hline Low Risk & Some Concerns & High Risk \\
\hline
\end{tabular}

\section*{References}
1. Absalón-Aguilar A, Rull-Gabayet \(M\), Perez-Fragoso A, et al. Colchicine Is Safe Though Ineffective in the Treatment of Severe COVID-19: a Randomized Clinical Trial (COLCHIVID). J Gen Intern Med 2022; 37(1): 4-14.
2. Alsultan M, Obeid A, Alsamarrai O, et al. Efficacy of Colchicine and Budesonide in Improvement Outcomes of Patients with Coronavirus Infection 2019 in Damascus, Syria: A Randomized Control Trial. Interdiscip Perspect Infect Dis 2021; 2021: 2129006.
3. Deftereos SG, Giannopoulos G, Vrachatis DA, et al. Effect of Colchicine vs Standard Care on Cardiac and Inflammatory Biomarkers and Clinical Outcomes in Patients Hospitalized With Coronavirus Disease 2019: The GRECCO-19 Randomized Clinical Trial. JAMA Netw Open 2020; 3(6): e2013136.
4. Diaz R, Orlandini A, Castellana N, et al. Effect of Colchicine vs Usual Care Alone on Intubation and 28-Day Mortality in Patients Hospitalized With COVID-19: A Randomized Clinical Trial. JAMA Netw Open 2021; 4(12): e2141328.
5. Dorward J, Yu L-M, Hayward G, et al. Colchicine for COVID-19 in adults in the community (PRINCIPLE): a randomised, controlled, adaptive platform trial. medRxiv 2021: Available at: https://doi.org/10.1101/2021.09.20.21263828 [Preprint 23 September 2021].
6. Gaitán-Duarte HG, Álvarez-Moreno C, Rincón-Rodríguez CJ, et al. Effectiveness of Rosuvastatin plus Colchicine, Emtricitabine/Tenofovir and a combination of them in Hospitalized Patients with SARS Covid-19. EClinicalMedicine 2022; 43: 101242.
7. Gorial FI, Maulood MF, Abdulamir AS, Alnuaimi AS, Abdulrrazaq MK, Bonyan FA. Randomized controlled trial of colchicine add on to the standard therapy in moderate and severe corona virus Disease-19 infection. Ann Med Surg (Lond) 2022; 77: 103593.
8. Lopes MI, Bonjorno LP, Giannini MC, et al. Beneficial effects of colchicine for moderate to severe COVID-19: a randomised, double-blinded, placebo-controlled clinical trial. RMD Open 2021; 7(1): e001455.
9. Mareev VY, Orlova YA, Plisyk AG, et al. Proactive anti-inflammatory therapy with colchicine in the treatment of advanced stages of new coronavirus infection. The first results of the COLORIT study. Kardiologiia 2021; 61(2): 15-27.
10. Pascual-Figal DA, Roura-Piloto AE, Moral-Escudero E, et al. Colchicine in Recently Hospitalized Patients with COVID-19: A Randomized Controlled Trial (COL-COVID). Int J Gen Med 2021; 14: 5517-26.
11. RECOVERY Collaborative Group. Colchicine in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet Respir Med 2021; 9(12): 1419-26.
12. Tardif J-C, Bouabdallaoui N, L'Allier PL, et al. Efficacy of colchicine in non-hospitalized patients with COVID-19. medRxiv 2021: Available at: https://doi.org/10.1101/2021.01.26.21250494 [Preprint 27 January 2021].

\section*{Anakinra}

Table s36. Should hospitalized patients with severe COVID-19 receive anakinra vs. no anakinra?
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & Country/ Hospital & Study design & N subjects (intervention / comparator) & \[
\begin{aligned}
& \text { \% } \\
& \text { female }
\end{aligned}
\] & \begin{tabular}{l}
Age mean \\
(SD) / \\
Median \\
(IQR)
\end{tabular} & Severity of disease & Intervention (study arms) & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline \begin{tabular}{l}
Audemard- \\
Verger \\
\(2022^{6}\)
\end{tabular} & \begin{tabular}{l}
France/ \\
20 \\
Universit \\
y and \\
General \\
Hospitals
\end{tabular} & RCT & 71 (37/34) & 26.8 & \begin{tabular}{l}
Mean \\
(SD): \\
Interventi \\
on: 71 \\
(15) \\
Control: \\
70 (14)
\end{tabular} & Positive rRT-PCR and/or typical chest or CT scan of COVID 19 pneumonia and required oxygen therapy & Anakinra IV 400 mg /day ( 100 mg every 6 hrs) x 3 days then 200 mg /day ( 100 mg ever 12 hrs ) 7 days & SoC & SoC included antiviral drugs, hydroxychloro quine, corticosteroid, anticoagulants, hydration, nutrition, extra-renal purification, oxygen therapy and vasopressive drugs & \begin{tabular}{l}
Treatment success at day 14 (patient being alive and not requiring invasive mechanical ventilation or ECMO) \\
Clinical status (WHO Clinical Progression Scale) \\
National Early Warning Score \\
Biological parameters (lymphocytes count, CRP, ferritin, d-dimers, fibrinogen levels) \\
Overall survival \\
Time to hospital discharge \\
Time to ICU admission
\end{tabular} & Endowment fund of the university hospital of Tours \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & \begin{tabular}{l}
Country/ \\
Hospital
\end{tabular} & Study design & N subjects (intervention / comparator) & \%
female & \begin{tabular}{l}
Age mean \\
(SD) / \\
Median \\
(IQR)
\end{tabular} & Severity of disease & Intervention (study arms) & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline & & & & & & & & & & \begin{tabular}{l}
Time to ventilatory support \\
Time to oxygen supply withdrawal over 28-day follow-up \\
Adverse and serious adverse events
\end{tabular} & \\
\hline \[
\begin{aligned}
& \text { CORIMUNO } \\
& -192021^{5}
\end{aligned}
\] & \begin{tabular}{l}
France/ 16 \\
Universit \\
y \\
hospitals
\end{tabular} & RCT & 116 (59/57) & 29.8 & \begin{tabular}{l}
Median (IQR): \\
Interventi \\
on: 67.0 \\
(55.5- \\
74.3) \\
Control: \\
64.9 \\
(59.5- \\
78.3)
\end{tabular} & \begin{tabular}{l}
Mild-to- \\
moderate COVID- \\
19 pneumonia with a WHO-CPS score of 5 points, receiving at least \(3 \mathrm{~L} / \mathrm{min}\) of oxygen but without ventilation assistance (eg, high-flow oxygen, non-invasive ventilation, or mechanical ventilation
\end{tabular} & \begin{tabular}{l}
Anakinra IV 200 mg twice a day (total 400 mg ) on days \(1-3\), then 100 mg twice a day on day 4 (total 200 mg ), then 100 mg once on day 5 \\
If no improvement was seen on morning of day 4 (reduction in requirement of oxygen of more than \(50 \%\), but the decision was left to the treating physician), 3 supplementary days of treatment at 400 mg per day were done on days \(4-6\), followed by a
\end{tabular} & SoC & Antibiotic drugs, antiviral drugs, corticosteroid, vasopressor support, anticoagulants & \begin{tabular}{l}
Proportion of patients who had died or needed non-invasive or mechanical ventilation by day 4 (score of >5 points on WHOCPS) \\
Survival with no need for mechanical or non-invasive ventilation (including highflow oxygen) at day 14 \\
Clinical status assessed with WHO-CPS at days 4,7 , and 14
\end{tabular} & \begin{tabular}{l}
The Ministry of Health \\
Programme Hospitalier de Recherche Clinique \\
Foundation for Medical Research \\
AP-HP \\
Foundation
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & Country/ Hospital & Study design & N subjects (intervention / comparator) & \[
\begin{aligned}
& \hline \% \\
& \text { female }
\end{aligned}
\] & \begin{tabular}{l}
Age mean \\
(SD) / \\
Median \\
(IQR)
\end{tabular} & Severity of disease & Intervention (study arms) & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline & & & & & & & decrease to 200 mg per day on day 7 and 100 mg per day on day 8 & & & \begin{tabular}{l}
Overall survival at days 14,28 , and 90 \\
Time to discharge from hospital \\
Time to oxygen supply independency \\
Biological factors (eg, CRP concentration) \\
Adverse events \\
Time to discharge and at day 28 \\
Time to oxygen supply independency at day 28
\end{tabular} & \\
\hline \[
\begin{aligned}
& \text { Declercq } \\
& 2021^{2}
\end{aligned}
\] & Belgium/ 16 hospitals & RCT & 342 (112/230) & N/A & \begin{tabular}{l}
Median (IQR): \\
Interventi on: 67 \\
(56-74) \\
Control: \\
64 (54-72)
\end{tabular} & \begin{tabular}{l}
Symptoms \\
between 6 and \\
16 days, \\
\(\mathrm{PaO}_{2}: \mathrm{FiO}_{2}<350\) \\
mm Hg on room \\
air or \(>280 \mathrm{~mm}\) \\
Hg on \\
supplemental \\
oxygen and \\
bilateral \\
pulmonary \\
infiltrates
\end{tabular} & Anakinra 100 mg once daily SC for 28 days or until hospital discharge & SoC & Antibiotics, remdesivir, HCQ, glucocorticoids methylprednis olone equivalents & \begin{tabular}{l}
Time to clinical improvement or to discharge from hospital alive \\
Median time until discharge \\
Median time until independence from invasive ventilation
\end{tabular} & \begin{tabular}{l}
Belgian \\
Health Care \\
Knowledge \\
Center
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & \begin{tabular}{l}
Country/ \\
Hospital
\end{tabular} & Study design & N subjects (intervention / comparator) & \% female & \begin{tabular}{l}
Age mean \\
(SD) / \\
Median \\
(IQR)
\end{tabular} & Severity of disease & Intervention (study arms) & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline & & & & & & & & & & \begin{tabular}{l}
Median time until first use of highflow oxygen device \\
Ventilation or death \\
Number of days in hospital \\
Number of days in ICU \\
Number of days in ICU in patients ventilated at day of randomization \\
Number of days in ICU, relative to number of days alive the first 28 days after randomization \\
Number of days without supplemental oxygen use up to 28 days after randomization \\
Number of invasive ventilator days
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & Country/ Hospital & Study design & N subjects (intervention / comparator) & \% female & \begin{tabular}{l}
Age mean \\
(SD) / \\
Median \\
(IQR)
\end{tabular} & Severity of disease & Intervention (study arms) & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline & & & & & & & & & & \begin{tabular}{l}
Number of invasive \\
ventilator days in patients ventilated at day of randomization \\
Number of invasive ventilator days, relative to number of days alive the first 28 days after randomization \\
Number of invasive ventilator-free days up to 28 days after randomization \\
Number of invasive ventilator-free days up to 28 days after randomization in patients ventilated at day of randomization \\
Death
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & Country/ Hospital & Study design & N subjects (intervention / comparator) & \[
\%
\]
female & \begin{tabular}{l}
Age mean \\
(SD) / \\
Median \\
(IQR)
\end{tabular} & Severity of disease & Intervention (study arms) & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline & & & & & & & & & & Serious adverse events & \\
\hline \[
\begin{aligned}
& \text { Elmekaty } \\
& , 0 \ggg 1
\end{aligned}
\]
\[
2022^{1}
\] & Qatar/ 3 clinical sites & RCT & 80 (40/40) & 17.5 & \begin{tabular}{l}
Mean \\
(SD): 49.9 \\
(11.7)
\end{tabular} & Positive SARSCoV2 PCR test and associated presence of respiratory distress [defined as: \(\mathrm{PaO}_{2} / \mathrm{FiO}_{2} \leq\) 300 mm Hg or respiratory Rate \(\geq 24\) breaths \(/ \mathrm{min}\) or \(\mathrm{SpO}_{2} \leq 94 \%\) at room air], and signs of cytokine release syndrome & Anakinra 100 mg SC injection evert 12 hrs for 3 days, then 100 mg SC once daily from day 4 to 7 & SoC & Remdesivir, favipravir, corticosteroid, convalescent plasma, azithromycin, ceftriaxone, anticoagulants & \begin{tabular}{l}
Treatment success on day 14 (WHO Clinical Progression score of \(\leq 3\) ) \\
Duration of mechanical ventilation in ventilated patients up to 14 days \\
Changes in WHO Clinical \\
Progression Score between day 1 and 7 \\
Viral burden (change in PCR cycle threshold) at day 7 and day 10-14 \\
Time to ICU admission up to 28 days \\
Adverse events
\end{tabular} & \begin{tabular}{l}
Medical \\
Research \\
Center at \\
Hamad \\
Medical \\
Corporation, Qatar
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & Country/ Hospital & Study design & N subjects (intervention / comparator) & \[
\begin{aligned}
& \hline \% \\
& \text { female }
\end{aligned}
\] & \begin{tabular}{l}
Age mean \\
(SD) / \\
Median \\
(IQR)
\end{tabular} & Severity of disease & Intervention (study arms) & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline & & & & & & & & & & \begin{tabular}{l}
Length of hospital stay up to 28 days \\
All-cause mortality rate at hospital discharge or at 28 days
\end{tabular} & \\
\hline \[
\begin{aligned}
& \text { Kharazmi } \\
& 2022^{4}
\end{aligned}
\] & \begin{tabular}{l}
Iran/ \\
Imam \\
Hossein \\
Medical \\
Center
\end{tabular} & RCT & 30 (15/15) & 36.7 & \begin{tabular}{l}
Mean (SD) \\
Interventi \\
on: 49.25 \\
(19.12) \\
Control: \\
59.00 \\
(1.79)
\end{tabular} & Elevated CRP levels, oxygen saturation \(\leq 93 \%\) measured using a peripheral capillary pulse oximeter, fever, or cough or shortness of breath, and \(\mathrm{PaO}_{2} / \mathrm{FiO}_{2}<300\) & Anakinra 100 mg IV once daily until discharge or maximum of 14 days & SoC & \begin{tabular}{l}
Remdesivir, lopinavir/riton avir, \\
interferon, favipiravir, and corticosteroid, oxygen supplementati on, ventilation support, fluid, and electrolyte correction, vasoactive agents and antibiotic administration, and renal replacement support if appropriate
\end{tabular} & \begin{tabular}{l}
Need for endotracheal intubation due to hypoxemia \\
Hospital length of stay \\
ICU length of stay \\
Seven categories ordinal scale (includes hospitalization, mechanical ventilation) \\
Survival on day 14
\end{tabular} & Not specified \\
\hline Kyriazopoul ou \(2021^{3}\) & Greece & RCT & 594 (405/189) & 42.1 & \begin{tabular}{l}
Mean
(SD): 61.9
(12.1) \\
Mean
\[
\text { (SD): } 61
\] \\
(12.1)
\end{tabular} & Confirmed infection by SARS-CoV-2 by molecular test; findings in chest X-ray or chest CT & Anakinra 100 mg SC once daily in for 7-10 days & Placebo & Remdesivir, dexamethason e (severe patients) & Frequencies of the scores from the 11-point WHO-CPS on day 28 & Hellenic Institute for the Study of Sepsis \\
\hline
\end{tabular}

IDSA Guideline on the Treatment and Management of COVID-19
Supplementary Materials
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Study/ year & Country/ Hospital & Study design & N subjects (intervention / comparator) & \[
\begin{aligned}
& \text { \% } \\
& \text { female }
\end{aligned}
\] & \begin{tabular}{l}
Age mean \\
(SD) / \\
Median \\
(IQR)
\end{tabular} & Severity of disease & Intervention (study arms) & Comparator & Cointerventions & Outcomes reported & Funding source \\
\hline & & & & & & compatible with lower respiratory tract infection; need for hospitalization; and plasma suPAR \(\geq 6 \mathrm{ng} \mathrm{ml}^{-1}\) & & & & \begin{tabular}{l}
Changes of WHOCPS scores at days 14 and 28 from the baseline \\
Change of SOFA score at day 7 from baseline \\
Time until hospital discharge \\
Time of stay in the ICU \\
Comparison of biomarkers
\end{tabular} & \begin{tabular}{l}
Swedish \\
Orphan \\
Biovitrum
\end{tabular} \\
\hline
\end{tabular}

Figure s13a. Outcome of mortality for convalescent plasma vs. no convalescent plasma in hospitalized patients


Figure s13b. Outcome of hospitalization duration for anakinra vs. no anakinra in hospitalized patients


Figure s13c. Outcome of mechanical ventilation for anakinra vs. no anakinra in hospitalized patients


Figure s13d. Outcome of adverse events (mild to severe) for anakinra vs. no anakinra in hospitalized patients


IDSA Guideline on the Treatment and Management of COVID-19
Supplementary Materials

Table s37. Randomized control studies (anakinra vs. no anakinra)
\begin{tabular}{|l|l|l|l|l|l|}
\hline Study & \begin{tabular}{l} 
Randomization \\
process
\end{tabular} & \begin{tabular}{l} 
Deviation from \\
intended interventions
\end{tabular} & Missing outcome data & \begin{tabular}{l} 
Measurement of \\
outcome
\end{tabular} & \begin{tabular}{l} 
Selection of reported \\
result
\end{tabular} \\
\hline Audemard-Verger 2022 & & & & \\
\hline CORIMUNO-19 20215 & & & & \\
\hline Declercq 2021 \({ }^{2}\) & & & & \\
\hline Elmekaty 2022 & & & \\
\hline Kharazmi 2022 & \\
\hline Kyriazopoulou \(2021^{3}\) & & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Low & High & Some concerns \\
\hline
\end{tabular}

\section*{References}
1. Elmekaty E, Maklad A, Abouelhassan R, et al. Efficacy of Anakinra in the Management of Patients with COVID-19 Infection: A Randomized Clinical Trial. medRxiv 2022: Available at: https://doi.org/10.1101/2022.07.04.22277207 [Preprint 6 July 2022].
2. Declercq J, Van Damme KFA, De Leeuw E, et al. Effect of anti-interleukin drugs in patients with COVID-19 and signs of cytokine release syndrome (COV-AID): a factorial, randomised, controlled trial. Lancet Respir Med 2021; 9(12): 1427-38.
3. Kyriazopoulou E, Poulakou G, Milionis H, et al. Early treatment of COVID-19 with anakinra guided by soluble urokinase plasminogen receptor plasma levels: a double-blind, randomized controlled phase 3 trial. Nat Med 2021; 27(10): 1752-60.
4. Kharazmi \(A B\), Moradi \(O\), Haghighi \(M\), et al. A randomized controlled clinical trial on efficacy and safety of anakinra in patients with severe COVID-19. Immun Inflamm Dis 2022; 10(2): 201-8.
5. Corimuno-Collaborative group. Effect of anakinra versus usual care in adults in hospital with COVID-19 and mild-to-moderate pneumonia (CORIMUNO-ANA-1): a randomised controlled trial. Lancet Respir Med 2021; 9(3): 295-304.
6. Audemard-Verger A, Le Gouge A, Pestre V, et al. Efficacy and safety of anakinra in adults presenting deteriorating respiratory symptoms from COVID-19: A randomized controlled trial. PLoS One 2022; 17(8): e0269065.```

