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Abstract: Nanoparticles (NPs) have been widely utilized in vaccine design. Although numerous
NPs have been explored, NPs with adjuvant effects on their own have rarely been reported. We
produce a promising self-assembled NP by integrating the pentameric Escherichia coli heat-labile
enterotoxin B subunit (LTB) (studied as a vaccine adjuvant) with a trimer-forming peptide. This fusion
protein can self-assemble into the NP during expression, and polysaccharide antigens (OPS) are
then loaded in vivo using glycosylation. We initially produced two Salmonella paratyphi A conjugate
nanovaccines using two LTB subfamilies (LTIB and LTIIbB). After confirming their biosafety in mice,
the data showed that both nanovaccines (NP(LTIB)-OPSSPA and NP(LTIIbB)-OPSSPA) elicited strong
polysaccharide-specific antibody responses, and NP(LTIB)-OPS resulted in better protection. Further-
more, polysaccharides derived from Shigella or Klebsiella pneumoniae were loaded onto NP(LTIB) and
NP(LTIIbB). The animal experimental results indicated that LTIB, as a pentamer module, exhibited
excellent protection against lethal infections. This effect was also consistent with that of the reported
cholera toxin B subunit (CTB) modular NP in all three models. For the first time, we prepared a
novel promising self-assembled NP based on LTIB. In summary, these results indicated that the
LTB-based nanocarriers have the potential for broad applications, further expanding the library of
self-assembled nanocarriers.

Keywords: LTB; bioconjugate nanovaccines; biosynthesis; glycosylation; self-assembling

1. Introduction

Vaccines have significant importance for controlling and preventing infectious dis-
eases. In bacteria, highly specific surface polysaccharides, including O-polysaccharide
(OPS) and capsular polysaccharide (CPS), are considered ideal antigen targets [1]. Nev-
ertheless, polysaccharides alone cannot stimulate effective protective immune responses
due to the absence of T cell reactions. Conjugate vaccines, prepared by coupling bacte-
rial polysaccharides with appropriate carrier proteins, convert polysaccharides from T
cell-independent antigens into T cell-dependent antigens, thus triggering potent immune
responses [2]. Conjugate vaccines are currently considered the most successful bacterial
vaccines, and several products, including PCV13 and PedvaxHIB, have been launched. All
of these marketed conjugate vaccines are synthesized through chemical methods. However,
advances in synthetic biology and vaccine technology have resulted in an efficient new
biosynthesis technology that remedies numerous disadvantages of traditional chemical
methods [3,4].

Conjugate vaccine biosynthesis technology, also known as protein glycan coupling
technology (PGCT), can directly synthesize glycoproteins in engineered bacteria via en-
zymatic reactions [5]. During the process of LPS synthesis, OPS is transferred to the lipid
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A-core under the catalysis of O-antigen ligase WaaL. Due to the similarity between LPS syn-
thesis and protein glycosylation, the waaL gene could be knocked out in the host bacteria,
blocking the binding of OPS to lipid A-core. Then, by co-expressing OPS, glycosyltrans-
ferase, and the carrier protein (with a glycosylation modification motif), the OPS will be
transferred to the synthesized carrier under the catalysis of PglL, creating a glycoprotein.
Generally, gene clusters that encode pathogenic bacterial polysaccharides, carrier proteins,
and glycosyltransferases can be transformed into engineered E. coli. After being induced,
the synthesized polysaccharides directly couple with the carrier proteins under the catalysis
of glycosyltransferases. Therefore, glycoproteins with higher yields and better uniformity
are produced using this method that only requires one-step catalysis and purification.
In addition, the glycosylation system can be directly established within attenuated host
bacteria, and this avoids the need to clone an extensive fragment of the polysaccharide
gene cluster and the low-efficiency synthesis of heterologous polysaccharides in E. coli [6,7].
There are currently three useful glycosyltransferases for preparing conjugate vaccines that
have been identified, namely, PglB, PglL, and PglS [8]. PglB was the first to be applied in
the biosynthesis of conjugate vaccines [9–11], followed by PglL, thus serving a wider range
of applications [12,13]. PglS was recently identified and can be used for the glycosylation
of capsular polysaccharides [14].

Nanoparticles (NPs), showcasing superior targeting and immune-stimulating abilities,
have been extensively used in vaccines following the development of nanotechnologies [15].
For prophylactic vaccines, proteinaceous NPs have received more attention for their greater
safety and biocompatibility. As such, various virus-like particles, such as HBc, AP205, and
Qβ, have been adopted in SARS-CoV2 vaccine research [16–18]. Additionally, ferritin-NPs,
which can induce a receptor-mediated immune response, have been used to produce SARS-
CoV-2, influenza, HIV-1, Epstein–Barr, and hepatitis C virus vaccines [19–23]. In addition
to these natural monomer protein assemblies, a novel modular self-assembly design has
been developed recently in which multiple oligomeric modules can form higher-order
polymeric nanostructures in space [24,25]. Utilizing these self-assembly principles, we
fused the cholera toxin B subunit (CTB), a well-known mucosal adjuvant, with an artificially
designed trimer-forming peptide (Tri) and self-assembled this fusion into NPs in cells [26].
Subsequently, by combining with PGCT, we produced bacterial bioconjugate nanovaccines
with robust humoral and cellular immune responses [26,27]. Moreover, these nanoparticles
have been used to prepare an inhalable COVID-19 vaccine, resulting in a potent mucosal
immune response [28]. These studies indicate that the CTB-based self-assembled NP can
stimulate robust immune responses and provide effective protection. This pentamer, CTB,
is not only a key module for self-assembly, but it also exhibits an adjuvant function; thus, it
has greater potential for applications. In actuality, the family of bacterial AB5 toxins also
comprises an array of members that include the heat-labile enterotoxin (LT), Shiga toxin
(Stx), and subtilase cytotoxin (SubAB) [29].

LT is produced by enterotoxigenic E. coli. In addition, both LT and CT belong to the
cholera toxin family, one of four AB5 toxin families [29]. Furthermore, the LT toxin can
be subdivided into two subfamilies of type I (LTI) and type II (LTII), and the latter also
can be divided into LTIIa and LTIIb. The B-subunits of CT, LTI, and LTII can assemble to
form a homo-pentameric, ring-shaped scaffold, although they have a low level of sequence
identity. It has also been reported that similar to CTB, the B-subunit of the LTI (LTIB)
pentamer can specifically recognize the monosialotetrahexosylganglioside (GM1), while
LTIIaB and LTIIbB show affinity for the gangliosides GD1b and GD1a, respectively [30,31].

In this study, we prepared two self-assembled NPs by fusing pentameric LTB (LTIB
or LTIIbB) and a trimer-forming peptide. We first established a PglL-based glycosylation
system in S. paratyphi A and prepared two bioconjugate nanovaccines, (NP(LTIB)-OPSSPA
and NP(LTIIbB)-OPSSPA). After confirming their safety and great antibody responses,
the powerful protective effect of NP(LTIB)-OPS was further determined. To achieve the
widespread application of this vaccine, we subsequently coupled the polysaccharides
derived from Shigella or K. pneumoniae to NP(LTIB) and NP(LTIIbB), respectively. The
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results from the animal experiments demonstrated that the most potent immune response
and protection was showcased with NP(LTIB)-OPS for both strains, consistent with the
results of NP(CTB)-OPS. Therefore, we provided a novel promising self-assembled NP and
further expanded the application of multimodule self-assembled nanocarriers.

2. Materials and Methods
2.1. Strain, Plasmid, and Growth Conditions

50973DWC/CldLT2 was a mutation of S. paratyphi A CMCC strain 50973 in which
the waaL and cld genes were removed and the polysaccharide chain extension gene cld
from Salmonella typhimurium was introduced. The 301DWP was a mutation S. flexneri 2a
strain 301 in which the waaL was deleted, and the virulent plasmid, pCP, was removed.
355DW was a strain of K. pneumoniae strain 355 with the waaL gene deleted. All of these
strains have been previously detailed in our work [6,7,32]. The plasmids pPglL-LTIBTri
and pPglL-LTIIbBTri were developed by replacing CTB with LTIB and LTIIbB, respectively,
based on pPglL-CTBTri, which has been described in our prior studies. To construct the
expression strains, these plasmids were electrotransferred into the aforementioned bacteria.
The bacteria were cultivated in either a liquid or solid lysogeny broth (LB) medium with
1.5% agar. For the glycoprotein expression, 1 mM isopropyl β-d-1-thiogalactopyranoside
(IPTG) was added when the cells were cultured until optical density (OD) = 0.6–0.8 at
37 ◦C, and then cultured at 30 ◦C for another 10 to 12 h.

2.2. Coomassie Blue Staining and Western Blotting

After centrifugation, the cultured cells were resuspended using ddH2O. The samples
were then added to an equal volume of 2× SDS buffer consisting of 100 mM Tris-HCl
(pH 6.8), 3.2% (w/v) sodium dodecyl sulfate (SDS), 0.04% (w/v), bromophenol blue dye,
16% (v/v) glycerol, and 40 mM DL-dithiothreitol. They were then placed in a boiling bath
for 10 min. Following this, 20 µL of the sample was separated using sodium dodecyl sulfate
and polyacrylamide gel (SDS-PAGE) and stained with Coomassie blue or transferred to
a nitrocellulose membrane. The membrane was then blocked with a blocking solution,
tris-buffered saline and Polysorbate 20 (TBST) that contained 5% skim milk powder, for 1 h
at 37 ◦C. After washing three times with TBST, HRP-conjugated anti-6×His tag antibodies
(Abmart, Shanghai, China, M20020L) were subsequently added and incubated at 37 ◦C
for 1 h. After another washing step, the bands were visualized with the color developing
solution (Thermo Fisher Scientific, Waltham, MA, USA 32106) using a Tanon 5200 imaging
system. For the detection of S. paratyphi A CMCC strain 50,973 and S. flexneri 2a strain
301 polysaccharides, OPS-specific serums (Denka Seiken, Tokyo, Japan, 211255, 210227)
were used for the primary antibodies and HRP-conjugated anti-rabbit IgG (Transgen
Biotech, Beijing, China, HS101-01) as the secondary antibodies. Serum against the
K. pneumoniae strain 355 polysaccharide was used as described above [27].

2.3. LPS and OPS Preparation

The lipopolysaccharides (LPS) were extracted using the hot phenol method, and the
details are as follows. The wild strain was cultured for 12 h and then centrifuged at 8000
rpm for 10 min to collect the supernatant. This was then washed three times with pre-
cooled ddH2O and finally resuspended in ddH2O. An equal volume of 90% phenol solution
was added and centrifuged at 68 ◦C for 30 min at 8000 rpm. The upper aqueous phase
was aspirated, and the water extraction was repeated. All of the aqueous phases were
transferred to a dialysis bag with a molecular weight cut-off of 3.5 kDa for 3 days. DNase
and RNase were added for reaction at 37 ◦C for 4 h, then Proteinase K was added for
reaction at 60 ◦C for 4 h, and, finally, they were placed in a boiling water bath for 10 min.
The supernatant was collected as the LPS solution. Glacial acetic acid was added to the
LPS solution for a final concentration of 1% and boiled for 90 min. We then used 0.5 M/mL
NaOH solution to adjust the pH to 7.0. Finally, this was centrifuged at 40,000× g for 5 h,
and the supernatant was the OPS solution.
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2.4. Glycoprotein Expression and Purification

Post-expression, cells were gathered via centrifugation at 8000 rpm and subsequently
resuspended using Solution A1, containing 20 mM Tris-HCl (pH 7.5), 10 mM imidazole,
and 500 mM NaCl. These resuspended cells were homogenized using a high-pressure
homogenizer (Ph.D. Technology LLC, Saint Paul, MN, USA, D-6L). After another round of
centrifugation, the resulting supernatant was enriched by passage through a nickel affinity
chromatography column and later eluted with Solution B1 containing 20 mM Tris-HCl
(pH 7.5), 500 mM imidazole, and 500 mM NaCl. The eluted solution was concentrated via
a 10 kDa ultrafiltration cube. Subsequently, this was passed through a column filled with
24 mL of Superdex 200 with phosphate-buffered solution (PBS) as the mobile phase at a
flow rate of 1 mL/min. The isolated samples were collected and analyzed using Coomassie
blue staining.

2.5. Experimental Animals

Pathogen-free female BALB/c mice (6–8 weeks old) were purchased from SPF Biotech-
nology (Beijing, China) and housed at the Laboratory Animal Centre of the Academy of
Military Medical Sciences. All of the animal experiments were approved by the Academy
of Military Medical Sciences Animal Care and Use Committee (Ethics Approval Code
IACUC-DWZX-2020-044, approval date 2020.04.30).

2.6. Safety Estimation

The mice were immunized subcutaneously with NP(LTIB)-OPS or NP(LTIIbB)-OPS at
doses of 25 µg of polysaccharide diluted in 100 µL of PBS, which is 10 times the conventional
immunization dose. Body temperatures and weights were measured on days 0, 0.5, 1, 2,
5, 10, and 15, and tail blood was collected at the same time to detect the concentration
of interleukin-6 (IL-6), IL-1β, tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ)
cytokines. On day 30, aspartate aminotransferase (AST), alanine aminotransferase (ALT),
alkaline phosphatase (ALP), lactate dehydrogenase (LDH), and blood urea nitrogen (BUN)
in the serums were analyzed using an automated Hitachi-917 analyzer. In addition, tissue
sections from the hearts, livers, spleens, lungs, and kidneys were stained with hematoxylin
and eosin (H&E) for analysis.

2.7. Immunization Experiments

The mice were randomly divided into five groups, namely, PBS, OPS, NP(CTB)-OPS,
NP(LTIB)-OPS, and NP(LTIIbB)-OPS. Apart from the PBS group, every mouse in the other
groups was injected subcutaneously on days 0, 14, and 28 with each type of vaccine
containing 2.5 µg of polysaccharide diluted in PBS with no adjuvant. Following a one-week
period after each immunization, blood samples were harvested from the tail tips, and the
serums were subsequently isolated and stored at −80 ◦C for future analysis. Antibody
titers in the serums against the pathogen LPS were measured using an enzyme-linked
immunosorbent assay (ELISA). At 14 days following the third immunization, the mice were
intraperitoneally injected with cultured bacteria for challenge tests to assess the protective
efficacy of the vaccine.

2.8. Enzyme-Linked Immunosorbent Assay (ELISA)

The 96-well plates were coated with 10 µg/well of LPS diluted in a coating solution
comprising 50 mM of Na2CO3-NaHCO3 (pH 9.6) overnight at 4 ◦C. Following three wash-
ings with phosphate-buffered saline (PBST) and subsequent drying, each well had 200 µL
of a blocking solution added, and they were incubated for 2 h at 37 ◦C. After an additional
washing step, diluted immune serums (100 µL/well in dilution buffer; PBST with 0.5%
skimmed milk powder) were added, and the plates were incubated at 37 ◦C for 1 h. After
washing and drying again, each well had 100 µL of HRP-conjugated goat anti-mouse anti-
bodies (diluted 1:10,000 in dilution buffer) added that included IgG, IgG1, IgG2a, IgG2b,
and IgG3 (Abcam, Cambridge, UK, AB6820, ab97240, ab97245, ab97250, ab97260). The
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plates were incubated for 1 h at 37 ◦C. Post-washing, each well was treated with 100 µL of
TMB solution for 10 min at room temperature. The reaction was stopped by the addition of
50 mL/well of a termination solution (2M H2SO4). A microplate spectrophotometer was
then utilized to read the plate at an optical wavelength of 450 nm.

2.9. Statistical Analysis

Data are presented as means ± s.d., and the statistical analysis was performed in
GraphPad Prism 8.0 software using one-way analysis of variance (ANOVA) with Dun-
nett’s multiple comparison test for the multiple-group comparison. Statistically significant
differences are indicated as * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

3. Results
3.1. Production of the S. paratyphi A Self-Assembled Bioconjugate Nanovaccine with LTBs as the
Pentamer Module

In a prior experiment, an NP was produced by fusing CTB with a trimeric peptide, Tri,
and it exhibited its potential by eliciting strong humoral, cellular, and mucosal immune
responses [26,28]. Considering the important role of LTB in immunity, we substituted
the sequence of CTB with LTIB and LTIIbB on the base of pPglL-CTBTri. Following this,
the recombinant plasmids containing pPglL-LTIBTri and pPglL-LTIIbBTri were separately
transformed into the host strain, 50973DWC/CldLT2, capable of expressing the long
S. paratyphi A CMCC strain 50973 OPS chain (OPSSPA) (Figure 1A). After inducing with
IPTG overnight, all of the cell lysis samples were separated using SDS-PAGE and subse-
quently identified by Coomassie blue staining and Western blotting using the HRP-labeled
6×His Tag antibody. It was distinctly observed that all of the fused proteins displayed
typical ladder-like bands above each carrier protein, indicating that the polysaccharide
antigens were coupled with carrier proteins through glycosylation (Figure 1B). Subse-
quently, the glycoproteins were purified using affinity and size-exclusion chromatography.
During the size-exclusion chromatography step, it was noted that the eluted columns of
both glycoproteins were approximately <10 mL (lower than 30% of the column volume),
indicating polymer formation (Figure 1C,D). The Coomassie blue staining showed that the
purity of the final samples (LTIBTri-OPSSPA and LTIIbB-OPSSPA) exceeded 90%, and the
Western blotting using an HRP-labeled 6×His Tag antibody and S. paratyphi A-specific O2
serum confirmed the successful linking of the S. paratyphi A CMCC strain 50973 OPS and
carrier proteins (Figure 1E).
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Figure 1. Expression and purification of glycoproteins. (A) Diagram of the nanovaccine expression
process in host cells. (B) The plasmids pPglL-LTIBTri or pPglL-LTIIbBTri were transformed into the
host strain 50973DWL/LT2, and then the expression of glycoproteins was detected by Coomassie
blue staining and Western blotting using the HRP-labeled 6×His Tag antibody. When purified with a
24 mL column of size-exclusive chromatography (Superdex 200), LTIBTri-OPSSPA (C) and LTIIbB-
OPSSPA (D) were analyzed from the collected fractions by Coomassie blue staining. (E) Analysis of
the purified glycoproteins by Coomassie blue staining and Western blot using an HRP-labeled 6×His
tag antibody and specific anti-OPS serum.

3.2. Characteristics of the Purified Glycoproteins

To further verify the properties of the purified LTIBTri-OPSSPA and LTIIbBTri-OPSSPA,
we analyzed their size, distribution, and stability using transmission electron microscopy
(TEM) and dynamic light scattering (DLS). The TEM images illustrated that the size of
the self-assembled LTIBTri-OPSSPA was approximately 30 nm (Figure 2A). Subsequently,
we named the LTIBTri-OPSSPA particle as NP(LTIB)-OPSSPA. Moreover, the DLS analyses
revealed a monodisperse and homogeneous distribution of the NP(LTIB)-OPSSPA that
agreed with the TEM observations (Figure 2B), signifying their ability to self-assemble
into nanoparticles while being expressed. In addition, the stability of the particle was
detected using DLS at different time points after incubation at 37 ◦C, showing a constant
size distribution (Figure 2C). Correspondingly, we also analyzed LTIIbBTri-OPSSPA and
found that the size of the LTIIbBTri-OPSSPA particle (renamed as NP(LTIIbB)-OPSSPA) was
also approximately 30 nm (Figure 2D,E) and able to maintain stability at 37 ◦C for at least
one week (Figure 2F). Therefore, similarly to CTBTri, the newly formed monomers (LTIBTri
and LTIIbBTri) created by fusing Tri at the C-terminus of each pentamer, were also able to
self-assemble into nanoparticles.
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Figure 2. Characteristics of the purified S. paratyphi A glycoproteins. The purified glycoprotein
LTIBTri-OPSSPA was analyzed using TEM (A) and DLS (B). (C) After filtering with a 0.22 µm filter,
the NP(LTIB)-OPSSPA solution was incubated at 37 ◦C, and the stability was analyzed using DLS.
(D) TEM image analysis of the LTIIbBTri-OPSSPA particle (NP(LTIIbB)-OPSSPA). (E) NP(LTIIbB)-
OPSSPA was analyzed using DLS. (F) The stability of NP(LTIIbB)-OPSSPA was analyzed using DLS at
different time points. The arrow in the TEM image points to the nanovaccines.

3.3. Safety Evaluation of the Four Types of Bioconjugate Nanovaccines

To evaluate the immune response and protective effects of the two nanoconjugate
vaccines, we first assessed their safety in mice. The two vaccines, NP(LTIB)-OPSSPA and
NP(LTIIbB)-OPSSPA, were administered subcutaneously at 10 times the conventional im-
mune dose, and safety parameters were recorded at different time points. In addition,
untreated mice served as the control group (Figure 3A). During a 15-day observation period,
the weight and temperature changes in the vaccinated mice were consistent with those
in the control group, with no significant difference (Figure 3A,B). Moreover, we collected
blood from the mice’s tails at different time intervals and analyzed the concentrations of
the inflammatory factors, including IFN-γ, IL-1β, TNF-α, and IL-6, in the serum. Although
a slight increase in some inflammatory factors was observed 3 days post-immunization,
they remained within a very safe range, suggesting that none of the four vaccines trig-
gered systemic inflammatory responses (Figure 3C). We then tested biochemical markers,
including ALT, AST, ALP, BUN, and LDH, in the serums 30 days post-injection. The results
demonstrated normal ranges of each index with no significant deviations from the control
group (Figure 3D). Finally, we performed histological examinations on the major organs,
including the hearts, livers, spleens, lungs, and kidneys. The hematoxylin and eosin (H&E)
staining results indicated the absence of any organ damage (Figure 3E).
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spleens, lungs, and kidneys from tissue sections at 30 days post-injection.

3.4. Evaluation of the Antibody Response and Protective Effect of the S. paratyphi A
Bioconjugate Nanovaccines

Having confirmed the safety of both bioconjugate nanovaccines, we further determined
their immune responses. In addition, PBS, OPSSPA, and the reported NP(CTB) (using the
reported CTBTri as the carrier) were used as controls. After confirming the low endotoxin
concentrations of the NP(LTIB)-OPSSPA and NP(LTIIbB)-OPSSPA (Supplementary Table S1),
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the BALB/c mice were immunized with one of the five treatments (PBS, OPSSPA, NP(CTB)-
OPSSPA, NP(LTIB)-OPSSPA, and NP(LTIIbB)-OPSSPA) on days 0, 14, and 28. Blood was
sampled 7 days after each immunization (days 7, 21, and 35) for the antibody analysis.
On day 42, all of the mice were challenged with S. paratyphi A CMCC 50973, and mouse
survival was monitored (Figure 4A). The ELISA-based measurements of the IgG titers
against S. paratyphi A CMCC 50973 LPS in the serum samples revealed increases in all
the NP(CTB)-OPSSPA, NP(LTIB)-OPSSPA, and NP(LTIIbB)-OPSSPA immunizations, with
the increases being most profound for the NP(CTB)-OPSSPA-, NP(LTIB)-OPSSPA-, and
NP(LTIIbB)-OPSSPA-treated mice. However, the OPSSPA barely produced a strong and
long-lasting immune response (Figure 4B). By analyzing the four IgG subtypes from the
last immunized serum, we found that IgG1 and IgG2a were predominant, and the titers
in the NP(CTB)-OPSSPA, NP(LTIB)-OPSSPA, and NP(LTIIbB)-OPSSPA groups were also
higher than that in the other groups, which agreed with the total IgG results (Figure 4C).
Further analysis of the IgG1-to-IgG2a ratio indicated that the immune response induced by
NP(CTB)-OPSSPA or NP(LTIIbB)-OPSSPA maintained a Th1/Th2 balance (a ratio between
one and two) (Figure 4D). On day 42, each mouse was intraperitoneally challenged with
1.89 × 108 CFU of the S. paratyphi A CMCC 50973 strains. During observation, all of the
mice died in the PBS group within 2 days, and only one mouse survived in the OPSSPA
group. The mice treated with NP(CTB)-OPSSPA and NP(LTIB)-OPSSPA received the best
protection, exhibiting an survival of over 90% (Figure 4E).
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Figure 4. Evaluation of the antibody response and protective effect of the S. paratyphi A bioconjugate
nanovaccines. (A) Schematic diagram of the immunization schedule. (B) IgG titers against S. paratyphi
A CMCC 50973 LPS from the serums immunized with PBS, OPSSPA, NP(CTB)-OPSSPA, NP(LTIB)-
OPSSPA, or NP(LTIIbB)-OPSSPA 7 days after each injection (n = 10). (C) IgG subtype titers (IgG1, IgG2a,
IgG2b, and IgG3) against S. paratyphi A CMCC 50973 LPS were measured from serum after the third
injection (day 35) (n = 10). (D) Analysis of the rate of IgG1/IgG2a from the last immunized serum.
(E) Mice survival was monitored after they were challenged with the S. paratyphi A CMCC 50973
strain (1.89 × 108 CFU per mouse) 14 days after final the immunization (n = 10). Data are presented as
means ± SD. Each group was compared using one-way ANOVA with Dunnett’s multiple-comparison
test: **** indicates p < 0.0001, *** indicates p < 0.001, * indicates p < 0.05, and ns indicates p > 0.05.
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3.5. Production of the LTB-Based Bioconjugate Nanovaccine against S. flexneri and K. pneumoniae

The above results demonstrated that LTB, as a pentamer module in the system, self-
assembled into bioconjugate nanovaccines. In particular, LTIB may have performed the
best. To determine the universality of this conclusion, we further coupled polysaccharides
from the S. flexneri 2a strain 301 and the K. pneumoniae strain 355 on the two nanocarriers for
further evaluation. The construction of the expression strains was performed as described
above by introducing the plasmids pPglL-LTIBTri or pPglL-LTIIbBTri into the host strains
301DWP and 355DW, respectively. These two host strains have been constructed in the
past, and the glycosylation system has been demonstrated to be functional [6,32]. After
induction and purification through the same method as before, we successfully obtained
the corresponding glycoproteins with purities greater than 90%. The protein components
in the S. flexneri 2a strain 301 glycoproteins (including NP(LTIB)-OPSSf and NP(LTIIbB)-
OPSSf) and the K. pneumoniae strain 355 glycoproteins (including NP(LTIB)-OPSKp and
NP(LTIIbB)-OPSKp) were confirmed by Western blotting using an HRP-labeled 6×His
Tag antibody (Figure 5A,B). Additionally, a specific serum against S. flexneri 2a strain 301
and K. pneumoniae strain 355 polysaccharides was used to determine their polysaccharide
components. The results indicated that we successfully prepared various bioconjugate
nanovaccines for two different pathogens.

Vaccines 2024, 12, x FOR PEER REVIEW 12 of 19 
 

 

fully obtained the corresponding glycoproteins with purities greater than 90%. The pro-
tein components in the S. flexneri 2a strain 301 glycoproteins (including NP(LTIB)−OPSSf 
and NP(LTIIbB) − OPSSf) and the K. pneumoniae strain 355 glycoproteins (including 
NP(LTIB)−OPSKp and NP(LTIIbB)−OPSKp) were confirmed by Western blotting using an 
HRP−labeled 6×His Tag antibody (Figure 5A,B). Additionally, a specific serum against S. 
flexneri 2a strain 301 and K. pneumoniae strain 355 polysaccharides was used to determine 
their polysaccharide components. The results indicated that we successfully prepared var-
ious bioconjugate nanovaccines for two different pathogens. 

 
Figure 5. Expression and purification of the bioconjugate nanovaccines from the two hosts. (A) The 
plasmids pPglL−LTIBTri or pPglL−LTIIbBTri were transformed into the host strain 301DWP. After 
purification through affinity and size−exclusion chromatography as described before, glycopro-
teins, including NP(LTIB)−OPSSf and NP(LTIIbB)−OPSSf, were obtained and analyzed by Coo-
massie blue staining and Western blotting using an HRP−labeled 6×His tag antibody and specific 
anti−OPS serum for detection. (B) The plasmids, pPglL−LTIBTri or pPglL−LTIIbBTri, were trans-
formed into the host strain, 355DW. After purification through affinity and size−exclusion chroma-
tography, glycoproteins NP(LTIB)−OPSKp and NP(LTIIbB)−OPSKp were obtained and analyzed by 
Coomassie blue staining and Western blotting using an HRP−labeled 6×His tag antibody and spe-
cific anti−OPS serum for detection. 

3.6. Size and Distribution Analysis of the S. flexneri and K. pneumoniae Bioconjugate Nanovac-
cines 

After successfully synthesizing four glycoproteins with different carriers from two 
pathogens, we analyzed the size and distribution of these glycoproteins using DLS. Alt-
hough the results showed a slight decrease in particle size compared to those in S. para-
typhi A in this study, due to the shorter polysaccharide chain lengths of the S. flexneri 2a 
strain 301 and the K. pneumoniae strain 355, all of the particles (including NP(LTIB)−OPSSf, 
NP(LTIIbB)−OPSSf, NP(LTIB)−OPSKp, and NP(LTIIbB)−OPSKp) remained in a size range 
between 25 and 30 nm with homogeneous size distributions (Figure 6A–D). In addition, 
during the seven−day observation period, all of the nanoparticles stably existed, indicat-
ing good stability (Figure 6E−H). Thus, the changes in the polysaccharide antigens did not 
affect the self−assembly of the nanoparticles. 

Figure 5. Expression and purification of the bioconjugate nanovaccines from the two hosts. (A) The
plasmids pPglL-LTIBTri or pPglL-LTIIbBTri were transformed into the host strain 301DWP. After
purification through affinity and size-exclusion chromatography as described before, glycoproteins,
including NP(LTIB)-OPSSf and NP(LTIIbB)-OPSSf, were obtained and analyzed by Coomassie blue
staining and Western blotting using an HRP-labeled 6×His tag antibody and specific anti-OPS serum
for detection. (B) The plasmids, pPglL-LTIBTri or pPglL-LTIIbBTri, were transformed into the host
strain, 355DW. After purification through affinity and size-exclusion chromatography, glycoproteins
NP(LTIB)-OPSKp and NP(LTIIbB)-OPSKp were obtained and analyzed by Coomassie blue stain-
ing and Western blotting using an HRP-labeled 6×His tag antibody and specific anti-OPS serum
for detection.

3.6. Size and Distribution Analysis of the S. flexneri and K. pneumoniae Bioconjugate Nanovaccines

After successfully synthesizing four glycoproteins with different carriers from
two pathogens, we analyzed the size and distribution of these glycoproteins using DLS.
Although the results showed a slight decrease in particle size compared to those in
S. paratyphi A in this study, due to the shorter polysaccharide chain lengths of the S. flexneri
2a strain 301 and the K. pneumoniae strain 355, all of the particles (including NP(LTIB)-OPSSf,
NP(LTIIbB)-OPSSf, NP(LTIB)-OPSKp, and NP(LTIIbB)-OPSKp) remained in a size range
between 25 and 30 nm with homogeneous size distributions (Figure 6A–D). In addition,
during the seven-day observation period, all of the nanoparticles stably existed, indicating



Vaccines 2024, 12, 347 11 of 16

good stability (Figure 6E–H). Thus, the changes in the polysaccharide antigens did not
affect the self-assembly of the nanoparticles.
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DLS. (E–H) The stability of the four nanovaccines was analyzed. After filtering with a 0.22 µm filter,
the NP(LTIB)-OPSSf, NP(LTIIbB)-OPSSf, NP(LTIB)-OPSKp, and NP(LTIIbB)-OPSKp solutions were
incubated at 37 ◦C, and the sizes were detected using DLS at different time points.

3.7. Evaluation of the Immune Efficacy of LTBs-Based S. flexneri Bioconjugate Nanovaccines

The endotoxin concentrations of NP(LTIB)-OPSSf and NP(LTIIbB)-OPSSf were deter-
mined to be at a low level (Supplementary Table S2), and the immune effect of the S. flexneri
bioconjugate nanovaccines (NP(LTIB)-OPSSf and NP(LTIIbB)-OPSSf) were assessed using
subsequent mouse experiments. Additionally, PBS, OPSsf, and NP(CTB)-OPSSf were used
as controls. The procedure for immunization and evaluation, depicted in Figure 7A, aligns
with the methodology for the S. paratyphi A vaccine evaluation. The ELISA results show-
cased a significant increase and highest levels in the IgG titer against the S. flexneri 2a strain
301 LPS in mice immunized with either NP(CTB)-OPSSf or NP(LTIB)-OPSSf (Figure 7B).
Further analysis of the IgG subtypes in the final serum indicated that both the NP(CTB)-
OPSSf and NP(LTIB)-OPSSf groups exhibited the highest titers, with a remarkable increase
in IgG1, at least 100-fold in comparison to the OPSSf group (Figure 7C). Additionally,
the IgG1-to-IgG2a ratio indicated that the immune response induced by NP(CTB)-OPSSf,
NP(LTIB)-OPSSf, or NP(LTIIbB)-OPSSf also maintained a Th1/Th2 balance (a ratio between
one and two) (Figure 7D). Subsequently, each mouse was intraperitoneally challenged with
1.53 × 107 CFU of the wild-type S. flexneri 2a strain 301, and their survival was monitored
(Figure 7E). During the observation period, all of the mice immunized with PBS died within
2 days, and the OPSSf and NP(LTIIbB)-OPSSf groups had very low protection rates (lower
than 30%). Conversely, a 100% survival rate was noted in both the NP(CTB)-OPSSf- and
NP(LTIB)-OPSSf-treated mice, indicating that CTB and LTIB, as pentamer modules, greatly
enhanced the specific antibody response and increased the protection provided. These
findings were consistent with those noted in the S. paratyphi A vaccine assessment.
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observed that NP(CTB)−OPSKp and NP(LTIB)−OPSKp offered the highest protection rate 
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Figure 7. Evaluation of the antibody response and protective effect of the S. flexneri bioconjugate
nanovaccines. (A) Schematic diagram of the immunization schedule. (B) IgG titers against the
S. flexneri 2a strain 301 LPS in the serum. BALB/c mice were immunized with PBS, OPSSf, NP(CTB)-
OPSSf, NP(LTIB)-OPSSf, or NP(LTIIbB)-OPSSf, and the serums were sampled 7 days after each
injection (n = 10). (C) IgG subtype titers (IgG1, IgG2a, IgG2b, and IgG3) against the S. flexneri 2a 301
strain LPS were measured in the serum after the third injection (day 35) (n = 10). (D) Analysis of
the rate of IgG1/IgG2a from the last immunized serum. (E) Mice survival was monitored after they
were challenged with the S. flexneri 2a strain 301 (1.53 × 107 CFU per mouse) 14 days after the final
immunization (n = 10). Data are presented as means ± SD. Each group was compared using one-way
ANOVA with Dunnett’s multiple-comparison test: **** indicates p < 0.0001, *** indicates p < 0.001,
** indicates p < 0.01, and ns indicates p > 0.05.

3.8. Evaluation of the Immune Efficacy of the K. pneumoniae Bioconjugate Nanovaccines

After determining the concentrations of NP(CTB)-OPSKp and NP(LTIB)-OPSKp
(Supplementary Table S3), we further explored the immune enhancement effects of the
two nanocarriers for the polysaccharides derived from K. pneumoniae strain 355. Consistent
with previous methodologies, we assessed the immune effect in mice (Figure 8A). On day
35, blood was drawn from each mouse, and the ELISA results showcasing the serum IgG
antibodies against the K. pneumoniae strain 355 LPS echoed the trends observed in the
two prior tests (Figure 8B). Notably, the mice treated with NP(CTB)-OPSKp and NP(LTIB)-
OPSKp recorded the highest IgG titers. These mice were then injected intraperitoneally
with 3.57 × 107 CFU of the K. pneumoniae strain 355 (Figure 8C). It was distinctly observed
that NP(CTB)-OPSKp and NP(LTIB)-OPSKp offered the highest protection rate (80%), while
OPSKp provided a protection rate of only 20%. Thus, in agreement with past outcomes, we
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posit that CTB and LTIB, as pentamer modules, are more likely to elicit powerful specific
immune responses and protection than other alternatives.
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nanovaccines. (A) Schematic diagram of the immunization schedule. (B) IgG titers against the
K. pneumoniae strain 355 LPS in the serum. BALB/c mice were immunized with PBS, OPSKp, NP(CTB)-
OPSKp, NP(LTIB)-OPSKp, and NP(LTIIbB)-OPSKp, and the serums were sampled 7 days after the third
injection (day 35) (n = 10). (C) At 14 days after the final immunization, each mouse was challenged
with 3.57 × 107 CFU of the K. pneumoniae strain 355, and the survival of the mice was monitored
(n = 10). Data are presented as means ± SD. Each group was compared using one-way ANOVA with
Dunnett’s multiple-comparison test: **** indicates p < 0.0001 and ns indicates p > 0.05.

4. Discussion

In this study, we successfully prepared two LTB-based bioconjugate nanovaccines
for three different pathogenic bacteria. The evaluation of the prophylactic effects against
each pathogen revealed consistent results. LTIB, as a module, elicited higher immune
responses than LTIIbB. Additionally, in a comparison with the reported self-assembling
carrier NP(CTB), NP(LTIB) exhibited consistently good results. Thus, we have created a
novel promising LTB-based bioconjugate of a self-assembled NP for vaccine design.

Many studies have indicated a significant correlation between the size of a vaccine
and its immune efficacy. Specifically, nanoscale carriers can easily target lymph nodes, with
the optimal size often ranging between 15 and 100 nm [15,33–36]. Our previous research
has confirmed that conjugate vaccines sized 20–30 nm accumulated more readily in the
lymph nodes and provoked efficient immune responses compared to non-nanovaccines.
In this study, despite all of the vaccine sizes being essentially the same, we still observed
substantial differences in immune efficacy, indicating that the size of the vaccine was not
the only factor affecting the immunological efficacy.

Bacterial AB5 toxins perform various biological functions due to their diverse cell
surface receptor recognition [29]. CTB is regarded as a mucosal adjuvant and is employed
in oral vaccines [37]. During Vibrio cholerae infection, CTB can bind with GM1 on the
surface of intestinal epithelial cells, mediating the entry of the toxin into the cells [38]. This
might be the principle of CTB’s mucosal adjuvant effects. In addition, GM1 also resides
on antigen-presenting cell (APC) surfaces, potentially promoting an immune response
through GM1-mediated endocytosis. However, there are currently no particular studies on
this mechanistic detail in immune cells. Similarly, LTIB also can bind with high affinity to
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GM1 [39]. In addition, in our results, NP(CTB)-OPS and NP(LTIB)-OPS showed consistent
results, suggesting that GM1 may play an important role in the immune response. The best
immune effects of both groups also indicated that GM1 may be a potential immune target
for vaccine design. LTIIbB binds strongly to GD1a but lacks affinity for GM1 [39]. It has
been reported that GD1 is also an essential coreceptor for TLR2 signaling [40].

Receptors can play a crucial role in the vaccine immune response, such as the activa-
tion of the immune response through Toll-like receptors (TLRs), C-type lectin receptors
(CLRs), or the GAS-STING pathway [41], enhancing the APC’s presentation capability
by influencing the fatty acid metabolism pathway [42]. Furthermore, some nanocarriers
have been reported to activate the immune response through specific receptors (such as
the binding of ferritin and CD209b on APCs) [43]. CTB, with its binding ability to GM1, is
often used as a mucosal adjuvant, hence it can also be combined with mucosal delivery
systems, such as recombinant lactic acid bacteria, to develop mucosal vaccines [44]. It
should be emphasized that revealing the function of these receptors in vaccine immune
responses would significantly advance the design of novel delivery vectors. In particular,
CTB or LTIB modules can potentially elicit stronger immune responses, suggesting new
adjuvant targets.

Although various B5 toxins can be used for bioconjugate nanovaccine design, the
reported glycosylation efficiency and vaccine yield have been varied, possibly because
the self-assembled structure with different B5 toxins affects the glycosylation reaction.
Although the process of protein self-assembly and glycosylation is complex, there remains
various methods to optimize the glycosylation efficiency and improve the yield. For
example, by modifying the length or properties of the amino acid between two modules, it
is possible to obtain a linker that is more suitable for self-assembly [24]. Furthermore, since
the amino acid sequence of the glycosylation motif significantly impacts the modification
efficiency [6], we can, therefore, mutate the key amino acids to obtain the highest-yielding
strain. In addition to optimizing nanocarriers, modifications of the host chassis (such as
the construction of engineering strains suitable for efficient glycoprotein synthesis) and the
optimization of glycosyltransferases (such as the directed evolution and modification of
the enzymes) can also improve vaccine yield [45].

5. Conclusions

In conclusion, we successfully prepared two LTB-based bioconjugate nanovaccines
for various pathogenic bacteria. By evaluating the antibody response and protection
against lethal bacterial challenges, we observed that the nanovaccine using LTIB as a
module elicited a stronger immune response, with excellent results similar to the use of
the previously reported CTBTri carrier. Thus, we have created the first novel promising
LTB-based self-assembled NP for vaccine design. This NP has the potential for broad
applications and expands the design of multifunctional self-assembled nanocarriers.
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