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Abstract  19 

Several studies have demonstrated that the severity of social communication problems, a core 20 

symptom of Autism Spectrum Disorder (ASD), is correlated with specific speech characteristics 21 

of ASD individuals. This suggests that it may be possible to develop speech analysis algorithms 22 

that can quantify ASD symptom severity from speech recordings in a direct and objective manner. 23 

Here we demonstrate the utility of a new open-source AI algorithm, ASDSpeech, which can 24 

analyze speech recordings of ASD children and reliably quantify their social communication 25 

difficulties across multiple developmental timepoints. The algorithm was trained and tested on the 26 

largest ASD speech dataset available to date, which contained 99,193 vocalizations from 197 ASD 27 

children recorded in 258 Autism Diagnostic Observation Schedule, 2nd edition (ADOS-2) 28 

assessments. ASDSpeech was trained with acoustic and conversational features extracted from the 29 

speech recordings of 136 children, who participated in a single ADOS-2 assessment, and tested 30 

with independent recordings of 61 additional children who completed two ADOS-2 assessments, 31 
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separated by 1–2 years. Estimated total ADOS-2 scores in the test set were significantly correlated 32 

with actual scores when examining either the first (r(59) = 0.544, P < 0.0001) or second (r(59) = 33 

0.605, P < 0.0001) assessment. Separate estimation of social communication and restricted and 34 

repetitive behavior symptoms revealed that ASDSpeech was particularly accurate at estimating 35 

social communication symptoms (i.e., ADOS-2 social affect scores). These results demonstrate 36 

the potential utility of ASDSpeech for enhancing basic and clinical ASD research as well as 37 

clinical management. We openly share both algorithm and speech feature dataset for use and 38 

further development by the community.  39 

Introduction 40 

Autism Spectrum Disorder (ASD) is diagnosed by the presence of social communication 41 

difficulties and the existence of Restricted and Repetitive Behaviors (RRBs)1. Most ASD children 42 

exhibit language delays during early childhood2, with 25–30% remaining minimally verbal (i.e., 43 

use < 50 words) throughout childhood3. However, core ASD symptoms are not necessarily evident 44 

in the amount of speech produced by an individual and may instead be evident in the way they 45 

speak. Some ASD children exhibit poorer fluency4, echolalia (i.e., speech repetition)5, mix 46 

pronouns6, and use atypical articulation and prosody7,8 that are apparent in the acoustic features of 47 

their vocalizations9,10. Studies have reported, for example, that verbal ASD children tend to speak 48 

with higher pitch and larger pitch variability than typically developing (TD) children8,9. ASD 49 

children also exhibit significantly fewer phoneme vocalizations11, fewer conversational turns (i.e., 50 

reciprocating in a conversation)11–13, more non-speech vocalizations12,14, more distressed 51 

vocalizations (crying, screaming)15, and a lower ratio of syllables to vocalizations16 than TD 52 

children. 53 

Several studies have used automated speech analysis techniques to classify ASD and TD 54 

children based on extracted speech features17–24. In some studies, diagnostic classification was 55 

based on linguistic features such as vocabulary and fluency24 while in others it was based on 56 

acoustic features such as pitch18–20,22,23, jitter20,23, shimmer20,23, energy18,19, Zero-Crossing Rate 57 

(ZCR)18,19, and Mel-Frequency Cepstral Coefficients (MFCCs)19. 58 

Three recent studies have extended this research by training machine and deep learning 59 

algorithms to estimate ASD severity according to extracted speech features. In all these studies 60 

ground truth was established by clinicians using the Autism Diagnostic Observation Schedule 2nd 61 

edition (ADOS-2), a semi-structured assessment where clinicians score the behavior of children 62 

during specific tasks/games25. The ADOS-2 yields a total severity score as well as separate Social 63 

Affect (SA) and Restricted and Repetitive Behaviors (RRB) scores that quantify social difficulties 64 

and RRB symptoms, respectively. In the first study, the authors extracted vocalization rates and 65 

durations from speech recordings of 33 ASD children during an ADOS-2 assessment and reported 66 

that a trained synthetic random forest model was able to accurately estimate their ADOS-2 Social 67 
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Affect (SA) scores26. Another study extracted hundreds of conversational, acoustic, and lexical 68 

speech features from speech recordings of 88 adolescents and adults with ASD during an ADOS 69 

assessment (1st edition) and reported that a trained Deep Neural Network (DNN) was able to 70 

accurately estimate scores of four specific ADOS items that quantify the ability to maintain a 71 

mature social conversation27. Finally, in the third study, from our group, we extracted acoustic 72 

features such as pitch and energy, and conversational features such as turn-taking and speech rate 73 

from speech recordings of 72 children (56 with ASD) during an ADOS-2 assessment28. We 74 

demonstrated that a trained Convolutional Neural Network (CNN) model was able to accurately 75 

estimate total ADOS-2 scores across multiple train-test subsamples. 76 

While these results are encouraging, algorithms developed so far were trained and tested with 77 

relatively small ASD samples that are not likely to represent the large heterogeneity of speech 78 

styles and characteristics in the broad ASD population29. Moreover, previous studies examined 79 

only a single timepoint of data from each participant, thereby limiting the ability to assess the 80 

reliability of algorithms to assess ASD symptom severity at different developmental timepoints. 81 

Previous studies also did not compare the ability of deep learning models to successfully estimate 82 

the severity of social ASD symptoms versus RRB symptoms. Most importantly, previous studies 83 

did not share their algorithms and data in a transparent manner that would enable re-production of 84 

results and further development of algorithms by the research community.  85 

To address these limitations, we created the largest speech recording dataset available to date, 86 

which contained 99,193 vocalizations from 197 ASD children recorded in 258 ADOS-2 87 

assessments, with 61 of the children participating in two ADOS-2 assessments that were separated 88 

by 1-2 years. This comprehensive dataset enabled us to train and test the ASDSpeech algorithm 89 

on different subsets of children and compare its accuracy across two developmental timepoints as 90 

well as sex and age sub-groups. In addition, we also examined the ability to estimate ADOS-2 SA 91 

versus RRB scores (i.e., social difficulties versus RRB symptoms). We intentionally used raw 92 

ADOS-2 scores, which have a considerably wider range than ADOS-2 calibrated severity scores 93 
30,31, thereby increasing the potential sensitivity of the algorithm. Finally, we openly share the 94 

algorithm and speech feature dataset to promote transparency and enable further use and 95 

development by the research community. 96 

Methods 97 

Participants and setting. We analyzed data collected at the Azrieli National Centre for Autism 98 

and Neurodevelopment Research (ANCAN), a collaboration between Ben-Gurion University of 99 

the Negev (BGU) and eight partner clinical centers where ASD is diagnosed throughout Israel. 100 

ANCAN manages the national autism database of Israel with data from > 3000 children in 2023 101 

and growing32,33. All recordings used in the current study were performed in a single ANCAN 102 

assessment room located at Soroka University Medical Center (SUMC), the largest partner clinical 103 
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site. A total of 197 children (1–7-years-old) who completed at least one ADOS-2 assessment 104 

between 2015 and 2021 and received an ASD diagnosis were included in this study (Table 1). Of 105 

the participating children, 136 completed a single ADOS-2 assessment and 61 completed two 106 

ADOS-2 assessments at two timepoints separated by 10–29 months, yielding 258 ADOS-2 107 

assessments in total. All ADOS-2 assessments were performed by a clinician with research 108 

reliability. In addition, all participating children had ASD diagnoses that were confirmed by both 109 

a developmental psychologist and either a child psychiatrist or a pediatric neurologist, according 110 

to Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) criteria34. 111 

Informed consent was obtained from all parents, and the study received approval from the SUMC 112 

Helsinki committee. 113 

Table 1. Participating children’s characteristics 114 

 Single assessment Two assessments 

 
 

(N = 136) 

T1 

 (N = 61) 

T2  

(N = 61) 

Mean (SD)    

Age (years) 4.26 (1.34) 3.67 (0.98) 4.95 (0.94) 

ADOS-2 Total 14.99 (5.88) 14.92 (5.85) 14.92 (5.61) 

ADOS-2 SA 10.75 (4.96) 11.26 (5.14) 10.57 (4.55) 

ADOS-2 RRB 4.24 (1.88) 3.66 (1.66) 4.34 (1.87) 

N (%)    

Sex    

Male 108 (79) 42 (69) 42 (69) 

Female 28 (21) 19 (31) 19 (31) 

Module    

Module T 17 (13) 9 (15) 0 (0) 

Module 1 45 (33) 329 (48) 28 (46) 

Module 2 40 (29) 21 (34) 19 (31) 

Module 3 3 (25) 2 (3) 14 (23) 

 115 
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ADOS-2 assessments. ADOS-2 is a semi-structured behavioral assessment where a clinician 116 

administers specific tasks, observes the behavior of the child, and scores their behavior35. The total 117 

ADOS-2 score (range: 0–30) is the sum of the Social Affect (SA, range: 0–22) and Restricted and 118 

Repetitive Behavior (RRB, range: 0–8) scores, with higher scores indicating more severe 119 

symptoms. 120 

Recording setup. All ADOS-2 recordings were performed using a single microphone (CHM99, 121 

AKG, Vienna) located on a wall, ~1–2m from the child, and connected to a sound card (US-16x08, 122 

TASCAM, California). Each ADOS-2 session lasted ~40-minutes (40.75 ± 11.95 min) and was 123 

recorded at a sampling rate of 44.1 kHz, 16 bits/sample (down-sampled to 16 kHz). 124 

Detection of child vocalizations. We manually labeled segments with child vocalizations in each 125 

of the audio recordings. These segments included speech, laughing, moaning, crying, and 126 

screaming. The child segments often contained multiple vocalizations (e.g., multiple utterances) 127 

separated by silence. We separated each segment into multiple vocalizations using energy 128 

thresholds of 2.79dB and 0.4dB above the background noise to define the beginning and end of 129 

each vocalization, respectively28 (Supplementary Figure S1). Vocalizations that were shorter than 130 

110ms were excluded from further analysis (too short to contain an utterance). 131 

Features. We extracted 49 speech features from the child vocalizations that were categorized into 132 

nine groups: pitch, formants, jitter, voicing, energy, Zero-Crossing Rate (ZCR), spectral slope, 133 

duration, and quantity/number of vocalizations. All features, except duration and quantity, were 134 

first extracted in 40ms windows (window overlap of 75%), resulting in a vector of feature values 135 

per vocalization. The minimum, the maximum, and the mean pitch of the voiced vocalizations 136 

(across windows) were computed, deriving one value for each vocalization. We then selected a 137 

group of 10 consecutive vocalizations and computed the mean and variance across vocalizations 138 

for relevant features (Supplementary Table S1). We also computed the mean duration of 139 

vocalizations and the overall number of vocalizations in the recording. Taken together, these steps 140 

yielded a vector with 49 values corresponding to the 49 features per 10 vocalizations. We 141 

performed this procedure 100 times, selecting random groups of ten consecutive vocalizations 142 

from the recording. Combining these 100 samples yielded a features matrix of 100×49 per child 143 

(Supplementary Figure S2), with the last column (quantity of vocalizations) containing the same 144 

value across all rows. Features included: 145 

  146 
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Frequency related features:  147 

 Pitch (F0): Vocal cords vibration frequency (the fundamental frequency) that exists only 148 

in voiced speech (e.g., vowels). Voiced Vocalization (VV) was defined as a vocalization 149 

where most of its frames (≥ 60%)10 were voiced (voicing threshold 0.45). 150 

 Formants: The resonant frequencies of the vocal tract that shape vowel sounds36. The first 151 

two formants (F1 and F2) relate to tongue position (vertical and horizontal) and influence 152 

vowel quality. Their bandwidths affect the clarity of speech. 153 

 Jitter: Variation across adjacent pitch values representing frequency instability37.  154 

 Voicing: Pitch peak amplitude as determined by the autocorrelation function. 155 

Pitch and formants were calculated using the PRAAT software38, with a pitch range set to 60–1600 156 

Hz (a wide range to increase sensitivity to atypical vocal characteristics). 157 

Energy/amplitude related features: 158 

 Energy: The energy ratio between each child’s vocalization and the background noise. The 159 

background noise energy was calculated from the energy values extracted from the lowest 160 

5% of the recording’s frames.  161 

Spectral features: 162 

 Zero-Crossing Rate (ZCR): The number of zero-crossings apparent in audio segments with 163 

child vocalizations39.  164 

 Spectral slope: The slope of the linear regression on the logarithmic power spectrum within 165 

the frequency bands of 20–500 Hz (lower band) and 500–1500 Hz (higher band)40,41. 166 

Conversational features: 167 

 Duration: Child’s mean vocalization length.  168 

 Quantity: The total number of vocalizations. 169 

All features, except for Pitch and Formants, were extracted with custom-written code in Matlab 170 

(Mathworks, Inc.). 171 

Training and testing ASDSpeech. Training was performed with data from the 136 children 172 

who completed a single ADOS-2 session only. Feature matrices were used to train two deep 173 

learning models with an identical CNN architecture (Supplementary Figure S3). The first model 174 

estimated ADOS-2 SA scores and the second estimated ADOS-2 RRB scores. Training was based 175 

on minimizing the Mean Squares Error (MSE) of a regression analysis between estimated and 176 
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actual scores, using the RMSprop (Root Mean Square Propagation) as the optimization 177 

algorithm42. The training process was preformed 25 times, creating 25 different SA and 25 RRB 178 

models that were trained with different combinations of training data sub-samples and learning 179 

parameters. We considered this analogous to having 25 clinicians, each with a different learning 180 

style and different clinical experience. First, we performed the feature extraction procedure 181 

described above 5 times for each child. Since feature extraction included a random selection of 182 

consecutive vocalizations, this resulted in 5 different sub-samples of the data. When training each 183 

model (separately for SA and RRB) we split the training data into a training-set (80%) and 184 

validation set (20%) and applied a random search algorithm to optimize the following learning 185 

parameters: batch size, number of epochs, and learning rate, while applying early stopping of 186 

patience after 20 epochs to reduce overfitting43. Optimal learning hyper-parameters were selected 187 

based on the highest concordance correlation coefficient44, between estimated and actual ADOS-188 

2 scores in the training and validation sets respectively. This procedure was performed 5 times 189 

using different selections of validation data (i.e., 5-fold cross validation), yielding 5 models with 190 

different learning parameters per data sub-sample and 25 models in total for SA and RRB scores 191 

separately.  192 

Testing was performed with an entirely independent dataset of 61 ASD children who 193 

completed two ADOS-2 assessments. For each of these children we estimated a separate SA and 194 

RRB score from each of the 25 models described above and then computed their mean, yielding a 195 

single SA and RRB score per child. This is analogous to a clinical consensus across the 25 models. 196 

Accuracy of ASDSpeech estimation was measured using Pearson correlation and NRMSE (RMSE 197 

/ (ymax - ymin), where y is the actual ADOS-2 score), which were calculated between the estimated 198 

and actual ADOS-2 scores in the testing dataset, separately for the first and second ADOS-2 199 

assessments (i.e., T1 and T2).  200 

Hardware. All model training, optimization, and training were performed using custom-written 201 

code in Python 3.9.13 using a Keras API 2.6.0 with TensorFlow (version 2.6.0) backend. The 202 

training was conducted on an IntelI XI(R) Gold 6140 CPU @ 2.30GHz and NVIDIA GPU Tesla 203 

T4. 204 

Statistical Analysis.  All statistical analyses were conducted using custom-written code in 205 

Python. Associations between speech features and ADOS-2 scores were assessed using Pearson 206 

correlations. To evaluate their statistical significance, we performed a random permutation test. In 207 

this test, we randomly shuffled the actual ADOS-2 scores across children and calculated the 208 

correlation between each feature and the shuffled scores. This randomization procedure was 209 

performed 1,000 times, generating a null distribution of random correlation values as computed 210 

from the original data that is not necessarily normally distributed as assumed by parametric 211 

statistical tests. For a correlation between a speech feature and ADOS-2 score to be considered 212 

significant, the actual correlation value had to be higher than the 97.5 percentile of the null 213 
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distribution. We used an equivalent analysis to assess the statistical significance of correlations 214 

between actual and ASDSpeech estimated ADOS-2 scores. We also performed a similar analysis 215 

with NRMSE values, where we assessed whether the actual NRMSE value was smaller than the 216 

2.5 percentile of the null distribution. This statistical test, therefore, assessed whether correlation 217 

values were higher than expected by chance and NRMSE values were lower than expected by 218 

chance. 219 

Data sharing. The ASDSpeech algorithm source-code and associated dataset are available at 220 

https://github.com/Dinstein-Lab/ASDSpeech. 221 

Results 222 

Using the data from the 136 ASD children in the training dataset, we examined the relationships 223 

between each of the 49 features and ASD symptom severity as defined clinically by the children’s 224 

ADOS-2 scores. Thirty-one features exhibited significant Pearson correlation coefficients with 225 

total ADOS-2 scores (i.e., sum of SA and RRB scores), 31 with ADOS-2 SA scores, and 28 with 226 

ADOS-2 RRB scores (Figure 1). While some features, such as the number of vocalizations, 227 

exhibited a stronger correlation with SA than RRB score, others, such as mean jitter, exhibited the 228 

opposite (Supplementary Figure S4). Hence, different features seem to carry distinct information 229 

regarding each of the two core ASD symptoms, demonstrating the potential opportunity for a deep 230 

learning algorithm to learn relevant associations.   231 
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 232 

Figure 1. Pearson correlation coefficients between each of the extracted features and ADOS-233 

2 scores from the 136 children in the training dataset. Correlation coefficients are presented for 234 

total ADOS-2 scores (a), ADOS-2 SA scores (b), and ADOS-2 RRB scores (c). Each color 235 

represents a different group of features. Asterisks: significant Pearson correlation (∗ < 0.05, ∗∗ ≤ 236 

0.01, ∗3 ≤ 0.001, ∗4 ≤ 0.0001). 237 

 238 

 239 

Longitudinal stability of ADOS-2 scores 240 

The 61 ASD children in the test dataset exhibited similar ADOS-2 scores across their two 241 

assessments, which were separated by 1-2 years, indicating overall stability in severity over time. 242 

Significant correlations were apparent across first and second assessments for ADOS-2 total (r(59) 243 

= 0.743, P < 0.001), ADOS-2 SA (r(59) = 0.666, P < 0.001), and ADOS-2 RRB (r(59) = 0.5, P < 244 

0.001) scores (Figure 2).  245 
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 246 

Figure 2. Scatter plots demonstrating overall stability in ADOS-2 scores across first and 247 

second assessments (T1 and T2). (a) ADOS-2 SA scores. (b) ADOS-2 RRB scores. (c) Total 248 

ADOS-2 scores (sum of SA and RRB scores). Asterisk: statistical significance of the Pearson 249 

correlation coefficient (P < 0.0001). Shaded areas: 95% confidence intervals. Children located 250 

below the diagonal (dashed line) exhibited lower ASD severity at T2 (improvement), while 251 

children above the diagonal exhibited the opposite. 252 

 253 

Training and testing the ASDSpeech algorithm 254 

We trained the ASDSpeech algorithm with data from 136 ASD children in the training dataset. 255 

The algorithm included two separate CNN models that were trained to estimate ADOS-2 SA and 256 

RRB scores independently, given that different speech features were associated with each 257 

symptom domain. The accuracy of the algorithm was tested with data from two independent 258 

ADOS-2 recordings of the 61 children in the testing dataset where ASDSpeech estimated the SA, 259 

RRB, and total ADOS-2 (sum of SA and RRB) scores of each child per recording (Figure 3). 260 

Estimated total ADOS-2 scores were significantly correlated with actual scores at T1 (r(59) = 261 

0.544, P < 0.0001) and T2 (r(59) = 0.605, P < 0.0001). Similarly, estimated ADOS-2 SA scores 262 

were significantly correlated with actual scores at T1 (r(59) = 0.502, P < 0.0001) and T2 (r(59) = 263 

0.592, P < 0.0001). In contrast, estimated ADOS-2 RRB scores were not significantly correlated 264 

with actual RRB scores at T1 (r(59) = 0.093, P = 0.474), exhibiting significant correlations only 265 

at T2 (r(59) = 0.332 P = 0.009) with a relatively weaker effect size.  266 

Normalized Root Mean Squared Error (NRMSE) between estimated and actual total ADOS-2 267 

scores was significantly smaller than expected by chance when computed at T1 (NRMSE = 0.189, 268 

P < 0.0001) and T2 (NRMSE = 0.172, P = 0.0001). Similarly, NRMSE between estimated and 269 

actual ADOS-2 SA scores was significantly smaller than expected by chance when computed at 270 

T1 (NRMSE = 0.200, P < 0.0001) and T2 (NRMSE = 0.170, P < 0.0001). In contrast, NRMSE 271 

between estimated and actual ADOS-2 RRB scores was not significantly smaller than expected by 272 
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chance at T1 (NRMSE = 0.219, P = 0.460), exhibiting significant results only at T2 (NRMSE = 273 

0.225, P = 0.006). 274 

The statistical significance of the NRMSE results was determined with a randomization 275 

analysis where we randomly shuffled ADOS-2 scores across children before computing NRMSE 276 

values. We computed 1,000 random permutations to generate a null NRMSE distribution and 277 

assessed statistical significance by determining whether the actual NRMSE value was smaller than 278 

the 2.5 percentile of the null distribution (see Methods). 279 
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 280 

Figure 3. Accuracy of ASDSpeech. Scatter plots demonstrating the fit between estimated and 281 

actual scores for the children at T1 (left column) and T2 (right column). (a-b) Total ADOS-2 282 

scores (sum of SA and RRB scores). (c-d) ADOS-2 SA scores. (e-f) ADOS-2 RRB scores. Pearson 283 

correlation coefficients and NRMSE values are noted in each panel. Solid line: Linear fit. Dashed 284 

line: diagonal (unity line). Asterisks: statistical significance as determined by randomization test 285 

(P < 0.05).  286 
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Differences across age and sex subgroups  287 

Next, we examined whether ASDSpeech accuracy differed across age and sex subgroups 288 

(Figure 4). Estimated total ADOS-2 scores were significantly correlated with actual scores when 289 

examining children above the median age at T1 (r(28) = 0.604, P = 0.0004) or T2 (r(25) = 0.612, 290 

P = 0.0007) and children below the median age at T1 (r(29) = 0.485, P = 0.006) or T2 (r(32) = 291 

0.657, P < 0.0001). There were no significant differences in the algorithm’s accuracy between 292 

younger and older children at T1 (P = 0.540) or T2 (P = 0.780) as tested with a randomization 293 

analysis. Similarly, estimated total ADOS-2 scores were significantly correlated with actual scores 294 

when examining males at T1: (r(40) = 0.631, P < 0.0001) or T2 (r(40) = 0.601, P < 0.0001). 295 

Estimated ADOS-2 scores were also significantly correlated with actual scores when examining 296 

females at T2 (r (17) = 0.627, P = 0.004), but the correlation did not reach statistical significance 297 

at T1 (r (17) = 0.363, P = 0.127). Nevertheless, there were no significant differences in the 298 

algorithm’s accuracy between males and females at T1 (P = 0.198) or T2 (P = 0.930) as tested 299 

with a randomization analysis. 300 

Comparison of NRMSE across subgroups showed similar results. NRMSE between the 301 

estimated and actual ADOS-2 scores was significantly smaller than expected by chance when 302 

examining younger children at T1 (NRMSE = 0.199, P = 0.008) or T2 (NRMSE = 0.173, P < 303 

0.0001) as well as older children at T1 (NRMSE = 0.178, P < 0.0001) or T2 (NRMSE = 0.172, P 304 

< 0.0001). There were no significant differences in the algorithm’s accuracy between younger and 305 

older children at T1 (P = 0.434) or T2 (P = 0.992). NRMSE were also significantly smaller than 306 

expected by chance when examining males at T1 (NRMSE = 0.172, P < 0.0001) or T2 (NRMSE 307 

= 0.166, P < 0.0001). For females this was the case only at T2 (NRMSE = 0.186, P = 0.006) and 308 

not at T1 (NRMSE = 0.222, P = 0.140). Nevertheless, there were no significant differences in the 309 

algorithm’s accuracy between males and females at T1 (P = 0.094) or T2 (P = 0.588) as tested 310 

with a randomization test. 311 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 19, 2024. ; https://doi.org/10.1101/2023.10.27.23297600doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.27.23297600
http://creativecommons.org/licenses/by/4.0/


14 

 

 312 

Figure 4. ASDSpeech accuracy as a function of sex and age at T1 and T2. (a,b) Pearson 313 

correlation values (c,d) Normalized Root Mean Squared Error (NRMSE) values. (a, c) comparison 314 

between younger and older children (median split according to age at each timepoint). (b, d) 315 

comparison between males and females. Asterisks: statistical significance as determined by 316 

randomization test (P < 0.05). 317 

Discussion 318 

Our results demonstrate the ability of ASDSpeech to quantify the severity of social symptoms 319 

in ASD children from recordings of their speech during ADOS-2 assessments. The algorithm, 320 

trained with recordings from 136 ASD children, was able to accurately estimate total ADOS-2 and 321 

ADOS-2 SA scores in an entirely independent sample of 61 ASD children, who were recorded at 322 

two different developmental timepoints separated by 1-2 years (Figure 3). It is remarkable that 323 

ASDSpeech was able to achieve this despite the large heterogeneity in language fluency and 324 

speech articulation abilities apparent across ASD children45 as well as the large developmental 325 

changes that take place in speech abilities during the examined period of early childhood46. 326 

Moreover, the robust accuracy of ASDSpeech in estimating ADOS-2 SA scores is remarkable 327 
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given that the social difficulties assessed during the ADOS-2 assessment manifest themselves in 328 

behaviors that have little to do with speech including difficulties with eye contact, imitation, joint 329 

attention, and other social behaviors3,47. This suggests that combining ASDSpeech with analysis 330 

of eye tracking48–50, facial expressions51, and body movement52 data from the same children will 331 

enable even higher accuracy and reliability in estimating ASD symptoms.  332 

Separate estimation of social and RRB symptoms demonstrated that ASDSpeech was 333 

considerably more accurate at estimating social ASD symptoms captured by the ADOS-2 SA 334 

scores in contrast to the RRB symptoms captured by the ADOS-2 RRB scores (Figure 3). Note 335 

that accurate estimation of total ADOS-2 scores (Figure 3) was likely based on the accurate 336 

estimation of SA scores that account for two-thirds of the total scores. We believe there may be 337 

several reasons for the more accurate estimation of SA scores. First, the limited range of the 338 

ADOS-2 RRB scale (0–8) relative to the SA scale (0–22) may make it difficult for the algorithm 339 

to identify differences across children. Indeed, a recent study reported that the limited number of 340 

items on the RRB scale resulted in poor scale reliability across participants53. Second, the selected 341 

speech features in the current study exhibited weaker correlations with RRB than SA scores 342 

(Figure 1). Extraction of additional speech features, such as phrase or intonation repetitions 343 

(indicative of echolalia) may improve the accuracy of ADOS-2 RRB score estimates. Regardless, 344 

our results motivate separate modeling of social and RRB symptom domains as each of them is 345 

likely associated with distinct features of speech.  346 

In the current study we estimated raw ADOS-2 scores rather than calibrated severity scores 347 

(CSS), which were developed to standardize ASD symptom severity measurements across 348 

different ages and language abilities30,31. While ADOS-2 CSS are important for longitudinal 349 

assessments of coarse changes in severity54,55, their restricted scoring range (children with ASD 350 

receive scores of 4-10) limits the sensitivity of deep learning algorithms in identifying differences 351 

across children. By demonstrating that ASDSpeech achieves robust accuracy in estimating raw 352 

ADOS-2 SA scores across different age groups and developmental timepoints we show that 353 

severity estimations are independent of these factors, thereby justifying the use of raw scores. 354 

Diagnostic classification with speech analysis algorithms   355 

A variety of previous studies have reported that individuals with ASD, on average, speak 356 

differently than TD individuals4,8–16. According to these studies, ASD individuals exhibit atypical 357 

speech characteristics, including significantly fewer phonemes per utterance11, fewer 358 

conversational turns13, higher pitch9,19, and larger pitch range and variability8,9 than TD children. 359 

Differences in these and other speech characteristics have enabled the development of machine 360 

and deep learning classification algorithms that can identify ASD and TD individuals with reported 361 

accuracy rates of 75-98%17–23. 362 
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However, these relatively high classification accuracies are likely to be inflated due to the 363 

small sample size of most studies (<40 ASD participants) that are not likely to capture the true 364 

heterogeneity of ASD symptoms or speech styles/characteristics of the broad ASD population. 365 

Indeed, even “gold standard” clinical tests such as the ADOS-2, exhibit ~80% accuracy in 366 

identifying children who will eventually receive an ASD diagnosis56. This is because establishing 367 

an ASD diagnosis requires clinicians to incorporate additional information from parent interviews 368 

and other clinical assessments57. Clinicians also report high diagnosis certainty in only ~70% of 369 

ASD children because the presentation of ASD symptoms is equivocal in ~30% of cases58. These 370 

studies suggest an expected upper limit of 70–80% accuracy when attempting to identify ASD 371 

using digital phenotyping techniques such as speech analysis. Nevertheless, it is highly 372 

encouraging that speech features contain information enabling the separation of ASD and TD 373 

children. 374 

Quantifying ASD severity with speech analysis algorithms 375 

A more complex task is to develop machine and deep learning algorithms that can quantify the 376 

severity core ASD symptoms. Results presented in the current and previous study from our lab28 377 

demonstrated that multiple speech features were significantly correlated with SA and/or RRB 378 

ADOS-2 scores (Figure 1), suggesting that distinct combinations of speech features are associated 379 

with each of the two core ASD symptoms.  380 

Three recent studies have attempted to use these relationships to predict ADOS-2 scores by 381 

analyzing speech recordings of ASD individuals26–28. The first trained a synthetic random forest 382 

model to estimate ADOS-2 SA scores according to vocalization rate and turn-taking features 383 

extracted from ADOS-2 recordings of 33 ASD children. The algorithm was able to predict ADOS-384 

2 SA scores that were significantly correlated with actual scores (r = 0.634). The second study 385 

utilized a DNN model to estimate four ADOS (first edition) item scores using hundreds of 386 

conversational and acoustic features extracted from speech recordings of 88 high-functioning ASD 387 

adolescents/adults during an ADOS assessment27. This algorithm was able to estimate scores that 388 

exhibited significant Spearman correlations with the actual scores (ρ = 0.519–0.645). Finally, in a 389 

previous study from our lab28, we demonstrated that a CNN model was able to estimate ADOS-2 390 

total scores that were significantly correlated with actual scores (r = 0.718) when using 60 391 

conversational and acoustic features extracted from speech recordings of 72 children (56 of them 392 

with ASD) during ADOS-2 assessment. 393 

 The current study extends previous work in several critical ways. First, we utilized a 394 

considerably larger dataset (258 ADOS-2 recordings) that was at least three times larger than the 395 

ones used to date. This was important for training ASDSpeech with speech recordings form a large 396 

cohort with heterogeneous language abilities. Second, the 61 ASD children in our testing dataset 397 

were recorded twice during two ADOS-2 assessments separated by 1–2 years. This enabled us to 398 

test the robustness of ASDSpeech across two developmental timepoints. Third, we trained 399 
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ASDSpeech to estimate ADOS-2 SA and ADOS-2 RRB scores using separate CNN models. The 400 

results demonstrated that this separation was critical with accurate performance apparent primarily 401 

for the ADOS-2 SA scores. Fourth, the large sample size enabled us to demonstrate that 402 

ASDSpeech accuracy was similar across age and sex subgroups. Fifth, the recordings utilized in 403 

the current study were performed over a 6-year period in a busy public healthcare medical center 404 

that services a population of ~1 million people. Recordings were performed with a wall mounted 405 

microphone (see Methods) in “real world” noisy conditions (e.g., announcement system in the 406 

hallway). This demonstrates the robustness of ASDSpeech to variable recording conditions.  407 

ASDSpeech achieved similar accuracy to that reported in previous studies. The important 408 

advance in the current study is in demonstrating that this accuracy is robust to age and 409 

developmental stage of the examined children when examining a large heterogeneous population 410 

within an active clinical setting. Most importantly, we openly share ASDSpeech and its associated 411 

dataset with the research community.  412 

Limitations 413 

The current study had several limitations. First, we did not examine the language content of the 414 

recordings, which is likely to improve the estimation of ASD symptom severity4,24. Second, we 415 

did not identify echolalia, crying, or shouting events that are likely to be informative of RRB 416 

symptoms. Indeed, our weaker results estimating RRB scores suggest that different speech features 417 

are necessary for estimating severity in this domain. Third, we did not apply any noise reduction 418 

or multi-speaker analysis techniques to improve the quality of the analyzed vocal segments. 419 

Finally, our sample had a 4:1 male to female ratio, which is equivalent to the sex ratio in the 420 

national ASD population of Israel59. Hence, higher ASDSpeech accuracy for males at T1 may be 421 

due to the larger number of males in the training and testing datasets. This could be rectified by 422 

future studies. 423 

Conclusions 424 

This study adds to accumulating evidence demonstrating that speech recordings contain reliable 425 

information about the social symptom severity of ASD children. We demonstrate the ability of the 426 

ASDSpeech algorithm to quantify these symptoms in a robust manner across two developmental 427 

timepoints with recordings that were performed within a busy community healthcare center. We 428 

openly share the algorithm and its associated dataset for further use, testing, and development by 429 

the research community and are confident that future versions of the algorithm will achieve even 430 

higher and more robust accuracy rates, yielding a transformative new tool for clinical and basic 431 

ASD research.  432 
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