
 1 

DentalSegmentator: robust deep learning-based CBCT image segmentation 

Original Research Report 

 

Gauthier Dot1,2,3*, Akhilanand Chaurasia4, Guillaume Dubois1,5, Charles Savoldelli6, Sara Haghighat7, 

Sarina Azimian8, Ali Rahbar Taramsari9, Gowri Sivaramakrishnan10, Julien Issa11,12, Abhishek Dubey13, 

Thomas Schouman1,14, Laurent Gajny1   

 

Abstract 

Delineation of anatomical structures on dento-maxillo-facial (DMF) computed tomography (CT) or 

cone beam computed tomography (CBCT) scans is greatly needed for an increasing number of digital 

dentistry tasks. Following this process, called segmentation, three-dimensional (3D) patient-specific 

models can be exported for visualization, treatment planning, intervention, and follow-up purposes. 

Although several methods based on deep learning (DL) have been proposed for automating this task, 

there is no thoroughly evaluated publicly available tool offering segmentation of the anatomical 

structures needed for digital dentistry workflows. In this work, we propose and evaluate 

DentalSegmentator, a tool based on the nnU-Net deep learning framework, for fully automatic 

segmentation of 5 anatomic structures on DMF CT and CBCT scans: maxilla and upper skull, mandible, 

upper teeth, lower teeth and mandibular canal. A retrospective sample of 470 CT and CBCT scans was 

used as a training/validation set. The performance and generalizability of the tool was evaluated by 

comparing segmentations provided by experts and automatic segmentations on 2 hold-out test 

datasets: an internal dataset of 133 CT and CBCT scans acquired before orthognathic surgery and an 

external dataset of 123 CBCT scans randomly sampled from routine examinations in 5 institutions. In 

our internal test dataset (n = 133), the mean overall results were a Dice similarity coefficient (DSC) of 

92.2 ± 6.3% and a normalized surface distance (NSD) of 98.2 ± 2.2%. In our external test dataset (n = 

123), the mean overall results were a DSC of 94.2 ± 7.4% and a NSD of 98.4 ± 3.6%. The results obtained 

on this highly diversified dataset demonstrate that our tool can provide fully automatic and robust 

multiclass segmentation for DMF (CB)CT scans. To encourage the clinical deployment of 

DentalSegmentator, our pretrained nnU-Net model is made publicly available along with an extension 

for the 3D Slicer software. 
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Introduction 

The clinical practice of dentistry has radically evolved in the last years, due to the increasing use of 

digital three-dimensional (3D) data that can be gathered from dento-maxillo-facial (DMF) computed 

tomography (CT) scans, cone beam computed tomography (CBCT) scans, intraoral scanners or facial 

scanners. Those data have been shown to improve diagnosis, treatment planning, intervention and 

patient follow-up in several domains of dentistry (SEDENTEXCT project 2012; Kapila and Nervina 2015; 

Assiri et al. 2020; Chogle et al. 2020). More specifically, patient-specific 3D models derived from (CB)CT 

scans are already used for educational purposes, computer-assisted surgical planning or navigation, 

tooth auto-transplantation planning or virtual treatment planning for orthodontics treatments 

(Alkhayer et al. 2020; Borohovitz et al. 2021; Hu et al. 2023; Lejnieks et al. 2023). In the near future, 

those 3D models could be a key part of precision medicine in dental practice based on finite element 

technologies, offering the opportunity to individually assess anatomical and biomechanical 

characteristics and adapt treatment options accordingly (Lahoud et al. 2022). 

 To obtain a patient-specific 3D model from a (CB)CT scan, the anatomical structures of interest 

must be carefully delineated on the 3D image slices, a process called segmentation. The most common 

workflows require the segmentation of jaws (maxilla and mandible), teeth (upper and lower) and 

mandibular canal. When performed manually, this segmentation process takes an expert 2 to 5 hours 
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to complete (Wang et al. 2021; Cui et al. 2022). Currently, the gold standard for 3D DMF image 

segmentation is the semi-automatic method where automatic segmentations are refined manually by 

an expert (Wallner et al. 2019).  In recent years, several research reports have shown that deep 

learning-based (DL) methods could fully automate this task with results on par with experts (Shaheen 

et al. 2021; Wang et al. 2021; Cui et al. 2022; Dot et al. 2022; Gillot et al. 2022; Ayidh Alqahtani et al. 

2023). Several commercially available solutions already claim to use DL methods for CBCT 

segmentation (Ezhov et al. 2021; Ileșan et al. 2023; Nogueira-Reis et al. 2024).  

Despite those promising results, a recent systematic review on automatic tooth segmentation 

approaches from CBCT scans revealed that most of the studies were at high risk of bias regarding data 

selection, leading to a potential overestimation of the accuracy of the methods (Polizzi et al. 2023). 

Most of the published studies reported results from cross-validation approaches or small-sized hold-

out test dataset (less than 50 CBCT scans), which could be insufficient to evaluate the robustness and 

generalizability of the methods in actual clinical settings (Schwendicke et al. 2021). In a previous work, 

we evaluated a deep learning-based segmentation method for preoperative orthognathic CT scans 

(Dot et al. 2022). We showed that this method was clinically viable on a hold-out test dataset of 153 

CT scans. However, the generalizability of this research could not be assessed as our dataset did not 

include any external test dataset and was limited to CT scans data.  

 As an effort to help the deployment and broad evaluation of rapidly evolving research, the 

biomedical computer imaging community has relied heavily on open research. This has led to the 

development of international challenges such as The Medical Segmentation Decathlon (Antonelli et al. 

2022), the sharing of DL frameworks such as nnU-Net (Isensee et al. 2021) and the sharing of pre-

trained DL models for various segmentation tasks such as TotalSegmentator (Wasserthal et al. 2023). 

For DMF CBCT segmentation, to our knowledge, only one pre-trained DL model is publicly shared 

(Gillot et al. 2022). This model, integrated to a 3D Slicer extension called Slicer Automated Dental Tools, 

allows segmentation of 4 anatomical structures: mandible, maxilla, cranial base and cervical vertebrae. 

Unfortunately, this tool does not delineate the teeth from the jaws, which is a critical limitation for 

most digital dentistry and surgery workflows. 

 In this work, our main objective was to propose and evaluate a novel tool for multiclass DMF 

CT and CBCT image segmentation called DentalSegmentator. We thoroughly evaluated the 

performance of the tool on 2 hold-out test datasets acquired from routine clinical practice in 7 clinical 

centers.  

 

Materials and Methods  
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A DL framework was trained on an internal dataset for automatic segmentation of DMF CT and CBCT 

scans. We compared the results of our DL-based method (the index test) with those obtained by semi-

automatic segmentation (the reference test) on 2 hold-out test datasets. Our outcome set included 

both volume-based and surface-based metrics. This study was approved by an appropriate 

Institutional Review Board (IRB No. CRM-2001-051b) and its reporting followed recently published 

recommendations on artificial intelligence in dental research (Schwendicke et al. 2021). 

 

Internal Dataset 

Patient selection 

Data of our internal dataset were selected from a retrospective sample of consecutive patients having 

undergone orthognathic surgery in 2 French maxillofacial surgery departments. Patients referred to 

these public centers presented a wide variety of dentofacial deformities, came from various 

socioeconomic backgrounds and were ethnically diverse. Patients were considered for inclusion 

regardless of the dental deformity they presented, with no minimum age. Exclusion criteria were 

refusal to participate in the research and lack of industry-certified CT or CBCT scan segmentation. 603 

subjects (453 CT scans, 150 CBCT scans) were included in our internal dataset.  

 

Data characteristics 

All the scans had a full-head field of view (FOV). The median in-space pixel size of the scans was 

0.43*0.43mm2 and their median slice thickness was 0.31mm. Most CT scans (n = 417) were obtained 

using a GE Healthcare Discovery (GEHC) CT750HD scanner and all CBCT scans (n = 150) were obtained 

using a Carestream CS 9600 scanner. Scans were randomly distributed among a train/validation set (n 

= 470; 374 CT scans and 96 CBCT scans) and an internal test set (n = 133; 79 CT scans and 54 CBCT 

scans). In the internal test set, 91% of the scans exhibited metal artefacts. Descriptive characteristics 

of the data are detailed in Table 1. 

 

Ground truth segmentation process (Reference Test) 

The patients’ treatments involved segmentation of the 3D scans prior to our study. The ground truth 

segmentations were used for diagnosis, computer-aided surgical planning, and manufacturing of 3D-

printed personalized surgical guides and fixation implants. This was done according to a certified 

internal procedure by Materialise (Leuven, Belgium), which cannot be fully described here for reasons 

of confidentiality. The 2-step procedure involved semi-automatic segmentations refined manually by 

an initial operator [Step 1]. The segmentations were then verified slice-by-slice for validation by a 

senior operator [Step 2], with a focus on the regions of interest (the external surface of the bones, 

teeth, and mandibular canals). Steps 1 and 2 were repeated until the segmentations were approved 
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and certified for clinical use. This process resulted in five segmentation masks: maxilla/upper skull; 

mandible; upper teeth; lower teeth and both mandibular canals. 

 

 Train/Validation  Internal Test  External Test 

Number of scans 374 CT + 96 CBCT 79 CT + 54 CBCT 123 CBCT 

Median voxel size (mm3) 0.43 * 0.43 * 0.31 0.43 * 0.43 * 0.31 0.16 

Number of scans by Device    

       GEHC Discovery CT750 HD 353 75  

       Other CT Device 21 4  

       Carestream CS 9600 CBCT 96 54  

       Carestream CS 9300 CBCT   29 

       Vatech Smart Plus CBCT   25 

       Dentium Rainbow CBCT   27 

       Planmeca Promax 3D   12 

       Sirona Orthophos XG 3D   30 

Metal artifacts, no. (%)    

      Orthodontic materials 364 (78.1) 107 (80.5) 3 (2.4) 

      Metallic dental filling/crown 168 (35.7) 44 (33.1) 49 (39.8) 

      No metallic artifact 57 (12.1) 12 (9.0) 71 (57.7) 

Table 1: Characteristics of the data in the train/validation, internal test and external test 

datasets. 

 

 

External Test Dataset 

Patient selection 

Data of our external test dataset were retrospectively, randomly sampled from routine CBCT 

examinations in 5 private centers located in India. All the subjects were referred for a CBCT scan for 

various reasons such as surgical planning, orthodontic management of impacted teeth, 

temporomandibular joint (TMJ) disorders or diagnosis of cysts of the jaws. Patients were considered 

for inclusion regardless of the condition they presented, with no minimum age. The only exclusion 

criterion was refusal to participate in the research. 123 subjects (123 CBCT scans) were included in our 

external test dataset. 

 

 

Data characteristics 

The FOV of the scans ranged from full-head to localized on anatomical parts (maxilla and mandible or 

only part of the maxilla or mandible). The median voxel size of the CBCT scans was 0.16mm3. The scans 

were acquired using 5 CBCT devices: Vatech Smart Plus (n = 25), Carestream CS 9300 (n = 29), Dentium 
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Rainbow CBCT (n = 27), Planmeca Promax 3D (n = 12) and Sirona Orthophos XG 3D (n = 30). 42% of the 

CBCT scans showed metallic artefacts. Descriptive characteristics of the data are detailed in Table 1. 

 

Ground truth segmentation process (Reference Test) 

The CBCT scans were segmented specifically for this study, following a semi-automatic 3-step 

approach. First, the CBCT scans were segmented automatically using a previously published deep-

learning model (Dot et al. 2022) [Step 1]. The proposed segmentations were then corrected manually 

by 5 dentists familiar with 3D image visualization and trained for the task [Step 2]. Finally, the 

segmentations were verified slice-by-slice and corrected where necessary by a senior expert (a dentist 

with over five years of experience in 3D image evaluation) [Step 3]. This process resulted in five 

segmentation masks: maxilla/upper skull; mandible; upper teeth; lower teeth and both mandibular 

canals. 

 

Deep-Learning based segmentation (Index Test) 

Training 

The nnU-Net deep learning framework (version 2.2.1) was used as an out-of-the-box tool, following 

instructions given by its authors (Isensee et al. 2021). Our raw train/validation internal dataset was 

used to automatically configure preprocessing, network architecture, and 3D full resolution U-Net 

training pipelines. No modifications were made in setting the nnU-Net hyperparameters and data 

augmentation strategy. Training time was about 24 hours on our laboratory workstation (CPU AMD 

Ryzen 9 3900X 12-Core; 128Gb RAM; GPU Nvidia Titan RTX 24Gb).   

 

Inference 

Inference (prediction made by the trained model) was performed once on our internal and external 

test datasets following nnU-Net guidelines.  

 

Evaluation 

Quantitative evaluation of the model performance was performed on our internal and external test 

datasets by comparing ground truth segmentations (reference test) with DL-based segmentations 

(index test) for each of the 5 segmentation masks. We followed the recommendations of the Metrics 

Reloaded project (Maier-Hein et al. 2023) by using both volume-based Dice similarity coefficient (DSC) 

and surface-based normalized surface distance (NSD). We set the tolerance for NSD at 1mm, consistent 

with recent international challenges in biomedical imaging (Antonelli et al. 2022). Recent studies have 

shown that NSD was more strongly correlated with the amount of time needed to correct a 

segmentation for clinical use compared to classic metrics such as DSC (Nikolov et al. 2021).  
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Statistical Analysis 

Continuous variables were presented as mean ± standard deviation and categorical variables were 

expressed as numbers and percentages. DSC and NSD results were presented as percentages (%). As 

the results were nonparametric (Shapiro-Wilk normality test), the Kruskal-Wallis test was used to 

compare DSC and NSD results from different CT/CBCT devices; when significant, we used post-hoc 

Dunn's test for comparing each group; p values <0.05 were considered statistically significant. All data 

were analysed with Python (v.3.7) and R Statistical Software (v4.2.2; R Core Team 2022). 

 

Results 

Quantitative evaluation  

Inference time was about 1 to 2 minutes for one 3D scan when performed on our laboratory 

workstation. In our internal test dataset (n = 133), the mean overall results were a DSC of 92.2 ± 6.3% 

and a NSD of 98.2 ± 2.2%. In our external test dataset (n = 123), the mean overall results were a DSC 

of 94.2 ± 7.4% and a NSD of 98.4 ± 3.6%. The mean results for each label and the distribution of results 

are shown in Figure 1.  

Our statistical analysis showed similar results for both DSC and NSD metrics. In the internal 

test dataset, there was no statistical difference when comparing scans obtained with various devices. 

In the external test dataset, scans obtained with Carestream 9300 showed statistically superior 

segmentation results than those obtained with Sirona Orthophos XG 3D. Overall, the results obtained 

on the external test dataset were statistically superior to those obtained on the internal test dataset. 

 

Three-Dimensional Visualization 

Six subjects representative of our test dataset were chosen to illustrate the segmentation results and 

the diversity of our CBCT data (Figure 2). When segmentation failures occurred, they were most of the 

time under-segmentations of thin bony parts (resulting in holes in the maxilla or mandible inferior 

border) and missing mandibular canal parts (Figure 3). 
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Figure 1: DSC and NSD results on our internal (left) and external (right) test datasets. SD: Standard 

Deviation. 

 

 
Figure 2: 3D surface models for 6 subjects representative of the diversity and the challenges arising 

from our test CBCT dataset. (A) Class III maxillo-mandibular deformity, before orthognathic surgery; 

(B) Edentulous jaws; (C) Left condylar hyperplasia; (D) Upper posterior dental gap; (E) Maxilla with 

impacted teeth; (F) Mandible with impacted third molar. 
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Figure 3: 3D surface models for 4 subjects, exhibiting some typical failures (red circles). (A) Under-

segmentation of the mandibular inferior border and mandibular canal; (B) Under-segmentation of the 

anterior maxillary sinus walls; (C) Under-segmentation of the palate; (D) Discontinuity of the 

mandibular canal. 

 

DentalSegmentator model sharing and 3D Slicer extension 

Our pre-trained nnU-Net model is made publicly available (Dot 2024 Mar 18). This model can be used 

out-of-the-box via the nnU-Net version 2.2.1 command-line interface. 

To encourage the use of our DL method by clinicians, we also propose an implementation in a 

user-friendly interface. DentalSegmentator is a publicly available extension for the 3D Slicer software, 

which is a free, open source software for visualization, processing, and analysis of medical 3D images 

(Kikinis et al. 2014). The extension, downloadable from 3D Slicers v5.7.0 extension, offers an easy-to-

use approach for DMF (CB)CT scans automatic segmentation and 3D patient-specific model export 

(Figure 4). When needed, slice-by-slice verification and manual refinement of the segmentations can 

be performed directly in the 3D Slicer software. More information about the extension and its code 

are shared on Github platform: https://github.com/gaudot/SlicerDentalSegmentator  

Those tools work on all computer platforms but require a compatible graphics processing unit 

(GPU) with at least 4Gb of Ram for fast results. On a laptop personal computer (CPU Intel Core i7-

13850HX; 32Gb RAM; GPU NVIDIA RTX 2000 8Gb), the segmentation with the 3D Slicer extension 

required a mean time of 178 ± 100 seconds on 10 randomly selected CT and CBCT scans from our test 

dataset.  
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Figure 4: Screenshot of DentalSegmentator 3D Slicer extension. 

 

Discussion 

We introduced DentalSegmentator, a deep learning-based tool for multiclass segmentation of DMF CT 

and CBCT images. This tool, based on the nnU-Net framework, was evaluated on a highly diversified 

test dataset of 79 CT and 177 CBCT scans from 7 institutions. Our comprehensive evaluation, 

comprising both volume-based and surface-based metrics, demonstrated that DentalSegmentator was 

able to provide fully automatic robust segmentation results for the 5 segmentation labels: 

maxilla/upper skull; mandible; upper teeth; lower teeth; and mandibular canal. The pre-trained model 

is publicly available, alongside a 3D Slicer extension with an easy-to-use graphical interface.  

 Due to the lack of publicly available DMF (CB)CT segmentation dataset, it is difficult to directly 

compare our results to previously published works. A recent systematic review highlighted that the 

DSC results obtained in the 23 selected studies ranged from 90 ± 3% to 97.9 ± 1.5% (Polizzi et al. 2023). 

Few studies in dentistry reported NSC results, as this metric has been proposed only recently by the 

biomedical community (Nikolov et al. 2021; Maier-Hein et al. 2023). This systematic review also 

pointed out the heterogeneity in the methods employed for dataset construction and model 

evaluation, a frequent problem in DL studies (Schwendicke et al. 2021). Some of the studies excluded 

patients with metal artifacts or significant skeletal deformities, while most of the models were 

evaluated on cross-validation datasets or on hold-out test datasets of less than 50 CBCT scans. The 

main risk of these approaches is that they may yield over-optimistic results which could be difficult to 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 18, 2024. ; https://doi.org/10.1101/2024.03.18.24304458doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.18.24304458
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11 

reproduce in routine clinical care (i.e. poor generalizability of the model). The only study, to our 

knowledge, reporting results of DMF segmentation on a large-scale external test dataset (n = 407) had 

a mean DSC result of 93.8% (Cui et al. 2022), a result very close to ours. However, this model is not 

publicly available, which limits further evaluation and dissemination. As our dataset was randomly 

selected from clinical practice, most of our test images (67.6%) showed metallic artefacts. The images 

in our external dataset exhibited less metallic artefacts than our internal test dataset, which might 

explain the statistically significant difference between the results obtained on these two datasets. 

 Our results demonstrated the robustness and generalizability of our model for routine (CB)CT 

scans acquired in several use cases, ranging from orthognathic surgery planning to guided implant 

surgery, impacted teeth visualization or digital orthodontics. Methods in health data science are 

evolving at a very fast pace, with growing dataset sizes and constantly improving results (Schwendicke 

et al. 2022). However, we believe automatic segmentation for DMF (CB)CT scans is now mature enough 

to be proposed to the dental practitioners. This is the reason why we publicly share our pre-trained 

nnU-Net network and the DentalSegmentator extension for the 3D Slicer software. We hope that this 

effort will help disseminate the use of 3D models in dentistry and encourage the sharing of open 

datasets and improved methods. It has to be stated that while quantitative evaluation is necessary to 

assess the models’ performance, such evaluation is not always clinically relevant (Dot et al. 2022). A 

clinical application such as personalized implant manufacturing will be particularly demanding in terms 

of segmentation precision, while computer-aided diagnosis or other digital dentistry tasks may not 

require such precision. The more demanding the clinical situation, the more human oversight must be 

incorporated into the workflow for validation and correction (Schwendicke et al. 2020). 

 This work has several limitations, the first one being its retrospective and relatively small-scale 

nature. A large prospective multi-center study would be needed to fully evaluate the generalizability 

of the tool. Our model was tested on 6 CBCT devices, a small number when compared to the 47 CBCT 

devices marketed by 20 companies that were available in 2012 (Nemtoi et al. 2013). Secondly, the 

construction of the reference test was a major difficulty due to the lack of a hard “gold standard” like 

dry skulls. We did our best to provide a solid ground-truth segmentation process with industry-certified 

segmentations (for the internal dataset) and a multistep approach involving experts (for the external 

dataset), but some biases remain possible. Finally, we did not seek to segment and label each tooth 

separately as it is proposed in several other methods (Ezhov et al. 2021; Shaheen et al. 2021; Cui et al. 

2022; Ayidh Alqahtani et al. 2023; Nogueira-Reis et al. 2024), which could be a limitation for some 

applications.  

 To conclude, this work demonstrated the robustness of DentalSegmentator, a publicly 

available DL-based tool for segmentation of DMF CT and CBCT scans. The short-term perspectives of 

this work will depend on the adoption of the tool by the dental community. Thanks to the open source 
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nature of the nnU-Net framework, our model could easily be finetuned with more (CB)CT data to meet 

specific needs. Detection of specific pathologies like periapical lesions or bone lesions could be added 

to the method (Yeshua et al. 2023; Fu et al. 2024). In the medium term, it is likely that other DL 

methods will exceed the classical 3D U-Net used in the study. For example, foundation models like the 

recently proposed MedSAM could allow for universal image segmentation, improving the 

generalizability of the current methods (Ma et al. 2024).  
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Figure and table legends 

Table 1: Characteristics of the data in the train/validation, internal test and external test datasets. 

Figure 1: DSC and NSD results on our internal (left) and external (right) test datasets. SD: Standard 

Deviation. 
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Figure 2: 3D surface models for 6 subjects representative of the diversity and the challenges arising 

from our test CBCT dataset. (A) Class III maxillo-mandibular deformity, before orthognathic surgery; 

(B) Edentulous jaws; (C) Left condylar hyperplasia; (D) Upper posterior dental gap; (E) Maxilla with 

impacted teeth; (F) Mandible with impacted third molar. 

Figure 3: 3D surface models for 4 subjects, exhibiting some typical failures (red circles). (A) Under-

segmentation of the mandibular inferior border and mandibular canal; (B) Under-segmentation of the 

anterior maxillary sinus walls; (C) Under-segmentation of the palate; (D) Discontinuity of the 

mandibular canal. 

Figure 4: Screenshot of DentalSegmentator 3D Slicer extension. 
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