1	Estimating and predicting kidney function decline in the general population
2	
3	Running title: Estimating and Predicting Kidney Function Decline
4	
5	Masao Iwagami, PhD ^{1,2,3*} ; Kazunori Odani, MSc ^{4*} ; Tomoki Saito, BSc ⁴
6	¹ Department of Health Services Research, Institute of Medicine, University of Tsukuba,
7	Ibaraki, Japan
8	² Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical
9	Medicine, London, UK
10	³ International Institute for Integrative Sleep Medicine (IIIS), University of Tsukuba, Ibaraki,
11	Japan
12	⁴ JMDC Inc., Tokyo, Japan
13	*These authors contributed equally
14	
15	Corresponding authors:
16	Masao Iwagami, MD, MPH, MSc, PhD
17	Department of Health Services Research, Institute of Medicine, University of Tsukuba, 1-1-1
18	Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
19	Tel: +81-29-853-8849

- **20** Fax: +81-29-853-8849
- 21 Email: iwagami-tky@umin.ac.jp
- 22
- 23 Tomoki Saito, BSc
- 24 JMDC Inc.
- 25 Sumitomo Shiba Daimon Building 12F, 2-5-5 Shiba Daimon, Minato-ku, Tokyo, 108-0072,
- 26 Japan
- 27 Tel: +81-3-5733-5010
- **28** Fax: +81-3-5733-5010
- 29 Email: tosaito@jmdc.co.jp
- 30
- 31 **Funding:** none (self-funded)
- 32
- 33 Keywords: chronic kidney disease; estimated glomerular filtration rate; creatinine; machine
- 34 learning; prediction; health checkup

35 Abstract

36	Introduction: We aimed to estimate the rate of kidney function decline over 10 years in the
37	general population and develop a machine learning model to predict it.
38	Methods: We used the JMDC database from 2012 to 2021, which includes company
39	employees and their family members in Japan, where annual health checks are mandated for
40	people aged 40-74 years. We estimated the slope (average change) of estimated glomerular
41	filtration rate (eGFR) over a period of 10 years. Then, using the annual health-check results
42	and prescription claims for the first five years from 2012 to 2016 as predictor variables, we
43	developed an XGBoost model, evaluated its prediction performance with the root mean
44	squared error (RMSE), R^2 , and area under the receiver operating characteristic curve
45	(AUROC) for rapid decliners (defined as the slope <-3 ml/min/1.73 m ² /year) using 5-fold cross
46	validation, and compared these indicators with those of the linear regression model using only
47	eGFR data from 2012 to 2016.
48	Results: We included 126 424 individuals (mean age, 45.2 years; male, 82.4%; mean eGFR,
49	79.0 ml/min/1.73 m ² in 2016). The mean slope was -0.89 (standard deviation, 0.96)
50	ml/min/1.73 m ² /year. The predictive performance of the XGBoost model (RMSE, 0.78; R^2 ,
51	0.35; and AUROC, 0.89) was better than that of the linear regression model using only eGFR
52	data (RMSE, 1.94; R ² , -3.03; and AUROC, 0.79).

53	Conclusion: Application of machine learning to annual health-check and claims data could
54	predict the rate of kidney function decline, whereas the linear regression model using only
55	eGFR data did not work.
56	
57	Keywords: chronic kidney disease; estimated glomerular filtration rate; creatinine; machine

58 learning; prediction; health checkup

59 Introduction

60	Chronic kidney disease (CKD) is a large burden in the society as it is associated with
61	increased risk of cardiovascular and non-cardiovascular diseases, as well as the health care
62	costs, especially if patients require renal replacement therapy (RRT). ¹⁻⁴ Most people in the
63	general population have normal kidney function (i.e., glomerular filtration rate [GFR]) at
64	birth, whereas the GFR naturally decreases with age, with faster decline among people with
65	risk factors such as diabetes. ⁵ An old study estimated that the rate of GFR decline was -0.75
66	ml/min/year in the generally healthy population. ⁶ Since then, there have been a number of
67	studies estimating the rate of kidney function decline, ⁷ but their study periods are often short
68	and only a few studies targeting the general population without CKD are reported.
69	A number of clinical trials and observational studies have set the study endpoints as
69 70	A number of clinical trials and observational studies have set the study endpoints as the time to dialysis initiation or the time to a 30% or 40% drop in estimated GFR (eGFR),
70	the time to dialysis initiation or the time to a 30% or 40% drop in estimated GFR (eGFR),
70 71	the time to dialysis initiation or the time to a 30% or 40% drop in estimated GFR (eGFR), mostly among patients at high risk for these events, such as those with late stage CKD. ^{8,9}
70 71 72	the time to dialysis initiation or the time to a 30% or 40% drop in estimated GFR (eGFR), mostly among patients at high risk for these events, such as those with late stage CKD. ^{8,9} However, the incidence of these outcomes is low in the early stage of CKD or in the general
70 71 72 73	the time to dialysis initiation or the time to a 30% or 40% drop in estimated GFR (eGFR), mostly among patients at high risk for these events, such as those with late stage CKD. ^{8,9} However, the incidence of these outcomes is low in the early stage of CKD or in the general population. ⁹ Meanwhile, the rate of kidney function decline or slope (average change) of
70 71 72 73 74	the time to dialysis initiation or the time to a 30% or 40% drop in estimated GFR (eGFR), mostly among patients at high risk for these events, such as those with late stage CKD. ^{8,9} However, the incidence of these outcomes is low in the early stage of CKD or in the general population. ⁹ Meanwhile, the rate of kidney function decline or slope (average change) of eGFR can be calculated for individuals and could be a surrogate endpoint for clinical trials,

78	discrimination ability and/or calibration. However, to the best of our knowledge, no previous
79	study has developed a prediction model for the rate of kidney function decline as a
80	continuous variable. Such prediction model would be useful for stratifying the general
81	population and identifying those with rapid decline in kidney function. To date, no consensus
82	has been reached on the definition of rapid decliners, ⁷ and therefore, the prediction of a
83	continuous (rather than a dichotomous) outcome would have a wider application.
84	In Japan, the government introduced a specific health checkup system in 2008,
85	which obliges all insurers to provide annual health checkups for insured persons aged 40-74
86	years. ²¹ Notably, under employee insurance, the attendance rates for annual checkups are
87	high, approximately >80% (>90% among men) among company employees. ²² Utilizing this
88	situation, we aimed (i) to estimate the rate of kidney function decline in a period of 10 years
89	using data obtained from the JMDC database, a large database of large and middle-scale
90	companies and their family members in Japan and (ii) to develop a prediction model based on
91	annual health checkup data and claims for the first five years. Machine learning has been used
92	to handle a large number of candidate predictor variables and their potential interactions.
93	

94 Methods

95 Data source

96	The details of the JMDC database have been described elsewhere. ²³ In brief, the JMDC
97	database was developed by the JMDC Co. This database is a large-scale database covering
98	Japanese health insurance union members, including employees of large- and middle-scale
99	companies and their family members aged <75 years; it includes all claims for outpatient
100	treatment, hospitalization, and prescriptions and dispensations of drugs, as well as the results
101	of annual health checkups. Annual health checkups are required by law for insured persons
102	aged 40–74 years, ²¹ whereas those aged <40 years can also undergo annual checkups. Annual
103	health checkups are usually conducted in the facilities of health insurance unions with which
104	the companies are affiliated. The details of the annual health checkups are listed in the
105	"Predictor variables" section below. Serum creatinine measurement is optional but depends
106	on the decision of each health insurance union rather than on the medical conditions of the
107	participants. For the present study, we used the most recent 10-year data from April 2012 to
108	March 2022 (i.e., from 2012 to 2021 financial years).
109	The data used in this study were anonymized and processed anonymously by JMDC,
110	Inc. This study was approved by the Ethics Committee of The Research Institute of
111	Healthcare Data Science (Date of approval, October 30, 2023; Approval number, RI
112	2023003).
113	

114 Study population

115	First, in the JMDC database, we identified people with annual health checkup results
116	(including serum creatinine) for five consecutive years, from 2012 to 2016. We excluded
117	patients receiving RRT (identified as Japanese procedure codes J038 for hemodialysis, J042
118	for peritoneal dialysis, and K780 for kidney transplantation) from 2012 to 2016 or those with
119	an eGFR <15 ml/min/1.73 m ² in 2016. Among the remaining individuals, we further
120	identified those with annual health checkup results (including serum creatinine) for the latter
121	five consecutive years, from 2017 to 2021. We identified and excluded patients who
122	underwent RRT between 2017 and 2021 because their serum creatinine levels did not reflect
123	their GFRs.
124	Consequently, the study population consisted of people with annual health checkup
125	results (including serum creatinine) for 10 consecutive years, from 2012 to 2021, who did not
126	receive RRT.
127	
128	Outcome definition
129	The outcome of interest was the slope (average change) of eGFR during the 10 years from
130	2012 to 2021, which was estimated using unadjusted linear regression. eGFR was calculated
131	using the following Japanese estimation formula ²⁴ :
132	eGFR=194×Cr^(-1.094)×Age^(-0.287) (×0.739 for women)
133	

134 Predictor variables

135	We used the annual health checkup results for the first five years, from 2012 to 2016. As
136	demonstrated prior, ²³ the mandatory annual health checkups in Japan generally include both
137	objective and subjective (self-reported) findings. Objective findings include body mass index
138	(BMI), abdominal circumference, systolic blood pressure (sBP), diastolic blood pressure
139	(dBP), triglyceride (TG), high density lipoprotein (HDL) cholesterol, low density lipoprotein
140	(LDL) cholesterol, total cholesterol, aspartate aminotransferase (ALT), alanine
141	aminotransferase (ALT), gamma glutamyl transpeptidase (γ-GTP), fasting blood sugar,
142	casual blood sugar, hemoglobin A1c (HbA1c) according to the National Glycohemoglobin
143	Standardization Program, hematocrit, hemoglobin content, erythrocyte count, serum uric acid,
144	urinary sugar (dipstick test), and uric protein (dipstick test). Among subjective (self-reported)
145	findings, ²³ we used the information pertaining to current smoking status (yes or no), drinking
146	habits (every day, sometimes, or rarely/none), and exercise habit (yes or no for ≥ 2
147	times/week for \geq 30 min in the past year).
148	In addition, using the prescription records in the medical claims, we identified the
149	presence or absence in the use of lipid-lowering agents (any), statins, antidiabetic drugs (any),
150	sodium-glucose transport protein 2 (SGLT2) inhibitors, antiplatelet drugs, antihypertensive

151 drugs (any), and angiotensin converting enzyme inhibitors (ACEI) or angiotensin II receptor

152 blockers (ARB), which are recorded as the Anatomical Therapeutic Chemical (ATC)

- **Table 1** displays the list of predictor variables and their distributions (mean and
- standard deviation [SD] for continuous variables and number and percentage for categorical
- variables) in 2016, whereas **Supplementary Table S2** shows all predictor variables from
- 157 2012 to 2016 that were used for prediction. In addition, the slope (average change) of eGFR
- 158 during the five years was used for prediction.
- 159

160 Statistical analysis

- 161 First, we showed the distribution of outcome variable (i.e., the slope of eGFR during the 10
- 162 years) and estimated the mean and standard deviation, overall and by age group (<40, 40–49,
- 163 50–59, and \geq 60 years), sex, and Kidney Disease Improving Global Outcomes (KDIGO) GFR
- 164 stages (eGFR \ge 90, 60–89, 45–59, 30–44, and 15–29 ml/min/1.73 m²) in 2016.
- 165 For the model development, we used the XGBoost regression $model^{25}$, because it is
- 166 generally known to show high predictive performance in the case of table data. The
- 167 implementation was based on the "xgboost" package (version: 1.7.5) of Python. For the
- 168 hyperparameters, *eta* (step size shrinkage used in the update to prevent overfitting) was set to
- 169 0.05, *subsample* (i.e., subsample ratio of the training instances) was set to 0.9, and
- 170 *colsample_bytree* (i.e., subsampling of columns) was set to 0.8. With a grid search, the

- 171 *max_depth* (i.e., maximum depth of a tree) and *min_child_weight* (i.e., minimum sum of
- instance weights [Hessian] needed in a child) were set to 4 and 16, respectively. *n_estimators*
- 173 was set by early stopping. The other hyperparameters were set to be default values
- 174 ("XGBoost-link"). We input the annual health checkup data and prescription data for 2016
- into the model as they are. For data from 2012 to 2015, we input the subjective (self-reported)
- 176 findings and prescription data as they are, whereas we calculated and used the difference in
- values of objective findings between each year and 2016 for each individual. Missing values
- 178 were input into the XGBoost model as they are.
- 179 For model validation, using the 5-fold cross validation, we evaluated the root mean
- 180 squared error (RMSE) and R^2 as the prediction performance:

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$
$$R^2 = 1 - \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2}$$

181 $(y_i: \text{ actual value, } \hat{y}_i: \text{ predicted value, } \bar{y}: \text{ average of actual values})$

182

183 In addition, considering that the identification of rapid decliners (defined in the present study

184 as the slope <-3 ml/min/1.73 m²/year¹⁴) is clinically important, we estimated the area under

the receiver operating characteristic curve (AUROC) for the rapid decliners using 5-fold

186	cross validation. For cross-validation, we merged the validation data of each fold to estimate
187	the RMSE, R ² , and AUROC of the entire training dataset.
188	For comparison, we also estimated these indicators (i.e., RMSE, R ² , and AUROC) in
189	a crude linear regression model based only on the eGFR values from 2012 to 2016. We aimed
190	to understand the extent to which our XGBoost model was superior to the simplest linear
191	regression model.
192	To interpret the model, we used the Shapley Addictive explanation (SHAP) function
193	in the XGBoost model. ²⁶ We estimated the SHAP feature importance, which is the mean of
194	the absolute SHAP values (i.e., the contribution of each feature to the outcome). For the
195	predictor variables with higher feature importance, we depicted SHAP dependence plots to
196	determine the impact of the increase or decrease in each feature on the predicted value.
197	All data management and statistical analyses were performed using Python (version
198	3.8.10).
199	
200	Results
201	In the JMDC database, we identified 183 485 people who underwent annual health checkups
202	for five consecutive years from 2012 to 2016 (Supplementary Figure S1). We then excluded
203	107 patients who underwent RRT and 28 patients with eGFR <15 ml/min/1.73 m ² . Of the
204	remaining 183 350 people, we excluded 56 926 without annual health checkup results

205	(including serum creatinine) for five consecutive years from 2017 to 2021, including 109
206	patients who received RRT during this period. The remaining 126 424 individuals with
207	consecutive measurements of serum creatinine levels from 2012 to 2021 were included in the
208	subsequent analyses. A comparison of the predictor variables between the two groups (i.e.,
209	126 424 and 56 926 people with and without annual health checkup results from 2017 to
210	2021) suggested that older people and women were more likely to retire and lose employee
211	insurance to quit from the JMDC database, whereas the annual health checkup results from
212	2012 to 2016 were not very different between the two groups (Supplementary Table S2).
213	The mean age of the 126 424 people was 45.2 (SD, 8.6) years, 104 219 (82.4%) were male,
214	and the mean eGFR was 79.0 (SD, 13.4) ml/min/1.73 m ² . According to the KDIGO GFR
215	categories, 23 850 (18.9%), 95 516 (75.6%), 6 781 (5.4%), 247 (0.2%), and 30 (0.02%)
216	accounted for stages G1, G2, G3a, G3b, and G4 (eGFR ≥90, 60–89, 45–59, 30–44, and
217	15–29 ml/min/1.73 m ²), respectively.
218	Figure 1 shows the distribution of eGFR slope for the 10 years, with a mean value
219	of -0.89 (SD, 0.96) ml/min/1.73 m ² /year. Among the 126 424 people, 2 511 (2.0%) were
220	rapid decliners, with <-3 ml/min/1.73 m ² /year. The distributions of eGFR slope by age group,
221	sex, and KDIGO GFR stage are shown in Supplementary Table S3.
222	Figure 2 shows scatter plots of the predicted and actual values in each model,
223	suggesting that the prediction was better in the developed XGBoost model than in the linear

224	regression model using only eGFR data from 2012 to 2016. The RMSE and R^2 of the
225	developed XGBoost model were 0.78 and 0.35, respectively, while those of the linear
226	regression model using only eGFR data were 1.94 and -3.03, respectively. To discriminate
227	the rapid decliners, the AUROC of the XGBoost model was 0.89, whereas that of the linear
228	regression model using only eGFR data was 0.79. The ROC curves are shown in Figure 3.
229	Figure 4 shows the ranking of the predictor variables with higher feature importance
230	in the developed XGBoost model. The eGFR-related features, particularly the eGFR slope
231	from 2012 to 2016 and the eGFR in 2016, ranked high. Several parameters measured in the
232	annual health checkups, including hematocrit, HbA1c, γ -GTP, BMI, HDL cholesterol, serum
233	uric acid, and dBP, were also ranked. Figure 5 shows the SHAP dependence plots of the
234	selected predictor variables with more important features (the difference in values between
235	2012–2015 and 2016 is not shown because its interpretation was difficult). The model learned
236	to reduce the predicted value (i.e., slope of eGFR for the 10 years) when the slope in the first
237	five years was smaller, and when the eGFR in 2016 was higher in the range above
238	approximately 60 ml/min/1.73 m^2 . The figures also suggest negative associations with
239	Hb1Ac (in the range of above approximately 6.5%), serum uric acid, and dBP (in the range of
240	above approximately 80 mmHg) and positive associations with hematocrit, γ -GTP, and HDL
241	cholesterol. There was a U-shaped association with BMI. Men were more likely to show
242	lower predictive values than women.

243

244 Discussion

- 245 Using the JMDC claims database covering the general population, we estimated the rate of
- kidney function decline over 10 years and developed a machine learning model (XGBoost
- 247 model) to predict this decline based on annual health checkups and prescription data for the
- 248 first five years. The predictive performance of the model was good or moderate (RMSE,
- 249 0.78; R², 0.35; and AUROC for the rapid decliners, 0.89), whereas the linear regression
- 250 model using only eGFR values did not work (RMSE, 1.94; R^2 , -3.03; and AUROC for the
- 251 rapid decliners, 0.79). The top features of the developed model were dominated by
- eGFR-related features, whereas known risk factors for kidney function decline, such as
- 253 HbA1c, contributed to the prediction.
- Among the study population consisting of large- or medium-sized company
- employees and their family members, most of whom had normal range of kidney function,
- 256 the mean slope of eGFR for the 10 years was -0.89 (SD, 0.96) ml/min/1.73 m²/year. This was
- similar to an old US study estimating the mean decrease in creatinine clearance to be -0.75
- 258 ml/min/year among normal volunteers.⁶ In a recent study conducted in a single health checkup
- 259 center of Japan, excluding patients with any comorbidities, the mean eGFR decline rate was
- 260 -1.07 (SD 0.42) ml/min/1.73 m²/year.²⁷ Those with higher eGFR at baseline were generally

261 more likely to show faster decline, which is in line with the present study (**Supplementary** 262 Table S3)

263	To the best of our knowledge, this is the first study to predict the rate of kidney
264	function decline as a continuous variable. First, we found it difficult to predict the rate of
265	kidney function decline over 10 years from only eGFR values for the first five years, with an
266	R^2 of -3.03, which is even worse than a prediction assuming the average value for all
267	individuals (i.e., R^2 of 0). In other words, the correlation between the slope for the 10 years
268	and that for the first five years was weak. This may be partly due to fluctuations in measured
269	serum creatinine over time, although mandatory annual health checkups in Japanese
270	companies are usually conducted at the same place every year and when participants are not
271	sick. Another reason could be that the rate of kidney function decline is also affected by
272	patient demographics; known risk factors for CKD or ESRD, such as diabetes and
273	hypertension; lifestyle factors, such as smoking and exercise; and drugs protecting the
274	kidneys, such as ACEI/ARB and SGLT2 inhibitors. Therefore, we additionally used these
275	variables as predictors and observed a large increase in R^2 to 0.35. However, the predictive
276	ability was far from perfect (R^2 of 1.00). The remaining possibility is that there may be
277	measurement errors in predictor variables or unknown factors predicting the rate of kidney
278	function decline. Meanwhile, the discrimination ability of the XGBoost model for the rapid

decliners (eGFR slope <-3 ml/min/1.73 m²/year) was seemingly very good, with an AUROC
of 0.89.

281	The feature importance and SHAP dependence plots in the established XGBoost
282	model were remarkable. First, the coefficient (slope) of eGFR for the first five years
283	correlated with the outcome in the same direction, which is intuitive. Meanwhile, the absolute
284	value of eGFR in 2016 was negatively correlated with the outcome in the range above 60
285	ml/min/1.73 m ² , meaning that participants with higher eGFR were more likely (i.e.,
286	participants with lower eGFR were less likely) to show faster kidney function decline. This
287	phenomenon was also suggested in a previous Japanese study, ²⁷ wherein the authors
288	speculated that a compensatory mechanism might work as kidney function decreases. For
289	features other than eGFR-related features, negative associations with Hb1Ac, serum uric acid,
290	and dBP, as well as positive associations with hematocrit and HDL cholesterol, have been
291	suggested in some previous studies. ²⁷⁻³² Meanwhile, a U-shaped association with BMI,
292	suggesting that those with a normal BMI range were most likely to show a faster decline,
293	may conflict with previous overseas studies suggesting that obesity is a risk factor for
294	ESRD. ^{33,34} Further studies are warranted to examine whether this finding is specific to the
295	prediction of the rate of kidney function decline in the general population or whether this is
296	ascribed to the difficulty in estimating accurate eGFR from the existing formula ²⁴ in obese
297	patients.

298	The strength of this study is that we used consecutive 10-year annual health checkup
299	data for the general adult population. A systematic review of kidney disease progression ⁷
300	indicated that following the same population for a long time is practically difficult, and only
301	one study was reported to achieve the mean follow-up of over 10 years. ³⁵ The mandatory
302	health checkup system for people aged 40–74 years in Japan made the present study feasible.
303	However, this study has some limitations. The database consists of large- and
304	medium-sized company employees and their family members; therefore, their socioeconomic
305	status is expected to be higher than the average in Japan. Accordingly, their health-related
306	behaviors (e.g., smoking and drinking) may be better than those of other Japanese citizens,
307	whereas they may be exposed to stress specific to company employees (e.g., sedentary
308	lifestyles). Therefore, it is unknown whether and to what extent the findings of the present
309	study can be generalized to other citizens in Japan as well as to those living in foreign
310	countries. Second, loss to follow-up could cause selection bias, especially if unhealthy people
311	are more likely to be lost to follow-up. ⁷ In the present study, older people and women were
312	more likely to quit the JMDC database. We speculate that the main reasons for the loss to
313	follow-up were social (e.g., retirement at age 60-65, retirement due to pregnancy and
314	childbirth) and not directly associated with the health status of study participants, but we
315	could not confirm the exact reasons. Thus, the effect of the loss to follow-up on our study
316	results is unknown, although the follow-up rate in the present study is better than those in

317	previous studies with long follow-up periods. ²⁷⁻³² Third, we obtained the annual health
318	checkup results from health insurance associations instead of the laboratories to measure
319	blood samples, including serum creatinine. Although we believe that creatinine was measured
320	using an internationally standardized enzymatic method (traceable to isotope dilution mass
321	spectrometry) during the study period, creatinine measurements might not be perfectly
322	standardized across laboratories in Japan. However, the influence of this issue in estimating
323	the rate of kidney function decline seems to be small because blood samples from the same
324	individual are expected to be sent to the same laboratories every year. Finally, as discussed
325	above, there may be measurement errors in some predictor variables, especially in
326	self-reported variables such as smoking, drinking, and exercise habits. Furthermore, there
327	may be unknown, and therefore, unmeasured factors predicting the rate of kidney function
328	decline. Further studies are warranted to identify novel risk factors for the rapid decline in
329	kidney function and reassess the performance of the prediction model.
330	In conclusion, using a large database of company employees and their family
331	members in Japan, we estimated the rate of kidney function decline over 10 years and
332	developed a machine learning prediction model based on annual health checkup results and
333	claims for the first five years. The model showed a good or moderate predictive ability,
334	whereas the linear regression model using only eGFR data did not.
225	

335

336 Disclosures

337	O.K. and S.T. are employee	s of JMDC Inc. M.I	. previously	y received honoraria	a from JMDC
-----	----------------------------	--------------------	--------------	----------------------	-------------

- 338 Inc. for conference presentations and academic consultations, but does not receive any fee for
- the present study.
- 340

341 Acknowledgments

- 342 We thank Editage (www.editage.com) for English language editing.
- 343

344 Author contributions

- 345 M.I., O.K., and S.T. planned the study. O.K. and S.T. collected and analyzed the data. M.I.
- 346 wrote the manuscript. O.K. and S.T. prepared the tables, figures, and supplementary materials.
- 347 All the authors have reviewed the final version of the manuscript.
- 348

349 Data availability

- 350 The data used in this study were licensed by JMDC Inc. Proposals and requests for data access
- 351 should be directed to the corresponding authors via email.

352 References

353	1.	Go AS, Chertow GM, Fan D, et al. Chronic kidney disease and the risks of death,
354		cardiovascular events, and hospitalization. N Engl J Med. 2004;351(13):1296–1305.
355		doi:10.1056/NEJMoa041031
356	2.	Iwagami M, Caplin B, Smeeth L, et al. Chronic kidney disease and cause-specific
357		hospitalisation: a matched cohort study using primary and secondary care patient data.
358		Br J Gen Pract. 2018;68(673):e512-e523. doi:10.3399/bjgp18X697973
359	3.	Sakoi N, Mori Y, Tsugawa Y, et al. Early-stage chronic kidney disease and related
360		health care spending. JAMA Netw Open. 2024;7(1):e2351518.
361		doi:10.1001/jamanetworkopen.2023.51518
362	4.	Khan SS, Kazmi WH, Abichandani R, et al. Health care utilization among patients
363		with chronic kidney disease. Kidney Int. 2002;62(1):229-236.
364		doi:10.1046/j.1523-1755.2002.00432.x
365	5.	Fujii M, Ohno Y, Ikeda A, et al. Current status of the rapid decline in renal function
366		due to diabetes mellitus and its associated factors: analysis using the National
367		Database of Health Checkups in Japan. Hypertens Res. 2023;46(5):1075–1089.
368		doi:10.1038/s41440-023-01185-2

369	6.	Lindeman RD.	Tobin J	. Shock NW.	. Longitudinal	studies	on the rate	of decline in

- renal function with age. J Am Geriatr Soc. 1985;33(4):278–285.
- **371** doi:10.1111/j.1532-5415.1985.tb07117.x
- 372 7. Cleary F, Prieto-Merino D, Nitsch D. A systematic review of statistical methodology
- 373 used to evaluate progression of chronic kidney disease using electronic healthcare
- 374 records. *PLOS ONE*. 2022;17(7):e0264167. doi:10.1371/journal.pone.0264167
- 8. Baigent C, Herrington WG, Coresh J, et al. Challenges in conducting clinical trials in
- 376 nephrology: conclusions from a Kidney Disease-Improving Global Outcomes
- 377 (KDIGO) Controversies Conference. *Kidney Int.* 2017;92(2):297–305.
- 378 doi:10.1016/j.kint.2017.04.019
- 379 9. Carrero JJ, Fu EL, Vestergaard SV, et al. Defining measures of kidney function in
- 380 observational studies using routine health care data: methodological and reporting
- 381 considerations. *Kidney Int*. 2023;103(1):53–69. doi:10.1016/j.kint.2022.09.020
- 382 10. Itano S, Kanda E, Nagasu H, et al. eGFR slope as a surrogate endpoint for clinical
- 383 study in early stage of chronic kidney disease: from The Japan Chronic Kidney
- 384 Disease Database. *Clin Exp Nephrol*. 2023;27(10):847–856.
- 385 doi:10.1007/s10157-023-02376-4
- 386 11. Levey AS, Gansevoort RT, Coresh J, et al. Change in albuminuria and GFR as end
- 387 points for clinical trials in early stages of CKD: a scientific workshop sponsored by

- 388 the National Kidney Foundation in collaboration with the US Food and Drug
- 389 Administration and European Medicines Agency. *Am J Kidney Dis.*
- **390** 2020;75(1):84–104. doi:10.1053/j.ajkd.2019.06.009
- 391 12. Grams ME, Sang Y, Ballew SH, et al. Evaluating glomerular filtration rate slope as a
- 392 surrogate end point for ESKD in clinical trials: an individual participant meta-analysis
- 393 of observational data. *J Am Soc Nephrol*. 2019;30(9):1746–1755.
- doi:10.1681/ASN.2019010008
- 395 13. Inker LA, Collier W, Greene T, et al. A meta-analysis of GFR slope as a surrogate
- 396 endpoint for kidney failure. *Nat Med.* 2023;29(7):1867–1876.
- **397** doi:10.1038/s41591-023-02418-0
- 398 14. Rifkin DE, Shlipak MG, Katz R, et al. Rapid kidney function decline and mortality
- 399 risk in older adults. Arch Intern Med. 2008;168(20):2212–2218.
- doi:10.1001/archinte.168.20.2212
- 401 15. Tangri N, Grams ME, Levey AS, et al. Multinational assessment of accuracy of
- 402 equations for predicting risk of kidney failure: a meta-analysis. *JAMA*.
- **403** 2016;315(2):164–174. doi:10.1001/jama.2015.18202
- 404 16. Tangri N, Stevens LA, Griffith J, et al. A predictive model for progression of chronic
- 405 kidney disease to kidney failure. *JAMA*. 2011;305(15):1553–1559.
- 406 doi:10.1001/jama.2011.451

407	17.	Tsai MK, Gao W, Chien KL, et al. A prediction model with lifestyle factors improves
408		the predictive ability for renal replacement therapy: a cohort of 442 714 Asian adults.
409		Clin Kidney J. 2022;15(10):1896–1907. doi:10.1093/ckj/sfac119
410	18.	Grams ME, Brunskill NJ, Ballew SH, et al. Development and validation of prediction
411		models of adverse kidney outcomes in the population with and without diabetes.
412		Diabetes Care. 2022;45(9):2055-2063. doi:10.2337/dc22-0698
413	19.	Aoki J, Kaya C, Khalid O, et al. CKD progression prediction in a diverse US
414		population: a machine-learning model. Kidney Med. 2023;5(9):100692.
415		doi:10.1016/j.xkme.2023.100692
416	20.	Chan L, Nadkarni GN, Fleming F, et al. Derivation and validation of a machine
417		learning risk score using biomarker and electronic patient data to predict progression
418		of diabetic kidney disease. <i>Diabetologia</i> . 2021;64(7):1504–1515.
419		doi:10.1007/s00125-021-05444-0
420	21.	OECD. OECD Reviews of Public Health: Japan: A Healthier Tomorrow. OECD
421		Publishing; 2019.
422	22.	Ministry of Health, Labour and Welfare. Implementation status of specific health
423		checkups and specific health guidance in 2021.
424		https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/newpage_00043.html.

425	23.	Nagai K, Tanaka T, Kodaira N, et al. Data resource profile: JMDC claims database
426		sourced from health insurance societies. J Gen Fam Med. 2021;22(3):118–127.
427		doi:10.1002/jgf2.422
428	24.	Matsuo S, Imai E, Horio M, et al. Revised equations for estimated GFR from serum
429		creatinine in Japan. Am J Kidney Dis. 2009;53(6):982–992.
430		doi:10.1053/j.ajkd.2008.12.034
431	25.	Chen T, Guestrin C. Xgboost: a scalable tree boosting system. In: Proceedings of the
432		22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
433		Mining; 2016:785–794. doi:10.1145/2939672.2939785
434	26.	Lundberg SM, Erion GG, Lee S-I. Consistent individualized feature attribution for
435		tree ensembles. doi:10.48550/arXiv.1802.03888
436	27.	Baba M, Shimbo T, Horio M, et al. Longitudinal study of the decline in renal function
437		in healthy subjects. PLOS ONE. 2015;10(6):e0129036.
438		doi:10.1371/journal.pone.0129036
439	28.	Masrouri S, Alijanzadeh D, Amiri M, et al. Predictors of decline in kidney function in
440		the general population: a decade of follow-up from the Tehran Lipid and glucose
441		Study. Ann Med. 2023;55(1):2216020. doi:10.1080/07853890.2023.2216020

442	29.	Jaques DA, Vollenweider P, Bochud M, et al. Aging and hypertension in kidney
443		function decline: a 10 year population-based study. Front Cardiovasc Med.
444		2022;9:1035313. doi:10.3389/fcvm.2022.1035313
445	30.	Cohen E, Nardi Y, Krause I, et al. A longitudinal assessment of the natural rate of
446		decline in renal function with age. J Nephrol. 2014;27(6):635–641.
447		doi:10.1007/s40620-014-0077-9
448	31.	Tsai CW, Ting IW, Yeh HC, et al. Longitudinal change in estimated GFR among
449		CKD patients: a 10-year follow-up study of an integrated kidney disease care program
450		in Taiwan. PLOS ONE. 2017;12(4):e0173843. doi:10.1371/journal.pone.0173843
451	32.	Imai E, Horio M, Yamagata K, et al. Slower decline of glomerular filtration rate in the
452		Japanese general population: a longitudinal 10-year follow-up study. Hypertens Res.
453		2008;31(3):433-441. doi:10.1291/hypres.31.433
454	33.	Hsu CY, McCulloch CE, Iribarren C, et al. Body mass index and risk for end-stage
455		renal disease. Ann Intern Med. 2006;144(1):21-28.
456		doi:10.7326/0003-4819-144-1-200601030-00006
457	34.	Lew QJ, Jafar TH, Talaei M, et al. Increased body mass index is a risk factor for
458		end-stage renal disease in the Chinese Singapore population. Kidney Int.
459		2017;92(4):979–987. doi:10.1016/j.kint.2017.03.019

460	35.	Abdelhafiz AH, Tan E, Levett C, et al. Natural history and predictors of faster
461		glomerular filtration rate decline in a referred population of older patients with type 2
462		diabetes mellitus. Hosp Pract (1995). 2012;40(4):49-55.
463		doi:10.3810/hp.2012.10.1003
464		
465	Figure	elegends
466	Figure	e 1. Distribution of the slope (average change) of kidney function decline over 10
467	years a	among the study participants (n=126 464)
468	eGFR	= estimated glomerular filtration rate.
469		
470	Figure	e 2. Scatter plots of predicted and actual values (A) in the XGBoost model and (B)
471	in the	linear regression model using only eGFR data from 2012 to 2016
472	eGFR	= estimated glomerular filtration rate.
473		
474	Figure	e 3. Receiver operating characteristic curves for the rapid decliners (<-3
475	ml/mi	n/1.73 m ² /year)
476	eGFR	= estimated glomerular filtration rate.

478	Figure 4. Ranking of predictor variables with higher feature importance in the XGBoost		
479	model		
480	eGFR = estimated glomerular filtration rate, HbA1c = hemoglobin A1c, γ -GTP = gamma		
481	glutamyl transpeptidase, BMI = body mass index, HDL = high density lipoprotein.		
482			
483	Figure 5. Shapley Addictive explanation (SHAP) dependence plots of predictor		
484	variables with higher important features in the XGBoost model		
485	eGFR = estimated glomerular filtration rate, HbA1c = hemoglobin A1c, γ -GTP = gamma		
486	glutamyl transpeptidase, BMI = body mass index, HDL = high density lipoprotein.		
487			
488	Supplementary materials		
489	Supplementary Table S1. Anatomical Therapeutic Chemical Classification codes to		
490	define each drug		
491			
492	Supplementary Table S2. List of predictor variables from 2012 to 2016 and		
493	distributions by the status of data availability from 2017 to 2021		
494			
495	Supplementary Figure S1. Study flow chart		
496			

497 Supplementary Table S3. The mean (standard deviation) slope of eGFR (ml/min/1.73

498 m^2 /year) for the 10 years by age, sex, and KDIGO GFR stages in 2016

Variables	Distribution	Missing
Age (years)	Mean 45.2, SD 8.6	0 (0%)
Sex	Men: 104 219 (82.4%), Women: 22	0 (0%)
	205 (17.6%)	
Results of annual health checkups		
in 2016		
eGFR (ml/min/1.73 m ²)	Mean 79.0, SD 13.4	0 (0%)
Body mass index (kg/m ²)	Mean 23.4, SD 3.6	18 (0.01%)
Abdominal circumference (cm)	Mean 82.6, SD 9.6	10 435 (8.3%)
Systolic blood pressure (mmHg)	Mean 121.6, SD 14.4	20 (0.02%)
Diastolic blood pressure (mmHg)	Mean 75.6, SD 11.1	20 (0.02%)
Triglycerides (mg/dl)	Mean 115.7, SD 91.6	31 (0.02%)
HDL cholesterol (mg/dl)	Mean 60.7, SD 16.1	17 (0.01%)
LDL cholesterol (mg/dl)	Mean 120.7, SD 29.7	29 (0.02%)
Total cholesterol (mg/dl)	Mean 201.8, SD 33.6	76 961 (60.9%)
Aspartate aminotransferase (U/l)	Mean 22.4, SD 10.1	14 (0.01%)
Alanine aminotransferase (U/l)	Mean 25.3, SD 18.8	14 (0.01%)
Gamma glutamyl transpeptidase	Mean 39.8, SD 43.4	30 (0.02%)
(U/l)		
Fasting blood sugar (mg/dl)	Mean 94.4, SD 16.7	27 532 (21.8%)
Casual blood sugar (mg/dl)	Mean 98.5, SD 25.9	116 912 (92.5%
Hemoglobin A1c (NGSP) (%)	Mean 5.5, SD 0.6	37 179 (29.4%)
Hematocrit (%)	Mean 45.1, SD 3.8	6 895 (5.5%)
Hemoglobin (g/dl)	Mean 14.8, SD 1.3	790 (0.6%)
Red blood cells $(10^6/\mu l)$	Mean 488.1, SD 41.1	575 (0.5%)
Serum uric acid (mg/dl)	Mean 5.7, SD 1.3	6 429 (5.1%)
Urinary sugar (dipstick test)	-: 120 612 (95.4%), +/-: 628	3 063 (2.4%)
	(0.5%), +: 738 (0.6%), ++: 477	
	(0.4%), +++: 906 (0.7%)	
Urinary protein (dipstick test)	-: 112 157 (88.7%), +/-: 7 961	3 047 (2.4%)
	(6.3%), +: 2 437 (1.9%), ++: 656	
	(0.5%), +++: 166 (0.1%)	
Smoking status	Yes: 36 760 (29.1%), No: 81 194	8 470 (6.7%)
-	(64.2%)	
Drinking habits	Every day: 31 809 (25.2%),	9 172 (7.3%)
-	Sometimes: 37 867 (30.0%),	
	Rarely/none: 47 576 (37.6%)	

499 Table 1. List of predictor variables in 2016 and distributions (n=126 424)

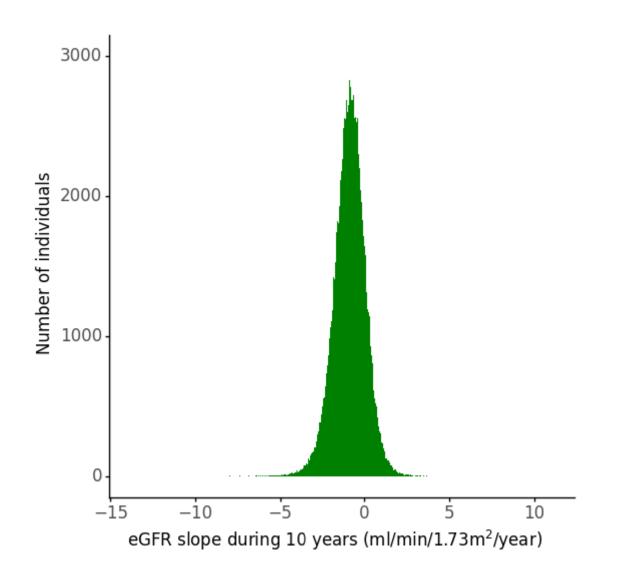
Exercise (≥ 2 /week and ≥ 30 minutes	Yes: 22 549 (17.8%), No: 86 889	16 986 (13.4%)
in the past year)	(68.7%)	
Prescriptions in 2016		
Lipid-lowering agents (any)	Yes: 12 979 (10.3%), No: 113 445 (89.7%)	0 (0%)
Statins	Yes: 10 262 (8.1%), No: 116 162 (91.9%)	0 (0%)
Antidiabetic drugs (any)	Yes: 4 428 (3.5%), No: 121 996 (96.5%)	0 (0%)
Sodium-glucose cotransporter-2	Yes: 1 106 (0.9%), No: 125 318	0 (0%)
inhibitors	(99.1%)	
Antihypertensive drugs (any)	Yes: 14 885 (11.8%), No: 111 539 (88.2%)	0 (0%)
ACEI or ARB	Yes: 10 038 (7.9%), No: 116 386 (92.1%)	0 (0%)
Antiplatelet drugs	Yes: 2 948 (2.3%), No: 123 476 (97.7%)	0 (0%)

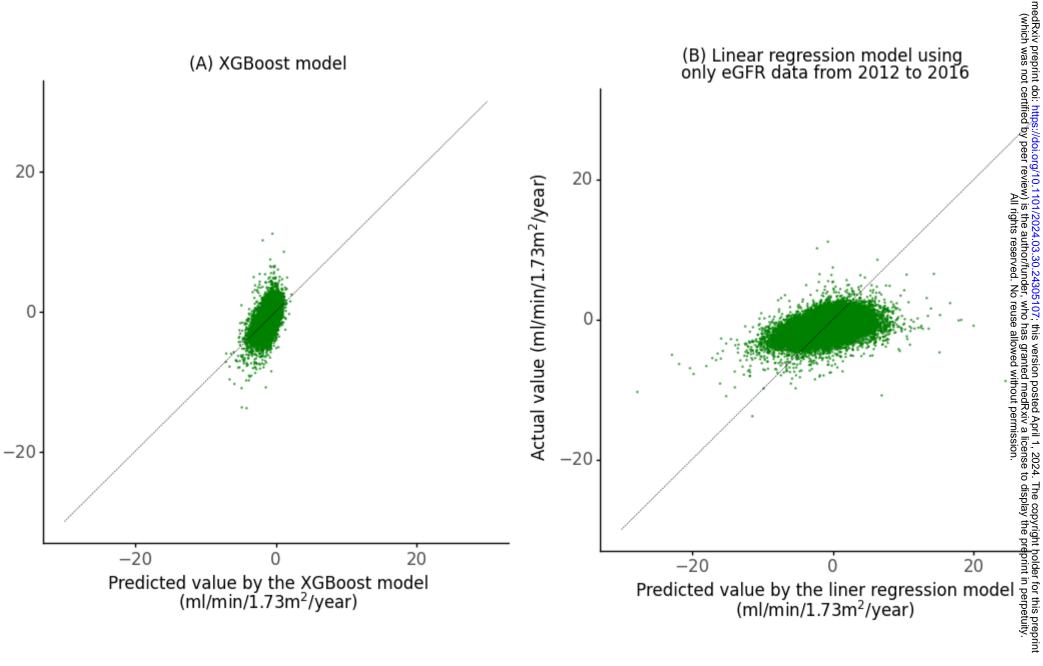
500 SD, standard deviation; eGFR, estimated glomerular filtration rate; HDL, high density

501 lipoprotein; LDL, low density lipoprotein; NGSP, National Glycohemoglobin

502 Standardization Program; ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin

503 receptor blocker.





24305107; this version posted April 1, inder, who has granted medRxiv a lice

