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Abstract 35 

Introduction: We aimed to estimate the rate of kidney function decline over 10 years in the 36 

general population and develop a machine learning model to predict it. 37 

Methods: We used the JMDC database from 2012 to 2021, which includes company 38 

employees and their family members in Japan, where annual health checks are mandated for 39 

people aged 40–74 years. We estimated the slope (average change) of estimated glomerular 40 

filtration rate (eGFR) over a period of 10 years. Then, using the annual health-check results 41 

and prescription claims for the first five years from 2012 to 2016 as predictor variables, we 42 

developed an XGBoost model, evaluated its prediction performance with the root mean 43 

squared error (RMSE), R2, and area under the receiver operating characteristic curve 44 

(AUROC) for rapid decliners (defined as the slope <-3 ml/min/1.73 m2/year) using 5-fold cross 45 

validation, and compared these indicators with those of the linear regression model using only 46 

eGFR data from 2012 to 2016. 47 

Results: We included 126 424 individuals (mean age, 45.2 years; male, 82.4%; mean eGFR, 48 

79.0 ml/min/1.73 m2 in 2016). The mean slope was -0.89 (standard deviation, 0.96) 49 

ml/min/1.73 m2/year. The predictive performance of the XGBoost model (RMSE, 0.78; R2, 50 

0.35; and AUROC, 0.89) was better than that of the linear regression model using only eGFR 51 

data (RMSE, 1.94; R2, -3.03; and AUROC, 0.79). 52 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 1, 2024. ; https://doi.org/10.1101/2024.03.30.24305107doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.30.24305107


4 

 

Conclusion: Application of machine learning to annual health-check and claims data could 53 

predict the rate of kidney function decline, whereas the linear regression model using only 54 

eGFR data did not work. 55 

 56 

Keywords: chronic kidney disease; estimated glomerular filtration rate; creatinine; machine 57 

learning; prediction; health checkup   58 
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Introduction 59 

Chronic kidney disease (CKD) is a large burden in the society as it is associated with 60 

increased risk of cardiovascular and non-cardiovascular diseases, as well as the health care 61 

costs, especially if patients require renal replacement therapy (RRT).1-4 Most people in the 62 

general population have normal kidney function (i.e., glomerular filtration rate [GFR]) at 63 

birth, whereas the GFR naturally decreases with age, with faster decline among people with 64 

risk factors such as diabetes.5 An old study estimated that the rate of GFR decline was -0.75 65 

ml/min/year in the generally healthy population.6 Since then, there have been a number of 66 

studies estimating the rate of kidney function decline,7 but their study periods are often short 67 

and only a few studies targeting the general population without CKD are reported. 68 

A number of clinical trials and observational studies have set the study endpoints as 69 

the time to dialysis initiation or the time to a 30% or 40% drop in estimated GFR (eGFR), 70 

mostly among patients at high risk for these events, such as those with late stage CKD.8,9 71 

However, the incidence of these outcomes is low in the early stage of CKD or in the general 72 

population.9 Meanwhile, the rate of kidney function decline or slope (average change) of 73 

eGFR can be calculated for individuals and could be a surrogate endpoint for clinical trials, 74 

even in the early stage of CKD and in the general population.10-14 75 

In observational studies, prediction models have been developed for the time to 76 

dialysis initiation15-17 or the time to a 30% or 40% drop in eGFR,18-20 showing good 77 
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discrimination ability and/or calibration. However, to the best of our knowledge, no previous 78 

study has developed a prediction model for the rate of kidney function decline as a 79 

continuous variable. Such prediction model would be useful for stratifying the general 80 

population and identifying those with rapid decline in kidney function. To date, no consensus 81 

has been reached on the definition of rapid decliners,7 and therefore, the prediction of a 82 

continuous (rather than a dichotomous) outcome would have a wider application. 83 

In Japan, the government introduced a specific health checkup system in 2008, 84 

which obliges all insurers to provide annual health checkups for insured persons aged 40–74 85 

years.21 Notably, under employee insurance, the attendance rates for annual checkups are 86 

high, approximately >80% (>90% among men) among company employees.22 Utilizing this 87 

situation, we aimed (i) to estimate the rate of kidney function decline in a period of 10 years 88 

using data obtained from the JMDC database, a large database of large and middle-scale 89 

companies and their family members in Japan and (ii) to develop a prediction model based on 90 

annual health checkup data and claims for the first five years. Machine learning has been used 91 

to handle a large number of candidate predictor variables and their potential interactions. 92 

 93 

Methods 94 

Data source 95 
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The details of the JMDC database have been described elsewhere.23 In brief, the JMDC 96 

database was developed by the JMDC Co. This database is a large-scale database covering 97 

Japanese health insurance union members, including employees of large- and middle-scale 98 

companies and their family members aged <75 years; it includes all claims for outpatient 99 

treatment, hospitalization, and prescriptions and dispensations of drugs, as well as the results 100 

of annual health checkups. Annual health checkups are required by law for insured persons 101 

aged 40–74 years,21 whereas those aged <40 years can also undergo annual checkups. Annual 102 

health checkups are usually conducted in the facilities of health insurance unions with which 103 

the companies are affiliated. The details of the annual health checkups are listed in the 104 

“Predictor variables” section below. Serum creatinine measurement is optional but depends 105 

on the decision of each health insurance union rather than on the medical conditions of the 106 

participants. For the present study, we used the most recent 10-year data from April 2012 to 107 

March 2022 (i.e., from 2012 to 2021 financial years). 108 

The data used in this study were anonymized and processed anonymously by JMDC, 109 

Inc. This study was approved by the Ethics Committee of The Research Institute of 110 

Healthcare Data Science (Date of approval, October 30, 2023; Approval number, RI 111 

2023003). 112 

 113 

Study population 114 
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First, in the JMDC database, we identified people with annual health checkup results 115 

(including serum creatinine) for five consecutive years, from 2012 to 2016. We excluded 116 

patients receiving RRT (identified as Japanese procedure codes J038 for hemodialysis, J042 117 

for peritoneal dialysis, and K780 for kidney transplantation) from 2012 to 2016 or those with 118 

an eGFR <15 ml/min/1.73 m2 in 2016. Among the remaining individuals, we further 119 

identified those with annual health checkup results (including serum creatinine) for the latter 120 

five consecutive years, from 2017 to 2021. We identified and excluded patients who 121 

underwent RRT between 2017 and 2021 because their serum creatinine levels did not reflect 122 

their GFRs. 123 

Consequently, the study population consisted of people with annual health checkup 124 

results (including serum creatinine) for 10 consecutive years, from 2012 to 2021, who did not 125 

receive RRT. 126 

 127 

Outcome definition 128 

The outcome of interest was the slope (average change) of eGFR during the 10 years from 129 

2012 to 2021, which was estimated using unadjusted linear regression. eGFR was calculated 130 

using the following Japanese estimation formula24: 131 

eGFR=194×Cr^(-1.094)×Age^(-0.287) (×0.739 for women) 132 

 133 
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Predictor variables 134 

We used the annual health checkup results for the first five years, from 2012 to 2016. As 135 

demonstrated prior,23 the mandatory annual health checkups in Japan generally include both 136 

objective and subjective (self-reported) findings. Objective findings include body mass index 137 

(BMI), abdominal circumference, systolic blood pressure (sBP), diastolic blood pressure 138 

(dBP), triglyceride (TG), high density lipoprotein (HDL) cholesterol, low density lipoprotein 139 

(LDL) cholesterol, total cholesterol, aspartate aminotransferase (ALT), alanine 140 

aminotransferase (ALT), gamma glutamyl transpeptidase (γ-GTP), fasting blood sugar, 141 

casual blood sugar, hemoglobin A1c (HbA1c) according to the National Glycohemoglobin 142 

Standardization Program, hematocrit, hemoglobin content, erythrocyte count, serum uric acid, 143 

urinary sugar (dipstick test), and uric protein (dipstick test). Among subjective (self-reported) 144 

findings,23 we used the information pertaining to current smoking status (yes or no), drinking 145 

habits (every day, sometimes, or rarely/none), and exercise habit (yes or no for ≥2 146 

times/week for ≥30 min in the past year). 147 

In addition, using the prescription records in the medical claims, we identified the 148 

presence or absence in the use of lipid-lowering agents (any), statins, antidiabetic drugs (any), 149 

sodium-glucose transport protein 2 (SGLT2) inhibitors, antiplatelet drugs, antihypertensive 150 

drugs (any), and angiotensin converting enzyme inhibitors (ACEI) or angiotensin II receptor 151 
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blockers (ARB), which are recorded as the Anatomical Therapeutic Chemical (ATC) 152 

Classification codes (Supplementary Table S1). 153 

 Table 1 displays the list of predictor variables and their distributions (mean and 154 

standard deviation [SD] for continuous variables and number and percentage for categorical 155 

variables) in 2016, whereas Supplementary Table S2 shows all predictor variables from 156 

2012 to 2016 that were used for prediction. In addition, the slope (average change) of eGFR 157 

during the five years was used for prediction. 158 

 159 

Statistical analysis 160 

First, we showed the distribution of outcome variable (i.e., the slope of eGFR during the 10 161 

years) and estimated the mean and standard deviation, overall and by age group (<40, 40–49, 162 

50–59, and ≥60 years), sex, and Kidney Disease Improving Global Outcomes (KDIGO) GFR 163 

stages (eGFR ≥90, 60–89, 45–59, 30–44, and 15–29 ml/min/1.73 m2) in 2016. 164 

For the model development, we used the XGBoost regression model25, because it is 165 

generally known to show high predictive performance in the case of table data. The 166 

implementation was based on the “xgboost” package (version: 1.7.5) of Python. For the 167 

hyperparameters, eta (step size shrinkage used in the update to prevent overfitting) was set to 168 

0.05, subsample (i.e., subsample ratio of the training instances) was set to 0.9, and 169 

colsample_bytree (i.e., subsampling of columns) was set to 0.8. With a grid search, the 170 
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max_depth (i.e., maximum depth of a tree) and min_child_weight (i.e., minimum sum of 171 

instance weights [Hessian] needed in a child) were set to 4 and 16, respectively. n_estimators 172 

was set by early stopping. The other hyperparameters were set to be default values 173 

(“XGBoost-link”). We input the annual health checkup data and prescription data for 2016 174 

into the model as they are. For data from 2012 to 2015, we input the subjective (self-reported) 175 

findings and prescription data as they are, whereas we calculated and used the difference in 176 

values of objective findings between each year and 2016 for each individual. Missing values 177 

were input into the XGBoost model as they are. 178 

For model validation, using the 5-fold cross validation, we evaluated the root mean 179 

squared error (RMSE) and R2 as the prediction performance: 180 

���� �  �1	 
���  ������

���

 

�� �  1   ∑ ���  ������

���∑ ���  �����

���

 

(��: actual value, ���: predicted value, ��: average of actual values) 181 

 182 

In addition, considering that the identification of rapid decliners (defined in the present study 183 

as the slope <-3 ml/min/1.73 m2/year14) is clinically important, we estimated the area under 184 

the receiver operating characteristic curve (AUROC) for the rapid decliners using 5-fold 185 
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cross validation. For cross-validation, we merged the validation data of each fold to estimate 186 

the RMSE, R2, and AUROC of the entire training dataset. 187 

For comparison, we also estimated these indicators (i.e., RMSE, R2, and AUROC) in 188 

a crude linear regression model based only on the eGFR values from 2012 to 2016. We aimed 189 

to understand the extent to which our XGBoost model was superior to the simplest linear 190 

regression model. 191 

To interpret the model, we used the Shapley Addictive explanation (SHAP) function 192 

in the XGBoost model.26 We estimated the SHAP feature importance, which is the mean of 193 

the absolute SHAP values (i.e., the contribution of each feature to the outcome). For the 194 

predictor variables with higher feature importance, we depicted SHAP dependence plots to 195 

determine the impact of the increase or decrease in each feature on the predicted value. 196 

All data management and statistical analyses were performed using Python (version 197 

3.8.10). 198 

 199 

Results 200 

In the JMDC database, we identified 183 485 people who underwent annual health checkups 201 

for five consecutive years from 2012 to 2016 (Supplementary Figure S1). We then excluded 202 

107 patients who underwent RRT and 28 patients with eGFR <15 ml/min/1.73 m2. Of the 203 

remaining 183 350 people, we excluded 56 926 without annual health checkup results 204 
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(including serum creatinine) for five consecutive years from 2017 to 2021, including 109 205 

patients who received RRT during this period. The remaining 126 424 individuals with 206 

consecutive measurements of serum creatinine levels from 2012 to 2021 were included in the 207 

subsequent analyses. A comparison of the predictor variables between the two groups (i.e., 208 

126 424 and 56 926 people with and without annual health checkup results from 2017 to 209 

2021) suggested that older people and women were more likely to retire and lose employee 210 

insurance to quit from the JMDC database, whereas the annual health checkup results from 211 

2012 to 2016 were not very different between the two groups (Supplementary Table S2). 212 

The mean age of the 126 424 people was 45.2 (SD, 8.6) years, 104 219 (82.4%) were male, 213 

and the mean eGFR was 79.0 (SD, 13.4) ml/min/1.73 m2. According to the KDIGO GFR 214 

categories, 23 850 (18.9%), 95 516 (75.6%), 6 781 (5.4%), 247 (0.2%), and 30 (0.02%) 215 

accounted for stages G1, G2, G3a, G3b, and G4 (eGFR ≥90, 60–89, 45–59, 30–44, and 216 

15–29 ml/min/1.73 m2), respectively. 217 

 Figure 1 shows the distribution of eGFR slope for the 10 years, with a mean value 218 

of -0.89 (SD, 0.96) ml/min/1.73 m2/year. Among the 126 424 people, 2 511 (2.0%) were 219 

rapid decliners, with <-3 ml/min/1.73 m2/year. The distributions of eGFR slope by age group, 220 

sex, and KDIGO GFR stage are shown in Supplementary Table S3. 221 

Figure 2 shows scatter plots of the predicted and actual values in each model, 222 

suggesting that the prediction was better in the developed XGBoost model than in the linear 223 
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regression model using only eGFR data from 2012 to 2016. The RMSE and R2 of the 224 

developed XGBoost model were 0.78 and 0.35, respectively, while those of the linear 225 

regression model using only eGFR data were 1.94 and -3.03, respectively. To discriminate 226 

the rapid decliners, the AUROC of the XGBoost model was 0.89, whereas that of the linear 227 

regression model using only eGFR data was 0.79. The ROC curves are shown in Figure 3. 228 

Figure 4 shows the ranking of the predictor variables with higher feature importance 229 

in the developed XGBoost model. The eGFR-related features, particularly the eGFR slope 230 

from 2012 to 2016 and the eGFR in 2016, ranked high. Several parameters measured in the 231 

annual health checkups, including hematocrit, HbA1c, γ-GTP, BMI, HDL cholesterol, serum 232 

uric acid, and dBP, were also ranked. Figure 5 shows the SHAP dependence plots of the 233 

selected predictor variables with more important features (the difference in values between 234 

2012–2015 and 2016 is not shown because its interpretation was difficult). The model learned 235 

to reduce the predicted value (i.e., slope of eGFR for the 10 years) when the slope in the first 236 

five years was smaller, and when the eGFR in 2016 was higher in the range above 237 

approximately 60 ml/min/1.73 m2. The figures also suggest negative associations with 238 

Hb1Ac (in the range of above approximately 6.5%), serum uric acid, and dBP (in the range of 239 

above approximately 80 mmHg) and positive associations with hematocrit, γ-GTP, and HDL 240 

cholesterol. There was a U-shaped association with BMI. Men were more likely to show 241 

lower predictive values than women. 242 
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 243 

Discussion 244 

Using the JMDC claims database covering the general population, we estimated the rate of 245 

kidney function decline over 10 years and developed a machine learning model (XGBoost 246 

model) to predict this decline based on annual health checkups and prescription data for the 247 

first five years. The predictive performance of the model was good or moderate (RMSE, 248 

0.78; R2, 0.35; and AUROC for the rapid decliners, 0.89), whereas the linear regression 249 

model using only eGFR values did not work (RMSE, 1.94; R2, -3.03; and AUROC for the 250 

rapid decliners, 0.79). The top features of the developed model were dominated by 251 

eGFR-related features, whereas known risk factors for kidney function decline, such as 252 

HbA1c, contributed to the prediction. 253 

 Among the study population consisting of large- or medium-sized company 254 

employees and their family members, most of whom had normal range of kidney function, 255 

the mean slope of eGFR for the 10 years was -0.89 (SD, 0.96) ml/min/1.73 m2/year. This was 256 

similar to an old US study estimating the mean decrease in creatinine clearance to be -0.75 257 

ml/min/year among normal volunteers.6 In a recent study conducted in a single health checkup 258 

center of Japan, excluding patients with any comorbidities, the mean eGFR decline rate was 259 

-1.07 (SD 0.42) ml/min/1.73 m2/year.27 Those with higher eGFR at baseline were generally 260 
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more likely to show faster decline, which is in line with the present study (Supplementary 261 

Table S3). 262 

 To the best of our knowledge, this is the first study to predict the rate of kidney 263 

function decline as a continuous variable. First, we found it difficult to predict the rate of 264 

kidney function decline over 10 years from only eGFR values for the first five years, with an 265 

R2 of -3.03, which is even worse than a prediction assuming the average value for all 266 

individuals (i.e., R2 of 0). In other words, the correlation between the slope for the 10 years 267 

and that for the first five years was weak. This may be partly due to fluctuations in measured 268 

serum creatinine over time, although mandatory annual health checkups in Japanese 269 

companies are usually conducted at the same place every year and when participants are not 270 

sick. Another reason could be that the rate of kidney function decline is also affected by 271 

patient demographics; known risk factors for CKD or ESRD, such as diabetes and 272 

hypertension; lifestyle factors, such as smoking and exercise; and drugs protecting the 273 

kidneys, such as ACEI/ARB and SGLT2 inhibitors. Therefore, we additionally used these 274 

variables as predictors and observed a large increase in R2 to 0.35. However, the predictive 275 

ability was far from perfect (R2 of 1.00). The remaining possibility is that there may be 276 

measurement errors in predictor variables or unknown factors predicting the rate of kidney 277 

function decline. Meanwhile, the discrimination ability of the XGBoost model for the rapid 278 
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decliners (eGFR slope <-3 ml/min/1.73 m2/year) was seemingly very good, with an AUROC 279 

of 0.89. 280 

 The feature importance and SHAP dependence plots in the established XGBoost 281 

model were remarkable. First, the coefficient (slope) of eGFR for the first five years 282 

correlated with the outcome in the same direction, which is intuitive. Meanwhile, the absolute 283 

value of eGFR in 2016 was negatively correlated with the outcome in the range above 60 284 

ml/min/1.73 m2, meaning that participants with higher eGFR were more likely (i.e., 285 

participants with lower eGFR were less likely) to show faster kidney function decline. This 286 

phenomenon was also suggested in a previous Japanese study,27 wherein the authors 287 

speculated that a compensatory mechanism might work as kidney function decreases. For 288 

features other than eGFR-related features, negative associations with Hb1Ac, serum uric acid, 289 

and dBP, as well as positive associations with hematocrit and HDL cholesterol, have been 290 

suggested in some previous studies.27-32 Meanwhile, a U-shaped association with BMI, 291 

suggesting that those with a normal BMI range were most likely to show a faster decline, 292 

may conflict with previous overseas studies suggesting that obesity is a risk factor for 293 

ESRD.33,34 Further studies are warranted to examine whether this finding is specific to the 294 

prediction of the rate of kidney function decline in the general population or whether this is 295 

ascribed to the difficulty in estimating accurate eGFR from the existing formula24 in obese 296 

patients. 297 
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 The strength of this study is that we used consecutive 10-year annual health checkup 298 

data for the general adult population. A systematic review of kidney disease progression7 299 

indicated that following the same population for a long time is practically difficult, and only 300 

one study was reported to achieve the mean follow-up of over 10 years.35 The mandatory 301 

health checkup system for people aged 40–74 years in Japan made the present study feasible. 302 

 However, this study has some limitations. The database consists of large- and 303 

medium-sized company employees and their family members; therefore, their socioeconomic 304 

status is expected to be higher than the average in Japan. Accordingly, their health-related 305 

behaviors (e.g., smoking and drinking) may be better than those of other Japanese citizens, 306 

whereas they may be exposed to stress specific to company employees (e.g., sedentary 307 

lifestyles). Therefore, it is unknown whether and to what extent the findings of the present 308 

study can be generalized to other citizens in Japan as well as to those living in foreign 309 

countries. Second, loss to follow-up could cause selection bias, especially if unhealthy people 310 

are more likely to be lost to follow-up.7 In the present study, older people and women were 311 

more likely to quit the JMDC database. We speculate that the main reasons for the loss to 312 

follow-up were social (e.g., retirement at age 60–65, retirement due to pregnancy and 313 

childbirth) and not directly associated with the health status of study participants, but we 314 

could not confirm the exact reasons. Thus, the effect of the loss to follow-up on our study 315 

results is unknown, although the follow-up rate in the present study is better than those in 316 
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previous studies with long follow-up periods.27-32 Third, we obtained the annual health 317 

checkup results from health insurance associations instead of the laboratories to measure 318 

blood samples, including serum creatinine. Although we believe that creatinine was measured 319 

using an internationally standardized enzymatic method (traceable to isotope dilution mass 320 

spectrometry) during the study period, creatinine measurements might not be perfectly 321 

standardized across laboratories in Japan. However, the influence of this issue in estimating 322 

the rate of kidney function decline seems to be small because blood samples from the same 323 

individual are expected to be sent to the same laboratories every year. Finally, as discussed 324 

above, there may be measurement errors in some predictor variables, especially in 325 

self-reported variables such as smoking, drinking, and exercise habits. Furthermore, there 326 

may be unknown, and therefore, unmeasured factors predicting the rate of kidney function 327 

decline. Further studies are warranted to identify novel risk factors for the rapid decline in 328 

kidney function and reassess the performance of the prediction model. 329 

In conclusion, using a large database of company employees and their family 330 

members in Japan, we estimated the rate of kidney function decline over 10 years and 331 

developed a machine learning prediction model based on annual health checkup results and 332 

claims for the first five years. The model showed a good or moderate predictive ability, 333 

whereas the linear regression model using only eGFR data did not. 334 

 335 
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 464 

Figure legends 465 

Figure 1. Distribution of the slope (average change) of kidney function decline over 10 466 

years among the study participants (n=126 464) 467 

eGFR = estimated glomerular filtration rate. 468 

 469 

Figure 2. Scatter plots of predicted and actual values (A) in the XGBoost model and (B) 470 

in the linear regression model using only eGFR data from 2012 to 2016 471 

eGFR = estimated glomerular filtration rate. 472 

 473 

Figure 3. Receiver operating characteristic curves for the rapid decliners (<-3 474 

ml/min/1.73 m2/year) 475 

eGFR = estimated glomerular filtration rate. 476 

 477 
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Figure 4. Ranking of predictor variables with higher feature importance in the XGBoost 478 

model 479 

eGFR = estimated glomerular filtration rate, HbA1c = hemoglobin A1c, γ-GTP = gamma 480 

glutamyl transpeptidase, BMI = body mass index, HDL = high density lipoprotein. 481 

 482 

Figure 5. Shapley Addictive explanation (SHAP) dependence plots of predictor 483 

variables with higher important features in the XGBoost model 484 

eGFR = estimated glomerular filtration rate, HbA1c = hemoglobin A1c, γ-GTP = gamma 485 

glutamyl transpeptidase, BMI = body mass index, HDL = high density lipoprotein. 486 

 487 

Supplementary materials 488 

Supplementary Table S1. Anatomical Therapeutic Chemical Classification codes to 489 

define each drug 490 

 491 

Supplementary Table S2. List of predictor variables from 2012 to 2016 and 492 

distributions by the status of data availability from 2017 to 2021 493 

 494 

Supplementary Figure S1. Study flow chart 495 

 496 
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Supplementary Table S3. The mean (standard deviation) slope of eGFR (ml/min/1.73 497 

m2/year) for the 10 years by age, sex, and KDIGO GFR stages in 2016  498 
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Table 1. List of predictor variables in 2016 and distributions (n=126 424) 499 

Variables Distribution  Missing  

Age (years) Mean 45.2, SD 8.6 0 (0%) 

Sex Men: 104 219 (82.4%), Women: 22 

205 (17.6%) 

0 (0%) 

Results of annual health checkups 

in 2016 

  

eGFR (ml/min/1.73 m2) Mean 79.0, SD 13.4 0 (0%) 

Body mass index (kg/m2) Mean 23.4, SD 3.6 18 (0.01%) 

Abdominal circumference (cm) Mean 82.6, SD 9.6 10 435 (8.3%) 

Systolic blood pressure (mmHg) Mean 121.6, SD 14.4 20 (0.02%) 

Diastolic blood pressure (mmHg) Mean 75.6, SD 11.1 20 (0.02%) 

Triglycerides (mg/dl) Mean 115.7, SD 91.6 31 (0.02%) 

HDL cholesterol (mg/dl) Mean 60.7, SD 16.1 17 (0.01%) 

LDL cholesterol (mg/dl) Mean 120.7, SD 29.7 29 (0.02%) 

Total cholesterol (mg/dl) Mean 201.8, SD 33.6 76 961 (60.9%) 

Aspartate aminotransferase (U/l) Mean 22.4, SD 10.1 14 (0.01%) 

Alanine aminotransferase (U/l) Mean 25.3, SD 18.8 14 (0.01%) 

Gamma glutamyl transpeptidase 

(U/l) 

Mean 39.8, SD 43.4 30 (0.02%) 

Fasting blood sugar (mg/dl) Mean 94.4, SD 16.7 27 532 (21.8%) 

Casual blood sugar (mg/dl) Mean 98.5, SD 25.9 116 912 (92.5%) 

Hemoglobin A1c (NGSP) (%) Mean 5.5, SD 0.6 37 179 (29.4%) 

Hematocrit (%) Mean 45.1, SD 3.8 6 895 (5.5%) 

Hemoglobin (g/dl) Mean 14.8, SD 1.3 790 (0.6%) 

Red blood cells (106/μl) Mean 488.1, SD 41.1 575 (0.5%) 

Serum uric acid (mg/dl) Mean 5.7, SD 1.3 6 429 (5.1%) 

Urinary sugar (dipstick test) -: 120 612 (95.4%), +/-: 628 

(0.5%), +: 738 (0.6%), ++: 477 

(0.4%), +++: 906 (0.7%) 

3 063 (2.4%) 

Urinary protein (dipstick test) -: 112 157 (88.7%), +/-: 7 961 

(6.3%), +: 2 437 (1.9%), ++: 656 

(0.5%), +++: 166 (0.1%) 

3 047 (2.4%) 

Smoking status Yes: 36 760 (29.1%), No: 81 194 

(64.2%) 

8 470 (6.7%) 

Drinking habits Every day: 31 809 (25.2%), 

Sometimes: 37 867 (30.0%), 

Rarely/none: 47 576 (37.6%) 

9 172 (7.3%) 
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Exercise (≥2/week and ≥30 minutes 

in the past year) 

Yes: 22 549 (17.8%), No: 86 889 

(68.7%) 

16 986 (13.4%) 

Prescriptions in 2016   

Lipid-lowering agents (any) Yes: 12 979 (10.3%), No: 113 445 

(89.7%) 

0 (0%) 

Statins Yes: 10 262 (8.1%), No: 116 162 

(91.9%) 

0 (0%) 

Antidiabetic drugs (any) Yes: 4 428 (3.5%), No: 121 996 

(96.5%) 

0 (0%) 

Sodium-glucose cotransporter-2 

inhibitors 

Yes: 1 106 (0.9%), No: 125 318 

(99.1%) 

0 (0%) 

Antihypertensive drugs (any) Yes: 14 885 (11.8%), No: 111 539 

(88.2%) 

0 (0%) 

ACEI or ARB Yes: 10 038 (7.9%), No: 116 386 

(92.1%) 

0 (0%) 

Antiplatelet drugs Yes: 2 948 (2.3%), No: 123 476 

(97.7%) 

0 (0%) 

SD, standard deviation; eGFR, estimated glomerular filtration rate; HDL, high density 500 

lipoprotein; LDL, low density lipoprotein; NGSP, National Glycohemoglobin 501 

Standardization Program; ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin 502 

receptor blocker. 503 
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