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Executive Summary

• This report describes 21st century projections of 20-, 50- and 100-year return levels of daily maximum 
surface air temperature (TXx), daily precipitation (Rx1day) and 5-day accumulated precipitation 
(Rx5day) at 25km resolution. 

• This new information on climate extremes forms an extension to the UKCP Probabilistic component of 
the land projections. Results are available for five emissions scenarios (RCP2.6, 4.5, 6.0 and 8.5, and 
SRES A1B).   

• Under RCP8.5 emissions, the projections show future increases in median return levels in all seasons for 
all variables. By 2070, the increase in median TXx relative to 1990 is 2.5°C in winter, and 3.7-4.3°C in 
other seasons, based on UK averages of regional values. The smallest median increases occur in summer 
for Rx1day and Rx5day, with larger increases (5-10mm for Rx1day and 9-13mm for Rx5day) occurring 
in autumn, winter and spring.  

• The results provide broad assessments of known modelling uncertainties, based on 360 climate model 
simulations combined with observational constraints in the same statistical framework used for other 
UKCP Probabilistic variables.  

• These uncertainties grow during the 21st century. By 2070, for 50-year return levels under RCP8.5, UK 
averages of the 10th and 90th percentiles are: 32.0°C and 39.9°C respectively for TXx in summer; 
40mm and 58mm for Rx1day in winter; 102mm and 142 mm for Rx5day in autumn. 

• Data are presented as absolute future values in °C or mm, incorporating a bias correction that ensures 
consistency with observed return levels for the baseline period of 1981-2000. The results are suitable 
for analysis of extremes at specific 25km grid squares, but not for analysis of joint risks at spatially 
distributed locations. 

• Users interested in spatially distributed analysis, or other types of extreme event, can obtain suitable 
climate model data from other UKCP land products. These consist of the sets of 28 global projections 
(UKCP Global), 12 European regional projections (UKCP Regional) and 12 UK convective-permitting 
projections (UKCP Local). 

• However, these products include more limited representations of uncertainties, in comparison to UKCP 
Probabilistic. Therefore, the results from this report can provide useful context for studies based directly 
on model simulations, by revealing potential gaps in sets of potential climate impacts diagnosed from 
the latter.
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1. Introduction
The latest generation of UK Climate Projections (UKCP) for the 21st century was produced recently (Lowe 
et al., 2018). The land component (Murphy et al., 2018; Kendon et al., 2019) includes updated probabilistic 
projections (UKCP Probabilistic, presented at 25km spatial resolution). There is also a new set of global 
projections (UKCP Global @60km resolution) to support worldwide study of regional climate impacts and 
their driving physical processes, and two new sets of regional projections facilitating detailed study of 
impacts over Europe (UKCP Regional @12km, Murphy et al., 2018), and the UK (UKCP Local @2.2km, 
Kendon et al., 2019). 

In the latter case, use of a “convective-permitting” model (with explicit simulation of the dynamics of large 
convective storms) allowed UKCP, for the first time, to provide projections of extreme precipitation events 
at the hourly time scale. The other UKCP products are all based on global and regional simulations in which 
convection is parameterised, hence precluding provision of realistic sub-daily information for precipitation. 
However, such modelling systems are capable of providing useful advice on future daily surface 
temperature and precipitation extremes (e.g. Kharin and Zwiers, 2000). Projections of longer-term events, 
such as multi-day heatwaves or heavy precipitation accumulations (e.g. Clark et al., 2010; Rajczak and 
Schär, 2017), cold, hot, dry or wet seasonal extremes (e.g. Sexton and Harris, 2015) or multi-season 
droughts (e.g. Burke and Brown, 2010), can also be obtained.

In UKCP, users can obtain projections of future extremes for the UK or other regions from UK Global (a set of 
28 climate model simulations), UKCP Regional (12 simulations) or UKCP Local (12 simulations) These 
datasets offer flexibility because they consist of raw climate model output (see https://catalogue.ceda.ac.
uk/?q=ukcp18&amp;sort_by=), and can therefore be used to derive a wide variety of metrics for analysis of 
multiple hazards or distributed sectoral risks, as was done with earlier outputs from UKCP09 (e.g. McColl et 
al., 2012; Palin et al., 2013). 

However, the above products provide limited representations of uncertainties compared with the 
probabilistic projections, which generally show broader ranges of plausible future changes (Murphy et al., 
2018; Kendon et al., 2019). This is mainly because the probabilistic projections were derived from a larger 
set of 360 climate model simulations. These include results from perturbed parameter and multi-model 
ensembles, and account for uncertainties arising from physical climate system processes, aerosol chemistry 
and carbon cycle feedbacks at global and regional scales. The probabilistic projections are available for five 
alternative scenarios of 21st century greenhouse gas emissions (RCP2.6, 4.5, 6.0 and 8.5 (Moss et al., 2010), 
and SRES A1B (Nakicenovic and Swart, 2000)). The UKCP Global, Regional and Local projections are only 
available for RCP8.5, although the RCP8.5 scenario results can be used to look at climate change for a wide 
range of global warming levels.   

Currently, the probabilistic projections provide information for monthly, seasonal and annual averages of a 
set of basic UK climate variables (see https://www.metoffice.gov.uk/binaries/content/assets/
metofficegovuk/pdf/research/ukcp/ukcp18-guidance-data-availability-access-and-formats.pdf). This 
report describes extensions to the methodology that facilitate addition of information on selected sub-
monthly extremes. These consist of 20-, 50- and 100-year return levels of daily maximum surface air 
temperature (hereafter TXx), daily precipitation (Rx1day) and 5-day accumulated precipitation (Rx5day).
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For example, Brown et al. (2014) estimated a 20-year return level of 35.7°C for summer TXx in London, for 
1961-90. Such rare daily events can occur either during short spells of hot weather associated with 
particular synoptic conditions (e.g. during 2018, McCarthy et al., 2019), or during an extended heatwave 
such as that of summer 2003 (Pirard et al., 2005). Projections of TXx are therefore useful for assessment of 
future risks and impacts associated with overheating. This was recognised in the second UK Climate 
Change Risk Assessment (CCRA2, 2017) as a complex issue affecting many sectors of the economy, 
including health, transport, energy and the natural and built environments. 

Similarly, CCRA2 highlights future risks of surface and river flooding arising from increases in heavy 
precipitation events, and the importance of providing suitable sustainable drainage and natural flood 
management measures in response. The Rx1day metric covers contributions to flood risk from daily 
accumulations that might arise (say) from convective events or the transit of a mobile frontal system, while 
Rx5day covers sustained events that might be associated with persistent flow conditions or the passage of 
a large synoptic system. For London, Brown et al. (2014) estimate historical 20-year return periods of 
42.1mm for Rx1day in summer, and 78.4mm for Rx5day in autumn.

In common with several previous UK studies (e.g. Brown et al. (2008); Fowler and Ekström, 2009; Burke et 
al., 2010; Chan et al., 2014) we use extreme value theory (EV), based on theoretical probability distributions 
that describe extremal properties using a few key parameters. This allows plausible estimates of long-
period return levels to be diagnosed from observational or model time series that may not contain specific 
examples of all the rare events of interest.

The method used in this report is an updated version of Brown et al. (2014), in which EV parameters are 
estimated by fitting to time series of extreme values from climate model simulations, using an assumed 
linear dependence on global mean surface temperature (GMST) to represent effects of climate change. 
When making projections, time-dependent values for EV parameters are created by adding climate change 
components derived from model simulations to baseline values representative of observations. This 
approach constitutes a form of bias correction, that allows the final return level projections to be presented 
as absolute rather than anomalous values. In this respect, the return levels product differs from the monthly, 
seasonal and annual average data released previously (Murphy et al., 2018). In the latter the UKCP 
Probabilistic variables were presented as anomalies relative to 1981-2000, leaving consideration of bias 
correction options to users on an application-specific basis (Fung, 2018).   

In section 2 we describe our methodology, explaining how the Bayesian statistical framework underlying 
the probabilistic projections (Murphy et al., 2018; Harris et al., 2021) is combined with EV theory to support 
the new products. A selection of illustrative results is shown in section 3, followed by concluding remarks in 
section 4, which include discussion of the strengths and limitations of the results.  
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2. Methodology
The Bayesian method for the probabilistic projections is described in Murphy et al. (2018), while the use of 
EV theory is based on Brown et al. (2014), with updates. Here, we outline the main elements (Fig. 1) in 
sections 2.1 and 2.2 respectively, followed by a description in section 2.3 of how the two methods are 
combined to provide projections of extremes. 

Figure 1. Major elements of the methods for Bayesian projections based on global climate model simulations (lower box), and statistical analysis of 
regional extreme events (upper box), underpinning the UKCP Probabilistic projections of long-period return levels. Green elements A-F show 
methodological components, and yellow elements show various outputs (dependent on the bracketed subsets of components), that are combined 
to produce the final projections.
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2.1. Bayesian projections
For a given emissions scenario, the probabilistic projections provide distributions of future climate changes 
consistent with internal climate variability, and uncertainties in the representation of earth system 
processes. The results are Bayesian probabilities that represent the relative strength of evidence behind 
alternative future changes. These are conditional upon the evidence (observations and model simulations) 
used to derive them, and subjective judgements required to synthesise the evidence in the calculations. 

The bullets below provide an overview of major components of the Bayesian method, followed by a 
summary of the underlying climate model simulations and their main roles in the calculations. Specific 
details of the implementation for projections of extremes are provided in section 2.3. A fuller outline of the 
UKCP Probabilistic methodology is available in Murphy et al. (2018). A detailed description will follow in 
Harris et al. (2021), building on the original implementation of Sexton et al. (2012) and Harris et al. (2013). 

• Definition of a “prior” parameter space. This space represents uncertainties in earth system processes 
in a single climate model (HadCM3). Its definition is reliant on judgements from model parameterisation 
experts. 

• Perturbed parameter ensemble (PPE) simulations. These explore how historical simulation skill and 
projected future responses vary across a set of locations in parameter space.

• Climate model emulation techniques. These are trained on the PPE results, to provide estimates of past 
and future climate at any point in the prior parameter space.

• Estimation of the “structural” component of model error. This represents the effects of systematic 
errors that cannot be resolved by varying parameters in HadCM3. Such errors can arise from the effects 
of processes missing from the model, or from shortcomings in the basic assumptions used in its 
dynamical integration scheme or physical parameterisations of sub-grid scale phenomena. We quantify 
this term using results from an independent multi-model ensemble, assuming that differences between 
outputs of PPE variants and other climate models can be treated as a proxy for structural simulation 
errors relative to the real world. By construction, this neglects the impact of systematic errors that are 
common to all climate models. Such errors represent an important but inevitable caveat, that arise from 
limitations in current modelling capability or incomplete knowledge. For example, explicit representation 
of atmospheric convective-scale dynamics (Kendon et al., 2019) has recently become possible in some 
limited area simulations, such as UKCP Local. However, it is not yet feasible in ensembles of long global 
simulations. In addition, the earth system models used in the probabilistic projections do not yet capture 
the full complexity of atmosphere-ocean-cryosphere interactions, lacking explicit representations of ice 
sheets, permafrost or the ocean methane cycle. Once included in future generations of models, there is 
potential for such interactions to modify the projected changes presented here.

• Observational constraints. These are derived from seasonal climatological spatial fields for a set of 
twelve variables commonly used to evaluate climate models, plus several metrics of historical climate 
change during the 20th century. The latter include spatial patterns of surface temperature change, and 
global changes in upper ocean heat content and atmospheric CO2 concentration.

www.metoffice.gov.uk
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• Production of probabilistic projections. This is done by integrating over parameter space, adding in the 
estimated structural component of model error in past and future climate, and weighting according to 
estimated model quality. The weights express a relative likelihood for each point in parameter space.

• Accounting for uncertainties in both physical and carbon cycle feedbacks on the response to a given 
emissions scenario. For each scenario, the projections explore the effects of a range of potential future 
pathways for CO2 concentration, as well as a range of climate sensitivities. 

Climate model simulations and their roles in the Bayesian method

The Bayesian calculations described by Murphy et al. (2018) involved core components applied to global 
climate model (GCM) data. This data included GMST and variables for five HadCM3 land boxes covering the 
UK at a spatial scale of ~300km (see Fig. 3 of Harris et al. (2010), also Fig. 11 in this report). Hereafter, we 
refer to these grid boxes as UK_GCM. A second component provided downscaling to a 25km national grid, 
and three sets of aggregated regions (Fung et al., 2018). This was carried out using an 11-member PPE of 
the regional climate model configuration of HadCM3 (see Murphy et al., 2009), hereafter HadRM3-PPE. In 
the present application the same ensemble is used for downscaling, but the methodology is adapted for 
use with extreme value distribution parameters and carried out as part of the EV calculations (see sections 
2.2 and 2.3).

Here, therefore, the implementation of the Bayesian framework (Fig. 2) follows that of Murphy et al (2018) 
at global and national scales, and produces outputs which are then combined with EV outputs (created on 
the aforementioned 25km grid) to produce the final projections of 21st century return levels (Fig. 1).

The GCM-based calculations use three ensembles of simulations. The first is a 280-member PPE using the 
coupled atmosphere-mixed-layer-ocean (“slab”) configuration of HadCM3 (Box 1 of Fig. 2). This PPE 
(hereafter SLAB) simulates historical climatology and the equilibrium response to doubled CO2, exploring 
the effects of uncertainties in 30 surface and atmospheric parameters controlling a range of physical 
processes. It also provides a basis for the use of emulation techniques (Box 2) to sample points in this 
parameter space for which no GCM simulation is available. However, the SLAB model configuration lacks a 
dynamical ocean component, and does not provide information on transient climate change.

Two further ensembles are used to cover these aspects. The first (Box 3) is a PPE of 57 variants of the earth 
system configuration of HadCM3, including dynamical ocean and vegetation modules with an interactive 
carbon cycle (Lambert et al., 2013; Murphy et al., 2014). Members of this ensemble (hereafter the ESPPE), 
are distinguished by multiple simultaneous perturbations to parameters in the atmosphere, ocean, sulphur 
cycle and terrestrial ecosystem components. The simulations were driven using historical and future 
emissions of CO2 and aerosol precursors, and concentrations of other major greenhouse gases. Natural 
historical forcing, due to variations in solar irradiance and major volcanic eruptions, was also included. ESPPE 
simulations are available for the RCP2.6, RCP8.5 and SRES A1B scenarios. 

ESPPE results are used to convert projected equilibrium changes from SLAB into estimates of time-
dependent global and regional climate changes, and to add sampling of parametric uncertainties in ocean 
transport, atmospheric sulphur cycle and terrestrial carbon cycle processes. This broadens the range of 
earth system processes considered in prior distributions of projected changes (Box 5 in Fig. 2), increasing 
the dimensionality of the sampled parameter space to 54.

www.metoffice.gov.uk
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Figure 2. Linkages between components of the Bayesian method underpinning the probabilistic projections based on global climate model output 
(providing more detail on the lower box of Fig. 1). Green boxes show the main inputs, consisting of GCM simulations, statistical emulators trained on 
their results, and observational constraints. Yellow boxes show the prior (5) and posterior (7 and 8) probability distributions produced by the 
calculations.

The final ensemble (Box 4) consists of a set of transient simulations using the RCP8.5 scenario, from twelve 
CMIP5 earth system models (hereafter CMIP5-ESM - see Table 2.1 in Murphy et al., 2018). Like the ESPPE, 
these simulations were driven by historical and future CO2 emissions, providing ranges of future change 
influenced by both physical and carbon cycle feedbacks. This ensemble is used to account for structural 
uncertainties (see above), which are quantified in the Bayesian framework using a term called “discrepancy” 
(Goldstein and Rougier 2004; Sexton et al., 2012).

Discrepancy is specified as a multivariate Gaussian distribution that broadens the spread of projected 
changes (because it adds to the effects of parametric uncertainties). It can also shift the envelope of 
projections if the discrepancy distribution shows a non-zero median. The structural uncertainty calculations 
involve using emulators to search the HadCM3 parameter space for the closest multivariate analogues of 
the historical and future simulations of each CMIP5-ESM member. Differences between the best analogues 
and each CMIP5-ESM simulation are used to calibrate the discrepancy distribution.

www.metoffice.gov.uk
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2.2. Statistical characterisation of extreme events
Extreme value theory (e.g. Coles, 2001) is used in climate research to derive probability distributions that 
describe the expected occurrence of rare events (e.g. IPCC, 2012). Such events lie in the far upper or lower 
tails of the full distribution of values for the relevant variable, for example daily temperature maxima that 
occur less than once or twice per season. Using EV distributions compensates for sampling issues, by 
supporting estimates of probability for events that may not be present in the relatively short periods of data 
used to calibrate the distributions. A key assumption is that the chosen EV distribution provides an accurate 
representation of the complete probability distribution of the relevant events. 

Alternative approaches are available to estimate parameters of EV distributions. The block maximum 
method involves using the most extreme value within each of a set of distinct blocks of data. Here, we 
provide projections for the meteorological seasons (December to February, March to May, June to August 
and September to November). For summer, for example, this would involve picking the highest value of TXx, 
Rx1day or Rx5day from each summer over a set of consecutive years.  This method has been used in 
conjunction with the generalised extreme value (GEV) distribution in several climate change papers, 
including the Brown et al. (2014) study that forms the basis of our approach here. It has the advantage of 
avoiding the need to select a threshold to define an extreme event, but restricts the size of the data sample 
to one event per season.

In the present application, therefore, we use an alternative method: peaks over threshold (PoT). This 
involves using all events exceeding a specified threshold in a given season, thus considering more of the 
data, and avoiding the risk of missing multiple extremes that may occur in close proximity. The PoT 
approach also excludes any seasons which happen not to contain any extreme events. The results depend 
on the choice of threshold, which is a subjective decision. We select thresholds designed to capture 3% of 
events per season, thus seeking a balance between increasing sample size and capturing genuine extremes. 
Following Brown et al. (2008), the number of events is assumed to follow a Poisson process, and the 
magnitude of exceedances a generalised Pareto distribution (e.g. Katz et al., 2002).

The expected number of exceedances above a level x, conditional on x exceeding the chosen threshold, is 
parameterised as:

(1)

where µ, σ and ξ are the location, scale and shape parameters (e.g. Coles, 2001). With this choice of 
formulation, the above EV parameters are equivalent to those used in the GEV distribution for block maxima. 
We therefore use the same notation as Brown et al (2014), but using threshold exceedances rather than 
block maxima to calibrate the parameters. 

www.metoffice.gov.uk
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The EV distribution function is:

Figure 3. Effects of varying EV parameters on a return level curve.  The black curve shows how return level would vary with return period for 
location, scale and shape values of 29.0, 2.0 and -0.2. The red, green and blue curves show the impacts of increasing location, scale and shape.

(2)

Figure 3 demonstrates how changing each parameter influences the variation of return level with return 
period. The black line is a return level curve assuming µ = 29, σ = 2 and ξ = -0.18. These values are typical for 
TXx distributions in summer, though the qualitative impacts of changing the parameters apply in general. 
Increasing µ (red curve) results in a uniform upward shift to higher return levels, analogous to increasing the 
mean of a Gaussian distribution. Increasing σ (green curve) stretches and flattens the distribution (akin to 
increasing the standard deviation of a Gaussian), increasing the difference in return level between short and 
long return periods. Increasing ξ (blue curve) makes the distribution more heavy-tailed, thus increasing the 
levels of the longer periods.
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Calibration of EV parameters for observations and RCM simulations

We use observations of TXx, Rx1day and Rx5day from 1961-2019, pooled with the HadRM3-PPE data of 
section 2.1, which is available for 1951-2100. The combined model and observed data are used to calibrate 
a common statistical model for historical and future values of location, scale and shape. The observed data 
is provided on a 5km grid, derived from high-density networks of station data (Perry et al., 2009). We use 
versions of the observational datasets regridded to the 25km grid of HadRM3, representing the time-
dependent EV parameters at each grid box as:

Effects of climate change are represented through an assumed linear dependence on GMST, scaled by 
parameters µT and βT; µ0, β0 and ξ0 represent observed baseline values; µ∆, β∆  and  ξ∆ characterise differences 
in location, scale and shape between observations (for which the indicator covariate I is set to zero) and 
model data (I=1). Brown et al. (2014) found that robust climate change signals could not be identified for the 
shape parameter, which is therefore assumed independent of GMST in Eq (3).

Eq (3) follows Brown et al. (2014), except that a logarithmic transformation is no longer used in the 
parameterisation of σ. Under this transform, we found that sampling of residual uncertainties in fitted values 
of βT, which are assumed Gaussian in our methods for emulation of GCM values (section 2.3.2) and regional 
downscaling (section 2.3.4), could sometimes lead to unrealistically large future values of σ. This is because 
application of the inverse (exponential) transform converts Gaussian residuals in βT into positively skewed 
residuals in σ. Using a linear relationship in Eq (3) avoids this issue. However, unrealistically large future return 
levels can still occur, when high values of βT are combined with large future increases in GMST. A lower bound 
on σ is also required, in order to avoid negative values, or small positive values implying unrealistic EV 
distributions in which return level fails to increase with return period (cf Fig. 3). When generating projections, 
we therefore reject any points in HadCM3 parameter space that lead to future σ values outside the range 
0.5β0 - 2β0.  Section 2.3.5 provides details on the implementation of this condition.

The estimation of parameters in Eq (3) involves a separate fit to each of the 11 members of HadRM3-PPE. 
Values of GMST(t) for 1951-2100 are obtained from the 11 GCM simulations that drove HadRM3-PPE 
members. These were transient climate change experiments run from 1900-2100, using the SRES A1B 
emissions scenario for the future component. Each driving simulation was a member of a PPE of the 
coupled atmosphere-ocean configuration of HadCM3 (Collins et al., 2011), that used a set of parameter 
perturbations corresponding to the relevant HadRM3-PPE member. Time series of GMST(t) are smoothed1 
prior to fitting the EV parameters, in order to remove the influence of internal variability and isolate the 
long-term effects of climate change that µT and βT are intended to represent.

(3)

1 A spline is fitted to the data, which removes variability on time scales shorter than approximately 30 years.
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For each 25km grid square, the fit2 is performed by pooling data from the relevant HadRM3-PPE simulation 
with the observed data, using  the HadCRUT4.6.0.0 dataset (Morice et al., 2012, updated) to provide 
GMST(t) data in the case of the observations. In all cases, time-dependent GMST anomalies are defined 
relative to the standard UKCP baseline of 1981-2000. The values of µ0, β0 and ξ0 that emerge from the fit 
are therefore representative of 1981-2000 conditions, even though the full period of observed data is used 
in their calibration, with account taken of non-stationarity through the observed GMST changes. The same 
baseline period is used in section 2.3, where Eq (3) is deployed to construct projections.

When I=1 for model data (two exceptions are discussed below), separate observational and bias estimates 
are derived from each of the eleven pooled fits. The eleven values of µ0, β0 and ξ0 are found to be similar (as 
in Brown et al., 2014), demonstrating that the calibration successfully identifies RCM biases.  We take the 
average values of µ0, β0 and ξ0 as our best estimates of the baseline observations.  When using µ0, β0 and ξ0 
to produce the final probabilistic projections (section 2.3.5), we sample uncertainties via bootstrapping3.

In the case of ξ0 for Rx1day and Rx5day we set I to zero for the regional model data as well as observations, 
since tests show that statistically significant differences between regional model and observed shape values 
cannot be identified from the limited time series available. This is because fitted values of ξ0 and ξ∆ are 
particularly sensitive to individual rare precipitation events (Brown et al., 2014).  The regional model and 
observed data are therefore treated as samples from populations with common shape values. 

We also smooth the spatial distributions of ξ0, by defining each 25km value as the median over a set of 5x5 
grid boxes including and surrounding the target location. This is done for TXx, as well as Rx1day and Rx5day. 
Equivalent smoothing is not performed for µ0 or β0.

Figure 4 shows examples of the spatial patterns found for µ0, β0 and ξ0, for TXx and Rx1day in summer and 
Rx5day in autumn. For TXx, values of µ0 are lowest in northern Scotland and highest in central, eastern and 
southern England, exceeding 30°C in places. Not surprisingly, these broad-scale variations resemble those 
found in the observed pattern of climatological average summer temperature, and other metrics of extremes 
such as the typical hottest day of summer (e.g. Figs. 4.1b and 4.5a of Murphy et al., 2018).  The highest 
values of β0 occur mostly over south-east England. Relatively high values of β0 are also found over parts of 
East Anglia, central southern England, Wales and the Hebrides.

For Rx1day in summer and Rx5day in autumn, the patterns of µ0 show maxima over high ground in western 
regions, as do corresponding climatological precipitation patterns (e.g. Fig. 4.1d of Murphy et al., 2018). 
Values of β0 show maxima over the western Highlands for both variables, and the spatial distribution for 
Rx5day shows lower values over East Anglia and parts of central and southern England, than elsewhere. This 
may (speculatively) be related to stronger influence, to the north and west, of variability associated with the 
passage of large synoptic cyclones associated with the North Atlantic storm track.

For summer TXx, ξ0 is negative everywhere. This indicates bounded EV distributions where the rate of 
increase in magnitude reduces with rarity. Negative ξ0 values are also prevalent for Rx5day in autumn, 
although values are close to zero in some regions. These indicate light-tailed distributions in which the 
probability of the highest extremes is bounded. For summer Rx1day, most regions show small positive values 
of ξ0. These correspond to EV distributions with slightly heavy tails that are unbounded.

2 The EV parameters are estimated by searching for values that maximise the likelihood of the data, using the ISMEV extremes analysis software of 
Coles (2001). Further details are available in Brown et al. (2014).
3 A random sample is drawn from the EV distribution defined by the baseline parameters, of an equivalent size to the real observational dataset, 
and the EV model is refitted to these pseudo-observations (with no RCM data or global temperature terms).  This is repeated many times and the 
spread in parameters is taken to be representative of the uncertainty in the observed data.  See Brown et al. (2008) for details.
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Figure 4.  Estimates of µ0, β0 and ξ0, representing observed values for 1981-2000 of location, scale and shape (see Eq (3)), for TXx and Rx1day in 
summer, and Rx5day in autumn. The values are calibrated from observed data covering 1961-2019 accounting for non-stationarity associated 
with historical changes in GMST. The results shown are averages of eleven values of µ0, β0 and ξ0 obtained by pooling observed data with output 
from each member of the HadRM3-PPE of regional climate model simulations. This increases the sample size of events used in calibration, while 
allowing for model biases by using the indicator variable in Eq (3) to distinguish modelled from observed data. Values are obtained for each 25km 
grid box of HadRM3. For ξ0, results are smoothed by taking the median over 25 grid boxes including and surrounding the target location.
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Figure 5. Return level curves for the 25km grid box containing central London, derived from the values of µ0, β0 and ξ0 shown in Fig. 4. Curves for 
TXx and Rx1day in summer, and Rx5day in autumn, are compared with corresponding observations of the highest 108 events in the 59-year 
observational record (open circles). These are ranked from high to low (m = 1 →108), assumed to correspond to return periods of 59/m years.

Figure 5 shows examples of fitted return level curves for the variables of Fig. 4, for the 25km grid box 
containing central London. Open circles show the highest 2% of the distribution of values for the relevant 
season in the 59-year observed record, which amounts to 108 data points. Empirical estimates of 
corresponding return periods are diagnosed from a simple ranking of the events. This is done by assuming 
that the mth highest event corresponds to a return period of 59/m years. The EV curves match the empirical 
estimates quite well, particularly for return periods of 1-10 years. There is more deviation for longer return 
periods: For Rx5day the empirical values for the top eight events are all higher than the EV estimates, as are 
the highest events for TXx and Rx1day. This is not surprising, as the empirical estimates are known to be 
biased high for the rarest events, while giving reasonably accurate estimates for more moderate extremes 
(Folland and Anderson, 2002).  

Calibration of EV parameters for GCM simulations

In order to construct the probabilistic projections, values of µT and βT are required for the SLAB, ESPPE and 
CMIP5 simulations (see section 2.1). Values are obtained for each of the five UK_GCM land points available in 
HadCM3 (see section 2.1 and Fig. 11). This is done by calibrating Eq (3) separately for each simulation. In this 
case the model data is not pooled with observations, hence the µ∆ and β∆ terms are omitted. In addition to 
the required values of µT and βT, these GCM fits produce values of µ0 and β0 indicative of simulated baseline 
conditions. These are of interest for GCM evaluation but are not used in the subsequent generation of 

projections. 

In the case of SLAB PPE members, a pair of 20-year simulations of historical and doubled CO2 climate are 

available to calibrate µT and βT, based on the 20-year average change simulated in GMST. The relative 
shortness of these simulations increases the uncertainty in member-specific values, due to limited sampling 

of internal variability. We therefore winsorize the distribution of 280 SLAB values of µT and βT, to avoid 
retaining potentially unreliable outliers. This is done by estimating the standard deviation from the 
interquartile range (assuming a normal distribution) and resetting to the median SLAB value any results that 
differ from it by more than 3.5 standard deviations.
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For the ESPPE and CMIP5 members, longer transient simulations from 1860-2100 are available, so the 
diagnosed estimates are less noisy and winsorization is not necessary. EV parameters are calibrated2 for each 
of these, using smoothed time series of GMST1. We illustrate this process in Fig. 6, showing examples for the 
grid box covering southern England from one member of each ensemble, using the RCP8.5 scenario4. Time-
dependent values of the 50-year return level (red curves), diagnosed from the relevant EV parameters, are 
used to illustrate the effects of climate change. Also shown (black curves) are the values of the 3% threshold 
used to identify extreme events (blue crosses) using the PoT method. The smoothed time variation of the 
threshold is determined by fitting a spline1 to empirical values diagnosed annually. 

For summer TXx, both simulations show substantial increases in the 50-year return level during the 21st 
century, leading to projected values approaching or exceeding 50°C by 2100. This is driven by increases in 
GMST of approximately 4.6°C in the ESPPE member and 4.3°C in HadGEM2-ES (the selected CMIP5 model), 
by the 2090s relative to 1981-2000. Increases in the 50-year return level substantially exceed those in 
GMST, amounting to more than 10°C in the ESPPE member, and just under 10°C in HadGEM2-ES. These 
changes are associated with large future increases in µT (2.7 for the ESPPE member and 1.9 for HadGEM2-
ES). The latter simulates values close to 39°C during the baseline period, while the baseline values in the 
ESPPE member are 40°C. In predictive mode (see discussion above), the use of observed baseline values 
would therefore alter the projected absolute values. For example, applying the observed baseline of ~36°C 
for London (Fig. 4) would reduce the future values by several degrees. For Rx5day in autumn, both 
simulations project modest increases in the 50-year return level, but from considerably different baseline 
values. In this case, applying a common observed baseline would bring the future projections of absolute 
values closer together.

4 In the case of CMIP5-ESM, values of µT and βT were obtained from RCP8.5 results, as shown in Fig. 6. For ease of comparison, the ESPPE example 
in Fig.6 is also taken from RCP8.5. In the ESPPE case, however, the values of µT and βT used in section 2.3 were obtained by pooling results from the 
three available scenarios (RCP2.6, RCP8.5 and SRES A1B – see section 2.1) in order to increase the statistical robustness of the estimates. This 
was supported by tests showing that scenario-specific values were statistically indistinguishable. 
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For Rx1day in summer, the two GCM simulations give baseline values of ~23mm and ~25mm, respectively. 
Not surprisingly, these are well below observed baseline estimates at the 25km scale (e.g. ~40mm for 
London in Figure 4), as the GCM values represent a larger spatial scale of ~300km. The projected changes are 
different, with the ESPPE member showing a future reduction in the 50-year return level, while HadGEM2-ES 
shows an increase. These results illustrate the uncertainty in future changes, discussed further in section 3. 
We would expect the 50-year return level to be exceeded ~5 times between 1860-2100, on average. In 
practice, the number of exceedances in Fig. 6 ranges from four to seven, indicating that the fitted EV 
parameters give credible estimates.    

Figure 6. Examples of projected 50-year return levels (red curves) for southern England, derived from a single ESPPE member (top row) and a single 
CMIP5-ESM member (bottom row).  These are obtained for TXx and Rx1day in summer, and Rx5day in autumn, by fitting the EV parameters of Eq 
(3) to simulated events (blue crosses). These exceed time-varying thresholds (black curves) that are chosen to identify 3% of events per year, on 
average, as extremes for use in calibration. Further details in text.
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2.3. Method for probabilistic projections of return levels
This section describes the steps used to combine the Bayesian and EV methods of sections 2.1 and 2.2, in 
order to produce probabilistic projections of return levels for TXx, Rx1day and Rx5day.

2.3.1 Probabilistic projections of GMST

These (see Fig. 1) are required as inputs to Eq (3), when used in predictive mode to produce time-dependent 
pdfs of the location and scale parameters. We use the pdfs of GMST(t) produced by Murphy et al. (2018), 
for the A1B, RCP2.6, RCP4.5 and RCP8.5 emissions scenarios. A recap of the method is provided below, 
with more detail available in Murphy et al. (2018).

The probabilistic projections of GMST were generated using the simple climate model (SCM) of Harris et al. 
(2013). This predicts global ocean and land surface temperatures using planetary energy balance principles, 
a one-dimensional advection-diffusion equation for vertical ocean heat transport, and a globally-averaged 
representation of the earth’s carbon cycle. The SCM is used to sample prior pdfs of its driving inputs, which 
include equilibrium climate sensitivity (ECS5), and several parameters controlling ocean heat uptake and 
carbon cycle feedback.

The prior pdf of ECS is constructed using an emulator calibrated from the 280-member SLAB PPE, using 
ECS values for CMIP5-ESM members to adjust the distribution to account for structural modelling 
uncertainty via the discrepancy term (Boxes 1, 2, 4 and 5 in Fig. 2, discussed in section 2.1). Corresponding 
distributions for ocean heat uptake and carbon cycle parameters are obtained by prescribing priors 
consistent with the spread of values simulated by the 57-member ESPPE (Fig. 2, Box 3).

Discrepancy estimates are also required for the time-dependent outputs of the SCM, which include upper 
ocean heat content and atmospheric CO2 concentration, as well as GMST. These are obtained by finding 
best analogues from the above input prior distributions, that lead to SCM predictions matching the results 
of CMIP5-ESM members as closely as possible (Fig. 2, Box 4). The discrepancy terms for heat content, CO2 
concentration and GMST can only be calibrated directly for the RCP8.5 scenario, as CMIP5-ESM results are 
not available for the others. For these, we assume that the median discrepancy is proportional to the 
predicted GMST change, using scaling coefficients derived by linear regression to the responses of CMIP5-
ESM members for the RCP8.5 scenario (Murphy et al., 2018). The variances of the discrepancy distributions 
are assumed independent of emissions scenario.   

Projections of GMST are produced by running the SCM from 1860-2100, driven by prescribed emissions of 
CO2 and prescribed concentrations of other major greenhouse gases, switching from historical to scenario 
values beyond 2005. The historical forcing also accounts for solar and volcanic influences, whilst aerosol 
forcing is included by sampling from the pdf specified in the IPCC Fifth Assessment Report (Myhre et al., 
2013). This pdf applies to the forcing for 2011 relative to pre-industrial conditions, with values for other 
historical and future periods estimated by scaling according to prescribed sulphur dioxide emissions.

5 ECS is defined as the equilibrium (steady state) response of globally and annually averaged surface temperature to a doubling of CO2 
concentration in the atmosphere. It is a standard benchmark measuring the long term sensitivity of a climate model, or of the real climate system, 
to a sustained change in greenhouse gas concentrations.
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The SCM projections of GMST are modified, by adding a bias term and sampling from separate distributions 
representing discrepancy, and residual prediction errors. The bias and residual terms are pre-calibrated6, by 
using the SCM to predict the projections of ESPPE members. The bias term accounts for errors in the 
transient response arising from simplifications used in the SCM, such as its assumption that climate 
feedbacks are independent of time (e.g. Gregory and Andrews, 2016). The dominant contribution to the 
residual term arises from internal climate variability, which is omitted by construction from the SCM. 
Sampling the residual distribution thus ensures that the probabilistic projections account for uncertainty in 
GMST arising from internal variability, as well as modelling uncertainty in physical and carbon cycle 
feedbacks, aerosol forcing and ocean heat uptake.

Figure 7. Probabilistic projections of GMST in response to historical changes in radiative forcing to 2005, and to the RCP8.5 scenario from 2006-
2100 (red plume). The blue plume shows corresponding results for the RCP2.6 scenario. Anomalies are calculated relative to the 1981-2000 
baseline period. Grey curves show the medians of the pdfs, and shading denotes the 5th, 10th, 25th, 75th, 90th and 95th percentiles. The pdfs are 
calculated from 3000 sampled realisations of annual GMST changes, which are temporally smoothed to isolate time-dependent changes on time 
scales of 30 years and longer. This allows the GMST projections to be used, via Eq (3), to determine the effects of secular climate change on the 
evolving characteristics of corresponding EV distributions. Details in text. 

6 Direct calibration of the bias and residual terms is possible for the RCP2.6, RCP8.5 and A1B emissions scenarios, for which ESPPE simulations are 
available. For RCP4.5 and RCP6.0, we estimate the bias term assuming a linear dependence on the GMST response (as described above for the 
median discrepancy term), using a scaling coefficient derived from the available ESPPE results (Murphy et al., 2018). The residual variances are 
assumed independent of emissions scenario. 
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The posterior probabilistic projections of GMST (Fig. 7) consist of 3000 emulated realisations. These are 
generated from an initial set of 106 realisations that sample the prior distributions of SCM inputs. These are 
weighted according to relative likelihood, estimated using the set of observational constraints (Box 6 in Fig. 
2) described in section 2.1. The 106 realisations are then resampled, with replacement according to weight, 
to obtain 3000 GMST pathways, convenient for the calculation of time-evolving percentiles7 of the pdfs for 
GMST anomalies (black and coloured curves in Fig. 7).

Prior to calculating the pdfs, the 3000 time series of GMST are smoothed using the same spline1 applied 
when calibrating  µT and βT from individual climate model simulations in section 2.2. This is done in order to 
remove variability on time scales shorter than ~30 years, hence isolating the effects of long-term climate 
change. The future plumes of Fig. 7 are therefore slightly narrower than the corresponding GMST pdfs of 
Murphy et al (2018) (their Fig. 2.8), as the latter include variability on shorter time scales.   

2.3.2 Probabilistic projections for climate change effects on EV parameters  

In addition to GMST(t), probabilistic projections for µT and βT are also required (Box 8 in Fig. 2) as inputs to 
the return level projections (Fig. 1). Here, we summarise how these are calculated, for the UK_GCM grid 
boxes (Fig. 11). As for GMST, 3000 sampled estimates are used to construct the pdfs. Since µT and βT 
contain no explicit time-dependence, they are analogous to regional variables termed “normalised transient 
responses (NTR)” by Murphy et al. (2018), which consist of characteristic regional changes per unit warming 
in GMST. The description below outlines the corresponding implementation for µT and βT.

Initially, prior pdfs of the equilibrium response to doubled CO2 are produced, using emulators trained on the 
SLAB PPE results (as for ECS described above). Examples are shown in the top panels of Figs. 8 and 9, using 
values of µT and βT for the southern England grid box for TXx and Rx1day respectively. The SLAB results are 
the green histograms, and the green curves the prior pdfs. Following Murphy et al. (2018), these are termed 
normalised equilibrium responses (NER).

The next step adjusts the prior pdfs to account for drivers of transient climate change, and associated 
parametric uncertainties, represented in the ESPPE but not in the SLAB simulations. This adjustment 
(hereafter referred to as the “offset” term) accounts for ocean circulation changes, terrestrial vegetation 
feedbacks and anthropogenic forcing due to sulphate aerosols. Each of the 57 ESPPE members uses a set 
of parameter perturbations in its atmospheric components that corresponds to one of 17 members of 
SLAB (SLAB17, blue dots in Figs. 8 and 9, top panels). The number of ESPPE members corresponding to 
each SLAB17 member varies between one and four (Lambert et al., 2013).

7 In Murphy et al (2018), we used the term “probability level” to denote cumulative probability thresholds. For example, the 90% probability level 
defined an outcome with a 10% chance of being exceeded. Here, we use “90th percentile” to denote the equivalent threshold. This is done to avoid 
confusion with the term “return level”, which defines the intensity of the relevant extreme event. Thus, a statement that: “the 90th percentile of the 
20-year return level of daily maximum summer temperature is 40°C in 2050” would mean that there is a 10% chance of seeing a 20-year return 
level higher than 40°C by 2050, according to the UKCP probabilistic projections of daily summer maximum temperature.  
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Figure 8. Steps in the calculation of pdfs of µT and βT for GCM grid boxes, using TXx in summer for the southern England box as an example. Upper 
panels show results from the 280 SLAB simulations of the equilibrium response to doubled CO2 (green histograms). These are converted into prior 
pdfs (green curves, labelled NER - normalised equilibrium responses) by using statistical emulation to sample the whole atmospheric parameter 
space of HadCM3. These are in turn converted into priors for the normalised transient response (NTR, blue curves), that account for ocean 
circulation changes and additional parametric uncertainties in ocean, sulphur cycle and terrestrial ecosystem processes in the earth system 
configuration of HadCM3. This is done by applying the average offset between NER and NTR, calculated from the 17 blue lines. Circles show NER 
values for 17 SLAB model variants, and arrow heads represent responses averaged over corresponding members of the ESPPE of HadCM3 earth 
system model variants. These are ESPPE variants that use corresponding perturbation sets in their atmosphere component. The lower panels show 
NTR values for SLAB PPE members (blue histogram) following application of the offset. They illustrate the impact of adding discrepancy to the prior 
distribution of NTR from the middle panel (cf red and blue curves). In these panels, arrows show twelve individual discrepancy estimates obtained 
by finding best PPE analogues (asterisks) to each of the CMIP5-ESM simulations (arrow heads), from which the median and variance of the 
(assumed Gaussian) discrepancy distributions are calculated. The black curves show posterior pdfs of NTR, obtained by weighting points in the 
HadCM3 parameter space of earth system processes according to relative likelihood, derived from application of the observational constraints 
listed in section 2.1.  

By comparing corresponding members, a 57-member sample of differences is obtained for µT and βT, for 
each season, variable and GCM grid point.  The blue arrows in Figs. 8 and 9 (top panels) show the average 
difference between each SLAB member, and the 1-4 corresponding ESPPE members. The prior NER pdfs 
are then converted to prior NTR pdfs, by adjusting the emulated equilibrium responses to account for the 
additional processes represented in the ESPPE. This is done by adding the 57-member average offset to 
each emulated outcome, and sampling an associated uncertainty diagnosed from the standard deviation of 
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the individual offsets. Our approach assumes a Gaussian distribution independent of location in parameter 
space, since we lack sufficient ESPPE simulations to calibrate potential parametric dependencies of the 
offset. This results in the blue curves shown in Figs. 8 and 9 (top panels). In general, the blue NTR curves are 
liable to shift, and also become slightly broadened, compared to the green NER priors. In the examples 
shown, a significant shift is apparent only for µT in the case of TXx (Fig. 8), for which most ESPPE simulations 
give higher values than corresponding SLAB members.  

In the final steps (Figs. 8 and 9, lower panels), the prior NTR distributions are adjusted to account for the 
discrepancy term (red curves cf blue curves), and then converted into posterior distributions (black curves) 
using the weights obtained by applying the observational constraints. 

Figure 9. As Fig. 8, for Rx1day in summer in the southern England GCM grid box.
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The arrow heads in Figs. 8 and 9 (lower panels) show results from the twelve CMIP5-ESM members used to 
sample structural model uncertainties, with the arrows representing the differences between these and 
their best PPE analogues (asterisks). These are found by searching8 the 54-dimensional space of earth 
system parameters in HadCM3. The search is conducted by minimising the multivariate distance between a 
broadly-based set of variables simulated by CMIP5-ESM members, and emulated values from points in the 
HadCM3 parameter space. This multivariate approach is motivated by our aim to consider a wide range of 
emergent characteristics in identifying PPE analogues that provide the best overall matches to the complex 
set of earth system processes represented in each CMIP5-ESM member. This also reduces the risk of 
identifying an unrealistically close match in any particular metric of interest, that might due to some 
fortuitous compensation of differences between underlying process-drivers.

 The optimisation variables are derived from:

• historical, 20-year mean climatologies of global, seasonal, spatial fields for twelve key climate variables 
(see Table B.1 of Murphy et al., 2018).

• normalised future transient responses for the same set of variables, also expressed as global, seasonal, 
spatial fields.

• normalised future transient responses for seasonal, UK-average changes in surface air temperature and 
precipitation.

• the set of SCM variables controlling the global transient response of GMST (see section 2.3.1).

Following Sexton et al. (2012), the above variables are non-dimensionalised by scaling by the standard 
deviation of their prior pdf in the PPE, noting that for global spatial variables (which consist of a mix of 
latitude-longitude and latitude-height fields), this is done by averaging the standard deviations of local or 
zonal-mean values. Also, the dimensionality of the climatology and normalised transient response datasets 
is reduced, by using the six leading eigenvectors in each case. 

The discrepancy distribution is assumed Gaussian, with a median and spread estimated as the average 
difference between CMIP5-ESM members and their best analogues, and the standard deviation of the 
individual differences. In general, adding the discrepancy term will (like the offset term) broaden, and 
potentially shift, the prior distribution. For TXx, the distribution for µT shifts to lower values when 
discrepancy is added. This opposes the positive shift introduced by the offset term. It occurs because 
CMIP5-ESM members simulate values smaller than the median of the PPE-based prior distribution (blue 
curve). For Rx1day, the discrepancy variance is sufficient to drive a noticeable broadening of the prior, for 
both µT and βT. This reflects the influence of CMIP5-ESM members lying near the extremes of the PPE-
based prior. In future work, availability of a larger set of simulations (perhaps through addition of 
forthcoming CMIP6 models) would help to reduce the sensitivity of the discrepancy calculation to outlying 
multi-model results. 

8 This search uses the Nelder-Mead algorithm. We find 3 best analogues for each CMIP5-ESM member, distinguished by starting the algorithm from 
differing, randomly-selected start points in parameter space, and minimising the multivariate mean-square-difference between simulated and 
emulated values of the variables described in the text.  Each arrow in Fig. 8 (lower panels) represents the estimate of structural error for the 
relevant CMIP5-ESM member, estimated by averaging the distances over the 3 analogues.
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In general, applying the observational constraints (black curves in Figs. 8 and 9, lower panels), alters the 
relative probability of alternative outcomes for of µT and βT, compared with the prior distributions (red 
curves). For TXx, the effects are relatively minor, featuring a slight narrowing of the pdfs, accompanied by 
higher relative probabilities for outcomes near the modes. This indicates that in these cases, there is no 
strong relationship between the historical performance of alternative PPE variants, and the projected 
values. For Rx1day, the observational constraints downweight positive values of µT and upweight negative 
values, sharpening the distribution and reducing its modal value.  

2.3.3 Credibility check on outputs of Bayesian methodology

Following Murphy et al. (2018), we compare the pdfs of µT and βT against results from the underlying GCM 
simulations, for TXx, Rx1day and Rx5day. This allows us to identify cases where statistical processing in the 
methodology may have led to pdfs implying significant tail probabilities for outcomes beyond the range 
covered by the GCM results.

Some extension beyond the GCM range would be expected. This could occur, for example, through the use 
of emulators (Fig. 2) to estimate PPE outcomes for unsampled parts of parameter space, or by adding the 
discrepancy term to PPE outcomes to estimate results adjusted to account for structural model error 
(section 2.1). However, if the tail probabilities are substantial, this may indicate reduced confidence in the 
pdfs, due to a lack of support from the GCM results for outlying outcomes produced by the statistical 
calculations.

We measure the fraction F of the 3000 sampled estimates that lie beyond the most extreme model 
outcome, choosing the larger of the values found at the upper and lower ends of the range (Murphy et al., 
2018). In order to include the 280 SLAB simulations of equilibrium climate change (as well as the 69 
transient simulations from CMIP5-ESM and the ESPPE) in the GCM range, we adjust the SLAB outcomes to 
account for additional influences on the characteristic transient response, using the offset term described in 
section 2.3.2. We use F>15% as a threshold indicating potential credibility issues requiring investigation 
(Murphy et al., 2018). 

Figure 10 shows the credibility tests for TXx and Rx1day in southern England in summer (following the 
examples of Figs. 8 and 9). For βT, the tails of the pdf extend beyond the smallest and largest simulated 
values for both TXx and Rx1day. However, all values of F are smaller than 15%, so we interpret the 
statistical inflation of the pdfs as defensible estimates of GCM results that might have been obtained with 
larger ensembles. For Rx1day, the high tail arises mainly from emulation of a slightly wider range of 
outcomes than shown by SLAB (compare blue histogram vs blue pdf in Fig. 9, bottom right panel), whereas 
the low tail is driven by the addition of spread associated with the discrepancy term (red cf blue pdfs) plus 
the impact of weighting (black cf red pdfs). This indicates that accounting for structural model uncertainty 
and observational constraints implies potential for larger reductions in βT than found in our set of GCM 
results.
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Figure 10. Credibility check on GCM-scale posterior pdfs of µT and βT (blue curves) using TXx and Rx1day in summer for the southern England box 
as examples. Coloured circles show values of µT and βT from the 349 GCM simulations fed into the Bayesian calculations, and blue numbers show 
upper and lower tail probabilities for outcomes beyond the range of GCM results. In each case, the larger of these numbers defines F, where F>15% 
is taken to indicate a level of statistical inflation that flags the relevant tail of the pdf as potentially unrealistic. The GCM values are NTR estimates, 
derived from the 57 ESPPE (orange), 12 CMIP5-ESM (blue), and 280 SLAB (green) simulations. The SLAB results include the offset term of Fig. 8, 
applied to convert NER estimates, derived directly from the SLAB simulations, into corresponding estimates of NTR. 

For µT, Fig. 10 shows extension of the low tails in both cases, large enough to lead to F=14.8% for TXx. This is 
caused by a significant negative shift in the pdf driven by adding the discrepancy term (Fig. 8, red cf blue 
curves). The shift arises because the CMIP5-ESM results all lie towards the lower end of the range of 
simulated PPE outcomes. The Bayesian method is predicated on the assumption that structural biases in 
the base model used for the PPE are not too large, and that the PPE provides a reasonable first-order 
estimate of the effects of modelling uncertainty (e.g. Sexton et al., 2012). Instances of a substantial 
discrepancy term therefore indicate reduced credibility in the relevant pdfs. In this case, we conclude that 
reduced confidence should be placed in the low tail of µT for summer TXx in Fig. 10. However, despite the 
negative shift caused by discrepancy, we also conclude that the upper tail of the pdf remains plausible. This 
is because it essentially encompasses the highest outcomes found in the GCM simulations (recalling that 
the coupled simulations provide more robust estimates of EV parameters than the SLAB simulations, as 
they are derived from much longer integrations (section 2.2)). 
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For the six EV parameters, Table 1 shows the fraction of occurrences of F>15%, across 20 tests assembled 
by pooling results from the five UK_GCM grid points for each season. Following Murphy et al. (2018), we 
assess credibility on this aggregated basis, assuming that a general credibility issue is more likely to exist if a 
particular EV parameter fails the F>15% criterion in several of the 20 cases. Although all parameters show 
instances of F>15%, the frequency of occurrence is usually 10% or less, which we assess as acceptable. 

The exception is µT for TXx, for which F>15% occurs in six out of 20 cases. All of these instances occur at 
the low end of the pdf. They arise mainly from shifts caused by negative values for the median of the 
discrepancy distribution (e.g. Fig. 10).

Such shifts will increase the probability of low outcomes for future return levels, noting that the effects of 
climate change on the location parameter will impart uniform upward or downward shifts to return level 
curves (Fig. 3), dependent on the sign of µT. However, assessments of future risks are likely to focus mainly 
on the high ends of the return level pdfs of TXx, rather than relatively benign outcomes sampled at the 
lower ends. This is likely to apply, for example, in impacts studies focused on improving understanding of 
future risks to public health and infrastructure arising from high temperatures (see Introduction). High future 
return levels will arise from samples of high-end values for either or both of µT and βT. For TXx, the upper 
tails of the of the µT and βT pdfs invariably encompass the highest outcomes from the underlying coupled 
GCM projections (as in Fig. 10, for example), noting that the two instances of F>15% for βT occur at the low 
end of the distribution.

Therefore, we assess that the pdfs of future return levels for TXx are suitable for use in impacts studies, with 
the important caveat that reduced confidence should be placed in low-end outcomes. In particular, 
outcomes below the 10th percentile are likely to be less strongly supported by available GCM evidence than 
other parts of the pdf, and the 10% cumulative probability for such outcomes should be interpreted as a 
conservative estimate. Note also that we clip the return level pdfs for all variables at the 5th and 95th 
percentiles (see section 2.3.5). This reflects a general caveat that the tails of the return level pdfs may be 
more sensitive than less extreme outcomes to statistical assumptions in the methodology (potentially 
including the downscaling aspects discussed below, as well as the GCM-scale calculations covered in this 
section). For TXx, data is provided for the 5th to 10th percentiles for consistency with other variables. 
However, users can optionally discard TXx data below the 10th percentile, dependent on their priorities for 
exploring unlikely low-end outcomes versus focusing on a slightly smaller uncertainty range supported by 
higher confidence.  

Table 1. Fraction of seasonal pdfs of µT and βT for which the tail-probability F exceeds 15%. 
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2.3.4 Downscaling relationships for climate change effects on EV parameters

Here we describe how the 11-member HadRM3-PPE is used to modify the GCM-scale projections of µT and 
βT from section 2.3.2. As explained in section 2.1, HadRM3-PPE members were driven by transient climate 
change simulations using 11 variants of the coupled ocean-atmosphere configuration of HadCM3 (Collins 
et al., 2011), each GCM-RCM pair using corresponding sets of parameter perturbations. These parameter 
sets are also shared by 11 of the SLAB17 members.

In Brown et al (2014), linear regressions were used (their Fig. 8) to link each HadRM3-PPE member to the 
corresponding SLAB simulation. This was done to achieve the link in a single step, with the consequence 
that the relationships accounted for the effects of ocean thermal inertia and circulation changes on the 
transient response of UK climate at the national scale, as well as more localised downscaling influences 
arising from better resolution of mountains, coastlines, mesoscale circulations and storms (e.g. 
Rummukainen, 2016). 

Here, however, the link between the equilibrium and transient responses is quantified by the offset term 
derived by mapping SLAB17 onto corresponding ESPPE members (section 2.3.2 and Figs. 8 and 9 (upper 
panels)). In our case, therefore, we require regression relationships between global and regional model 
changes that isolate the effects of downscaling. This is achieved by regressing HadRM3-PPE changes 
against their driving coupled simulations. Since there is significant uncertainty in determining the HadRM3-
PPE EV parameters a total least squares regression is performed.

Figure 11 shows examples of projected changes in the five UK_GCM grid boxes from one of the ESPPE 
simulations. These illustrate the spatial information available from our GCM simulations, prior to 
modification through downscaling. Values of µT range from ~1.0-1.5 for TXx in summer, being smallest in 
Scotland. For Rx1day in summer, northern Scotland shows the largest value of µT (~1.2), while a negative 
value occurs over southern England. Values of µT exceed unity everywhere for Rx5day in autumn, the 
lowest value of ~1.5 occurring over Wales, with values exceeding 2.5 to the north. Values of βT for Rx1day in 
summer and Rx5day in autumn are positive at all grid points, the largest values occurring in Scotland in the 
former case, and over Northern Ireland, northern England and Scotland in the latter. For TXx in summer, 
there are negative values over Wales and Northern Ireland, with values close to zero elsewhere.

For the downscaling predictands, local HadRM3-PPE values of µT and βT (derived in section 2.2) are first 
aggregated, by averaging results from 25km grid boxes contained within each UK_GCM grid box. This 
reflects an assumption that for rare climate extremes, the RCM is more likely to provide added value at the 
spatial scale of the driving GCM simulations (e.g. Sørland et al., 2018) than at its native grid scale. Examples 
of the downscaling regressions are shown in Fig. 12. Letters denote results from each of the 11 GCM-RCM 
pairs. We pool results from the five UK_GCM grid boxes, to give 55 values from which a single, UK-wide 
regression relationship is calibrated. This is done because the small number of training simulations hinders 
diagnosis of robust relationships for individual UK_GCM grid boxes (Brown et al., 2014).
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Figure 11. Values of µT and βT from an ESPPE member for the five UK_GCM land points, for TXx and Rx1day in summer, and Rx5day in autumn.  The 
maps show an example of the spatial information available from the GCM simulations, prior to modification using downscaling relationships.

Clear positive relationships (blue lines) are found for all the examples. In comparison with Brown et al. 
(2014), we find stronger relationships for βT in all cases shown, and for µT in the case of Rx5day in autumn. 
This is probably due, at least in part, to the use of longer GCM time series (150 years from 1951-2100) to 
provide the predictor variables, reducing sampling noise compared to the 20-year SLAB simulations used by 
Brown et al. (2014). Building the relationships directly from the driving GCM simulations (and hence 
isolating specific downscaling effects as explained above) may also be a factor. Where stronger downscaling 
relationships occur in comparison to Brown et al. (2014), this implies that climate change effects found in 
the GCM simulations will exert more influence on the final projections.
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Figure 12. Linear regression relationships (blue lines) used to account for downscaling effects in pdfs of µT and βT, for TXx and Rx1day in summer, 
and Rx5day in autumn. The relationships are calibrated using results from 11 HadRM3-PPE regional climate model (RCM) projections and their 
driving global climate model (GCM) projections (see text for details), with specific RCM-GCM pairs denoted as a-k. HadRM3-PPE results are first 
aggregated to GCM scale, by averaging values of µT and βT over each 25km RCM grid box contained within the relevant GCM grid box (Fig. 11). This 
provides 55 pairs of GCM and RCM values (five GCM grid boxes x 11 RCM-GCM simulations), which are pooled to derive a single, UK-wide 
regression for each variable.  

The GCM-scale posterior pdfs of µT and βT are then modified using the downscaling relationships. 
Uncertainty in the latter is represented by sampling a Gaussian residual distribution, calibrated from the 
scatter of points around the regression lines (Fig. 12). Fig. 13 shows median values from the downscaled 
pdfs for TXx and Rx1day in summer, and Rx5day in autumn. For TXx in summer, median values are quite 
similar across the UK, ranging from ~1.25 to ~1.4 for µT, accompanied by small negative values of βT. The full 
pdfs of µT and βT for TXx explore broad ranges of values in each region (e.g. Fig. 8 (lower panels), which show 
results prior to downscaling). Projected changes are influenced by the combined effects of these 
parameters: For example, a positive value of βT combined with a value of µT above 1.0 (e.g. Fig. 8, lower 
panels) would give rise to a future increase in long-period return levels that outstrips the corresponding 
change in GMST, while a negative value of βT coupled with a small or negative value of µT could lead to 
samples showing future reductions in return levels in TXx, despite increases in GMST.
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Figure 13. Median values of µT and βT for TXx and Rx1day in summer, and Rx5day in autumn, following modification of their GCM-scale pdfs by 
application of the downscaling relationships of Fig. 12.

With the exception of Scotland, median values of µT for Rx1day in summer are negative. This indicates a 
median tendency towards a general reduction in return levels. On the other hand, the median values of βT 
are positive everywhere apart from southern England. Positive values indicate a greater than even chance 
of sampling an increase in scale, that would offset the impact of negative µT on the rarest events (Fig. 3). 
The pdfs of µT and βT in Fig. 9 encompass a broad range of both positive and negative values. Since the joint 
pdf of µT and βT (not shown) does not feature a strong correlation between the two variables, this implies 
that pdfs of future return levels in southern England in summer will encompass both increases and 
decreases (see Fig. 15 in section 3). 

For Rx5day in autumn µT exceeds 2.5 everywhere, and βT exceeds 0.3 at all GCM boxes apart from northern 
England. These results indicate a balance of probability in favour of future increases in the return levels for 
extreme five-day precipitation accumulations.

The spatial patterns of median values differ from those of the individual ESPPE member of Fig. 11, 
illustrating the importance of sampling a diversity of outcomes from different GCM simulations. We note 
also that the patterns found in the median (or other percentiles of the pdfs of µT and βT) will not necessarily 
correspond to those found in any particular GCM simulation. 
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2.3.5 Projections of return levels: Production and data

For each variable, season, 25km grid box and emissions scenario, the probabilistic projections are derived 
from 3000 emulated samples of climate change from 1951-2100. Each of these:

• consists of a draw from a specific point in the 54-dimensional parameter space of HadCM3 earth system 
processes, modified to account for structural modelling uncertainty (section 2.1). Each draw provides a 
set of values for GMST, µT and βT for the relevant point in parameter space, derived using the statistical 
procedures described in section 2.3.1 and 2.3.2. 

• uses a smoothed1 GMST pathway from section 2.3.1 (recalling that the smoothing isolates the secular 
climate change responses assumed to drive changes in EV characteristics via Eq (3)). This is combined 
with the corresponding values of µT and βT for the UK_GCM grid box that the target 25km grid box lies 
within (section 2.3.2), modified according to the relevant downscaling relationship (section 2.3.4).

• represents an equally likely outcome from the joint posterior pdf. This is achieved by weighting a larger 
sample according to relative likelihood, and then resampling with replacement to obtain a core sample of 
3000 parameter sets. This is the same sample used by Murphy et al. (2018). Here, however, a further 
resampling is performed for each variable, season and grid box, to exclude unrealistically small or large 
future values of the scale parameter σ (see section 2.2). This leads to the exclusion of 10-100 sample 
members. In each case, the sample is restored to 3000 by random selection from the surviving 
members.

Equation (3) (with I set to zero) is then used to create time-dependent projections of location and scale for 
each sample member, by combining GMST(t), µT and βT with the observed baseline values µ0, and β0 (Fig. 4). 
The shape parameter is fixed as ξ0, independent of time, as explained in section 2.2. However, uncertainties3 
in the baseline parameters are accounted for, when assigning values of µ0, β0 and ξ0 to each of the 3000 
samples. 

Finally, the EV distribution (Eq 2) is used to infer 20-, 50- and 100-year return levels (in °C or mm) for each 
sample, from 1951-2100. The 3000 samples are used to create probability distribution functions (pdfs) and 
cumulative distribution functions (cdfs) for each year, available as data and graphical plots from the UKCP 
User Interface at https://ukclimateprojections-ui.metoffice.gov.uk/. 

The pdfs and cdfs are smoothed using a kernel density estimation technique, following the procedures used 
for other UKCP Probabilistic variables. Clipping of the pdfs and cdfs is also performed, to remove extreme 
values that may be less physically plausible than those within the bulk of the probability distribution. 
Reduced confidence in such tail values may arise, for example, from enhanced sensitivity to the details of 
the statistical assumptions required in the methodology (section 2.3.3, also Sexton and Murphy, 2012). For 
the other probabilistic variables, clipping was implemented by resetting values below the 1st percentile of 
the pdf and above the 99th percentile to those of the 1st and 99th percentiles respectively9. This 
winsorization procedure is also used here, but the clipping is applied at the 5th and 95th percentiles. This is 
because the use of extreme value theory adds another level of statistical processing to that included in the 
Bayesian calculations, and therefore increases the overall level of reliance of the high and low tails of the 
pdfs on the attendant assumptions.
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As noted in the Introduction, our presentation of return levels as pdfs and cdfs of absolute values differs 
from the format of the other UKCP probabilistic projections, in which variables are presented as anomalies 
(Murphy et al., 2018). The return level projections therefore include a built-in bias correction (through the 
use of observational values of µ0, β0 and ξ0), whereas users requiring absolute projections of the other 
variables (e.g. of monthly, seasonal or annual averages of surface air temperature, precipitation, cloud cover, 
etc) must combine the projected anomalies with a suitable baseline climatology.

There are many potential drivers of bias in the simulated tail distributions of TXx, Rx1day or Rx5day events. 
For example, these might include errors in the simulated average climatology, as well as various aspects of 
climate variability such as frequencies of weather types associated with extremes. Our bias correction 
effectively adjusts “top-down” for the combined effects of such influences on µ, β and ξ. This contrasts with 
some methods that users might deploy when correcting specific types of error in (say) a raw time series of 
GCM data, such as a bias in the long-term average or in the standard deviation of interannual variability.    

In earlier UKCP Probabilistic results, Murphy et al. (2018) provided results from each of the 3000 samples 
individually, in addition to the pdf and cdf data. These were termed “realisations”, each of which provided time 
series of monthly, seasonal or annual averages containing a temporally coherent representation of internal 
climate variability (as well as an evolving signal of long-term climate change). At a specific spatial location, the 
set of realisations could therefore be used in similar ways to time series output from an ensemble of climate 
model simulations. For example, the data could be searched for examples of individual threshold exceedances, 
or of hazards dependent on multivariate events, such as occurrences of hot, dry summers.

In the present case, however, an individual sample for a particular year consists of an EV distribution that 
represents an entire climatological distribution of potential events, rather than a single plausible outcome. 
Specifically, each EV distribution effectively accounts for an ensemble of phases of internal climate 
variability (as determined by the functional form of Eq (2) and the parameters of Eq (3)), combined with a 
level of long-term climate change represented by GMST(t). Whilst each EV distribution is then converted 
into individual estimates of return levels, these represent an expression of future climatological properties, 
rather than outcomes that will necessarily occur in the year in question. Therefore, we choose not to 
provide the return level projections as a set of individual realisations, as it would not be appropriate to 
interpret samples of return level in the same way as those of other UKCP Probabilistic variables.

9 The kernel density estimation is described in a UKCP Technical Note, available at https://www.metoffice.gov.uk/binaries/content/assets/
metofficegovuk/pdf/research/ukcp/ukcp18-technical-note-clipping-and-baseline-guidance-on-land-strand-1-data-in-ukcp18.pdf. This Note also 
describes a second type of smoothing, consisting of pooling the 3000 samples over an 11-year sliding window. This is not required here, since 
temporal smoothing is achieved by using low-pass filtered projections of GMST (see text).
10 While this applies to analysis of changes through time at a particular location, it does not apply to spatial analysis of outcomes at a particular 
time. For example, realisations at neighbouring 25km grid squares could not be averaged to represent a spatial average over a bespoke, user-chosen 
region. This is because the statistical processing required to produce the realisations does not produce outputs with the full spatial coherence of 
raw climate model output (Murphy et al., 2018).
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3. Examples of the probabilistic projections
In this section we provide examples of the projected return levels, demonstrating the types of information 
that users can obtain from the data.

For the 25km grid box containing central London, Fig. 14 shows the time evolution of 50-year return levels 
associated with selected percentiles of their pdfs for the RCP8.5 scenario, for TXx and Rx1day in summer 
and Rx5day in autumn. For summer TXx the median (a central estimate of the projected range of 
outcomes) increases modestly during the historical period, and then more rapidly from the 2020s onwards. 
The growth in spread between the low and high percentiles demonstrates considerable uncertainty in the 
projections. At the upper end of the pdfs, the return level associated with the 95th percentile eventually 
reaches ~50°C, consistent with simulated occurrences of such events in some of the underlying climate 
model simulations (Fig. 6). At the lower end, the value of the 10th percentile increases only a little during the 
21st century, while that associated with the 5th percentile reduces slightly. 

For Rx1day in summer, future median values of the 50-year return level remain close to the baseline. This 
contrasts with projected changes for seasonal average precipitation, for which the median shows a 
significant decline across SE England (Figs. 2.7 and 5.4d of Murphy et al., 2018). Such differences are typical 
of many climate model projections, in which the heaviest events are more likely than average precipitation 
to show increases (e.g. Pall et al., 2007). The heaviest events tend to occur when most of the moisture in a 
volume of air is precipitated out. Therefore, these events are strongly influenced by future increases in the 
availability of moisture, which increases with temperature at 6-7% per °C via the Clausius-Clapeyron 
relationship. Changes in seasonal average precipitation may be subject to a different balance of influences. 
In UKCP Probabilistic, for example, the summer North Atlantic Oscillation appears to play an important role, 
through future shifts towards its positive phase in most ESPPE members (Murphy et al., 2018). This 
contributes to a balance of probabilities in favour of drying in the pdfs of future seasonal averages, in 
contrast to the pdfs for the 50-year daily return level.  

Figure 14. Probabilistic projections of the 50-year return level for the 25km grid box containing central London. Results are shown for TXx (°C) and 
Rx1day (mm) in summer, and Rx5day (mm) in autumn, in response to historical changes in radiative forcing to 2005, and to forcing from the RCP8.5 
scenario for 2006-2100. Black curves show the medians of the pdfs, and the shading shows the 5th, 10th, 25th, 75th, 90th and 95th percentiles.
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However, the pdfs of future return level also reveal substantial uncertainties. The 10th percentile shows 
decreases beyond 2020 (reducing by ~7mm by 2100), whilst the 90th percentile shows substantial 
increases, increasing by ~10mm by 2100. The Rx1day (and Rx5day) pdfs also show significant uncertainties 
during the historical period (Fig. 14). The historical uncertainties arise mainly from uncertainty in the 
baseline values of the EV parameters (section 2.2), with a minor additional contribution arising from the 
spread in historical changes in GMST (Fig. 7). The historical pdfs of summer TXx also show a spread, though 
this is smaller in comparison with the future pdfs. The historical spread of TXx is slightly larger prior to 1980 
than during 1981-2000. This occurs because the latter is our baseline period for definition of GMST 
anomalies (section 2.3.1 and Fig. 7). By construction, this reduces the influence of anomalies in GMST during 
1981-2000. 

Median values of Rx5day in autumn (Fig. 14, right panel) are projected to increase monotonically through 
the 21st century. During 1981-2000, the median estimate lies close to 85mm. By 2100, the pdfs of 
absolute return level show a greater than 75% chance of exceeding this value. Whilst the return level 
associated with the 10th percentile increases only slightly by 2100, that of the 90th percentile increases by 
more than 30mm. 

For London, Fig. 15 shows the impact of alternative emissions scenarios on the 50-year return level for TXx 
and Rx1day in summer. Beyond 2050, substantial differences develop between projections for the 
scenarios with the lowest and highest increases in anthropogenic forcing (RCP2.6 and RCP8.5 respectively, 
where the 2.6 and 8.5 indicate the approximate forcing in Wm-2 by 2100 relative to pre-industrial 
conditions).

For TXx, the strong mitigation measures assumed in RCP2.6 (Moss et al., 2010) restrict future increases in 
the median return level to about 2°C, and the pronounced upper tail seen beyond 2050 in the RCP8.5 
results is absent. This is emphasised by Fig. 15 (top right), that compares the pdfs for 2099. For example, 
the upper tail of the RCP8.5 distribution (red curve) includes values ~10°C higher than the largest values in 
RCP2.6 (blue curve, which shows a sharp peak at ~38°C and a relatively narrow interquartile range). The 
intermediate RCP4.5 (green) and RCP6.0 (black) scenarios show a significantly higher chance than RCP2.6 
of seeing return levels exceeding 40°C, however RCP4.5 and RCP6.0 results show very little chance of a 
value exceeding 50°C, compared with the probability of ~5% found for RCP8.5.

By 2099, the 5th percentile of the TXx distribution in RCP8.5 is slightly lower than at 2000, and similar to 
the value in RCP2.6, despite the larger GMST increases in RCP8.5 (Fig. 7). This occurs because the pdf of βT 
for London, while centred around a value close to zero (Fig. 13), does sample substantial negative values 
(due to the influence of the GCM-scale results for southern England (Fig. 8)). When coupled with a small 
positive or negative value sampled from the pdf of µT (Fig. 8), this can produce outcomes in which return 
level reduces with increasing GMST. Note, however, that the low end of the µT pdf carries low confidence 
compared with the bulk of the distribution (section 2.3.3), so the low ends of the TXx return level 
distributions in Fig. 15 should be regarded as conservative estimates.
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Figure 15. Probabilistic projections of 50-year return levels for TXx (°C) and Rx1day (mm) for the 25km grid box containing central London. Left 
panels show time-dependent projections, where red and blue shading denote the RCP2.6 and RCP8.5 scenarios respectively (noting that results 
are identical during the historical forcing period to 2006). Shading denotes the 5th, 10th, 25th, 75th, 90th and 95th percentiles of the pdfs. Right panels 
show pdfs for 2099, for the RCP scenarios (2.6 blue, 4.5 green, 6.0 black, 8.5 red).
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For Rx1day, the 50-year return level pdfs change only modestly during the 21st century, under RCP2.6 
emissions (Fig. 15). There are small reductions and increases in the values associated with the 10th and 90th 
percentiles respectively. This contrasts with the pronounced growth in the range of values under RCP8.5 
emissions, beyond ~2050. The posterior pdfs of µT and βT (shown at GCM scale in Fig. 9) both cover a range 
of positive and negative outcomes. When scaled by the larger increases in GMST found in RCP8.5 (Fig. 7), 
these drive a larger inflation of uncertainties in future return level. By 2099 (Fig. 15, bottom right panel), 
50-year return level values below 30mm, or above 70mm, have very low probabilities for the RCP2.6 
scenario, whereas the RCP8.5 results suggest a chance of about 10% for lower or higher values, 
respectively. The pdfs for RCP4.5 and RCP6.0 give probabilities similar to RCP8.5 for outcomes <30mm, and 
intermediate between RCP2.6 and RCP8.5 for values >70mm.

Figure 16 compares projections for the 20-, 50- and 100-year return periods, for TXx and Rx1day for 
London under RCP8.5 emissions. For TXx, the results are qualitatively similar, in the sense that increases in 
the rate of warming for the median return level, and substantial growth in the range of uncertainty beyond 
the 2020s, are common to each return period. By construction, longer return periods are associated with 
higher temperatures. By 2099, for example, the 95th percentile reaches ~52°C for the 100-year return level, 
compared with ~50°C for the 20-year level. The corresponding medians reach ~41°C and ~42°C, 
respectively. At the lower ends of the distributions, differences in return level are small.

The probabilistic projections of Rx1day return levels are substantially broader for the 100-year return 
period, compared to the 20-year values. By 2099, the 90th percentile value exceeds 90mm for the 100-
year return period, cf ~60mm for the 20-year period. The 10th percentile values (~38mm and ~30mm 
respectively) differ less. This contrasts with the TXx results for London, mainly because the values of β0 and 
ξ0 for Rx1day are different from those for TXx, being larger for β0 and less negative for ξ0 (see Fig. 4 and 
discussion in section 2.2). Consequently, the most extreme daily precipitation events (and hence associated 
uncertainties in the pdfs) will increase more rapidly with rarity than the most extreme temperature events 
(e.g. Fig. 3).  
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In future work, we recommend that the physical credibility of these rare temperature or precipitation 
events, particularly those associated with the upper ends of the probability distributions, should be 
investigated further by analysing the meteorological conditions that give rise to them in climate simulations 
(e.g. Fig. 6). Users of UKCP could do this, for example, by selecting appropriate case studies from the sets of 
Global, Regional or Local projections (e.g. Kendon et al., 2020).

Examples of the projections as spatial patterns are shown in Fig. 17. The maps show 10th, 50th and 90th 
percentiles of 50-year return levels for 2070, under the RCP8.5 scenario. For TXx in summer (top row), the 
hottest values are found in SE England, with median values in the range 38-40°C, and 90th percentile values 
reaching 45°C in places. For a given percentile, lower values are found to the north and west. Over northern 
Scotland, 90th percentile values reach 33-36°C, whereas 10th percentile values lie between 25 and 30°C. 
The 10th-90th percentile ranges reach 10°C in SE England and are slightly smaller elsewhere.

Figure 16. Comparison of probabilistic projections for 20-, 50- and 100-year return levels, for the 25km grid box containing central London. The 
results show projections for TXx (°C, upper panels) and Rx1day (mm, lower panels) in summer, in response to historical changes in radiative forcing 
to 2005, and to forcing from the RCP8.5 scenario for 2006-2100. White curves show median changes, and shading denotes 5th, 10th, 25th, 75th, 90th 
and 95th percentiles of the pdfs.  
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The maps for Rx1day in summer show their highest values over high ground (notably over the Welsh 
mountains, the NW Highlands and in the Lake District), and in some coastal regions. These features reflect 
the influence of spatial detail in the baseline values of µ0, β0 and ξ0 (Fig. 4). At the larger spatial scale of 
UK_GCM grid boxes, the patterns of future return levels11 are also influenced by differing values of µT and βT 
(Fig. 13).  At the 90th percentile, future values of the 50-year return level reach 100-120mm in some high-
elevation regions, with corresponding median values typically amounting to ~70mm. Many of the lowest 
return levels occur in Essex and East Anglia, where 10th and 90th percentile shows values of 30-35mm, and 
60-75mm, respectively. Uncertainty ranges are substantial everywhere, with 10th-90th percentile ranges 
typically amounting to ~40mm.  

Figure 17. Maps of the 50-year return levels associated with the 10th, 50th and 90th percentiles of the pdfs in 2070, for the RCP8.5 scenario. Upper, 
middle and lower rows show results for TXx (°C) in summer, Rx1day (mm) in summer, and Rx5day (mm) in autumn. 

11 Note that the spatial detail in these patterns of return level is not expected, in general, to correspond to the detailed patterns of change in seasonal 
average temperature or precipitation, shown in Murphy et al. (2018). This is because: (a) the patterns of future change in Murphy et al. (2018) lack, by 
construction, any influence of baseline climatological values; (b) the downscaling climate change relationships used for seasonal mean variables are 
locally-specific, and hence contain information at the 25km scale, whereas here we use a single, UK-wide downscaling relationship at all grid points 
(e.g. Fig. 11). This limits the spatial influence of future climate change information to the GCM (300km) scale (section 2.3.4).  
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For Rx5day in autumn median values are again highest in elevated regions, locally exceeding 200mm, 
notably over parts of the NW Highlands. Values are considerably lower (<100mm) over parts of the 
Midlands and East Anglia, although these values represent increases of >10mm, relative to corresponding 
baseline values. The 90th percentile return levels show values exceeding 150mm over parts of Wales, 
northern England and Scotland.

Table 2 provides 50-year return levels for 1990 and 2070 (the latter for the RCP8.5 scenario), for each 
variable and season. The information consists of UK averages of local values of the 10th, 50th and 90th 
percentiles at 25km grid squares. This provides a simple national-scale overview of the results, while noting 
the underlying presence of considerable regional variations, as shown in Fig. 17. Median baseline values are 
highest in summer for TXx and Rx1day, and in autumn for Rx5day. Future median values show increases, for 
all variables and seasons. For TXx the increase is largest in summer (4.2°C), and smallest in winter (2.5°C). 
For Rx1day and Rx5day, the average increases in the median are small in summer (2mm and 3mm 
respectively), but larger in other seasons (5-10mm for Rx1day, and 9-13mm for Rx5day).   

The baseline values show 10th-90th percentile ranges amounting to 1-3-2.1°C for TXx, 13-23mm for 
Rx1day and 17-25mm for Rx5day. The ranges for the precipitation metrics amount to 32-40% of the 
median for Rx1day, and 19-25% for Rx5day, due mainly to the influence of significant uncertainties in µ0, β0 
and ξ0 (see also Fig. 14). The future 10th-90th ranges amount to 2.8-7.9°C for TXx, 18-34mm for Rx1day 
and 31-46mm for Rx5day. These are significantly broader than their 1990 counterparts, due to the 
additional influences of uncertainty in µT and βT, coupled with the growth of spread in future GMST.

Table 2. UK averages of regional 50-year return levels

Return levels associated with the 10th and 90th percentiles all increase in future, apart from 10th percentile 
values for Rx1day and Rx5day in summer, which show small reductions. These low-end reductions are likely 
to arise from outcomes sampling changes in future circulation (such as a shift to the positive phase of the 
summer North Atlantic Oscillation – see discussion of Fig. 14) that are large enough to offset the effects of 
a warmer, moister atmosphere in setting the risk of extreme precipitation events.

Average values over all UK 25km grid boxes of 50-year return levels for 1990 and 2070, for each variable and season. The 2070 numbers are 
projected values under the RCP8.5 scenario. Separate UK averages are provided for low (10th percentile), central (50th percentile) and high (90th 
percentile) regional outcomes from the relevant pdfs.
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4. Concluding Remarks
We have described an extension to the probabilistic projections component of UKCP (UKCP Probabilistic, 
Murphy et al., 2018), in which the underpinning Bayesian framework is combined with extreme value (EV) 
theory, using an updated version of the method of Brown et al. (2014). This supports projections of 20-, 
50- and 100-year return levels of daily maximum surface air temperature (TXx), daily precipitation (Rx1day) 
and 5-day accumulated precipitation (Rx5day) on a 25-km national grid (Fung et al., 2018), for winter, 
spring, summer and autumn. These 21st century projections augment the existing probabilistic projections 
of monthly, seasonally and annually averaged climate variables (Murphy et al., 2018), and are available for 
five emissions scenarios (RCP2.6, 4.5, 6.0 and 8.5, and SRES A1B).   

Compared to historical values for 1990, the projections show increases in median return levels in all seasons 
for all variables under RCP8.5 emissions. By 2070, the increase in median TXx for the 50year return level is 
2.5°C in winter, and 3.7-4.3°C in other seasons, based on UK averages of gridded regional values (Table 2). 
The smallest median increases occur in summer for Rx1day and Rx5day, with larger values (5-10mm for 
Rx1day and 9-13mm for Rx5day) occurring in autumn, winter and spring.  

In all cases, the future probability density functions (pdfs) reveal ranges that grow with time during the 21st 
century, reflecting the developing influence of uncertainties in modelling the climate change response. 
Under the RCP8.5 scenario, the UK average of the 10th percentile for summer TXx in 2070 is 32.0°C for the 
50-year return level, whereas the 90th percentile average is 39.9°C. For Rx5day in autumn, corresponding 
averages are 102mm (10th percentile) and 142mm (90th percentile). These future differences between the 
10th and 90th percentile averages, of 7.9°C and 40mm respectively, compare to corresponding differences 
of 2.1°C and 24mm for 1990.

The pdfs for different emissions scenarios are similar during the next two decades but show significant 
differences beyond 2050. In particular, return levels associated with the upper tails are larger for RCP8.5 
(the scenario with the largest increase in radiative forcing, reaching ~8.5 Wm-2 by 2100) compared with 
RCP2.6 (the scenario with the smallest increase in forcing, that peaks in mid-century and reduces to ~2.6 
Wm-2  by 2100). 

These results are based on 349 global climate model (GCM) simulations and 11 regional climate model 
(RCM) simulations. Most (348) of these are derived from perturbed parameter ensembles (PPEs) using 
several configurations of the HadCM3 climate model, while twelve are drawn from a CMIP5 ensemble of 
earth system models. The latter represent uncertainties due to structural variations in model construction. 
Use of the Bayesian framework (Sexton et al., 2012; Harris et al., 2013; Murphy et al., 2018) allows the 
climate model results to be extended to cover unsampled parts of parameter space through the use of 
statistical emulators, and to be combined with a set of observational constraints derived from metrics of 
historical model performance. The methodology supports relatively broad assessments of known modelling 
uncertainties, based on the synthesis of the above lines of evidence. However, the probabilities are also 
conditional upon the chosen climate modelling information, the choice of constraints, and various 
subjective choices required to implement the methodology. The latter includes expert prior distributions for 
uncertain model parameters, and the design and calibration of statistical techniques needed to combine 
the information. 
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The return level projections are presented as absolute values (in °C or mm) that incorporate a bias 
correction. Following Brown et al. (2014), this is done by constructing future extreme value distributions 
that combine baseline values derived from observations with climate change effects derived from the GCM 
and RCM simulations. The baseline values are gridded 25km-scale values obtained from UK station data 
(Perry et al., 2009). This presentation as absolute values differs from  earlier UKCP Probabilistic results for 
monthly, seasonally and annually averaged variables (Murphy et al., 2018), which were issued as anomalies 
relative to 1981-2000, thus leaving construction of absolute values (and associated bias correction 
strategies) to be handled by users on an application-specific basis.   

As in Murphy et al. (2018), the return level projections are constructed from 3000 samples of potential 
future climate change. These are drawn from the space of parametric uncertainties in the representation of 
earth system processes in HadCM3, modified to account for structural modelling uncertainty. Data 
(available from https://ukclimateprojections-ui.metoffice.gov.uk/) is presented in the form of time-
dependent pdfs and cdfs (cumulative distribution functions).

For other UKCP Probabilistic variables, we also provided results from each of the 3000 return level samples 
individually. Each sample member for the monthly, seasonal and annual variables includes a specific time-
varying outcome for internal climate variability in a changing climate. For a given year and region, it can 
therefore be treated analogously to output from an individual GCM simulation. This means, for example, 
that users can average individual samples over a number of consecutive years to reduce the influence of 
internal variability and search the samples for particular examples of threshold exceedances, or multivariate 
events at a particular spatial location.

However, each individual sample for TXx, Rx1day or Rx5day specifies an EV distribution that, when 
converted into an estimate of a given return level, accounts for uncertainty arising from different phases of 
internal climate variability. Whilst an individual sample of (say) average summer precipitation in 2065 can 
be viewed as one specific realisation of a possible outcome in that year, a corresponding sample of the 
20-year return level for (say) Rx1day cannot. Rather, it represents one particular expression of what the 
climatological distribution of extreme daily precipitation events might look like in 2065. Due to this 
important conceptual difference, we opted not to provide the return level projections as a set of individual 
realisations, as it would not be appropriate to interpret samples of return level in the same way as those of 
other UKCP Probabilistic variables.

Analysis that would require the underlying sampled data, such as study of joint distributions of return level 
variables, or assessment of ranges of change conditioned on specific global warming levels, will not 
therefore be possible with the return level projections. However, the full pdfs of return level can be 
compared with corresponding pdfs of other variables for a given region, period and emissions scenario, as 
the underlying Bayesian methodology is common to both datasets.

The probabilistic return level projections are suitable for assessment of uncertainties associated with the 
relevant extremes at specific 25km grid locations. Return levels for spatial averages of TXx, Rx1day and 
Rx5day over aggregated regions are not provided. However, users requiring a view on typical local values 
within a broader region could average (say) 10th, 50th or 90th percentile values over all constituent 25km grid 
boxes, as in Table 2.
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The data is not suitable for analysis of joint risks at a network of spatially distributed locations, noting that 
this would be true even if sampled data was being provided, since the statistical processing required to 
produce the samples does not produce outputs with the full spatial coherence of raw climate model output 
(Murphy et al., 2018). 

In addition to the new UKCP Probabilistic product described in this report, users can derive projections of 
future extremes for the UK (or other regions) from alternative UKCP products consisting of data taken 
directly from climate model simulations: These comprise the sets of 28 global projections (UKCP Global), 12 
European RCM model projections (UKCP Regional) and 12 UK convective-permitting projections (UKCP 
Local). These datasets provide access to a wider range of variables with full spatial coherence, and can be 
used to study the spatial characteristics of future extreme events, such as relationships between return 
levels in different parts of the UK, or case studies of specific types of event (for example winter flooding 
episodes (Huntingford et al., 2014), or summer heatwaves (McCarthy et al., 2019)). 

UKCP Local features the highest spatial resolution (2.2km). Its explicit representation of the dynamics of 
large convective storms offers new capability to predict changes in the characteristics of hourly 
precipitation events, and it accounts in greater detail for the influences of mountains, coastlines and urban 
areas (Kendon et al., 2019). 

However, UKCP Global, Regional and Local offer more limited strategies for representing uncertainties, in 
comparison to UKCP Probabilistic (Murphy et al., 2018; Kendon et al., 2019). Therefore, these new UKCP 
Probabilistic results may provide useful context for studies requiring the flexibility of raw climate model 
output, by revealing gaps in potential climate impacts diagnosed from the latter. To this end, we encourage 
future comparisons of the present return level projections with corresponding results derived from UKCP 
Global, Regional and Local.  
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