Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
Next Issue
Volume 22, September
Previous Issue
Volume 22, July
 
 

Mar. Drugs, Volume 22, Issue 8 (August 2024) – 49 articles

Cover Story (view full-size image): A detailed investigation into the chemical composition of a Discodermia du Bocage specimen collected in the Pacific Ocean has led us to the isolation of the novel compound PM742, the first example of an α-pyrone polyketide fused to a nonribosomal peptide fragment linked to a unique trisubstituted dihydrothiazole. Biological studies have shown strong in vitro cytotoxicity against several human tumor cell lines as well as a tubulin depolymerization mechanism of action for this compound, leading, as reported herein, to a full preclinical program and the selection of a lead for Phase I clinical trials. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
16 pages, 5773 KiB  
Article
Mechanism of Takifugu bimaculatus Skin Peptides in Alleviating Hyperglycemia in Rats with Type 2 Diabetic Mellitus Based on Microbiome and Metabolome Analyses
by Min Xu, Bei Chen, Kun Qiao, Shuji Liu, Yongchang Su, Shuilin Cai, Zhiyu Liu, Lijun Li and Qingbiao Li
Mar. Drugs 2024, 22(8), 377; https://doi.org/10.3390/md22080377 - 22 Aug 2024
Viewed by 535
Abstract
In this study, we aimed to explore the hypoglycemic effects of a hydrolysate on Takifugu bimaculatus skin (TBSH). The effect of the dipeptidyl peptidase-IV (DPP-IV) inhibitory activities from different TBSH fractions was investigated on basic indexes, gut hormones, blood lipid indexes, viscera, and [...] Read more.
In this study, we aimed to explore the hypoglycemic effects of a hydrolysate on Takifugu bimaculatus skin (TBSH). The effect of the dipeptidyl peptidase-IV (DPP-IV) inhibitory activities from different TBSH fractions was investigated on basic indexes, gut hormones, blood lipid indexes, viscera, and the gut microbiota and its metabolites in rats with type 2 diabetes mellitus (T2DM). The results showed that the <1 kDa peptide fraction from TBSH (TBP) exhibited a more potent DPP-IV inhibitory effect (IC50 = 0.45 ± 0.01 mg/mL). T2DM rats were induced with streptozocin, followed by the administration of TBP. The 200 mg/kg TBP mitigated weight loss, lowered fasting blood glucose levels, and increased insulin secretion by 20.47%, 25.23%, and 34.55%, respectively, rectified irregular hormonal fluctuations, lipid metabolism, and tissue injuries, and effectively remedied gut microbiota imbalance. In conclusion, TBP exerts a hypoglycemic effect in rats with T2DM. This study offers the potential to develop nutritional supplements to treat T2DM and further promote the high-value utilization of processing byproducts from T. bimaculatus. It will provide information for developing nutritional supplements to treat T2DM and further promote the high-value utilization of processing byproducts from T. bimaculatus. Full article
(This article belongs to the Special Issue Value-Added Products from Marine Fishes)
Show Figures

Figure 1

4 pages, 171 KiB  
Editorial
Marine Products and Their Anti-Inflammatory Potential: Latest Updates
by Marzia Vasarri and Donatella Degl’Innocenti
Mar. Drugs 2024, 22(8), 376; https://doi.org/10.3390/md22080376 - 21 Aug 2024
Viewed by 568
Abstract
The depths of the sea are a rich source of biologically active compounds with therapeutic potential for various human diseases, including inflammatory conditions [...] Full article
(This article belongs to the Special Issue Marine Anti-inflammatory and Antioxidant Agents 3.0)
20 pages, 11030 KiB  
Article
Identification of Marine-Derived SLC7A11 Inhibitors: Molecular Docking, Structure-Based Virtual Screening, Cytotoxicity Prediction, and Molecular Dynamics Simulation
by Jiaqi Chen, Xuan Li, Jiahua Tao and Lianxiang Luo
Mar. Drugs 2024, 22(8), 375; https://doi.org/10.3390/md22080375 - 20 Aug 2024
Viewed by 593
Abstract
The search for anticancer drugs that target ferroptosis is a promising avenue of research. SLC7A11, a key protein involved in ferroptosis, has been identified as a potential target for drug development. Through screening efforts, novel inhibitors of SLC7A11 have been designed with the [...] Read more.
The search for anticancer drugs that target ferroptosis is a promising avenue of research. SLC7A11, a key protein involved in ferroptosis, has been identified as a potential target for drug development. Through screening efforts, novel inhibitors of SLC7A11 have been designed with the aim of promoting ferroptosis and ultimately eliminating cancer cells. We initially screened 563 small molecules using pharmacophore and 2D-QSAR models. Molecular docking and ADMET toxicity predictions, with Erastin as a positive control, identified the small molecules 42711 and 27363 as lead compounds with strong inhibitory activity against SLC7A11. Further optimization resulted in the development of a new inhibitor structure (42711_11). Molecular docking and ADMET re-screening demonstrated successful fragment substitution for this small molecule. Final molecular dynamics simulations also confirmed its stable interaction with the protein. These findings represent a significant step towards the development of new therapeutic strategies for ferroptosis-related diseases. Full article
(This article belongs to the Special Issue New Screening of Marine Natural Products)
Show Figures

Figure 1

18 pages, 11765 KiB  
Article
Antioxidant and Skin-Whitening Efficacy of a Novel Decapeptide (DP, KGYSSYICDK) Derived from Fish By-Products
by Sung-Gyu Lee, Jin-Woo Hwang and Hyun Kang
Mar. Drugs 2024, 22(8), 374; https://doi.org/10.3390/md22080374 - 20 Aug 2024
Viewed by 658
Abstract
The skin is vulnerable to damage from ultraviolet rays and oxidative stress, which can lead to aging and pigmentation issues. This study investigates the antioxidant and whitening efficacy of a decapeptide (DP, KGYSSYICDK) derived from marine fish by-products and evaluates its potential as [...] Read more.
The skin is vulnerable to damage from ultraviolet rays and oxidative stress, which can lead to aging and pigmentation issues. This study investigates the antioxidant and whitening efficacy of a decapeptide (DP, KGYSSYICDK) derived from marine fish by-products and evaluates its potential as a new skin-whitening agent. DP demonstrated high antioxidant activity, showing comparable or superior performance to Vitamin C (Vit. C) in ferric reducing antioxidant power (FRAP) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging assays. In hydrogen peroxide (H2O2)-treated HaCaT cells, DP increased cell viability and reduced reactive oxygen species (ROS) generation. Furthermore, DP inhibited tyrosinase activity and decreased melanin production in α-melanocyte stimulating hormone (α-MSH)-induced B16F10 melanoma cells in a dose-dependent manner. Reverse transcription polymerase chain reaction (RT-PCR) analysis revealed that DP reduces the mRNA expression of MITF, tyrosinase, and MC1R, thus suppressing melanin production. DP exhibits strong binding interactions with multiple amino acid residues of tyrosinase, indicating potent inhibitory effects on the enzyme. These results suggest that DP possesses significant antioxidant and whitening properties, highlighting its potential as a skin-whitening agent. Future research should focus on optimizing DP’s structure and exploring structure–activity relationships. Full article
(This article belongs to the Special Issue Marine Cosmeceuticals)
Show Figures

Figure 1

14 pages, 3178 KiB  
Article
Inhibition of Soluble Epoxide Hydrolase by Cembranoid Diterpenes from Soft Coral Sinularia maxima: Enzyme Kinetics, Molecular Docking, and Molecular Dynamics
by Nguyen Viet Phong, Nguyen Phuong Thao, Le Ba Vinh, Bui Thi Thuy Luyen, Chau Van Minh and Seo Young Yang
Mar. Drugs 2024, 22(8), 373; https://doi.org/10.3390/md22080373 - 17 Aug 2024
Viewed by 661
Abstract
Soluble epoxide hydrolase (sEH) is essential for converting epoxy fatty acids, such as epoxyeicosatrienoic acids (EETs), into their dihydroxy forms. EETs play a crucial role in regulating blood pressure, mediating anti-inflammatory responses, and modulating pain, making sEH a key target for therapeutic interventions. [...] Read more.
Soluble epoxide hydrolase (sEH) is essential for converting epoxy fatty acids, such as epoxyeicosatrienoic acids (EETs), into their dihydroxy forms. EETs play a crucial role in regulating blood pressure, mediating anti-inflammatory responses, and modulating pain, making sEH a key target for therapeutic interventions. Current research is increasingly focused on identifying sEH inhibitors from natural sources, particularly marine environments, which are rich in bioactive compounds due to their unique metabolic adaptations. In this study, the sEH inhibitory activities of ten cembranoid diterpenes (110) isolated from the soft coral Sinularia maxima were evaluated. Among them, compounds 3 and 9 exhibited considerable sEH inhibition, with IC50 values of 70.68 μM and 78.83 μM, respectively. Enzyme kinetics analysis revealed that these two active compounds inhibit sEH through a non-competitive mode. Additionally, in silico approaches, including molecular docking and molecular dynamics simulations, confirmed their stability and interactions with sEH, highlighting their potential as natural therapeutic agents for managing cardiovascular and inflammatory diseases. Full article
(This article belongs to the Special Issue Marine Drug Discovery through Molecular Docking)
Show Figures

Figure 1

24 pages, 2152 KiB  
Review
New Secondary Metabolites of Mangrove-Associated Strains
by Yunxia Yu, Zimin Wang, Dingmi Xiong, Liman Zhou, Fandong Kong and Qi Wang
Mar. Drugs 2024, 22(8), 372; https://doi.org/10.3390/md22080372 - 16 Aug 2024
Viewed by 518
Abstract
Positioned at the dynamic interface between terrestrial and marine realms, mangroves embody a vibrant tapestry of biodiversity, encompassing an array of plants, animals, and microorganisms. These microbial inhabitants of mangrove habitats have emerged as a pivotal resource for antimicrobials and a plethora of [...] Read more.
Positioned at the dynamic interface between terrestrial and marine realms, mangroves embody a vibrant tapestry of biodiversity, encompassing an array of plants, animals, and microorganisms. These microbial inhabitants of mangrove habitats have emerged as a pivotal resource for antimicrobials and a plethora of pharmaceutically valuable compounds, spanning enzymes, antineoplastic agents, pesticides, immunosuppressants, and immunomodulators. This review delves into the recent landscape (January 2021 to May 2024, according to the time of publication) of novel secondary metabolites isolated from mangrove-associated microorganisms, analyzing 41 microbial strains that collectively yielded 165 distinct compounds. Our objective is to assess the productivity and potential of natural products derived from microbial populations within mangrove ecosystems in recent times. Notably, fungi stand out as the preeminent contributors to the emergence of these novel natural products, underscoring their pivotal role in the bioprospecting endeavors within these unique environments. Full article
(This article belongs to the Special Issue Bio-Active Products from Mangrove Ecosystems 2.0)
Show Figures

Figure 1

16 pages, 2509 KiB  
Article
Comparative Transcriptomic Analysis on the Effect of Sesamol on the Two-Stages Fermentation of Aurantiochytrium sp. for Enhancing DHA Accumulation
by Xuewei Yang, Liyang Wei, Shitong Liang, Zongkang Wang and Shuangfei Li
Mar. Drugs 2024, 22(8), 371; https://doi.org/10.3390/md22080371 - 16 Aug 2024
Viewed by 606
Abstract
Aurantiochytrium is a well-known long-chain polyunsaturated fatty acids (PUFAs) producer, especially docosahexaenoic acid (DHA). In order to reduce the cost or improve the productivity of DHA, many researchers are focusing on exploring the high-yield strain, reducing production costs, changing culture conditions, and other [...] Read more.
Aurantiochytrium is a well-known long-chain polyunsaturated fatty acids (PUFAs) producer, especially docosahexaenoic acid (DHA). In order to reduce the cost or improve the productivity of DHA, many researchers are focusing on exploring the high-yield strain, reducing production costs, changing culture conditions, and other measures. In this study, DHA production was improved by a two-stage fermentation. In the first stage, efficient and cheap soybean powder was used instead of conventional peptone, and the optimization of fermentation conditions (optimal fermentation conditions: temperature 28.7 °C, salinity 10.7‰, nitrogen source concentration 1.01 g/L, and two-nitrogen ratio of yeast extract to soybean powder 2:1) based on response surface methodology resulted in a 1.68-fold increase in biomass concentration. In the second stage, the addition of 2.5 mM sesamol increased the production of fatty acid and DHA by 93.49% and 98.22%, respectively, as compared to the optimal culture condition with unadded sesamol. Transcriptome analyses revealed that the addition of sesamol resulted in the upregulation of some genes related to fatty acid synthesis and antioxidant enzymes in Aurantiochytrium. This research provides a low-cost and effective culture method for the commercial production of DHA by Aurantiochytrium sp. Full article
(This article belongs to the Special Issue Algal Cultivation for Obtaining High-Value Products)
Show Figures

Graphical abstract

29 pages, 11368 KiB  
Article
A New Renieramycin T Right-Half Analog as a Small Molecule Degrader of STAT3
by Preeyaphan Phookphan, Satapat Racha, Masashi Yokoya, Zin Zin Ei, Daiki Hotta, Hongbin Zou and Pithi Chanvorachote
Mar. Drugs 2024, 22(8), 370; https://doi.org/10.3390/md22080370 - 14 Aug 2024
Viewed by 1432
Abstract
Constitutive activation of STAT3 contributes to tumor development and metastasis, making it a promising target for cancer therapy. (1R,4R,5S)-10-hydroxy-9-methoxy-8,11-dimethyl-3-(naphthalen-2-ylmethyl)-1,2,3,4,5,6-hexahydro-1,5-epiminobenzo[d]azocine-4-carbonitrile, DH_31, a new derivative of the marine natural product Renieramycin T, showed potent activity against H292 and H460 cells, with IC50 values of [...] Read more.
Constitutive activation of STAT3 contributes to tumor development and metastasis, making it a promising target for cancer therapy. (1R,4R,5S)-10-hydroxy-9-methoxy-8,11-dimethyl-3-(naphthalen-2-ylmethyl)-1,2,3,4,5,6-hexahydro-1,5-epiminobenzo[d]azocine-4-carbonitrile, DH_31, a new derivative of the marine natural product Renieramycin T, showed potent activity against H292 and H460 cells, with IC50 values of 5.54 ± 1.04 µM and 2.9 ± 0.58 µM, respectively. Structure–activity relationship (SAR) analysis suggests that adding a naphthalene ring with methyl linkers to ring C and a hydroxyl group to ring E enhances the cytotoxic effect of DH_31. At 1–2.5 µM, DH_31 significantly inhibited EMT phenotypes such as migration, and sensitized cells to anoikis. Consistent with the upregulation of ZO1 and the downregulation of Snail, Slug, N-cadherin, and Vimentin at both mRNA and protein levels, in silico prediction identified STAT3 as a target, validated by protein analysis showing that DH_31 significantly decreases STAT3 levels through ubiquitin-proteasomal degradation. Immunofluorescence and Western blot analysis confirmed that DH_31 significantly decreased STAT3 and EMT markers. Additionally, molecular docking suggests a covalent interaction between the cyano group of DH_31 and Cys-468 in the DNA-binding domain of STAT3 (binding affinity = −7.630 kcal/mol), leading to destabilization thereafter. In conclusion, DH_31, a novel RT derivative, demonstrates potential as a STAT3-targeting drug that significantly contribute to understanding of the development of new targeted therapy. Full article
Show Figures

Figure 1

14 pages, 1556 KiB  
Article
Antiviral Effect of Microalgae Phaeodactylum tricornutum Protein Hydrolysates against Dengue Virus Serotype 2
by Bianca Vianey Rivera-Serrano, Sandy Lucero Cabanillas-Salcido, Carlos Daniel Cordero-Rivera, Ricardo Jiménez-Camacho, Claudia Desiree Norzagaray-Valenzuela, Loranda Calderón-Zamora, Luis Adrián De Jesús-González, José Manuel Reyes-Ruiz, Carlos Noe Farfan-Morales, Alejandra Romero-Utrilla, Víctor Manuel Ruíz-Ruelas, Josué Camberos-Barraza, Alejandro Camacho-Zamora, Alberto Kousuke De la Herrán-Arita, Carla Angulo-Rojo, Alma Marlene Guadrón-Llanos, Ángel Radamés Rábago-Monzón, Janitzio Xiomara Korina Perales-Sánchez, Marco Antonio Valdez-Flores, Rosa María Del Ángel and Juan Fidel Osuna-Ramosadd Show full author list remove Hide full author list
Mar. Drugs 2024, 22(8), 369; https://doi.org/10.3390/md22080369 - 14 Aug 2024
Viewed by 792
Abstract
Dengue, caused by the dengue virus (DENV), is a global health threat transmitted by Aedes mosquitoes, resulting in 400 million cases annually. The disease ranges from mild to severe, with potential progression to hemorrhagic dengue. Current research is focused on natural antivirals due [...] Read more.
Dengue, caused by the dengue virus (DENV), is a global health threat transmitted by Aedes mosquitoes, resulting in 400 million cases annually. The disease ranges from mild to severe, with potential progression to hemorrhagic dengue. Current research is focused on natural antivirals due to challenges in vector control. This study evaluates the antiviral potential of peptides derived from the microalgae Phaeodactylum tricornutum, known for its bioactive compounds. Microalgae were cultivated under controlled conditions, followed by protein extraction and hydrolysis to produce four peptide fractions. These fractions were assessed for cytotoxicity via the MTT assay and antiviral activity against DENV serotype 2 using flow cytometry and plaque formation assays. The 10–30 kDa peptide fraction, at 150 and 300 μg/mL concentrations, demonstrated no cytotoxicity and significantly reduced the percentage of infected cells and viral titers. These findings suggest that peptides derived from Phaeodactylum tricornutum exhibit promising antiviral activity against dengue virus serotype 2, potentially contributing to developing new therapeutic approaches for dengue. Full article
(This article belongs to the Special Issue Marine Algal Compounds with Antimicrobial Activities)
Show Figures

Graphical abstract

14 pages, 8504 KiB  
Article
Lipids Extracted from Aptocyclus ventricosus Eggs Possess Immunoregulatory Effects on RAW264.7 Cells by Activating the MAPK and NF-κB Signaling Pathways
by Seul Gi Lee, Weerawan Rod-in, Jun Jae Jung, Seok Kyu Jung, Sang-min Lee and Woo Jung Park
Mar. Drugs 2024, 22(8), 368; https://doi.org/10.3390/md22080368 - 13 Aug 2024
Viewed by 716
Abstract
This study was conducted to evaluate the potential anti-inflammatory and immune-enhancement properties of lipids derived from Aptocyclus ventricosus eggs on RAW264.7 cells. Firstly, we determined the fatty acid compositions of A. ventricosus lipids by performing gas chromatography analysis. The results showed that A. [...] Read more.
This study was conducted to evaluate the potential anti-inflammatory and immune-enhancement properties of lipids derived from Aptocyclus ventricosus eggs on RAW264.7 cells. Firstly, we determined the fatty acid compositions of A. ventricosus lipids by performing gas chromatography analysis. The results showed that A. ventricosus lipids contained saturated fatty acids (24.37%), monounsaturated fatty acids (20.90%), and polyunsaturated fatty acids (54.73%). They also contained notably high levels of DHA (25.91%) and EPA (22.05%) among the total fatty acids. Our results for the immune-associated biomarkers showed that A. ventricosus lipids had immune-enhancing effects on RAW264.7 cells. At the maximum dose of 300 µg/mL, A. ventricosus lipids generated NO (119.53%) and showed greater phagocytosis (63.69%) ability as compared with untreated cells. A. ventricosus lipids also upregulated the expression of iNOS, IL-1β, IL-6, and TNF-α genes and effectively upregulated the phosphorylation of MAPK (JNK, p38, and ERK) and NF-κB p65, indicating that these lipids could activate the MAPK and NF-κB pathways to stimulate macrophages in the immune system. Besides their immune-enhancing abilities, A. ventricosus lipids significantly inhibited LPS-induced RAW264.7 inflammatory responses via the NF-κB and MAPK pathways. The results indicated that these lipids significantly reduced LPS-induced NO production, showing a decrease from 86.95% to 38.89%. Additionally, these lipids downregulated the expression of genes associated with the immune response and strongly suppressed the CD86 molecule on the cell surface, which reduced from 39.25% to 33.80%. Collectively, these findings imply that lipids extracted from A. ventricosus eggs might have biological immunoregulatory effects. Thus, they might be considered promising immunomodulatory drugs and functional foods. Full article
(This article belongs to the Special Issue Immunomodulatory Activities of Marine Products)
Show Figures

Graphical abstract

24 pages, 4788 KiB  
Article
Ultrasound Depolymerization and Characterization of Poly- and Oligosaccharides from the Red Alga Solieria chordalis (C. Agardh) J. Agardh 1842
by Mathilde Lesgourgues, Thomas Latire, Nolwenn Terme, Philippe Douzenel, Raphaël Leschiera, Nicolas Lebonvallet, Nathalie Bourgougnon and Gilles Bedoux
Mar. Drugs 2024, 22(8), 367; https://doi.org/10.3390/md22080367 - 13 Aug 2024
Viewed by 1421
Abstract
Red seaweed carrageenans are frequently used in industry for its texturizing properties and have demonstrated antiviral activities that can be used in human medicine. However, their high viscosity, high molecular weight, and low skin penetration limit their use. Low-weight carrageenans have a reduced [...] Read more.
Red seaweed carrageenans are frequently used in industry for its texturizing properties and have demonstrated antiviral activities that can be used in human medicine. However, their high viscosity, high molecular weight, and low skin penetration limit their use. Low-weight carrageenans have a reduced viscosity and molecular weight, enhancing their biological properties. In this study, ι-carrageenan from Solieria chordalis, extracted using hot water and dialyzed, was depolymerized using hydrogen peroxide and ultrasound. Ultrasonic depolymerization yielded fractions of average molecular weight (50 kDa) that were rich in sulfate groups (16% and 33%) compared to those from the hydrogen peroxide treatment (7 kDa, 6% and 9%). The potential bioactivity of the polysaccharides and low-molecular-weight (LMW) fractions were assessed using WST-1 and LDH assays for human fibroblast viability, proliferation, and cytotoxicity. The depolymerized fractions did not affect cell proliferation and were not cytotoxic. This research highlights the diversity in the biochemical composition and lack of cytotoxicity of Solieria chordalis polysaccharides and LMW fractions produced by a green (ultrasound) depolymerization method. Full article
(This article belongs to the Special Issue Marine Algal Biorefinery for Bioactive Compound Production)
Show Figures

Graphical abstract

17 pages, 2115 KiB  
Article
Extraction of Omega-3 Fatty Acids from Atlantic Sea Cucumber (Cucumaria frondosa) Viscera Using Supercritical Carbon Dioxide
by Jianan Lin, Guangling Jiao, Marianne Su-Ling Brooks, Suzanne M. Budge and Azadeh Kermanshahi-pour
Mar. Drugs 2024, 22(8), 366; https://doi.org/10.3390/md22080366 - 12 Aug 2024
Viewed by 665
Abstract
This study explores the potential of Cucumaria frondosa (C. frondosa) viscera as a natural source of omega-3 FAs using supercritical carbon dioxide (scCO2) extraction. The extraction conditions were optimized using a response surface design, and the optimal parameters were [...] Read more.
This study explores the potential of Cucumaria frondosa (C. frondosa) viscera as a natural source of omega-3 FAs using supercritical carbon dioxide (scCO2) extraction. The extraction conditions were optimized using a response surface design, and the optimal parameters were identified as 75 °C and 45 MPa, with a 20 min static and a 30 min dynamic extraction, and a 2:1 ethanol to feedstock mass ratio. Under these conditions, the scCO2 extraction yielded higher FAs than the solvent-based Bligh and Dyer method. The comparative analysis demonstrated that scCO2 extraction (16.30 g of FAs/100 g of dried samples) yielded more fatty acids than the conventional Bligh and Dyer method (9.02 g, or 13.59 g of FAs/100 g of dried samples with ultrasonic assistance), indicating that scCO2 extraction is a viable, green alternative to traditional solvent-based techniques for recovering fatty acids. The pre-treatment effects, including drying methods and ethanol-soaking, were investigated. Freeze-drying significantly enhanced FA yields to almost 100% recovery, while ethanol-soaked viscera tripled the FA yields compared to fresh samples, achieving similar EPA and DHA levels to hot-air-dried samples. These findings highlight the potential of sea cucumber viscera as an efficient source of omega-3 FA extraction and offer an alternative to traditional extraction procedures. Full article
(This article belongs to the Special Issue Green Extraction for Obtaining Marine Bioactive Products)
Show Figures

Figure 1

20 pages, 20332 KiB  
Article
A Comparative Analysis on Impact of Extraction Methods on Carotenoids Composition, Antioxidants, Antidiabetes, and Antiobesity Properties in Seagrass Enhalus acoroides: In Silico and In Vitro Study
by Raymond Rubianto Tjandrawinata and Fahrul Nurkolis
Mar. Drugs 2024, 22(8), 365; https://doi.org/10.3390/md22080365 - 12 Aug 2024
Viewed by 865
Abstract
Enhalus acoroides, a tropical seagrass, is known for its significant contribution to marine ecosystems and its potential health benefits due to bioactive compounds. This study aims to compare the carotenoid levels in E. acoroides using green extraction via ultrasound-assisted extraction (UAE) and [...] Read more.
Enhalus acoroides, a tropical seagrass, is known for its significant contribution to marine ecosystems and its potential health benefits due to bioactive compounds. This study aims to compare the carotenoid levels in E. acoroides using green extraction via ultrasound-assisted extraction (UAE) and microwave-assisted extraction (MAE) and to evaluate the biological properties of these extracts against oxidative stress, diabetes, and obesity through in silico and in vitro analyses. E. acoroides samples were collected from Manado City, Indonesia, and subjected to UAE and MAE. The extracts were analyzed using UHPLC-ESI-MS/MS to identify carotenoids, including β-carotene, lutein, lycopene, β-cryptoxanthin, and zeaxanthin. In silico analysis was conducted to predict the compounds’ bioactivity, toxicity, and drug-likeness using WAY2DRUG PASS and molecular docking with CB-Dock2. The compounds C3, C4, and C7 demonstrated notable interactions, with key metabolic proteins and microRNAs, further validating their potential therapeutic benefits. In vitro assays evaluated antioxidant activities using DPPH and FRAP assays, antidiabetic properties through α-glucosidase and α-amylase inhibition, and antiobesity effects via lipase inhibition and MTT assay with 3T3-L1 cells. Results indicated that both UAE and MAE extracts exhibited significant antioxidant, antidiabetic, and antiobesity activities. MAE extracts showed higher carotenoid content and greater biological activity compared to UAE extracts. These findings suggest that E. acoroides, mainly when extracted using MAE, has promising potential as a source of natural bioactive compounds for developing marine-based antioxidant, antidiabetic, and antiobesity agents. This study supplements existing literature by providing insights into the efficient extraction methods and the therapeutic potential of E. acoroides carotenoids. Full article
(This article belongs to the Special Issue Green Extraction for Obtaining Marine Bioactive Products)
Show Figures

Graphical abstract

21 pages, 6311 KiB  
Article
Investigation of Antioxidant Activity of Protein Hydrolysates from New Zealand Commercial Low-Grade Fish Roes
by Shuxian Li, Alan Carne and Alaa El-Din Ahmed Bekhit
Mar. Drugs 2024, 22(8), 364; https://doi.org/10.3390/md22080364 - 11 Aug 2024
Viewed by 868
Abstract
The objective of this study was to investigate the nutrient composition of low-grade New Zealand commercial fish (Gemfish and Hoki) roe and to investigate the effects of delipidation and freeze-drying processes on roe hydrolysis and antioxidant activities of their protein hydrolysates. Enzymatic hydrolysis [...] Read more.
The objective of this study was to investigate the nutrient composition of low-grade New Zealand commercial fish (Gemfish and Hoki) roe and to investigate the effects of delipidation and freeze-drying processes on roe hydrolysis and antioxidant activities of their protein hydrolysates. Enzymatic hydrolysis of the Hoki and Gemfish roe homogenates was carried out using three commercial proteases: Alcalase, bacterial protease HT, and fungal protease FP-II. The protein and lipid contents of Gemfish and Hoki roes were 23.8% and 7.6%; and 17.9% and 10.1%, respectively. The lipid fraction consisted mainly of monounsaturated fatty acid (MUFA) in both Gemfish roe (41.5%) and Hoki roe (40.2%), and docosahexaenoic (DHA) was the dominant polyunsaturated fatty acid (PUFA) in Gemfish roe (21.4%) and Hoki roe (18.6%). Phosphatidylcholine was the main phospholipid in Gemfish roe (34.6%) and Hoki roe (28.7%). Alcalase achieved the most extensive hydrolysis, and its hydrolysate displayed the highest 2,2-dipheny1-1-picrylhydrazyl (DPPH)˙ and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activities and ferric reducing antioxidant power (FRAP). The combination of defatting and freeze-drying treatments reduced DPPH˙ scavenging activity (by 38%), ABTS˙ scavenging activity (by 40%) and ferric (Fe3+) reducing power by18% (p < 0.05). These findings indicate that pre-processing treatments of delipidation and freeze-drying could negatively impact the effectiveness of enzymatic hydrolysis in extracting valuable compounds from low grade roe. Full article
(This article belongs to the Special Issue The Bioactive Potential of Marine-Derived Peptides and Proteins)
Show Figures

Figure 1

19 pages, 2736 KiB  
Review
Marine Delivery Vehicles: Molecular Components and Applications of Bacterial Extracellular Vesicles
by Angela Casillo, Raffaele D’Amico, Rosa Lanzetta and Maria Michela Corsaro
Mar. Drugs 2024, 22(8), 363; https://doi.org/10.3390/md22080363 - 9 Aug 2024
Viewed by 749
Abstract
In marine ecosystems, communication among microorganisms is crucial since the distance is significant if considered on a microbial scale. One of the ways to reduce this gap is through the production of extracellular vesicles, which can transport molecules to guarantee nutrients to the [...] Read more.
In marine ecosystems, communication among microorganisms is crucial since the distance is significant if considered on a microbial scale. One of the ways to reduce this gap is through the production of extracellular vesicles, which can transport molecules to guarantee nutrients to the cells. Marine bacteria release extracellular vesicles (EVs), small membrane-bound structures of 40 nm to 1 µm diameter, into their surrounding environment. The vesicles contain various cellular compounds, including lipids, proteins, nucleic acids, and glycans. EVs may contribute to dissolved organic carbon, thus facilitating heterotroph growth. This review will focus on marine bacterial EVs, analyzing their structure, composition, functions, and applications. Full article
(This article belongs to the Section Marine Biotechnology Related to Drug Discovery or Production)
Show Figures

Figure 1

19 pages, 2780 KiB  
Article
Comparative Analysis of Tentacle Extract and Nematocyst Venom: Toxicity, Mechanism, and Potential Intervention in the Giant Jellyfish Nemopilema nomurai
by Xiao-Yu Geng, Ming-Ke Wang, Xiao-Chuan Hou, Zeng-Fa Wang, Yi Wang, Die-Yu Zhang, Blessing Danso, Dun-Biao Wei, Zhao-Yong Shou, Liang Xiao and Ji-Shun Yang
Mar. Drugs 2024, 22(8), 362; https://doi.org/10.3390/md22080362 - 9 Aug 2024
Viewed by 701
Abstract
The giant jellyfish Nemopilema nomurai sting can cause local and systemic reactions; however, comparative analysis of the tentacle extract (TE) and nematocyst venom extract (NV), and its toxicity, mechanism, and potential intervention are still limited. This study compared venom from TE and NV [...] Read more.
The giant jellyfish Nemopilema nomurai sting can cause local and systemic reactions; however, comparative analysis of the tentacle extract (TE) and nematocyst venom extract (NV), and its toxicity, mechanism, and potential intervention are still limited. This study compared venom from TE and NV for their composition, toxicity, and efficacy in vitro and in vivo used RAW264.7 cells and ICR mice. A total of 239 and 225 toxin proteins were identified in TE and NV by proteomics, respectively. Pathological analysis revealed that TE and NV caused heart and liver damage through apoptosis, necrosis, and inflammation, while TE exhibited higher toxicity ex vivo and in vivo. Biochemical markers indicated TE and NV elevated creatine kinase, lactatedehydrogenase, and aspartate aminotransferase, with the TE group showing a more significant increase. Transcriptomics and Western blotting indicated both venoms increased cytokines expression and MAPK signaling pathways. Additionally, 1 mg/kg PACOCF3 (the phospholipase A2 inhibitor) improved survival from 16.7% to 75% in mice. Our results indicate that different extraction methods impact venom activities, tentacle autolysis preserves toxin proteins and their toxicity, and PACOCF3 is a potential antidote, which establishes a good extraction method of jellyfish venom, expands our understanding of jellyfish toxicity, mechanism, and provides a promising intervention. Full article
(This article belongs to the Special Issue Commemorating the Launch of the Section "Marine Toxins")
Show Figures

Graphical abstract

18 pages, 3504 KiB  
Article
The Discovery and Characterization of a Potent DPP-IV Inhibitory Peptide from Oysters for the Treatment of Type 2 Diabetes Based on Computational and Experimental Studies
by Zhongqin Chen, Xiaojie Su, Wenhong Cao, Mingtang Tan, Guoping Zhu, Jialong Gao and Longjian Zhou
Mar. Drugs 2024, 22(8), 361; https://doi.org/10.3390/md22080361 - 9 Aug 2024
Viewed by 710
Abstract
The inhibition of dipeptidyl peptidase-IV (DPP-IV) is a promising approach for regulating the blood glucose levels in patients with type 2 diabetes (T2D). Oysters, rich in functional peptides, contain peptides capable of inhibiting DPP-IV activity. This study aims to identify the hypoglycemic peptides [...] Read more.
The inhibition of dipeptidyl peptidase-IV (DPP-IV) is a promising approach for regulating the blood glucose levels in patients with type 2 diabetes (T2D). Oysters, rich in functional peptides, contain peptides capable of inhibiting DPP-IV activity. This study aims to identify the hypoglycemic peptides from oysters and investigate their potential anti-T2D targets and mechanisms. This research utilized virtual screening for the peptide selection, followed by in vitro DPP-IV activity assays to validate the chosen peptide. Network pharmacology was employed to identify the potential targets, GO terms, and KEGG pathways. Molecular docking and molecular dynamics simulations were used to provide virtual confirmation. The virtual screening identified LRGFGNPPT as the most promising peptide among the screened oyster peptides. The in vitro studies confirmed its inhibitory effect on DPP-IV activity. Network pharmacology revealed that LRGFGNPPT exerts an anti-T2D effect through multiple targets and signaling pathways. The key hub targets are AKT1, ACE, and REN. Additionally, the molecular docking results showed that LRGFGNPPT exhibited a strong binding affinity with targets like AKT1, ACE, and REN, which was further confirmed by the molecular dynamics simulations showcasing a stable peptide–target interaction. This study highlights the potential of LRGFGNPPT as a natural anti-T2D peptide, providing valuable insights for potential future pharmaceutical or dietary interventions in T2D management. Full article
(This article belongs to the Special Issue Chemoinformatics for Marine Drug Discovery)
Show Figures

Graphical abstract

10 pages, 1380 KiB  
Article
Polyketide Derivatives from the Mangrove-Derived Fungus Penicillium sp. HDN15-312
by Fuhao Liu, Wenxue Wang, Feifei Wang, Luning Zhou, Guangyuan Luo, Guojian Zhang, Tianjiao Zhu, Qian Che and Dehai Li
Mar. Drugs 2024, 22(8), 360; https://doi.org/10.3390/md22080360 - 8 Aug 2024
Viewed by 746
Abstract
Four new polyketides, namely furantides A–B (12), talamin E (3) and arugosinacid A (4), and two known polyketides were obtained from the mangrove-derived fungus Penicillium sp. HDN15-312 using the One Strain Many Compounds (OSMAC) strategy. [...] Read more.
Four new polyketides, namely furantides A–B (12), talamin E (3) and arugosinacid A (4), and two known polyketides were obtained from the mangrove-derived fungus Penicillium sp. HDN15-312 using the One Strain Many Compounds (OSMAC) strategy. Their chemical structures, including configurations, were elucidated by detailed analysis of extensive NMR spectra, HRESIMS and ECD. The DPPH radicals scavenging activity of 3, with an IC50 value of 6.79 µM, was better than vitamin C. Full article
(This article belongs to the Section Structural Studies on Marine Natural Products)
Show Figures

Graphical abstract

16 pages, 3390 KiB  
Article
In Silico Identification and Molecular Mechanism of Novel Tyrosinase Inhibitory Peptides Derived from Nacre of Pinctada martensii
by Fei Li, Haisheng Lin, Xiaoming Qin, Jialong Gao, Zhongqin Chen, Wenhong Cao, Huina Zheng and Shaohe Xie
Mar. Drugs 2024, 22(8), 359; https://doi.org/10.3390/md22080359 - 7 Aug 2024
Viewed by 728
Abstract
Pearl and nacre powders have been valuable traditional Chinese medicines with whitening properties for thousands of years. We utilized a high-temperature and high-pressure method along with compound enzyme digestion to prepare the enzymatic hydrolysates of nacre powder of Pinctada martensii (NP-PMH). The peptides [...] Read more.
Pearl and nacre powders have been valuable traditional Chinese medicines with whitening properties for thousands of years. We utilized a high-temperature and high-pressure method along with compound enzyme digestion to prepare the enzymatic hydrolysates of nacre powder of Pinctada martensii (NP-PMH). The peptides were identified using LC–MS/MS and screened through molecular docking and molecular dynamics simulations. The interactions between peptides and tyrosinase were elucidated through enzyme kinetics, circular dichroism spectropolarimetry, and isothermal titration calorimetry. Additionally, their inhibitory effects on B16F10 cells were explored. The results showed that a tyrosinase-inhibitory peptide (Ala-His-Tyr-Tyr-Asp, AHYYD) was identified, which inhibited tyrosinase with an IC50 value of 2.012 ± 0.088 mM. The results of the in vitro interactions showed that AHYYD exhibited a mixed-type inhibition of tyrosinase and also led to a more compact enzyme structure. The binding reactions of AHYYD with tyrosinase were spontaneous, leading to the formation of a new set of binding sites on the tyrosinase. The B16F10 cell-whitening assay revealed that AHYYD could reduce the melanin content of the cells by directly inhibiting the activity of intracellular tyrosinase. Additionally, it indirectly affects melanin production by acting as an antioxidant. These results suggest that AHYYD could be widely used as a tyrosinase inhibitor in whitening foods and pharmaceuticals. Full article
(This article belongs to the Special Issue Marine Bioactive Peptides—Structure, Function, and Application 2.0)
Show Figures

Graphical abstract

19 pages, 2260 KiB  
Article
Production of Fucoxanthin from Microalgae Isochrysis galbana of Djibouti: Optimization, Correlation with Antioxidant Potential, and Bioinformatics Approaches
by Fatouma Mohamed Abdoul-Latif, Ayoub Ainane, Laila Achenani, Ali Merito Ali, Houda Mohamed, Ahmad Ali, Pannaga Pavan Jutur and Tarik Ainane
Mar. Drugs 2024, 22(8), 358; https://doi.org/10.3390/md22080358 - 6 Aug 2024
Viewed by 782
Abstract
Fucoxanthin, a carotenoid with remarkable antioxidant properties, has considerable potential for high-value biotechnological applications in the pharmaceutical, nutraceutical, and cosmeceutical fields. However, conventional extraction methods of this molecule from microalgae are limited in terms of cost-effectiveness. This study focused on optimizing biomass and [...] Read more.
Fucoxanthin, a carotenoid with remarkable antioxidant properties, has considerable potential for high-value biotechnological applications in the pharmaceutical, nutraceutical, and cosmeceutical fields. However, conventional extraction methods of this molecule from microalgae are limited in terms of cost-effectiveness. This study focused on optimizing biomass and fucoxanthin production from Isochrysis galbana, isolated from the coast of Tadjoura (Djibouti), by testing various culture media. The antioxidant potential of the cultures was evaluated based on the concentrations of fucoxanthin, carotenoids, and total phenols. Different nutrient formulations were tested to determine the optimal combination for a maximum biomass yield. Using the statistical methodology of principal component analysis, Walne and Guillard F/2 media were identified as the most promising, reaching a maximum fucoxanthin yield of 7.8 mg/g. Multiple regression models showed a strong correlation between antioxidant activity and the concentration of fucoxanthin produced. A thorough study of the optimization of I. galbana growth conditions, using a design of experiments, revealed that air flow rate and CO2 flow rate were the most influential factors on fucoxanthin production, reaching a value of 13.4 mg/g. Finally, to validate the antioxidant potential of fucoxanthin, an in silico analysis based on molecular docking was performed, showing that fucoxanthin interacts with antioxidant proteins (3FS1, 3L2C, and 8BBK). This research not only confirmed the positive results of I. galbana cultivation in terms of antioxidant activity, but also provided essential information for the optimization of fucoxanthin production, opening up promising prospects for industrial applications and future research. Full article
(This article belongs to the Special Issue Algal Cultivation for Obtaining High-Value Products)
Show Figures

Figure 1

16 pages, 13502 KiB  
Article
Identification of Penexanthone A as a Novel Chemosensitizer to Induce Ferroptosis by Targeting Nrf2 in Human Colorectal Cancer Cells
by Genshi Zhao, Yanying Liu, Xia Wei, Chunxia Yang, Junfei Lu, Shihuan Yan, Xiaolin Ma, Xue Cheng, Zhengliang You, Yue Ding, Hongwei Guo, Zhiheng Su, Shangping Xing and Dan Zhu
Mar. Drugs 2024, 22(8), 357; https://doi.org/10.3390/md22080357 - 6 Aug 2024
Viewed by 814
Abstract
Ferroptosis has emerged as a potential mechanism for enhancing the efficacy of chemotherapy in cancer treatment. By suppressing nuclear factor erythroid 2-related factor 2 (Nrf2), cancer cells may lose their ability to counteract the oxidative stress induced by chemotherapy, thereby becoming more susceptible [...] Read more.
Ferroptosis has emerged as a potential mechanism for enhancing the efficacy of chemotherapy in cancer treatment. By suppressing nuclear factor erythroid 2-related factor 2 (Nrf2), cancer cells may lose their ability to counteract the oxidative stress induced by chemotherapy, thereby becoming more susceptible to ferroptosis. In this study, we investigate the potential of penexanthone A (PXA), a xanthone dimer component derived from the endophytic fungus Diaporthe goulteri, obtained from mangrove plant Acanthus ilicifolius, to enhance the therapeutic effect of cisplatin (CDDP) on colorectal cancer (CRC) by inhibiting Nrf2. The present study reported that PXA significantly improved the ability of CDDP to inhibit the activity of and induce apoptosis in CRC cells. Moreover, PXA was found to increase the level of oxidative stress and DNA damage caused by CDDP. In addition, the overexpression of Nrf2 reversed the DNA damage and ferroptosis induced by the combination of PXA and CDDP. In vivo experiments using zebrafish xenograft models demonstrated that PXA enhanced the therapeutic effect of CDDP on CRC. These studies suggest that PXA enhanced the sensitivity of CRC to CDDP and induce ferroptosis by targeting Nrf2 inhibition, indicating that PXA might serve as a novel anticancer drug in combination chemotherapy. Full article
(This article belongs to the Special Issue Pharmacological Potential of Marine Natural Products, 2nd Edition)
Show Figures

Figure 1

18 pages, 7206 KiB  
Article
Extraction Optimization and Anti-Tumor Activity of Polysaccharides from Chlamydomonas reinhardtii
by Zhongwen Liang, Lan Xiong, Ying Zang, Zhijuan Tang, Zhenyu Shang, Jingyu Zhang, Zihan Jia, Yanting Huang, Xiaoyu Ye, Hongquan Liu and Mei Li
Mar. Drugs 2024, 22(8), 356; https://doi.org/10.3390/md22080356 - 2 Aug 2024
Viewed by 838
Abstract
Chlamydomonas reinhardtii polysaccharides (CRPs) are bioactive compounds derived from C. reinhardtii, yet their potential in cancer therapy remains largely unexplored. This study optimized the ultrasound-assisted extraction conditions using response surface methodology and proceeded with the isolation and purification of these polysaccharides. The [...] Read more.
Chlamydomonas reinhardtii polysaccharides (CRPs) are bioactive compounds derived from C. reinhardtii, yet their potential in cancer therapy remains largely unexplored. This study optimized the ultrasound-assisted extraction conditions using response surface methodology and proceeded with the isolation and purification of these polysaccharides. The optimal extraction conditions were identified as a sodium hydroxide concentration of 1.5%, ultrasonic power of 200 W, a solid-to-liquid ratio of 1:25 g/mL, an ultrasonic treatment time of 10 min, and a water bath duration of 2.5 h, yielding an actual extraction rate of 5.71 ± 0.001%, which closely aligns with the predicted value of 5.639%. Infrared analysis revealed that CRP-1 and CRP-2 are α-pyranose structures containing furoic acid, while CRP-3 and CRP-4 are β-pyranose structures containing furoic acid. Experimental results demonstrated that all four purified polysaccharides inhibited the proliferation of cervical (HeLa) hepatoma (HepG-2) and colon (HCT-116) cancer cells, with CRP-4 showing the most significant inhibitory effect on colon cancer and cervical cancer, achieving inhibition rates of 60.58 ± 0.88% and 40.44 ± 1.44%, respectively, and significantly reducing the migration of HeLa cells. DAPI staining confirmed that the four purified polysaccharides inhibit cell proliferation and migration by inducing apoptosis in HeLa cells. CRP-1 has the most significant inhibitory effect on the proliferation of liver cancer cells. This study not only elucidates the potential application of C. reinhardtii polysaccharides in cancer therapy but also provides a scientific basis for their further development and utilization. Full article
(This article belongs to the Collection Marine Polysaccharides)
Show Figures

Figure 1

13 pages, 1960 KiB  
Article
In Vitro Anti-HIV-1 Activity of Fucoidans from Brown Algae
by Marina N. Nosik, Natalya V. Krylova, Roza V. Usoltseva, Valerii V. Surits, Dmitry E. Kireev, Mikhail Yu. Shchelkanov, Oxana A. Svitich and Svetlana P. Ermakova
Mar. Drugs 2024, 22(8), 355; https://doi.org/10.3390/md22080355 - 31 Jul 2024
Viewed by 678
Abstract
Due to the developing resistance and intolerance to antiretroviral drugs, there is an urgent demand for alternative agents that can suppress the viral load in people living with human immunodeficiency virus (HIV). Recently, there has been increased interest in agents of marine origin [...] Read more.
Due to the developing resistance and intolerance to antiretroviral drugs, there is an urgent demand for alternative agents that can suppress the viral load in people living with human immunodeficiency virus (HIV). Recently, there has been increased interest in agents of marine origin such as, in particular, fucoidans to suppress HIV replication. In the present study, the anti-HIV-1 activity of fucoidans from the brown algae Alaria marginata, Alaria ochotensis, Laminaria longipes, Saccharina cichorioides, Saccharina gurianovae, and Tauya basicrassa was studied in vitro. The studied compounds were found to be able to inhibit HIV-1 replication at different stages of the virus life cycle. Herewith, all fucoidans exhibited significant antiviral activity by affecting the early stages of the virus–cell interaction. The fucoidan from Saccharina cichorioides showed the highest virus-inhibitory activity by blocking the virus’ attachment to and entry into the host’s cell, with a selectivity index (SI) > 160. Full article
(This article belongs to the Special Issue Marine Algal Compounds with Antimicrobial Activities)
Show Figures

Figure 1

21 pages, 4798 KiB  
Article
Antibacterial and Immunosuppressive Effects of a Novel Marine Brown Alga-Derived Ester in Atopic Dermatitis
by Hyun Soo Kim, Jeong Won Ahn, Na Reum Ha, Kongara Damodar, Su Kil Jang, Yeong-Min Yoo, Young Soo Gyoung and Seong Soo Joo
Mar. Drugs 2024, 22(8), 354; https://doi.org/10.3390/md22080354 - 30 Jul 2024
Viewed by 926
Abstract
Atopic dermatitis (AD) is a chronic skin condition that is characterized by dysregulated immune responses and a heightened risk of Staphylococcus aureus infections, necessitating the advancement of innovative therapeutic methods. This study explored the potential of (6Z,9Z,12Z,15Z)-(2R,3R,4R,5R)-2,3,4,5,6-pentahydroxyhexyl octadeca-6,9,12,15-tetraenoate (HSN-S1), a compound derived from [...] Read more.
Atopic dermatitis (AD) is a chronic skin condition that is characterized by dysregulated immune responses and a heightened risk of Staphylococcus aureus infections, necessitating the advancement of innovative therapeutic methods. This study explored the potential of (6Z,9Z,12Z,15Z)-(2R,3R,4R,5R)-2,3,4,5,6-pentahydroxyhexyl octadeca-6,9,12,15-tetraenoate (HSN-S1), a compound derived from the marine alga Hizikia fusiformis, which shows anti-inflammatory, antimicrobial, and immunomodulatory properties. HSN-S1 was isolated and characterized using advanced chromatographic and spectroscopic methods. Its efficacy was evaluated via in vitro assays with keratinocytes, macrophages, and T cells to assess cytokine suppression and its immunomodulatory effects; its antibacterial activity against S. aureus was quantified. The in vivo effectiveness was validated using a 2,4-dinitrochlorobenzene-induced AD mouse model that focused on skin pathology and cytokine modulation. HSN-S1 significantly reduced pro-inflammatory cytokine secretion, altered T-helper cell cytokine profiles, and showed strong antibacterial activity against S. aureus. In vivo, HSN-S1 alleviated AD-like symptoms in mice and reduced skin inflammation, transepidermal water loss, serum immunoglobulin-E levels, and Th2/Th17 cytokine outputs. These findings suggest HSN-S1 to be a promising marine-derived candidate for AD treatment, as it offers a dual-target approach that could overcome the limitations of existing therapies, hence warranting further clinical investigation. Full article
(This article belongs to the Section Marine Pharmacology)
Show Figures

Graphical abstract

27 pages, 4930 KiB  
Article
Comparative RNA-Seq of Ten Phaeodactylum tricornutum Accessions: Unravelling Criteria for Robust Strain Selection from a Bioproduction Point of View
by Charlotte Toustou, Isabelle Boulogne, Anne-Alicia Gonzalez and Muriel Bardor
Mar. Drugs 2024, 22(8), 353; https://doi.org/10.3390/md22080353 - 30 Jul 2024
Viewed by 666
Abstract
The production of biologics in mammalian cells is hindered by some limitations including high production costs, prompting the exploration of other alternative expression systems that are cheaper and sustainable like microalgae. Successful productions of biologics such as monoclonal antibodies have already been demonstrated [...] Read more.
The production of biologics in mammalian cells is hindered by some limitations including high production costs, prompting the exploration of other alternative expression systems that are cheaper and sustainable like microalgae. Successful productions of biologics such as monoclonal antibodies have already been demonstrated in the diatom Phaeodactylum tricornutum; however, limited production yields still remain compared to mammalian cells. Therefore, efforts are needed to make this microalga more competitive as a cell biofactory. Among the seventeen reported accessions of P. tricornutum, ten have been mainly studied so far. Among them, some have already been used to produce high-value-added molecules such as biologics. The use of “omics” is increasingly being described as useful for the improvement of both upstream and downstream steps in bioprocesses using mammalian cells. Therefore, in this context, we performed an RNA-Seq analysis of the ten most used P. tricornutum accessions (Pt1 to Pt10) and deciphered the differential gene expression in pathways that could affect bioproduction of biologics in P. tricornutum. Our results highlighted the benefits of certain accessions such as Pt9 or Pt4 for the production of biologics. Indeed, these accessions seem to be more advantageous. Moreover, these results contribute to a better understanding of the molecular and cellular biology of P. tricornutum. Full article
(This article belongs to the Special Issue Marine Omics for Drug Discovery and Development)
Show Figures

Figure 1

24 pages, 5183 KiB  
Article
Exploring the Potential of Invasive Species Sargassum muticum: Microwave-Assisted Extraction Optimization and Bioactivity Profiling
by Aurora Silva, Lucia Cassani, Maria Carpena, Catarina Lourenço-Lopes, Clara Grosso, Franklin Chamorro, Pascual García-Pérez, Ana Carvalho, Valentina F. Domingues, M. Fátima Barroso, Jesus Simal-Gandara and Miguel A. Prieto
Mar. Drugs 2024, 22(8), 352; https://doi.org/10.3390/md22080352 - 30 Jul 2024
Viewed by 1852
Abstract
Sargassum muticum (SM) poses a serious environmental issue since it is a fast-expanding invasive species occupying key areas of the European shoreline, disrupting the autochthonous algae species, and disturbing the ecosystem. This problem has concerned the general population and the scientific community. Nevertheless, [...] Read more.
Sargassum muticum (SM) poses a serious environmental issue since it is a fast-expanding invasive species occupying key areas of the European shoreline, disrupting the autochthonous algae species, and disturbing the ecosystem. This problem has concerned the general population and the scientific community. Nevertheless, as macroalgae are recognized as a source of bioactive molecules, the abundance of SM presents an opportunity as a raw material. In this work, response surface methodology (RSM) was applied as a tool for the optimization of the extraction of bioactive compounds from SM by microwave-assisted extraction (MAE). Five different parameters were used as target functions: yield, total phenolic content (TPC); and the antioxidant measurements of 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity (DPPH), 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), and β-carotene bleaching (BC). After the optimal extraction conditions were determined (time = 14.00 min; pressure = 11.03 bar; ethanol = 33.31%), the chemical composition and bioactivity of the optimum extract was evaluated to appraise its antioxidant capability to scavenge reactive species and as a potential antibacterial, antidiabetic, antiproliferation, and neuroprotective agent. The results lead to the conclusion that MAE crude extract has bioactive properties, being especially active as an antiproliferation agent and as a nitric oxide and superoxide radical scavenger. Full article
(This article belongs to the Special Issue Biotechnology of Algae)
Show Figures

Figure 1

21 pages, 7837 KiB  
Article
Salinity Stress Acclimation Strategies in Chlamydomonas sp. Revealed by Physiological, Morphological and Transcriptomic Approaches
by Chiara Lauritano, Emma Bazzani, Eleonora Montuori, Francesco Bolinesi, Olga Mangoni, Gennaro Riccio, Angela Buondonno and Maria Saggiomo
Mar. Drugs 2024, 22(8), 351; https://doi.org/10.3390/md22080351 - 29 Jul 2024
Viewed by 928
Abstract
Climate changes may include variations in salinity concentrations at sea by changing ocean dynamics. These variations may be especially challenging for marine photosynthetic organisms, affecting their growth and distribution. Chlamydomonas spp. are ubiquitous and are often found in extreme salinity conditions. For this [...] Read more.
Climate changes may include variations in salinity concentrations at sea by changing ocean dynamics. These variations may be especially challenging for marine photosynthetic organisms, affecting their growth and distribution. Chlamydomonas spp. are ubiquitous and are often found in extreme salinity conditions. For this reason, they are considered good model species to study salinity adaptation strategies. In the current study, we used an integrated approach to study the Chlamydomonas sp. CCMP225 response to salinities of 20‰ and 70‰, by combining physiological, morphological, and transcriptomic analyses, and comparing differentially expressed genes in the exponential and stationary growth phases under the two salinity conditions. The results showed that the strain is able to grow under all tested salinity conditions and maintains a surprisingly high photosynthetic efficiency even under high salinities. However, at the highest salinity condition, the cells lose their flagella. The transcriptomic analysis highlighted the up- or down-regulation of specific gene categories, helping to identify key genes responding to salinity stress. Overall, the findings may be of interest to the marine biology, ecology, and biotechnology communities, to better understand species adaptation mechanisms under possible global change scenarios and the potential activation of enzymes involved in the synthesis of bioactive molecules. Full article
(This article belongs to the Special Issue Biotechnological Applications of Marine Enzymes)
Show Figures

Figure 1

34 pages, 8232 KiB  
Review
Voltage-Gated K+ Channel Modulation by Marine Toxins: Pharmacological Innovations and Therapeutic Opportunities
by Rita Turcio, Francesca Di Matteo, Ilaria Capolupo, Tania Ciaglia, Simona Musella, Carla Di Chio, Claudio Stagno, Pietro Campiglia, Alessia Bertamino and Carmine Ostacolo
Mar. Drugs 2024, 22(8), 350; https://doi.org/10.3390/md22080350 - 29 Jul 2024
Viewed by 719
Abstract
Bioactive compounds are abundant in animals originating from marine ecosystems. Ion channels, which include sodium, potassium, calcium, and chloride, together with their numerous variants and subtypes, are the primary molecular targets of the latter. Based on their cellular targets, these venom compounds show [...] Read more.
Bioactive compounds are abundant in animals originating from marine ecosystems. Ion channels, which include sodium, potassium, calcium, and chloride, together with their numerous variants and subtypes, are the primary molecular targets of the latter. Based on their cellular targets, these venom compounds show a range of potencies and selectivity and may have some therapeutic properties. Due to their potential as medications to treat a range of (human) diseases, including pain, autoimmune disorders, and neurological diseases, marine molecules have been the focus of several studies over the last ten years. The aim of this review is on the various facets of marine (or marine-derived) molecules, ranging from structural characterization and discovery to pharmacology, culminating in the development of some “novel” candidate chemotherapeutic drugs that target potassium channels. Full article
(This article belongs to the Special Issue Marine Drug Research in Italy)
Show Figures

Figure 1

18 pages, 3320 KiB  
Review
Functional Diversity and Engineering of the Adenylation Domains in Nonribosomal Peptide Synthetases
by Mengli Zhang, Zijing Peng, Zhenkuai Huang, Jiaqi Fang, Xinhai Li and Xiaoting Qiu
Mar. Drugs 2024, 22(8), 349; https://doi.org/10.3390/md22080349 - 29 Jul 2024
Viewed by 750
Abstract
Nonribosomal peptides (NRPs) are biosynthesized by nonribosomal peptide synthetases (NRPSs) and are widely distributed in both terrestrial and marine organisms. Many NRPs and their analogs are biologically active and serve as therapeutic agents. The adenylation (A) domain is a key catalytic domain that [...] Read more.
Nonribosomal peptides (NRPs) are biosynthesized by nonribosomal peptide synthetases (NRPSs) and are widely distributed in both terrestrial and marine organisms. Many NRPs and their analogs are biologically active and serve as therapeutic agents. The adenylation (A) domain is a key catalytic domain that primarily controls the sequence of a product during the assembling of NRPs and thus plays a predominant role in the structural diversity of NRPs. Engineering of the A domain to alter substrate specificity is a potential strategy for obtaining novel NRPs for pharmaceutical studies. On the basis of introducing the catalytic mechanism and multiple functions of the A domains, this article systematically describes several representative NRPS engineering strategies targeting the A domain, including mutagenesis of substrate-specificity codes, substitution of condensation-adenylation bidomains, the entire A domain or its subdomains, domain insertion, and whole-module rearrangements. Full article
(This article belongs to the Section Synthesis and Medicinal Chemistry of Marine Natural Products)
Show Figures

Figure 1

22 pages, 2173 KiB  
Review
Recent Advances in Marine-Derived Compounds as Potent Antibacterial and Antifungal Agents: A Comprehensive Review
by Devaraj Bharathi and Jintae Lee
Mar. Drugs 2024, 22(8), 348; https://doi.org/10.3390/md22080348 - 29 Jul 2024
Viewed by 2247
Abstract
The increase in antimicrobial resistance (AMR) in microorganisms is a significant global health concern. Various factors contribute to AMR, including alterations in cell membrane permeability, increased efflux pump activity, enzymatic modification or inactivation of antibiotics, target site changes, alternative metabolic pathways, and biofilm [...] Read more.
The increase in antimicrobial resistance (AMR) in microorganisms is a significant global health concern. Various factors contribute to AMR, including alterations in cell membrane permeability, increased efflux pump activity, enzymatic modification or inactivation of antibiotics, target site changes, alternative metabolic pathways, and biofilm formation. Marine environments, with their extensive biodiversity, provide a valuable source of natural products with a wide range of biological activities. Marine-derived antimicrobial compounds show significant potential against drug-resistant bacteria and fungi. This review discusses the current knowledge on marine natural products such as microorganisms, sponges, tunicates and mollusks with antibacterial and antifungal properties effective against drug-resistant microorganisms and their ecological roles. These natural products are classified based on their chemical structures, such as alkaloids, amino acids, peptides, polyketides, naphthoquinones, terpenoids, and polysaccharides. Although still in preclinical studies, these agents demonstrate promising in vivo efficacy, suggesting that marine sources could be pivotal in developing new drugs to combat AMR, thereby fulfilling an essential medical need. This review highlights the ongoing importance of marine biodiversity exploration for discovering potential antimicrobial agents. Full article
(This article belongs to the Special Issue Pharmacological Potential of Marine Natural Products, 2nd Edition)
Show Figures

Figure 1

Previous Issue
Back to TopTop