Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
Previous Issue
Volume 16, August-2
 
 
polymers-logo

Journal Browser

Journal Browser

Polymers, Volume 16, Issue 17 (September-1 2024) – 131 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
15 pages, 9141 KiB  
Article
Effect of Vibration Pretreatment–Microwave Curing Process Parameters on the Mechanical Performance of Resin-Based Composites
by Dechao Zhang, Lihua Zhan, Bolin Ma, Jinzhan Guo, Wentao Jin, Xin Hu, Shunming Yao and Guangming Dai
Polymers 2024, 16(17), 2518; https://doi.org/10.3390/polym16172518 - 4 Sep 2024
Abstract
The vibration pretreatment–microwave curing process can achieve high-quality molding under low-pressure conditions and is widely used in the curing of resin-based composites. This study investigated the effects of the vibration pretreatment process parameters on the void content and the fiber weight fraction of [...] Read more.
The vibration pretreatment–microwave curing process can achieve high-quality molding under low-pressure conditions and is widely used in the curing of resin-based composites. This study investigated the effects of the vibration pretreatment process parameters on the void content and the fiber weight fraction of T700/TRE231; specifically, their influence on the interlaminar shear strength and impact strength of the composite. Initially, an orthogonal experimental design was employed with interlaminar shear strength as the optimization target, where vibration acceleration was determined as the primary factor and dwell time as the secondary factor. Concurrently, thermogravimetric analysis (TGA) was performed based on process parameters that corresponded to the extremum of interlaminar shear strength, revealing a 2.17% difference in fiber weight fraction among specimens with varying parameters, indicating a minimal effect of fiber weight fraction on mechanical properties. Optical digital microscope (ODM) analysis identified interlaminar large-size voids in specimens treated with vibration energy of 5 g and 15 g, while specimens subjected to a vibration energy of 10 g exhibited numerous small-sized voids within layers, suggesting that vibration acceleration influences void escape pathways. Finally, impact testing revealed the effect of the vibration pretreatment process parameters on the impact strength, implying a positive correlation between interlaminar shear strength and impact strength. Full article
(This article belongs to the Special Issue Advances in Functional Polymers and Composites)
Show Figures

Graphical abstract

18 pages, 3586 KiB  
Article
A QbD-Navigated Approach to the Development and Evaluation of Etodolac–Phospholipid Complex Containing Polymeric Films for Improved Anti-Inflammatory Effect
by Jangjeet Karan Singh, Simran Kaur, Balakumar Chandrasekaran, Gurpreet Kaur, Balraj Saini, Rajwinder Kaur, Pragati Silakari, Narinderpal Kaur and Pallavi Bassi
Polymers 2024, 16(17), 2517; https://doi.org/10.3390/polym16172517 - 4 Sep 2024
Abstract
The current study focuses on development of phospholipid complex-loaded films of etodolac for enhanced transdermal permeation and anti-inflammatory effect. An etodolac–phospholipid complex was developed using the solvent evaporation method and was characterized by DSC, XRD, FTIR, and 1H-NMR studies. The formation of [...] Read more.
The current study focuses on development of phospholipid complex-loaded films of etodolac for enhanced transdermal permeation and anti-inflammatory effect. An etodolac–phospholipid complex was developed using the solvent evaporation method and was characterized by DSC, XRD, FTIR, and 1H-NMR studies. The formation of the complex led to conversion of a crystalline drug to an amorphous form. A stoichiometric ratio of 1:1 (drug–phospholipid) was selected as the optimized ratio. Further, the developed complex was incorporated into films and systematic optimization using a central composite design was carried out using a response surface methodological approach. The desirable design space based on minimum contact angle and maximum tensile strength was selected, while the water vapour transmission rate and swelling index were set within limits. The results for swelling index, contact angle, tensile strength, and water vapour transmission rate were 60.14 ± 1.01%, 31.6 ± 0.03, 2.44 ± 0.39 kg/cm2, and 15.38 g/hm2, respectively. These values exhibited a good correlation with the model-predicted values. The optimized formulation exhibited improved diffusion and permeation across skin. In vivo studies revealed enhanced anti-inflammatory potential of the developed films in comparison to the un-complexed drug. Hence, the study demonstrated that etodolac–phospholipid complex-loaded films improve the transdermal permeation and provided enhanced anti-inflammatory effect. Full article
(This article belongs to the Special Issue Polymeric Materials for Drug Delivery Applications)
Show Figures

Figure 1

13 pages, 3384 KiB  
Review
Plasma Treatment of Nanocellulose to Improve the Surface Properties
by Gregor Primc and Miran Mozetič
Polymers 2024, 16(17), 2516; https://doi.org/10.3390/polym16172516 - 4 Sep 2024
Abstract
Nanocellulose is among the most promising materials for enhancing the mechanical properties of polymer composites. Broad application is, however, limited by inadequate surface properties. A standard technique for tailoring the surface composition and wettability of polymers is a brief treatment with non-equilibrium gaseous [...] Read more.
Nanocellulose is among the most promising materials for enhancing the mechanical properties of polymer composites. Broad application is, however, limited by inadequate surface properties. A standard technique for tailoring the surface composition and wettability of polymers is a brief treatment with non-equilibrium gaseous plasma, but it often fails when treating materials with a large surface-to-mass ratio, such as cellulose nanofibers. In this paper, the theoretical limitations are explained, the approaches reported by different groups are reviewed, and the results are interpreted. The treatment of dry nanocellulose is limited by the ability of uniform treatment, whereas the plasma treatment of nanocellulose dispersed in liquids is a slow process. The methods for enhancing the treatment efficiency for both dry and water-dispersed nanocellulose are explained. Full article
(This article belongs to the Special Issue Plasma Processing of Polymers, 2nd Edition)
Show Figures

Figure 1

10 pages, 3109 KiB  
Article
A New Paradigm on Waste-to-Energy Applying Hydrovoltaic Energy Harvesting Technology to Face Masks
by Yongbum Kwon, Dai Bui-Vinh, Seung-Hwan Lee, So Hyun Baek, Hyun-Woo Lee, Jeungjai Yun, Inhee Cho, Jeonghoon Lee, Mi Hye Lee, Handol Lee and Da-Woon Jeong
Polymers 2024, 16(17), 2515; https://doi.org/10.3390/polym16172515 - 4 Sep 2024
Abstract
The widespread use of single-use face masks during the recent epidemic has led to significant environmental challenges due to waste pollution. This study explores an innovative approach to address this issue by repurposing discarded face masks for hydrovoltaic energy harvesting. By coating the [...] Read more.
The widespread use of single-use face masks during the recent epidemic has led to significant environmental challenges due to waste pollution. This study explores an innovative approach to address this issue by repurposing discarded face masks for hydrovoltaic energy harvesting. By coating the face masks with carbon black (CB) to enhance their hydrophilic properties, we developed mask-based hydrovoltaic power generators (MHPGs). These MHPGs were evaluated for their hydrovoltaic performance, revealing that different mask configurations and sizes affect their efficiency. The study found that MHPGs with smaller, more structured areas exhibited better energy output, with maximum open-circuit voltages (VOC) reaching up to 0.39 V and short-circuit currents (ISC) up to 65.6 μA. The integration of CB improved water absorption and transport, enhancing the hydrovoltaic performance. More specifically, MHPG-1 to MHPG-4, which represented different sizes and features, presented mean VOC values of 0.32, 0.17, 0.19 and 0.05 V, as well as mean ISC values of 16.57, 15.59, 47.43 and 3.02 μA, respectively. The findings highlight the feasibility of utilizing discarded masks in energy harvesting systems, offering both environmental benefits and a novel method for renewable energy generation. Therefore, this work provides a new paradigm for waste-to-energy (WTE) technologies and inspires further research into the use of unconventional waste materials for energy production. Full article
(This article belongs to the Section Circular and Green Polymer Science)
Show Figures

Graphical abstract

29 pages, 4572 KiB  
Review
Advances in the Fabrication, Properties, and Applications of Electrospun PEDOT-Based Conductive Nanofibers
by Emanuele Alberto Slejko, Giovanni Carraro, Xiongchuan Huang and Marco Smerieri
Polymers 2024, 16(17), 2514; https://doi.org/10.3390/polym16172514 - 4 Sep 2024
Abstract
The production of nanofibers has become a significant area of research due to their unique properties and diverse applications in various fields, such as biomedicine, textiles, energy, and environmental science. Electrospinning, a versatile and scalable technique, has gained considerable attention for its ability [...] Read more.
The production of nanofibers has become a significant area of research due to their unique properties and diverse applications in various fields, such as biomedicine, textiles, energy, and environmental science. Electrospinning, a versatile and scalable technique, has gained considerable attention for its ability to fabricate nanofibers with tailored properties. Among the wide array of conductive polymers, poly(3,4-ethylenedioxythiophene) (PEDOT) has emerged as a promising material due to its exceptional conductivity, environmental stability, and ease of synthesis. The electrospinning of PEDOT-based nanofibers offers tunable electrical and optical properties, making them suitable for applications in organic electronics, energy storage, biomedicine, and wearable technology. This review, with its comprehensive exploration of the fabrication, properties, and applications of PEDOT nanofibers produced via electrospinning, provides a wealth of knowledge and insights into leveraging the full potential of PEDOT nanofibers in next-generation electronic and functional devices by examining recent advancements in the synthesis, functionalization, and post-treatment methods of PEDOT nanofibers. Furthermore, the review identifies current challenges, future directions, and potential strategies to address scalability, reproducibility, stability, and integration into practical devices, offering a comprehensive resource on conductive nanofibers. Full article
(This article belongs to the Special Issue Multifunctional Application of Electrospun Fiber)
Show Figures

Graphical abstract

11 pages, 8122 KiB  
Article
Using a Carbon Quantum Dot Suspension as a New Solvent for Clear Hydrophobic Surface Coating on Hydrophilic PVA Films
by Yena Oh, Kitae Park, Jamilur R. Ansari and Jongchul Seo
Polymers 2024, 16(17), 2513; https://doi.org/10.3390/polym16172513 - 4 Sep 2024
Abstract
Polyvinyl alcohol (PVA) is a popular material used in the packaging industry. However, it is vulnerable to moisture, which can affect its performance and durability. Introducing hydrophobic substances, such as tetraethyl orthosilicate (TEOS) and hexadecyltrimethoxysilane (HDTMS), on the top layer of PVA can [...] Read more.
Polyvinyl alcohol (PVA) is a popular material used in the packaging industry. However, it is vulnerable to moisture, which can affect its performance and durability. Introducing hydrophobic substances, such as tetraethyl orthosilicate (TEOS) and hexadecyltrimethoxysilane (HDTMS), on the top layer of PVA can help maintain the excellent properties of PVA under high-humidity conditions. The low compatibility of hydrophobic materials with the hydrophilic layers allows them to aggregate more easily. To overcome these issues, we focused on the effects of particle size when increasing the coating suspension’s dispersibility. A carbon quantum dot (CQD) suspension is an appropriate novel solvent for hydrophobic TEOS/HDTMS coating suspensions because its particles are small and light and exhibit good dispersibility. The CQD suspension formed a smooth hydrophobic coating on the TEOS/HDTMS materials. Furthermore, the uniformly coated PVA with the CQD suspension exhibited a water contact angle of 110°. The water droplets remained intact without being absorbed, confirming the effectiveness of the surface coating facilitated by CQDs. These results suggested that CQDs improved the dispersibility and enhanced the coating quality of TEOS/HDTMS on PVA. Enhancing the hydrophobicity of PVA is ideal for applications in packaging and other fields. Full article
(This article belongs to the Special Issue High Performance Polymer Membranes II)
Show Figures

Figure 1

22 pages, 6186 KiB  
Article
Synthesis of Some Eco-Friendly Materials for Gold Recovery
by Theodora Babău, Mihaela Ciopec, Narcis Duteanu, Adina Negrea, Petru Negrea, Nicoleta Sorina Nemeş, Bogdan Pascu, Maria Mihăilescu and Catalin Ianasi
Polymers 2024, 16(17), 2512; https://doi.org/10.3390/polym16172512 - 4 Sep 2024
Abstract
The aim of this study was to develop new materials with adsorbent properties that can be used for the adsorption recovery of Au(III) from aqueous solutions. To achieve this result, it is necessary to obtain inexpensive adsorbent materials in a granular form. Concomitantly, [...] Read more.
The aim of this study was to develop new materials with adsorbent properties that can be used for the adsorption recovery of Au(III) from aqueous solutions. To achieve this result, it is necessary to obtain inexpensive adsorbent materials in a granular form. Concomitantly, these materials must have a high adsorption capacity and selectivity. Other desired properties of these materials include a higher physical resistance, insolubility in water, and materials that can be regenerated or reused. Among the methods applied for the separation, purification, and preconcentration of platinum-group metal ions, adsorption is recognised as one of the most promising methods because of its simplicity, high efficiency, and wide availability. The studies were carried out using three supports: cellulose (CE), chitosan (Chi), and diatomea earth (Diat). These supports were functionalised by impregnation with extractants, using the ultrasound method. The extractants are environmentally friendly and relatively cheap amino acids, which contain in their structure pendant groups with nitrogen and sulphur heteroatoms (aspartic acid—Asp, l-glutamic acid—Glu, valine—Val, DL-cysteine—Cys, or serine—Ser). After preliminary testing from 75 synthesised materials, CE-Cys was chosen for the further recovery of Au(III) ions from aqueous solutions. To highlight the morphology and the functionalisation of the material, we physicochemically characterised the obtained material. Therefore, the analysis of the specific surface and porosity showed that the CE-Cys material has a specific surface of 4.6 m2/g, with a porosity of about 3 nm. The FT-IR analysis showed the presence, at a wavelength of 3340 cm−1, of the specific NH bond vibration for cysteine. At the same time, pHpZc was determined to be 2.8. The kinetic, thermodynamic, and equilibrium studies showed that the pseudo-second-order kinetic model best describes the adsorption process of Au(III) ions on the CE-Cys material. A maximum adsorption capacity of 12.18 mg per gram of the adsorbent material was achieved. It was established that the CE-Cys material can be reused five times with a good recovery degree. Full article
Show Figures

Figure 1

19 pages, 2707 KiB  
Article
Optimized Eco-Friendly Foam Materials: A Study on the Effects of Sodium Alginate, Cellulose, and Activated Carbon
by Mehmet Emin Ergün, Rıfat Kurt, Ahmet Can, İsmail Özlüsoylu and Evren Ersoy Kalyoncu
Polymers 2024, 16(17), 2511; https://doi.org/10.3390/polym16172511 - 4 Sep 2024
Abstract
This study focuses on optimizing the physical and mechanical properties of foam materials produced with the addition of sodium alginate as the matrix, and cellulose and activated carbon as fillers. Foam materials, valued for their lightweight and insulation properties, are typically produced from [...] Read more.
This study focuses on optimizing the physical and mechanical properties of foam materials produced with the addition of sodium alginate as the matrix, and cellulose and activated carbon as fillers. Foam materials, valued for their lightweight and insulation properties, are typically produced from synthetic polymers that pose environmental risks. To mitigate these concerns, this study investigates the potential of natural, biodegradable polymers. Various foam formulations were tested to evaluate their density, compression modulus, and thermal conductivity. The results indicated that an increase in activated carbon content enhanced thermal stability, as indicated by higher Ti% and Tmax% values. Additionally, a higher concentration of sodium alginate and activated carbon resulted in higher foam density and compressive modulus, while cellulose exhibited a more intricate role in the material’s behavior. In the optimal formula, where the sum of the component percentages totals 7.6%, the percentages (e.g., 0.5% sodium alginate, 5% cellulose, and 2.1% activated carbon) are calculated based on the weight/volume (w/v) ratio of each component in the water used to prepare the foam mixture. These results indicate that natural and biodegradable polymers can be used to develop high-performance, eco-friendly foam materials. Full article
(This article belongs to the Special Issue Polymeric Biomaterials: Characterization and Application)
Show Figures

Figure 1

12 pages, 5817 KiB  
Article
Fire-Resistant and Thermal Stability Properties of Fluorosilicone Adhesives by Incorporation of Surface-Modified Aluminum Trihydrate
by Kyung-Soo Sung, Hye-Won Cho, Dae-Ho Lee, Woonjung Kim and Namil Kim
Polymers 2024, 16(17), 2510; https://doi.org/10.3390/polym16172510 - 4 Sep 2024
Abstract
Fluorosilicone was combined with aluminum trihydrate (ATH) to induce synergistic flame-retardant and thermal-resistant properties. The surface of ATH was modified with four different silane coupling agents. The flammability and mechanical properties of the fluorosilicone/ATH composites were assessed using an UL94 vertical test and [...] Read more.
Fluorosilicone was combined with aluminum trihydrate (ATH) to induce synergistic flame-retardant and thermal-resistant properties. The surface of ATH was modified with four different silane coupling agents. The flammability and mechanical properties of the fluorosilicone/ATH composites were assessed using an UL94 vertical test and a die shear strength test. The change in shear strength was investigated under aging for 1000 h at −55 °C and 150 °C. Pure fluorosilicone had inherent fire resistance and thus achieved a V-0 rating even at 20 wt.% ATH loading. Upon addition of ATH treated with 3-glycidoxypropyl trimethoxysilane, the composites exhibited the highest shear strength of 3.9 MPa at 23 °C because of the additional crosslinking reaction of fluorosilicone resin with the epoxide functional group of the coupling agent. Regardless of the types of coupling agents, the composites exhibited similar flame retardancy at the same ATH content, with a slight reduction in shear strength at 180 °C and 250 °C. The shear strength of the adhesives gradually decreased with aging time at −55 °C, but increased noticeably from 3.9 MPa to 11.5 MPa when aged at 150 °C due to the occurrence of the additional crosslinking reaction of fluorosilicone. Full article
(This article belongs to the Special Issue Research and Application of Polymer Adhesives)
Show Figures

Figure 1

17 pages, 2183 KiB  
Article
New Antibacterial and Antioxidant Chitin Derivatives: Ultrasonic Preparation and Biological Effects
by Anton R. Egorov, Omar M. Khubiev, Roman A. Golubev, Daria I. Semenkova, Andrey A. Nikolaev, Abel M. Maharramov, Gunay Z. Mammadova, Wanjun Liu, Alexander G. Tskhovrebov and Andreii S. Kritchenkov
Polymers 2024, 16(17), 2509; https://doi.org/10.3390/polym16172509 - 3 Sep 2024
Viewed by 224
Abstract
This work focuses on the first use of ultrasonic phenol-ene coupling as a polymer analogous transformation. The ultrasonic reaction was introduced into chitin chemistry, resulting in the fast and convenient preparation of new water-soluble cationic chitin derivatives. Since water-soluble derivatives of fully deacetylated [...] Read more.
This work focuses on the first use of ultrasonic phenol-ene coupling as a polymer analogous transformation. The ultrasonic reaction was introduced into chitin chemistry, resulting in the fast and convenient preparation of new water-soluble cationic chitin derivatives. Since water-soluble derivatives of fully deacetylated chitin are poorly described in the literature, the synthesis of each new type of these derivatives is a significant event in polysaccharide chemistry. Polycations, or cationic polymers, are of particular interest as antibacterial agents. Consequently, the resulting polymers were tested for their antibacterial activity and toxicity. We found that the highly substituted polymer of medium molecular weight exhibited the most pronounced in vitro antibacterial effect. We prepared nanoparticles using the ionic gelation technique. The most effective in vitro antibacterial chitin-based systems were tested in vivo in rats. These tests demonstrated outstanding antibacterial effects combined with an absence of toxicity. Additionally, we found that the resulting polymers, unlike their nanoparticle counterparts, also exhibited strong antioxidant effects. In summary, we demonstrated the effectiveness of ultrasound in polymer chemistry and highlighted the importance of the sonochemical approach in the chemical modification of polysaccharides. This approach enables the synthesis of derivatives with improved physicochemical and biological properties. Full article
Show Figures

Figure 1

19 pages, 4521 KiB  
Article
A Novel Composite Material UiO-66-Br@MBC for Mercury Removal from Flue Gas: Preparation and Mechanism
by Zhen Zhang, Zikuo Li, Youxiang Feng, Jingxiang Yu, Xikai Zhang, Jinchao Wen, Haotian Nie, Yue Yu and Li Jia
Polymers 2024, 16(17), 2508; https://doi.org/10.3390/polym16172508 - 3 Sep 2024
Viewed by 233
Abstract
To reduce the mercury content in flue gas from coal-fired power plants and to obtain high-performance, low-cost mercury adsorbents, a novel composite material was prepared by structural design through the in situ growth method. Functionalization treatments such as the modification of functional groups [...] Read more.
To reduce the mercury content in flue gas from coal-fired power plants and to obtain high-performance, low-cost mercury adsorbents, a novel composite material was prepared by structural design through the in situ growth method. Functionalization treatments such as the modification of functional groups and multilayer loading of polymetallic were conducted. These materials include the MOF material UiO-66 and modified biochar doped with Fe/Ce polymetallic, both of which contain unsaturated metal centrals and oxygen-containing functional groups. On the basis of obtaining the effects of adsorption temperature and composite ratio on the Hg0 removal characteristics, coupling and synergistic mechanisms between the various types of active centers included were investigated by using a variety of characterization and analysis tools. The active adsorption sites and oxidation sites were identified during this process, and the constitutive relationship between the physicochemical properties and the performance of Hg0 removal was established. The temperature-programmed desorption technique, Grand Canonical Monte Carlo simulation, and adsorption kinetic model were employed to reveal the mechanism of Hg0 removal. The results showed that the UiO-66-Br@MBC composite adsorbent possessed an excellent Hg0 removal performance at adsorption temperatures ranging from 50 to 250 °C, and targeted construction of adsorption and oxidation sites while maintaining thermal stability. The Hg0 removal by the composites is the result of both adsorption and oxidation. The micropores and small pore mesopores in the samples provide physical adsorption sites. The modified biochar acts as a carrier to facilitate the full exposure of the central metal zirconium ions, the formation of more active sites, and the process of electron transfer. The doping modification of the Br element can enhance the overall redox ability of the sample, and the introduced Fe and Ce polymetallic ions can work in concert to promote the oxidation process of Hg0. The excellent regulation of the ratio between adsorption and oxidation sites on the surface of the composite material finally led to a significant boost in the samples’ capacity to remove Hg0. Full article
(This article belongs to the Special Issue Eco-Friendly Polymer-Based Materials: Design and Applications)
Show Figures

Figure 1

21 pages, 4067 KiB  
Article
Enhancing Brain–Computer Interfaces through Kriging-Based Fusion of Sparse Regression Partial Differential Equations to Counter Injection Molding View of Node Displacement Effects
by Hanjui Chang, Yue Sun, Shuzhou Lu and Yuntao Lan
Polymers 2024, 16(17), 2507; https://doi.org/10.3390/polym16172507 - 3 Sep 2024
Viewed by 237
Abstract
Injection molding is an efficient and precise manufacturing technology that is widely used in the production of plastic products. In recent years, injection molding technology has made significant progress, especially with the combination of in-mold electronics (IME) technology, which makes it possible to [...] Read more.
Injection molding is an efficient and precise manufacturing technology that is widely used in the production of plastic products. In recent years, injection molding technology has made significant progress, especially with the combination of in-mold electronics (IME) technology, which makes it possible to embed electronic components directly into the surface of a product. IME technology improves the integration and performance of a product by embedding conductive materials and functional components in the mold. Brain–computer interfaces (BCIs) are a rapidly growing field of research that aims to capture, analyze, and feedback brain signals by directly connecting the brain to external devices. The Utah array, a high-density microelectrode array, has been widely used for the recording and transmission of brain signals. However, the traditional fabrication method of the Utah array suffers from high cost and low integration, which limits its promotion in practical applications. The lines that receive EEG signals are one of the key parts of a brain–computer interface system. The optimization of injection molding parameters is particularly important in order to effectively embed these lines into thin films and to ensure the precise displacement of the line nodes and the stability of signal transmission during the injection molding process. In this study, a method based on the Kriging prediction model and sparse regression partial differential equations (PDEs) is proposed to optimize the key parameters in the injection molding process. This method can effectively predict and control the displacement of nodes in the film, ensure the stability and reliability of the line during the injection process, and improve the accuracy of EEG signal transmission and system performance. The optimal injection parameters were finally obtained: a holding pressure of 525 MPa, a holding time of 50 s, and a melting temperature of 285 °C. Under this condition, the average node displacement of UA was reduced from the initial 0.19 mm to 0.89 µm, with an optimization rate of 95.32%. Full article
(This article belongs to the Special Issue Developments in Polymer Injection Molding)
Show Figures

Figure 1

41 pages, 6464 KiB  
Review
Recent Advancements in Gel Polymer Electrolytes for Flexible Energy Storage Applications
by Thi Khanh Ly Nguyen and Thuan-Nguyen Pham-Truong
Polymers 2024, 16(17), 2506; https://doi.org/10.3390/polym16172506 - 3 Sep 2024
Viewed by 276
Abstract
Since the last decade, the need for deformable electronics exponentially increased, requiring adaptive energy storage systems, especially batteries and supercapacitors. Thus, the conception and elaboration of new deformable electrolytes becomes more crucial than ever. Among diverse materials, gel polymer electrolytes (hydrogels, organogels, and [...] Read more.
Since the last decade, the need for deformable electronics exponentially increased, requiring adaptive energy storage systems, especially batteries and supercapacitors. Thus, the conception and elaboration of new deformable electrolytes becomes more crucial than ever. Among diverse materials, gel polymer electrolytes (hydrogels, organogels, and ionogels) remain the most studied thanks to the ability to tune the physicochemical and mechanical properties by changing the nature of the precursors, the type of interactions, and the formulation. Nevertheless, the exploitation of this category of electrolyte as a possible commercial product is still restrained, due to different issues related to the nature of the gels (ionic conductivity, evaporation of filling solvent, toxicity, etc.). Therefore, this review aims to resume different strategies to tailor the properties of the gel polymer electrolytes as well as to provide recent advancements in the field toward the elaboration of deformable batteries and supercapacitors. Full article
(This article belongs to the Special Issue Nanostructured Polymers for Advanced Energy Storage)
Show Figures

Figure 1

109 pages, 1729 KiB  
Review
The Use of Natural Minerals as Reinforcements in Mineral-Reinforced Polymers: A Review of Current Developments and Prospects
by Anna Fajdek-Bieda and Agnieszka Wróblewska
Polymers 2024, 16(17), 2505; https://doi.org/10.3390/polym16172505 - 3 Sep 2024
Viewed by 354
Abstract
Natural minerals play a key role in the burgeoning field of mineral-reinforced polymers, providing an important element in strengthening and toughening the properties of composite materials. This article presents a comprehensive overview of the use of minerals in mineral-reinforced polymers, covering various aspects [...] Read more.
Natural minerals play a key role in the burgeoning field of mineral-reinforced polymers, providing an important element in strengthening and toughening the properties of composite materials. This article presents a comprehensive overview of the use of minerals in mineral-reinforced polymers, covering various aspects of their applications and impact on the final properties of these materials. The potential of various types of natural minerals (for example talc, montmorillonite, halloysite, diatomite) as reinforcements in mineral-reinforced polymers is discussed. Techniques for producing mineral-reinforced polymers using minerals, including the mixing method, impregnation, and coating application, are presented in detail. In addition, the effects of process parameters and component ratios on the final properties of mineral-reinforced polymers are discussed. The latest research on the use of minerals in mineral-reinforced polymers is also presented, including their effects on the strength, stiffness, resistance to environmental conditions, and biodegradation of the materials. Finally, the development prospects and potential applications of mineral-reinforced polymers with minerals in various industrial sectors, including packaging, automotive, construction, and medicine, are discussed. Full article
(This article belongs to the Special Issue Biopolymers and Bio-Based Polymer Composites)
Show Figures

Figure 1

1 pages, 138 KiB  
Correction
Correction: Bibi et al. Valorization of Agricultural Waste as a Chemiresistor H2S-Gas Sensor: A Composite of Biodegradable-Electroactive Polyurethane-Urea and Activated-Carbon Composite Derived from Coconut-Shell Waste. Polymers 2023, 15, 685
by Aamna Bibi, Karen S. Santiago, Jui-Ming Yeh and Hsiu-Hui Chen
Polymers 2024, 16(17), 2504; https://doi.org/10.3390/polym16172504 - 3 Sep 2024
Viewed by 116
Abstract
References [42,43] have been removed as they have been identified as being irrelevant to our study due to a scope mismatch [...] Full article
36 pages, 13192 KiB  
Review
Polyesters and Polyester Nano- and Microcarriers for Drug Delivery
by Stanislaw Slomkowski, Teresa Basinska, Mariusz Gadzinowski and Damian Mickiewicz
Polymers 2024, 16(17), 2503; https://doi.org/10.3390/polym16172503 - 3 Sep 2024
Viewed by 236
Abstract
Many therapies require the transport of therapeutic compounds or substances encapsulated in carriers that reduce or, if possible, eliminate their direct contact with healthy tissue and components of the immune system, which may react to them as something foreign and dangerous to the [...] Read more.
Many therapies require the transport of therapeutic compounds or substances encapsulated in carriers that reduce or, if possible, eliminate their direct contact with healthy tissue and components of the immune system, which may react to them as something foreign and dangerous to the patient’s body. To date, inorganic nanoparticles, solid lipids, micelles and micellar aggregates, liposomes, polymeric micelles, and other polymer assemblies were tested as drug carriers. Specifically, using polymers creates a variety of options to prepare nanocarriers tailored to the chosen needs. Among polymers, aliphatic polyesters are a particularly important group. The review discusses controlled synthesis of poly(β-butyrolactone)s, polylactides, polyglycolide, poly(ε-caprolactone), and copolymers containing polymacrolactone units with double bonds suitable for preparation of functionalized nanoparticles. Discussed are syntheses of aliphatic polymers with controlled molar masses ranging from a few thousand to 106 and, in the case of polyesters with chiral centers in the chains, with controlled microstructure. The review presents also a collection of methods useful for the preparation of the drug-loaded nanocarriers: classical, developed and mastered more recently (e.g., nanoprecipitation), and forgotten but still with great potential (by the direct synthesis of the drug-loaded nanoparticles in the process comprising monomer and drug). The article describes also in-vitro and model in-vivo studies for the brain-targeted drugs based on polyester-containing nanocarriers and presents a brief update on the clinical studies and the polyester nanocarrier formulation approved for application in the clinics in South Korea for the treatment of breast, lung, and ovarian cancers. Full article
Show Figures

Figure 1

13 pages, 2977 KiB  
Article
3D-Printed Phenylboronic Acid-Bearing Hydrogels for Glucose-Triggered Drug Release
by Jérémy Odent, Nicolas Baleine, Serena Maria Torcasio, Sarah Gautier, Olivier Coulembier and Jean-Marie Raquez
Polymers 2024, 16(17), 2502; https://doi.org/10.3390/polym16172502 - 3 Sep 2024
Viewed by 214
Abstract
Diabetes is a major health concern that the next-generation of on-demand insulin releasing implants may overcome via personalized therapy. Therein, 3D-printed phenylboronic acid-containing implants with on-demand glucose-triggered drug release abilities are produced using high resolution stereolithography technology. To that end, the methacrylation of [...] Read more.
Diabetes is a major health concern that the next-generation of on-demand insulin releasing implants may overcome via personalized therapy. Therein, 3D-printed phenylboronic acid-containing implants with on-demand glucose-triggered drug release abilities are produced using high resolution stereolithography technology. To that end, the methacrylation of phenylboronic acid is targeted following a two-step reaction. The resulting photocurable phenylboronic acid derivative is accordingly incorporated within bioinert polyhydroxyethyl methacrylate-based hydrogels at varying loadings. The end result is a sub-centimeter scaled 3D-printed bioinert implant that can be remotely activated with 1,2-diols and 1,3-diols such as glucose for on-demand drug administration such as insulin. As a proof of concept, varying glucose concentration from hypoglycemic to hyperglycemic levels readily allow the release of pinacol, i.e., a 1,2-diol-containing model molecule, at respectively low and high rates. In addition, the results demonstrated that adjusting the geometry and size of the 3D-printed part is a simple and suitable method for tailoring the release behavior and dosage. Full article
(This article belongs to the Special Issue Progress in 3D Printing II)
Show Figures

Figure 1

19 pages, 12632 KiB  
Article
The Influence of Oil and Thermal Aging on the Sealing Characteristics of NBR Seals
by Yiding Li, Jian Wu, Zhihao Chen, Ziqi Zhang, Benlong Su and Youshan Wang
Polymers 2024, 16(17), 2501; https://doi.org/10.3390/polym16172501 - 2 Sep 2024
Viewed by 360
Abstract
Nitrile Butadiene Rubber (NBR) is widely used as a sealing material due to its excellent mechanical properties and good oil resistance. However, when using NBR material, the seal structure is unable to avoid the negative effects of rubber aging. Hence, the influence of [...] Read more.
Nitrile Butadiene Rubber (NBR) is widely used as a sealing material due to its excellent mechanical properties and good oil resistance. However, when using NBR material, the seal structure is unable to avoid the negative effects of rubber aging. Hence, the influence of oil and thermal aging on the characteristics of NBR seals was studied by coupling the mechanical behavioral changes with the tribological behavioral changes of NBR in oil and the thermal environment. For this paper, aging testing and compression testing of NBR were carried out. Additionally, friction testing between friction pairs under different aging times was carried out. The surface morphology of the NBR working surface under different aging conditions was also observed. Finally, coefficients of different test conditions were introduced into the finite element model of NBR seals. It can be seen from the results that the elastic modulus increased with the increase in aging time in the thermal oxidative aging testing. The elastic modulus after 7 days of thermal oxidative aging increased by 135.45% compared to the unaged case, and the elastic modulus after 7 days of oil aging increased by 15.03% compared to the unaged case. The compression set rate of NBR increased significantly with the increase in aging time and temperature. The coefficient of friction (COF) between friction pairs increased first and then decreased with the increase in aging time. The maximum contact pressure decreased by 2.43% between the shaft and sealing ring and decreased by 4.01% between the O-ring and groove. The proportion of the effective sealing area decreased by 3.05% between the shaft and sealing ring and decreased by 6.11% between the O-ring and groove. Furthermore, the sealing characteristics between the O-ring and groove were better than those between the shaft and sealing ring. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

15 pages, 4465 KiB  
Article
Magnetic Silver Nanoparticles Stabilized by Superhydrophilic Polymer Brushes with Exceptional Kinetics and Catalysis
by Asghar Dolatkhah, Chandni Dewani, Masoud Kazem-Rostami and Lee D. Wilson
Polymers 2024, 16(17), 2500; https://doi.org/10.3390/polym16172500 - 2 Sep 2024
Viewed by 267
Abstract
Stimuli-responsive catalysts with exceptional kinetics and complete recoverability for efficient recyclability are essential in, for example, converting pollutants and hazardous organic compounds into less harmful chemicals. Here, we used a novel approach to stabilize silver nanoparticles (NPs) through magneto/hydro-responsive anionic polymer brushes that [...] Read more.
Stimuli-responsive catalysts with exceptional kinetics and complete recoverability for efficient recyclability are essential in, for example, converting pollutants and hazardous organic compounds into less harmful chemicals. Here, we used a novel approach to stabilize silver nanoparticles (NPs) through magneto/hydro-responsive anionic polymer brushes that consist of poly (acrylic acid) (PAA) moieties at the amine functional groups of chitosan. Two types of responsive catalyst systems with variable silver loading (wt.%) of high and low (PAAgCHI/Fe3O4/Ag (H, L)) were prepared. The catalytic activity was evaluated by monitoring the reduction of organic dye compounds, 4-nitrophenol and methyl orange in the presence of NaBH4. The high dispersity and hydrophilic nature of the catalyst provided exceptional kinetics for dye reduction that surpassed previously reported nanocatalysts for organic dye reduction. Dynamic light scattering (DLS) measurements were carried out to study the colloidal stability of the nanocatalysts. The hybrid materials not only showed enhanced colloidal stability due to electrostatic repulsion among adjacent polymer brushes but also offered more rapid kinetics when compared with as-prepared Ag nanoparticles (AgNPs), which results from super-hydrophilicity and easy accumulation/diffusion of dye species within polymer brushes. Such remarkable kinetics, biodegradability, biocompatibility, low cost and facile magnetic recoverability of the Ag nanocatalysts reported here contribute to their ranking among the top catalyst systems reported in the literature. It was observed that the apparent catalytic rate constant for the reduction of methyl orange dye was enhanced, PAAgCHI/Fe3O4/Ag (H) ca. 35-fold and PAAgCHI/Fe3O4/Ag (L) ca. 23-fold, when compared against the as prepared AgNPs. Finally, the regeneration and recyclability of the nanocatalyst systems were studied over 15 consecutive cycles. It was demonstrated that the nanomaterials display excellent recyclability without a notable loss in catalytic activity. Full article
(This article belongs to the Special Issue Stimuli-Responsive Polymers: Advances and Prospects)
Show Figures

Graphical abstract

18 pages, 2486 KiB  
Article
Cross-Linking Reaction of Bio-Based Epoxy Systems: An Investigation into Cure Kinetics
by Pietro Di Matteo, Andrea Iadarola, Raffaele Ciardiello, Davide Salvatore Paolino, Francesco Gazza, Vito Guido Lambertini and Valentina Brunella
Polymers 2024, 16(17), 2499; https://doi.org/10.3390/polym16172499 - 2 Sep 2024
Viewed by 302
Abstract
The cure kinetics of various epoxy resin mixtures, comprising a bisphenol epoxy, two epoxy modifiers, and two hardening agents derived from cardanol technology, were investigated through differential scanning calorimetry (DSC). The development of these mixtures aimed to achieve epoxy materials with a substantial [...] Read more.
The cure kinetics of various epoxy resin mixtures, comprising a bisphenol epoxy, two epoxy modifiers, and two hardening agents derived from cardanol technology, were investigated through differential scanning calorimetry (DSC). The development of these mixtures aimed to achieve epoxy materials with a substantial bio-content up to 50% for potential automotive applications, aligning with the 2019 European Regulation on climate neutrality and CO2 emission. The Friedman isoconversional method was employed to determine key kinetic parameters, such as activation energy and pre-exponential factor, providing insights into the cross-linking process and the Kamal–Sourour model was used to describe and predict the kinetics of the chemical reactions. This empirical approach was implemented to forecast the curing process for the specific oven curing cycle utilised. Additionally, tensile tests revealed promising results showcasing materials’ viability against conventional counterparts. Overall, this investigation offers a comprehensive understanding of the cure kinetics, mechanical behaviour, and thermal properties of the novel epoxy–novolac blends, contributing to the development of high-performance materials for sustainable automotive applications. Full article
(This article belongs to the Special Issue Cross-Linked Polymers II)
Show Figures

Figure 1

24 pages, 7925 KiB  
Article
Cytotoxicity of Doxorubicin-Curcumin Nanoparticles Conjugated with Two Different Peptides (CKR and EVQ) against FLT3 Protein in Leukemic Stem Cells
by Fah Chueahongthong, Sawitree Chiampanichayakul, Natsima Viriyaadhammaa, Pornngarm Dejkriengkraikul, Siriporn Okonogi, Cory Berkland and Songyot Anuchapreeda
Polymers 2024, 16(17), 2498; https://doi.org/10.3390/polym16172498 - 2 Sep 2024
Viewed by 365
Abstract
A targeted micellar formation of doxorubicin (Dox) and curcumin (Cur) was evaluated to enhance the efficacy and reduce the toxicity of these drugs in KG1a leukemic stem cells (LSCs) compared to EoL-1 leukemic cells. Dox-Cur-micelle (DCM) was developed to improve the cell uptake [...] Read more.
A targeted micellar formation of doxorubicin (Dox) and curcumin (Cur) was evaluated to enhance the efficacy and reduce the toxicity of these drugs in KG1a leukemic stem cells (LSCs) compared to EoL-1 leukemic cells. Dox-Cur-micelle (DCM) was developed to improve the cell uptake of both compounds in LSCs. Cur-micelle (CM) was produced to compare with DCM. DCM and CM were conjugated with two FLT3 (FMS-like tyrosine kinase)-specific peptides (CKR; C and EVQ; E) to increase drug delivery to KG1a via the FLT3 receptor (AML marker). They were formulated using a film-hydration technique together with a pH-induced self-assembly method. The optimal drug-to-polymer weight ratios for the DCM and CM formulations were 1:40. The weight ratio of Dox and Cur in DCM was 1:9. DCM and CM exhibited a particle size of 20–25 nm with neutral charge and a high %EE. Each micelle exhibited colloidal stability and prolonged drug release. Poloxamer 407 (P407) was modified with terminal azides and conjugated to FLT3-targeting peptides with terminal alkynes. DCM and CM coupled with peptides C, E, and C + E exhibited a higher particle size. Moreover, DCM-C + E and CM-C + E showed the highest toxicity in KG-1a and EoL-1 cells. Using two peptides likely improves the probability of micelles binding to the FLT3 receptor and induces cytotoxicity in leukemic stem cells. Full article
(This article belongs to the Special Issue Polymer Composites for Biomedical Applications)
Show Figures

Graphical abstract

11 pages, 8247 KiB  
Article
Investigation of the Mechanical Properties of Composite Honeycomb Sandwich Panels after Fatigue in Hygrothermal Environments
by Ming Zhao, Haibo Jin, Zhaoxin Yun, Zhengwei Meng and Wei Zhang
Polymers 2024, 16(17), 2497; https://doi.org/10.3390/polym16172497 - 1 Sep 2024
Viewed by 330
Abstract
Since carbon fibre composite sandwich structures have high specific strength and specific modulus, which can meet the requirements for the development of aircraft technology, more and more extensive attention has been paid to their residual mechanical properties after subjecting them to fatigue loading [...] Read more.
Since carbon fibre composite sandwich structures have high specific strength and specific modulus, which can meet the requirements for the development of aircraft technology, more and more extensive attention has been paid to their residual mechanical properties after subjecting them to fatigue loading in hygrothermal environments. In this paper, the compression and shear characteristics of carbon fibre-reinforced epoxy composite honeycomb sandwich wall panels after fatigue in hygrothermal environments are investigated through experiments. The experimental results show that under compressive loading, the load required for the buckling of composite honeycomb sandwich wall panels after fatigue loading in hygrothermal environments decreases by 25.9% and the damage load decreases by 10.5% compared to those at room temperature. Under shear loading, the load required for buckling to occur is reduced by 26.2% and the breaking load by 12.2% compared to those at room temperature. Full article
(This article belongs to the Special Issue Polymer-Based Composite Structures and Mechanical Metamaterials)
Show Figures

Graphical abstract

12 pages, 4598 KiB  
Article
Sandwich-Structured Carbon Nanotube Composite Films for Multifunctional Sensing and Electrothermal Application
by Canyi Lu, Encheng Liu, Qi Sun and Yiqin Shao
Polymers 2024, 16(17), 2496; https://doi.org/10.3390/polym16172496 - 1 Sep 2024
Viewed by 364
Abstract
Electro-conductive films with excellent flexibility and thermal behavior have great potential in the fields of wearable electronics, artificial muscle, and soft robotics. Herein, we report a super-elastic and electro-conductive composite film with a sandwich structure. The composite film was constructed by spraying Polyvinyl [...] Read more.
Electro-conductive films with excellent flexibility and thermal behavior have great potential in the fields of wearable electronics, artificial muscle, and soft robotics. Herein, we report a super-elastic and electro-conductive composite film with a sandwich structure. The composite film was constructed by spraying Polyvinyl alcohol (PVA) polymers onto a buckled conductive carbon nanotube-polydimethylsiloxane (CNTs-PDMS) composite film. In this system, the PVA and PDMS provide water sensing and stretchability, while the coiled CNT film offers sufficient conductivity. Notably, the composite film possesses high stretchability (205%), exceptional compression sensing ability, humility sensing ability, and remarkable electrical stability under various deformations. The produced CNT composite film exhibited deformation (bending/twisting) and high electro-heating performance (108 °C) at a low driving voltage of 2 V. The developed CNT composite film, together with its exceptional sensing and electrothermal performance, provides the material with promising prospects for practical applications in wearable electronics. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

15 pages, 3644 KiB  
Article
Efficient Removal of Mercury from Wastewater Solutions by a Nitrogen-Doped Hyper-Crosslinked Polyamine
by Khalid Al Ghamdi, Aqeel Ahmad, Gheorghe Falca, Meshal Nawaf Alrefaeia and Othman Charles S. Al-Hamouz
Polymers 2024, 16(17), 2495; https://doi.org/10.3390/polym16172495 - 31 Aug 2024
Viewed by 581
Abstract
Mercury, a highly toxic metal and pollutant, poses a significant risk to human health and the environment. This study describes the synthesis of a new nitrogen-doped heteroaromatic hyper-crosslinked polyamine (HCPA) via the polycondensation of 2,6-diaminopyrazine and tris(4-formylphenyl)amine for the efficient removal [...] Read more.
Mercury, a highly toxic metal and pollutant, poses a significant risk to human health and the environment. This study describes the synthesis of a new nitrogen-doped heteroaromatic hyper-crosslinked polyamine (HCPA) via the polycondensation of 2,6-diaminopyrazine and tris(4-formylphenyl)amine for the efficient removal of mercury ions from aqueous solutions. The HCPA polymer was characterized by solid-state 13C-NMR and FT-IR spectroscopy. A powder X-ray diffraction and thermogravimetric analysis showed that the polymer was semicrystalline in nature and stable up to 500 °C. Adsorption isotherms indicated that mercury adsorption occurred via mono- and multilayer adsorption by HCPA, as depicted by the Langmuir, Freundlich, and Redlich–Peterson isotherm models, with a maximum adsorption capacity of qm = 333.3 mg/g. Adsorption kinetic models suggested that the adsorption process was fast and effective, reaching equilibrium within 20 min. Thermodynamics of the adsorption process revealed that it was endothermic and spontaneous in nature due to the positive ΔH0 of 48 kJ/mol and negative ΔG0 values of −4.5 kJ/mol at 293 K. Wastewater treatment revealed 98% removal of mercury indicating the selective nature of HCPA. Finally, HCPA exhibited excellent performance and regeneration up to three cycles, demonstrating its great potential as an adsorbent for environmental remediation applications. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

17 pages, 10227 KiB  
Article
Mechanochemical Upcycling of Waste Polypropylene into Warm-Mix Modifier for Asphalt Pavement Incorporating Recycled Concrete Aggregates
by Jingxuan Hu, Xueliang Jiang, Yaming Chu, Song Xu and Xiong Xu
Polymers 2024, 16(17), 2494; https://doi.org/10.3390/polym16172494 - 31 Aug 2024
Viewed by 481
Abstract
To solve the problems on resource utilization and environmental pollution of waste concrete and waste polypropylene (PP) plastics, the recycling of them into asphalt pavement is a feasible approach. Considering the high melting temperature of waste PP, this study adopted a thermal-and-mechanochemical method [...] Read more.
To solve the problems on resource utilization and environmental pollution of waste concrete and waste polypropylene (PP) plastics, the recycling of them into asphalt pavement is a feasible approach. Considering the high melting temperature of waste PP, this study adopted a thermal-and-mechanochemical method to convert waste PP into high-performance warm-mix asphalt modifiers (PPMs) through the hybrid use of dicumyl peroxide (DCP), maleic anhydride (MAH), and epoxidized soybean oil (ESO) for preparing an asphalt mixture (RCAAM) containing recycled concrete aggregate (RCA). For the prepared RCAAM containing PPMs, the mixing temperature was about 30 °C lower than that of the hot-mix RCAAM containing untreated PP. Further, the high-temperature property, low-temperature crack resistance, moisture-induced damage resistance, and fatigue resistance of the RCAAM were characterized. The results indicated that the maximum flexural strain of the RCAAM increased by 7.8~21.4% after using PPMs, while the sectional fractures of the asphalt binder were reduced after damaging at low temperature. The use of ESO in PPMs can promote the cohesion enhancement of the asphalt binder and also improve the high-temperature deformation resistance and fatigue performance of the RCAAM. Notably, the warm-mix epoxidized PPMA mixture worked better close to the hot-mix untreated PPMA mixture, even after the mixing temperature was reduced by 30 °C. Full article
(This article belongs to the Special Issue Polymer Circularity towards Carbon Neutrality)
Show Figures

Figure 1

16 pages, 4263 KiB  
Article
Effect of Wood Species on Lignin-Retaining High-Transmittance Transparent Wood Biocomposites
by Hamza Bradai, Ahmed Koubaa, Jingfa Zhang and Nicole R. Demarquette
Polymers 2024, 16(17), 2493; https://doi.org/10.3390/polym16172493 - 31 Aug 2024
Viewed by 398
Abstract
This study explores lignin-retaining transparent wood biocomposite production through a lignin-modification process coupled with epoxy resin. The wood’s biopolymer structure, which includes cellulose, hemicellulose, and lignin, is reinforced with the resin through impregnation. This impregnation process involves filling the voids and pores within [...] Read more.
This study explores lignin-retaining transparent wood biocomposite production through a lignin-modification process coupled with epoxy resin. The wood’s biopolymer structure, which includes cellulose, hemicellulose, and lignin, is reinforced with the resin through impregnation. This impregnation process involves filling the voids and pores within the wood structure with resin. Once the resin cures, it forms a strong bond with the wood fibers, effectively reinforcing the biopolymer matrix and enhancing the mechanical properties of the resulting biocomposite material. This synergy between the natural biopolymer structure of wood and the synthetic resin impregnation is crucial for achieving the desired optical transparency and mechanical performance in transparent wood. Investigating three distinct wood species allows a comprehensive understanding of the relationship between natural and transparent wood biocomposite properties. The findings unveil promising results, such as remarkable light transmittance (up to 95%) for Aspen transparent wood. Moreover, transparent wood sourced from White Spruce demonstrates excellent stiffness (E = 2450 MPa), surpassing the resin’s Young’s modulus. Also, the resin impregnation enhanced the thermal stability of natural wood. Conversely, transparent wood originating from Larch showcases superior impact resistance. These results reveal a clear correlation between wood characteristics such as density, anatomy, and mechanical properties, and the resulting properties of the transparent wood. Full article
(This article belongs to the Special Issue Advanced Cellulose Polymers and Derivatives)
Show Figures

Graphical abstract

15 pages, 2172 KiB  
Article
Probiotic Encapsulation: Bead Design Improves Bacterial Performance during In Vitro Digestion (Part 2: Operational Conditions of Vibrational Technology)
by Yesica Vanesa Rojas-Muñoz, María de Jesús Perea-Flores and María Ximena Quintanilla-Carvajal
Polymers 2024, 16(17), 2492; https://doi.org/10.3390/polym16172492 - 31 Aug 2024
Viewed by 442
Abstract
The development of functional foods is a viable alternative for the prevention of numerous diseases. However, the food industry faces significant challenges in producing functional foods based on probiotics due to their high sensitivity to various processing and gastrointestinal tract conditions. This study [...] Read more.
The development of functional foods is a viable alternative for the prevention of numerous diseases. However, the food industry faces significant challenges in producing functional foods based on probiotics due to their high sensitivity to various processing and gastrointestinal tract conditions. This study aimed to evaluate the effect of the operational conditions during the extrusion encapsulation process using vibrating technology on the viability of Lactobacillus fermentum K73, a lactic acid bacterium with hypocholesterolemia probiotic potential. An optimal experimental design approach was employed to produce sweet whey–sodium alginate (SW-SA) beads with high bacterial content and good morphological characteristics. In this study, the effects of frequency, voltage, and pumping rate were optimized for a 300 μm nozzle. The microspheres were characterized using RAMAN spectroscopy, scanning electron microscopy, and confocal laser scanning microscopy. The optimal conditions for bead production were found: 70 Hz, 250 V, and 20 mL/min with a final cell count of 8.43 Log10 (CFU/mL). The mean particle diameter was 620 ± 5.3 µm, and the experimental encapsulation yield was 94.3 ± 0.8%. The INFOGEST model was used to evaluate the survival of probiotic beads under gastrointestinal tract conditions. Upon exposure to in vitro conditions of oral, gastric, and intestinal phases, the encapsulated viability of L. fermentum was 7.6 Log10 (CFU/mL) using the optimal encapsulation parameters, which significantly improved the survival of probiotic bacteria during both the encapsulation process and under gastrointestinal conditions compared to free cells. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

26 pages, 16538 KiB  
Article
Experimental Investigation into the Mechanical and Piezoresistive Sensing Properties of Recycled Carbon-Fiber-Reinforced Polymer Composites for Self-Sensing Applications
by Bum-Jun Kim and Il-Woo Nam
Polymers 2024, 16(17), 2491; https://doi.org/10.3390/polym16172491 - 31 Aug 2024
Viewed by 330
Abstract
This study investigates the mechanical and piezoresistive sensing properties of recycled carbon-fiber-reinforced polymer composites (rCFRPs) for self-sensing applications, which were prepared from recycled carbon fibers (rCFs) with fiber lengths of 6, 12, 18, and 24 mm using a vacuum infusion method. Mechanical properties [...] Read more.
This study investigates the mechanical and piezoresistive sensing properties of recycled carbon-fiber-reinforced polymer composites (rCFRPs) for self-sensing applications, which were prepared from recycled carbon fibers (rCFs) with fiber lengths of 6, 12, 18, and 24 mm using a vacuum infusion method. Mechanical properties of the rCFRPs were examined using uniaxial tensile tests, while sensing characteristics were examined by monitoring the in situ electrical resistance under cyclic and low fatigue loads. Longer fibers (24 mm) showed the superior tensile strength (92.6 MPa) and modulus (8.4 GPa), with improvements of 962.1% and 1061.1%, respectively. Shorter fibers (6 mm) demonstrated enhanced sensing capabilities with the highest sensitivity under low fatigue testing (1000 cycles at 10 MPa), showing an average maximum electrical resistance change rate of 0.7315% and a gauge factor of 4.5876. All the composites displayed a stable electrical response under cyclic and low fatigue loadings. These results provide insights into optimizing rCF incorporation, balancing structural integrity with self-sensing capabilities and contributing to the development of sustainable multifunctional materials. Full article
Show Figures

Figure 1

32 pages, 11571 KiB  
Review
Polymeric Products in Erosion Control Applications: A Review
by Anna Markiewicz, Eugeniusz Koda, Marta Kiraga, Grzegorz Wrzesiński, Klementyna Kozanka, Maurycy Naliwajko and Magdalena Daria Vaverková
Polymers 2024, 16(17), 2490; https://doi.org/10.3390/polym16172490 - 31 Aug 2024
Viewed by 530
Abstract
Among the various types of polymeric materials, geosynthetics deserve special attention. A geosynthetic is a product made from synthetic polymers that is embedded in soils for various purposes. There are some basic functions of geosynthetics, namely, erosion control, filtration, drainage, separation, reinforcement, containment, [...] Read more.
Among the various types of polymeric materials, geosynthetics deserve special attention. A geosynthetic is a product made from synthetic polymers that is embedded in soils for various purposes. There are some basic functions of geosynthetics, namely, erosion control, filtration, drainage, separation, reinforcement, containment, barrier, and protection. Geosynthetics for erosion control are very effective in preventing or limiting soil loss by water erosion on slopes or river/channel banks. Where the current line runs through the undercut area of the slope, the curvature of the arch is increased. If this phenomenon is undesirable, the meander arch should be protected from erosion processes. The combination of geosynthetics provides the best resistance to erosion. In addition to external erosion, internal erosion of soils is also a negative phenomenon. Internal erosion refers to any process by which soil particles are eroded from within or beneath a water-retaining structure. Geosynthetics, particularly geotextiles, are used to prevent internal erosion of soils in contact with the filters. Therefore, the main objective of this review paper is to address the many ways in which geosynthetics are used for erosion control (internal and external). Many examples of hydrotechnical and civil engineering applications of geosynthetics will be presented. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

11 pages, 7495 KiB  
Article
A New Method for the Dynamics Analysis of Super-Elastic-Plastic Foams under Inhomogeneous Loading and Unloading Conditions
by Jiaxuan Chen, Fude Lu, Mingqi Wang and Shuangxi Xiang
Polymers 2024, 16(17), 2489; https://doi.org/10.3390/polym16172489 - 31 Aug 2024
Viewed by 287
Abstract
In this research, a new computational method was proposed for describing the mechanical behavior of super-elastic-plastic foams under inhomogeneous compressive impacts. The method regarded the foam material as composed of two typical mechanical properties superimposed multiple times: one was the hyper-elastic layer, and [...] Read more.
In this research, a new computational method was proposed for describing the mechanical behavior of super-elastic-plastic foams under inhomogeneous compressive impacts. The method regarded the foam material as composed of two typical mechanical properties superimposed multiple times: one was the hyper-elastic layer, and the other was the elastoplastic layer. The hyper-elastic layer and the elastoplastic layer were interwoven and overlapped, divided into double-layer, four-layer, and six-layer configurations to characterize the foam material. After the equivalent layering of the foam, by comparing the results of the four-layer and six-layer divisions, it was found that when the layering reached four layers, the foam performance curve had already converged. The study utilized the HYPERFOAM model and Mullins effect in the ABAQUS software to establish the constitutive relationship of the hyper-elastic layer. It adopted the Crushable foam model to develop the constitutive relationship of the elastoplastic layer. Under uniaxial compression conditions, quasi-static and intermediate strain rate compression tests were performed on polyethylene (PE) foam materials with three different densities. Based on the experimental results, the parameter values of the hyper-elastic-plastic foam model in the ABAQUS code were determined. By comparing the computational results and the experimental results, the established finite element (FE) model was validated using the mechanical behavior of indentation and compression tests. The results showed that this method could effectively describe the complex mechanical behavior and residual deformation of hyper-elastic-plastic foam packaging materials under non-uniform compression, and the experimental and simulation results agreed well, proving the reliability of this method. Full article
(This article belongs to the Special Issue Multiscale Modeling and Simulation of Polymer-Based Composites)
Show Figures

Figure 1

Previous Issue
Back to TopTop