Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
Next Issue
Volume 11, August
Previous Issue
Volume 11, June
 
 

Aerospace, Volume 11, Issue 7 (July 2024) – 100 articles

Cover Story (view full-size image): Space launch and satellite propulsion engineers strive for every little improvement in system performance to increase payload capacity. Aerospike nozzles, with their altitude-adaptive characteristics, can provide such an additional performance gain in comparison with conventional bell nozzles. A key aspect for the successful implementation of this advanced nozzle concept is thrust vector control (TVC). This paper provides insights into the impact of aerodynamic TVC on the nozzle surface and base pressure distribution of a linear aerospike through secondary injection. The results presented are obtained via cold-gas experiments on a linear aerospike nozzle, providing a reference and starting point for further numerical and experimental analyses. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
15 pages, 3122 KiB  
Article
Case Study of Along-Track Separation Maintenance of Distributed Synthetic Aperture Radar Systems in Low Earth Orbits
by Marco D’Errico
Aerospace 2024, 11(7), 600; https://doi.org/10.3390/aerospace11070600 - 22 Jul 2024
Viewed by 294
Abstract
Parasitic SAR formation can be flown at low altitude using smaller satellites and adding potential to conventional SAR mission From the orbital point of view, the main issue is related to the differential aerodynamic drag, which rapidly disrupts the formation. In this ambit, [...] Read more.
Parasitic SAR formation can be flown at low altitude using smaller satellites and adding potential to conventional SAR mission From the orbital point of view, the main issue is related to the differential aerodynamic drag, which rapidly disrupts the formation. In this ambit, this paper proposes a case study of an along-track distributed parasitic receiver flying in formation with PLATiNO-1. Formation maintenance is the core contribution, highlighting how the active control of both altitude and in-plane anomalies leads to an unfeasible ΔV. Then, the active control of the altitude around the nominal value, which naturally controls anomaly shift, is proposed, modeled, and applied to the presented case study. It is shown that the annual ΔV can be reduced to the m/s range. Full article
Show Figures

Figure 1

19 pages, 3360 KiB  
Article
ATC-SD Net: Radiotelephone Communications Speaker Diarization Network
by Weijun Pan, Yidi Wang, Yumei Zhang and Boyuan Han
Aerospace 2024, 11(7), 599; https://doi.org/10.3390/aerospace11070599 - 22 Jul 2024
Viewed by 324
Abstract
This study addresses the challenges that high-noise environments and complex multi-speaker scenarios present in civil aviation radio communications. A novel radiotelephone communications speaker diffraction network is developed specifically for these circumstances. To improve the precision of the speaker diarization network, three core modules [...] Read more.
This study addresses the challenges that high-noise environments and complex multi-speaker scenarios present in civil aviation radio communications. A novel radiotelephone communications speaker diffraction network is developed specifically for these circumstances. To improve the precision of the speaker diarization network, three core modules are designed: voice activity detection (VAD), end-to-end speaker separation for air–ground communication (EESS), and probabilistic knowledge-based text clustering (PKTC). First, the VAD module uses attention mechanisms to separate silence from irrelevant noise, resulting in pure dialogue commands. Subsequently, the EESS module distinguishes between controllers and pilots by levying voice print differences, resulting in effective speaker segmentation. Finally, the PKTC module addresses the issue of pilot voice print ambiguity using text clustering, introducing a novel flight prior knowledge-based text-related clustering model. To achieve robust speaker diarization in multi-pilot scenarios, this model uses prior knowledge-based graph construction, radar data-based graph correction, and probabilistic optimization. This study also includes the development of the specialized ATCSPEECH dataset, which demonstrates significant performance improvements over both the AMI and ATCO2 PROJECT datasets. Full article
Show Figures

Figure 1

14 pages, 5246 KiB  
Article
Safe and Efficient Exploration Path Planning for Unmanned Aerial Vehicle in Forest Environments
by Youkyung Hong, Suseong Kim, Youngsun Kwon, Sanghyouk Choi and Jihun Cha
Aerospace 2024, 11(7), 598; https://doi.org/10.3390/aerospace11070598 - 22 Jul 2024
Viewed by 283
Abstract
This study presents an enhanced exploration path planning for unmanned aerial vehicles. The primary goal is to increase the chances of survival of missing people in forest environments. Exploration path planning is an essential methodology for exploring unknown three-dimensional spaces. However, previous studies [...] Read more.
This study presents an enhanced exploration path planning for unmanned aerial vehicles. The primary goal is to increase the chances of survival of missing people in forest environments. Exploration path planning is an essential methodology for exploring unknown three-dimensional spaces. However, previous studies have mainly focused on underground environments, not forest environments. The existing path planning methods for underground environments are not directly applicable to forest environments. The reason is that multiple open spaces exist with various obstacles, such as trees, foliage, undergrowth, and rocks. This study mainly focused on improving the safety and efficiency to be suitable for forests rather than underground environments. Paths closer to obstacles are penalized to enhance safety, encouraging exploration at a safer distance from obstacles. A potential field function is applied based on explored space to minimize overlapping between existing and new paths to increase efficiency. The proposed exploration path planning method was validated through an extensive simulation analysis and comparison with state-of-the-art sampling-based path planning. Finally, a flight experiment was conducted to verify further the feasibility of the proposed method using onboard real hardware implementation in a cluttered and complex forest environment. Full article
Show Figures

Figure 1

19 pages, 16833 KiB  
Article
Integrated Waverider Forebody/Inlet Fusion Method Based on Discrete Point Cloud Reconstruction
by Zhiqi Liu, Geling Yin, Mingqiang Luo, Jinrong Zhang and Cheekeat Heng
Aerospace 2024, 11(7), 597; https://doi.org/10.3390/aerospace11070597 - 22 Jul 2024
Viewed by 299
Abstract
The integrated design of waverider forebodies and inlets is considered a critical challenge in high Mach number vehicle development. To facilitate the rapid construction of integrated geometrical models for waverider forebodies and inlets during the conceptual design phase, a method based on discrete [...] Read more.
The integrated design of waverider forebodies and inlets is considered a critical challenge in high Mach number vehicle development. To facilitate the rapid construction of integrated geometrical models for waverider forebodies and inlets during the conceptual design phase, a method based on discrete point cloud reconstruction has been proposed. In this method, the geometries of the waverider body and inlet are used as inputs and decomposed into the point cloud under discrete rules. This point cloud is refitted to generate new section lines, which are then lofted into an integrated shape under the constraints of guide curves. By modifying the coordinates of the point cloud positions, the geometric configuration of the integrated shape can be rapidly adjusted, providing initial support for subsequent aerodynamic optimization and thermal protection. Using this method, an integrated approach was applied to a waverider forebody and inward-turning inlet in a tandem configuration. This achieved body-inlet matching and integration, resulting in a 15.6% improvement in the inlet’s total pressure recovery coefficient. The integration time was reduced to just 3.18% of the time required for traditional manual adjustments. Additionally, optimization based on the discrete point cloud enhanced the lift-to-drag ratio by 7.83%, demonstrating the feasibility of the proposed method. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

14 pages, 4408 KiB  
Article
Comparative Study on Mechanical Response in Rigid Pavement Structures of Static and Dynamic Finite Element Models
by Qiao Meng, Ke Zhong, Yuchun Li and Mingzhi Sun
Aerospace 2024, 11(7), 596; https://doi.org/10.3390/aerospace11070596 - 22 Jul 2024
Viewed by 308
Abstract
The safety of airport runways is important to guarantee aircraft taking-off, landing, and taxiing, and the comparison of the mechanical response of pavement structures under dynamic and static loading by LS-DYNA has rarely been studied. The purpose of this work is to separate [...] Read more.
The safety of airport runways is important to guarantee aircraft taking-off, landing, and taxiing, and the comparison of the mechanical response of pavement structures under dynamic and static loading by LS-DYNA has rarely been studied. The purpose of this work is to separate two analysis methods to investigate the mechanical response of rigid airport pavements. Firstly, a tire–road coupling model of an airfield was established to evaluate the suitability of dynamic and static analyses. Then, the effects of landing pitch angles, sinking speeds, and tire pressures on the effective stress, effective strain, and z-displacement of the runway were investigated for both dynamic and static analysis. Finally, the significance of influence factors was analyzed by regression analysis in Statistical Product and Service Solutions (SPSS). The results indicated that the effective stress, effective strain, and z-displacement of the runway increased with a decrease in the landing pitch angle, which also increased with an increase in the sinking speed and tire pressure. It was demonstrated that the difference in pavement mechanical response between dynamic and static analyses progressively widened at high tire pressure and sinking speed. In other words, the static analysis method can be adopted to assess the dynamic mechanical behavior when the landing pitch angle is large and the tire pressure is small. Among the various factors of mechanical response, the effect of tire pressure was the most obvious, followed by sinking speed and landing pitch angle. The work proposes a new approach to understanding the mechanical behavior of runways under complicated and varied conditions, evaluates the applicability of the dynamic and static mechanical analysis methods, identifies key factors in the dynamic and static mechanical analysis of rigid runways, and provides technical support for improving and maintaining the impact resistance of pavement facilities. Full article
Show Figures

Figure 1

23 pages, 8318 KiB  
Article
Analysis of the Effect of Sampling Probe Geometry on Measurement Accuracy in Supersonic Gas Flow
by Wanlin Zhang, Yingtao Chen, Yanting Ai, Pengpeng Sha and Xinlong Yang
Aerospace 2024, 11(7), 595; https://doi.org/10.3390/aerospace11070595 - 21 Jul 2024
Viewed by 259
Abstract
The accuracy of sampling of gas components has a significant impact on the measurement of various performance parameters in the combustion chamber of an aero-engine. In order to investigate the effect of the probe geometry of a six-point gas sampling probe on sampling [...] Read more.
The accuracy of sampling of gas components has a significant impact on the measurement of various performance parameters in the combustion chamber of an aero-engine. In order to investigate the effect of the probe geometry of a six-point gas sampling probe on sampling accuracy in supersonic gas flow, a three-dimensional probe gas flow characteristic solution model is established through numerical simulation methods of components of transport and fluid–solid coupling. Probes with three angles of 28°, 30°, and 32° and an optimized conical probe are constructed. The sampling accuracy of the probes with different geometries is compared and evaluated by the deviation of the component volume fraction before and after sampling and the resulting combustion efficiency error. This paper presents a set of calculation methods for solving the relative deviation of volume fraction by an iterative method based on the ideal gas law and the Redlich–Kwong equation (R-K equation). The method is designed to solve the exact component volume fraction problem in the simulation calculation. The study results demonstrate that the 28° and optimized conical probes improve sampling accuracy more effectively than the original 30° structure. The deviation of the volume fractions of the two structures is less than 1.7%, and the combustion efficiency error is less than 0.09%. The developed iterative calculation method can significantly reduce the theoretical calculation error to less than 0.06%. The experimental data of the test bench are in good agreement with the simulation results, thereby demonstrating the reliability and accuracy of the sampling probe following structural optimization. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

28 pages, 5764 KiB  
Article
Optimization Study of Steady-State Aerial-Towed Cable Circling Strategy Based on BP Neural Network Prediction
by Luqi Feng, Xueqiang Liu and Zi Feng Nio
Aerospace 2024, 11(7), 594; https://doi.org/10.3390/aerospace11070594 - 21 Jul 2024
Viewed by 307
Abstract
This paper presents models for UAV aerial-towed cables in free-end and fixed-end configurations, crucial for tasks like communication and aerial charging. By establishing a quasi steady-state model, computational results on cable shapes are obtained. To accelerate computations, a backpropagation (BP) neural network prediction [...] Read more.
This paper presents models for UAV aerial-towed cables in free-end and fixed-end configurations, crucial for tasks like communication and aerial charging. By establishing a quasi steady-state model, computational results on cable shapes are obtained. To accelerate computations, a backpropagation (BP) neural network prediction model is trained, significantly reducing the computation time. An evaluation function has been developed that integrates both aircraft performance and cable shape considerations to evaluate circling parameters across various states. This function integrates techniques such as BP neural networks and particle swarm optimization (PSO) to refine parameters such as velocities and bank angles for both free-end and fixed-end cables. The results show that the BP neural network accurately predicts cable shapes, achieving a maximum error of 5% in towing force and verticality. Additionally, PSO efficiently optimizes circling parameters, thereby enhancing the effectiveness of the evaluation function in identifying optimal solutions. This approach significantly improves the efficiency of determining optimal circling parameters for UAV aerial-towed cables, thereby contributing to their operational efficacy. Full article
(This article belongs to the Special Issue Aerodynamic and Multidisciplinary Design Optimization)
Show Figures

Figure 1

25 pages, 11423 KiB  
Article
Experimental Study of the Aerodynamic Performance and Flow Characteristics of an Integrated UAV Inlet with Double 90° Bends
by Jiahao Ren, Zhenlong Wu, Huijun Tan, Ziyun Wang, Xiaoming He, Dongpo Li and Yi Zhou
Aerospace 2024, 11(7), 593; https://doi.org/10.3390/aerospace11070593 - 21 Jul 2024
Viewed by 333
Abstract
Many UAVs today have an S-bend inlet for the sake of stealth; however, the majority of them have a relatively gentle transition of the flow channel. This study presents an experimental investigation of the aerodynamic performance and swirl flow characteristics of a UAV [...] Read more.
Many UAVs today have an S-bend inlet for the sake of stealth; however, the majority of them have a relatively gentle transition of the flow channel. This study presents an experimental investigation of the aerodynamic performance and swirl flow characteristics of a UAV inlet with double 90° bends, which is also integrated with an aircraft fuselage as well as a volute. The influences of angle of attack, sideslip angle, AIP Mach number and freestream speed are explored in detail. The influences of the deflectors installed ahead of the first 90° bend of the inlet and the baffle installed at the bottom of the volute are revealed. It is found that both the deflectors and the baffle are beneficial in enhancing the aerodynamic performance of the inlet and alleviating the intensity of the swirl flow inside the volute. Full article
Show Figures

Figure 1

19 pages, 12208 KiB  
Article
On the Generalization Capability of a Data-Driven Turbulence Model by Field Inversion and Machine Learning
by Yasunari Nishi, Andreas Krumbein, Tobias Knopp, Axel Probst and Cornelia Grabe
Aerospace 2024, 11(7), 592; https://doi.org/10.3390/aerospace11070592 - 20 Jul 2024
Viewed by 314
Abstract
This paper discusses the generalizability of a data-augmented turbulence model with a focus on the field inversion and machine learning approach. It is highlighted that the augmented model based on two-dimensional (2D) separated airfoil flows gives poor predictive capability for a different class [...] Read more.
This paper discusses the generalizability of a data-augmented turbulence model with a focus on the field inversion and machine learning approach. It is highlighted that the augmented model based on two-dimensional (2D) separated airfoil flows gives poor predictive capability for a different class of separated flows (NASA wall-mounted hump) compared to the baseline model due to extrapolation. We demonstrate a sensor-based approach to localize the data-driven model correction to tackle this generalizability issue. Furthermore, the applicability of the augmented model to a more complex aeronautical three-dimensional case, the NASA Common Research Model configuration, is studied. Observations on the pressure coefficient predictions and the model correction field suggest that the present 2D-based augmentation is to some extent applicable to a three-dimensional aircraft flow. Full article
(This article belongs to the Special Issue Data-Driven Aerodynamic Modeling)
Show Figures

Figure 1

15 pages, 7218 KiB  
Article
Experimental Investigation of Runback Water Flow Behavior on Aero-Engine Rotating Spinners with Different Wettabilities
by Kuiyuan Ma, Guiping Lin, Haichuan Jin, Xiaobin Shen and Xueqin Bu
Aerospace 2024, 11(7), 591; https://doi.org/10.3390/aerospace11070591 - 20 Jul 2024
Viewed by 176
Abstract
The accumulation of ice on the aero-engine inlet compromises engine safety. Traditional hot air anti-icing systems, which utilize bleed air, require substantial energy, decreasing engine performance and increasing emissions. Superhydrophobic materials have shown potential in reducing energy consumption when combined with these systems. [...] Read more.
The accumulation of ice on the aero-engine inlet compromises engine safety. Traditional hot air anti-icing systems, which utilize bleed air, require substantial energy, decreasing engine performance and increasing emissions. Superhydrophobic materials have shown potential in reducing energy consumption when combined with these systems. Research indicates that superhydrophobic surfaces on stationary components significantly reduce anti-icing energy consumption by altering runback water flow behavior. However, for rotating aero-engine components, the effectiveness of superhydrophobic surfaces and the influence of surface wettability on runback water flow remain unclear due to centrifugal and Coriolis forces. This study investigates the runback water flow behavior on aero-engine rotating spinner surfaces with varying wettabilities in a straight-flow spray wind tunnel. The results demonstrated that centrifugal force reduces the amount of runback water on the rotating spinner compared to the stationary surface, forming rivulet flows deflected opposite to the direction of rotation. Furthermore, wettability significantly affects the flow characteristics of runback water on rotating surfaces. As the contact angle increases, the liquid water on the rotating spinner transitions from continuous film flow to rivulet and bead-like flows. Notably, the superhydrophobic surface prevents water adhesion, indicating its potential for anti-icing on rotating components. In addition, the interaction between rotational speed and surface wettability enhances the effects, with both increased rotational speed and larger contact angles contributing to higher liquid water flow velocities, promoting the rapid formation and detachment of rivulet and bead-like flows. Full article
(This article belongs to the Special Issue Deicing and Anti-Icing of Aircraft (Volume III))
Show Figures

Figure 1

26 pages, 3587 KiB  
Article
Preliminary Sizing of High-Altitude Airships Featuring Atmospheric Ionic Thrusters: An Initial Feasibility Assessment
by Carlo E.D. Riboldi, Marco Belan, Stefano Cacciola, Raffaello Terenzi, Stefano Trovato, Davide Usuelli and Giuseppe Familiari
Aerospace 2024, 11(7), 590; https://doi.org/10.3390/aerospace11070590 - 19 Jul 2024
Viewed by 335
Abstract
When it comes to computing the values of variables defining the preliminary sizing of an airship, a few standardized approaches are available in the existing literature. However, when including a disruptive technology in the design is required, sizing procedures need to be amended, [...] Read more.
When it comes to computing the values of variables defining the preliminary sizing of an airship, a few standardized approaches are available in the existing literature. However, when including a disruptive technology in the design is required, sizing procedures need to be amended, so as to be able to deal with the features of any additional novel item. This is the case of atmospheric ionic thrusters, a promising propulsive technology based on electric power, where thrusters feature no moving parts and are relatively cheap to manufacture. The present contribution proposes modifications to an existing airship design technique, originally conceived accounting for standard electro-mechanical thrusters, so as to cope with the specific features of new atmospheric ionic thrusters. After introducing this design procedure in detail, its potential is tested by showing results from feasibility studies on an example airship intended for a high-altitude mission. Concurrently, the so-obtained results allow the demonstration of the sizing features corresponding to the adoption of atmospheric ionic thrusters at the current level of technology, comparing them to what is obtained for the same mission when employing a standard electro-mechanical propulsion system. Full article
Show Figures

Figure 1

24 pages, 3323 KiB  
Article
New Data-Driven Models of Mass Flow Rate and Isentropic Efficiency of Dynamic Compressors
by Xiande Fang, Yuxiang Fang, Yang Yang, Zhiqiang He and Bei Yang
Aerospace 2024, 11(7), 589; https://doi.org/10.3390/aerospace11070589 - 19 Jul 2024
Viewed by 259
Abstract
Dynamic compressors are widely used in many industrial sectors, such as air, land, and marine vehicle engines, aircraft environmental control systems (ECS), air-conditioning and refrigeration, gas turbines, gas compression and injection, etc. The data-driven formulas of mass flow rate and isentropic efficiency of [...] Read more.
Dynamic compressors are widely used in many industrial sectors, such as air, land, and marine vehicle engines, aircraft environmental control systems (ECS), air-conditioning and refrigeration, gas turbines, gas compression and injection, etc. The data-driven formulas of mass flow rate and isentropic efficiency of dynamic compressors are required for the design, energy analysis, performance simulation, and control- and/or diagnosis-oriented dynamic simulation of such compressors and the related systems. This work develops data-driven models for predicting the performance of dynamic compressors, including empirical models for mass flow rate and isentropic efficiency, which have high prediction accuracy and broad application range. The performance maps of two multi-stage axial compressors of an aero engine and a centrifugal compressor of an aircraft ECS were chosen for evaluation of the existing empirical formulas and testing of the new models. There are 16 empirical models of mass flow rate and 14 empirical models of isentropic efficiency evaluated, and the results show that it is necessary to develop highly accurate empirical formulas both for mass flow rate and isentropic efficiency. With the data-driven method, two empirical models for mass flow rate and one for isentropic efficiency are developed. They are in general form, with some terms removable to make them simple while enhancing their applicability and prediction accuracy. The new models have much higher prediction accuracy than the best existing counterparts. The new mass flow rate models predict for the three compressors a mean absolute relative deviation (MAD) not greater than 1.3%, while the best existing models all have MAD > 2.0%. The new efficiency model predicts for the three compressors an MAD of 1.0%, 0.4%, and 1.9%, respectively, while the best existing model predicts for the three compressors an MAD of 1.8%, 0.8%, and 3.2%, respectively. Full article
Show Figures

Figure 1

21 pages, 2886 KiB  
Article
Hybrid Detection Method for Multi-Intent Recognition in Air–Ground Communication Text
by Weijun Pan, Zixuan Wang, Zhuang Wang, Yidi Wang and Yuanjing Huang
Aerospace 2024, 11(7), 588; https://doi.org/10.3390/aerospace11070588 - 18 Jul 2024
Viewed by 285
Abstract
In recent years, the civil aviation industry has actively promoted the automation and intelligence of control processes with the increasing use of various artificial intelligence technologies. Air–ground communication, as the primary means of interaction between controllers and pilots, typically involves one or more [...] Read more.
In recent years, the civil aviation industry has actively promoted the automation and intelligence of control processes with the increasing use of various artificial intelligence technologies. Air–ground communication, as the primary means of interaction between controllers and pilots, typically involves one or more intents. Recognizing multiple intents within air–ground communication texts is a critical step in automating and advancing the control process intelligently. Therefore, this study proposes a hybrid detection method for multi-intent recognition in air–ground communication text. This method improves recognition accuracy by using different models for single-intent texts and multi-intent texts. First, the air–ground communication text is divided into two categories using multi-intent detection technology: single-intent text and multi-intent text. Next, for single-intent text, the Enhanced Representation through Knowledge Integration (ERNIE) 3.0 model is used for recognition; while the A Lite Bidirectional Encoder Representations from Transformers (ALBERT)_Sequence-to-Sequence_Attention (ASA) model is proposed for identifying multi-intent texts. Finally, combining the recognition results from the two models yields the final result. Experimental results demonstrate that using the ASA model for multi-intent text recognition achieved an accuracy rate of 97.84%, which is 0.34% higher than the baseline ALBERT model and 0.15% to 0.87% higher than other improved models based on ALBERT and ERNIE 3.0. The single-intent recognition model achieved an accuracy of 96.23% when recognizing single-intent texts, which is at least 2.18% higher than the multi-intent recognition model. The results indicate that employing different models for various types of texts can substantially enhance recognition accuracy. Full article
Show Figures

Figure 1

13 pages, 2308 KiB  
Article
Characteristics of Ice Super Saturated Regions in Washington, D.C. Airspace (2019–2023)
by Kayla Ebright and Lance Sherry
Aerospace 2024, 11(7), 587; https://doi.org/10.3390/aerospace11070587 - 17 Jul 2024
Viewed by 378
Abstract
Contrails are estimated to contribute 2% of the Earth’s anthropogenic global warming. Contrails are ice crystal clouds formed by the emission of soot and water vapor from jet engines in atmospheric conditions known as Ice Super Saturated (ISS) regions. The formation of contrails [...] Read more.
Contrails are estimated to contribute 2% of the Earth’s anthropogenic global warming. Contrails are ice crystal clouds formed by the emission of soot and water vapor from jet engines in atmospheric conditions known as Ice Super Saturated (ISS) regions. The formation of contrails can be avoided by flying over or under the ISS regions. Aircraft operators/dispatchers and air traffic control need to know the location of ISS regions in a given airspace to flightplan to avoid contrails. This paper describes the statistics for the presence of ISS regions in the airspace over metropolitan Washington, D.C. These statistics can be used to better understand the operational implications for contrail avoidance. Based on the measurements taken from the twice-daily launch of an aerosonde from Sterling, Virginia (adjacent to Washington, D.C.), analysis of five years of data (2019–2023) indicated that this airspace experiences ISS regions 40% of the days. ISS regions were equally likely during daylight hours (26%) than nighttime (27%). The vertical depth of the ISS region averaged 3000 feet but with a median of 2000 feet. The ISS region floor and ceiling varied by season, with an annual average floor of FL330 and ceiling of FL360. The implications of these results on the operations to avoid contrails, limitations, and future work are discussed. Full article
Show Figures

Figure 1

34 pages, 11344 KiB  
Article
Airfoil Design Optimization of Blended Wing Body for Various Aerodynamic and Stealth Stations
by Wei Zhang, Lin Zhou, Ke Zhao, Ruibin Zhang, Zhenghong Gao and Bowen Shu
Aerospace 2024, 11(7), 586; https://doi.org/10.3390/aerospace11070586 - 17 Jul 2024
Viewed by 304
Abstract
The airfoil is the foundation of an aircraft, and its characteristics have a significant impact on those of the aircraft. Conventional airfoil design mainly focuses on improving aerodynamic performance, while flying wing airfoil designs should also consider layout stability and stealth performance. The [...] Read more.
The airfoil is the foundation of an aircraft, and its characteristics have a significant impact on those of the aircraft. Conventional airfoil design mainly focuses on improving aerodynamic performance, while flying wing airfoil designs should also consider layout stability and stealth performance. The design requirements for an airfoil vary with its position on the flying wing layout aircraft based on corresponding spanwise flow field characteristics. By analyzing the spanwise flow characteristics of the flying wing, partition design models for flying wing airfoils were established in this study, and a series of flying wing airfoil designs that consider aerodynamics and aerodynamic/stealth were implemented. Then, the designed airfoils were configured on a three-dimensional X-47B layout for testing and verification. The results showed that the aerodynamic design and the aerodynamic/stealth design exhibited significant improvements in terms for aerodynamic and longitudinal trimming characteristics. However, the cruise drag performance of the aerodynamic/stealth design was slightly worse than that of the aerodynamic design, although the longitudinal moment trimming characteristics were basically the same. The stealth characteristics of the aerodynamic/stealth design had significant advantages, indicating that there were weak contradictions between the aerodynamic, stealth, and trimming requirements in the design of the flying wing. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

31 pages, 18458 KiB  
Article
Cooling of 1 MW Electric Motors through Submerged Oil Impinging Jets for Aeronautical Applications
by Giuseppe Di Lorenzo, Diego Giuseppe Romano, Antonio Carozza and Antonio Pagano
Aerospace 2024, 11(7), 585; https://doi.org/10.3390/aerospace11070585 - 17 Jul 2024
Viewed by 373
Abstract
Electrification of aircraft is a very challenging task as the demand for energy and power is high. While the storage and generation of electrical energy are widely studied due to the limited specific energy and specific power of batteries and fuel cells, electric [...] Read more.
Electrification of aircraft is a very challenging task as the demand for energy and power is high. While the storage and generation of electrical energy are widely studied due to the limited specific energy and specific power of batteries and fuel cells, electric machines (power electronics and motors) which have years of experience in many industrial fields must be improved when applied to aviation: they generally have a high efficiency but the increase in power levels determines significant thermal loads which, unlike internal combustion engines (ICE), cannot be rejected with the exhaust. There is therefore a need for thermal management systems (TMSs) with the main objective of maintaining operating temperatures below the maximum level required by electric machines. Turboprop aircraft, such as the ATR 72 or the Dash 8-Q400, are commonly used for regional transport and are equipped with two gas turbine engines whose combined power is in the order of 4 MW. Electric and hybrid propulsion systems for these aircraft are being studied by several leading commercial aviation industries and start-ups, and the 1MW motor size seems to be the main option as it could be used in different aircraft configurations, particularly those that exploit distributed electric propulsion. With reference to the topics mentioned above, the present work presents the design of a TMS for a high-power motor/generator whose electrical architecture is known. Once integrated with the electrical part, the TMS must allow a weight/power ratio of 14 kW/kg (or 20 kW/kg at peak power) while maintaining the temperature below the limit temperature with reasonable safety margins. Submerged jet oil is the cooling technique here applied with a focus on diathermic oil. Parameters affecting cooling, like rotor speed and filling factor, are analysed with advanced CFD. Full article
(This article belongs to the Special Issue Electric Machines for Electrified Aircraft Propulsion)
Show Figures

Figure 1

17 pages, 15097 KiB  
Article
A Method for Air Route Network Planning of Urban Air Mobility
by Jie Li, Di Shen, Fuping Yu and Duo Qi
Aerospace 2024, 11(7), 584; https://doi.org/10.3390/aerospace11070584 - 16 Jul 2024
Viewed by 277
Abstract
Urban air mobility is an effective solution to address the current issue of ground traffic congestion in future cities. However, as the user scale continues to expand, the current civil aviation flight scheduling and control methods are becoming inadequate to meet the high-volume [...] Read more.
Urban air mobility is an effective solution to address the current issue of ground traffic congestion in future cities. However, as the user scale continues to expand, the current civil aviation flight scheduling and control methods are becoming inadequate to meet the high-volume flight guarantee demands of future urban air transportation. In order to effectively handle and resolve potential issues in this field in the future, this paper proposes a method for planning urban air mobility route networks. The planning process is divided into two stages: construction and optimization. Methods for constructing urban air mobility route networks based on flight routes and global optimization methods based on node movement are proposed in each stage. In the construction stage, a complete construction process is designed to generate routes based on existing flight routes, in line with the trend of urban air transportation development. In the optimization stage, inspired by the ant colony algorithm, node transfer rules and information transfer rules are incorporated to design a global optimization process and algorithm for route networks. Experimental results demonstrate the effectiveness and advancement of the proposed planning method. Full article
(This article belongs to the Special Issue Integrated Airborne Urban Mobility: A Multidisciplinary View)
Show Figures

Figure 1

24 pages, 1779 KiB  
Article
A Time-Domain Calculation Method for Gust Aerodynamics in Flight Simulation
by Zexuan Yang, Chao Yang, Daxin Wen, Wenbo Zhou and Zhigang Wu
Aerospace 2024, 11(7), 583; https://doi.org/10.3390/aerospace11070583 - 16 Jul 2024
Viewed by 245
Abstract
Gusts have a significant impact on aircraft and need to be analyzed through flight simulations. The solution for time-domain gust aerodynamic forces stands as a pivotal stage in this process. With the increasing demand for flight simulations within gusty environments, traditional methods related [...] Read more.
Gusts have a significant impact on aircraft and need to be analyzed through flight simulations. The solution for time-domain gust aerodynamic forces stands as a pivotal stage in this process. With the increasing demand for flight simulations within gusty environments, traditional methods related to gust aerodynamics cannot fail to balance computational accuracy and efficiency. A method that can be used to quickly and accurately calculate the time-domain gust aerodynamic force is needed. This study proposes the fitting strip method, a gust aerodynamic force solution method that is suitable for real-time flight simulations. It only requires the current and previous gust information to calculate the aerodynamic force and is suitable for different configurations of aircraft and different kinds of gusts. Firstly, the fitting strip method requires the division of fitting strips and the calculation of the aerodynamic force under calibration conditions. In this study, the double-lattice method and computational fluid dynamics are used to calculate the aerodynamic force of the strips. Then, the amplitude coefficients and time-delay coefficients are obtained through a fitting calculation. Finally, the coefficients and gust information are put into the formula to calculate the gust aerodynamic force. An example of a swept wing is used for validation, demonstrating congruence between the computational results and experimental data across subsonic and transonic speeds, which proves the accuracy of the fitting strip method in both discrete gusts and continuous gusts. Compared with other methods, the fitting strip method uses the shortest time. Furthermore, the results of a calculation for normal-layout aircraft show that this method avoids the shortcomings of the rational function approximation method and is more accurate than the gust grouping method. Concurrently, gust aerodynamic force calculations were performed on aircraft with large aspect ratios and used in a real-time flight simulation. Full article
(This article belongs to the Special Issue Gust Influences on Aerospace)
Show Figures

Figure 1

29 pages, 9993 KiB  
Article
Architecture Preliminary Design and Trade-Off Optimization of Stratospheric Airship Based on MBSE
by Weihao Lyu, Yanchu Yang, Jinggang Miao, Shenghong Cao and Lingsen Kong
Aerospace 2024, 11(7), 582; https://doi.org/10.3390/aerospace11070582 - 16 Jul 2024
Viewed by 206
Abstract
System architecture design is crucial for forward design in aerostat system engineering, yet a comprehensive research framework has been lacking. This paper presents a new method for stratospheric airship architecture preliminary design and optimization trade-off, grounded in Model-Based Systems Engineering (MBSE) theory. Firstly, [...] Read more.
System architecture design is crucial for forward design in aerostat system engineering, yet a comprehensive research framework has been lacking. This paper presents a new method for stratospheric airship architecture preliminary design and optimization trade-off, grounded in Model-Based Systems Engineering (MBSE) theory. Firstly, a requirement analysis for a stratospheric airship is conducted using SysML, leading to the analysis and acquisition of the airship’s mission architecture design. Additionally, a multidisciplinary coupling simulation platform is developed with MATLAB, and the architecture preliminary design’s Pareto front is derived using the NSGA-II algorithm. Finally, based on the Pareto optimization set, the TOPSIS algorithm is applied to derive the optimal architecture preliminary design scheme for the airship. The optimization results validate the accuracy of the architecture preliminary design obtained from the requirement analysis, the reliability of the multidisciplinary coupling simulation platform, and the feasibility of the optimization algorithms. This comprehensive study spans the requirement analysis to the optimal architecture scheme, providing theoretical reference and design guidance for the forward design of airship systems engineering. Full article
Show Figures

Figure 1

18 pages, 6815 KiB  
Article
Air Traffic Control Speech Enhancement Method Based on Improved DNN-IRM
by Yuezhou Wu, Pengfei Li and Siling Zhang
Aerospace 2024, 11(7), 581; https://doi.org/10.3390/aerospace11070581 - 16 Jul 2024
Viewed by 420
Abstract
The quality of air traffic control speech is crucial. However, internal and external noise can impact air traffic control speech quality. Clear speech instructions and feedback help optimize flight processes and responses to emergencies. The traditional speech enhancement method based on a deep [...] Read more.
The quality of air traffic control speech is crucial. However, internal and external noise can impact air traffic control speech quality. Clear speech instructions and feedback help optimize flight processes and responses to emergencies. The traditional speech enhancement method based on a deep neural network and ideal ratio mask (DNN-IRM) is prone to distortion of the target speech in a strong noise environment. This paper introduces an air traffic control speech enhancement method based on an improved DNN-IRM. It employs LeakyReLU as an activation function to alleviate the gradient vanishing problem, improves the DNN network structure to enhance the IRM estimation capability, and adjusts the IRM weights to reduce noise interference in the target speech. The experimental results show that, compared with other methods, this method improves the perceptual evaluation of speech quality (PESQ), short-term objective intelligibility (STOI), scale-invariant signal-to-noise ratio (SI-SNR), and speech spectrogram clarity. In addition, we use this method to enhance real air traffic control speech, and the speech quality is also improved. Full article
Show Figures

Figure 1

23 pages, 3190 KiB  
Article
Rapid and Near-Analytical Planning Method for Entry Trajectory under Time and Full-State Constraints
by Wenjie Xia, Peichen Wang, Xunliang Yan, Bei Hong and Xinguo Li
Aerospace 2024, 11(7), 580; https://doi.org/10.3390/aerospace11070580 - 16 Jul 2024
Viewed by 294
Abstract
A rapid trajectory-planning method based on an analytical predictor–corrector design of drag acceleration profile and a bank-reversal logic based on double-stage adaptive adjustment is proposed to solve the entry issue under time and full-state constraints. First, an analytical predictor–corrector algorithm is used to [...] Read more.
A rapid trajectory-planning method based on an analytical predictor–corrector design of drag acceleration profile and a bank-reversal logic based on double-stage adaptive adjustment is proposed to solve the entry issue under time and full-state constraints. First, an analytical predictor–corrector algorithm is used to design the profile parameters to satisfy the terminal of altitude, velocity, range, time, and flight-path angle constraints. Subsequently, an adaptive lateral planning algorithm based on heading adjustment and maintenance is proposed to achieve the flight stage adaptive division and determination of the bank-reversal point, thereby satisfying the terminal position and heading angle constraints. Concurrently, a rapid quantification method is proposed for the adjustable capacity boundary of the terminal heading angle. On this basis, a range-and-time correction strategy is designed to achieve high precision and the rapid generation of a three-degree-of-freedom entry trajectory under large-scale lateral maneuvering. The simulation results demonstrated that compared with the existing methods, the proposed method can adaptively divide flight stages, ensuring better multitask applicability and higher computational efficiency. Full article
(This article belongs to the Special Issue Dynamics, Guidance and Control of Aerospace Vehicles)
Show Figures

Figure 1

13 pages, 4323 KiB  
Article
Experimental Determination of Pitch Damping Coefficient Using Free Oscillation Method
by Ionuț Bunescu, Mihăiță-Gilbert Stoican and Mihai-Vlăduț Hothazie
Aerospace 2024, 11(7), 579; https://doi.org/10.3390/aerospace11070579 - 16 Jul 2024
Viewed by 366
Abstract
This paper outlines an experimental investigation conducted at the INCAS trisonic wind tunnel, focusing on the determination of pitch damping coefficient. The model used for this investigation is the Basic Finner Model, a standard model for dynamic tests which consists in a cone-cylinder [...] Read more.
This paper outlines an experimental investigation conducted at the INCAS trisonic wind tunnel, focusing on the determination of pitch damping coefficient. The model used for this investigation is the Basic Finner Model, a standard model for dynamic tests which consists in a cone-cylinder body with four rectangular fins. The study aims to evaluate the influence of various parameters—including the Mach number, angle of attack, reduced frequency, center of rotation, and roll angle—on pitch damping coefficient. The employed method for determining these coefficients is the free oscillation method which consists in measuring the model oscillation in free stream after an initial perturbation. In order to perform these dynamic tests in the wind tunnel, a dedicated rig was developed to initiate the model’s oscillation using a linear servo-actuator and to record its oscillation using a strain gauge. The results obtained from the experiments illustrate how each parameter impacts the pitch damping coefficient, highlighting the precision of the measurements. The paper’s conclusion presents that the developed rig and the method used provide accurate results, and the variation in different parameters can change the damping coefficient. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

29 pages, 12504 KiB  
Article
Ground-Based Characterisation of a Compact Instrument for Gamma-ray Burst Detection on a CubeSat Platform
by Rachel Dunwoody, David Murphy, Alexey Uliyanov, Joseph Mangan, Maeve Doyle, Joseph Thompson, Cuan de Barra, Lorraine Hanlon, David McKeown, Brian Shortt and Sheila McBreen
Aerospace 2024, 11(7), 578; https://doi.org/10.3390/aerospace11070578 - 15 Jul 2024
Viewed by 402
Abstract
Gamma-ray bursts (GRBs) are intense and short-lived cosmic explosions. Miniaturised CubeSat-compatible instruments for the study of GRBs are being developed to help bridge the gap in large missions and assist in achieving full sky coverage. CubeSats are small, compact satellites conforming to a [...] Read more.
Gamma-ray bursts (GRBs) are intense and short-lived cosmic explosions. Miniaturised CubeSat-compatible instruments for the study of GRBs are being developed to help bridge the gap in large missions and assist in achieving full sky coverage. CubeSats are small, compact satellites conforming to a design standard and have transformed the space industry. They are relatively low-cost and are developed on fast timescales, which has provided unparalleled access to space. This paper focuses on GMOD, the gamma-ray module, onboard the 2U CubeSat EIRSAT-1, launched on December 1st 2023. GMOD is a scintillation-based instrument with a cerium bromide crystal coupled to an array of sixteen silicon photomultipliers, designed for the detection of GRBs. The characterisation of GMOD in the spacecraft, along with the validation of an updated spacecraft MEGAlib model is presented and this approach can be followed by other CubeSats with similar science goals. The energy resolution of the flight model is 7.07% at 662 keV and the effective area peaks in the tens to hundreds of keV, making it a suitable instrument for the detection of GRBs. An investigation into the instrument’s angular response is also detailed. The results from this characterisation campaign are a benchmark for the instrument’s performance pre-launch and will be used to compare with the detector’s performance in orbit. Full article
(This article belongs to the Special Issue Space Telescopes & Payloads)
Show Figures

Figure 1

21 pages, 9367 KiB  
Article
Design of Low-Cost Simulation Space Micro Debris Launch Device
by Renjie Yang, Kai Tang, Xuqiang Lang, Cheng He, Yu Liu and Yue Liu
Aerospace 2024, 11(7), 577; https://doi.org/10.3390/aerospace11070577 - 15 Jul 2024
Viewed by 304
Abstract
The high cost and low emission frequency of microparticle launchers have resulted in a long lead time for the development of detectors for micro-debris in space. In this paper, two low-cost, high-emission-frequency, small-size, millimeter-sized particle launchers are designed using the principles of gas [...] Read more.
The high cost and low emission frequency of microparticle launchers have resulted in a long lead time for the development of detectors for micro-debris in space. In this paper, two low-cost, high-emission-frequency, small-size, millimeter-sized particle launchers are designed using the principles of gas expansion and surge propulsion by a high-speed air stream. Electrostatic detection is utilized to determine the emission velocity of the microbeads and their deviation from a specific position on the flight trajectory. The emission rate and accuracy of both methods were experimentally evaluated, along with the deviation of the detection system. Both devices emitted microbeads to simulate micro-debris, providing experimental data for the development of a space debris detector and establishing research conditions for studying the impact of micro-debris. Full article
Show Figures

Figure 1

15 pages, 12528 KiB  
Article
Design and Implementation of a Land-Air Omnidirectional Mobile Robot
by Changlong Ye, Hongyu Wang, Suyang Yu, Xinyu Ma and Ruizhe Zhou
Aerospace 2024, 11(7), 576; https://doi.org/10.3390/aerospace11070576 - 14 Jul 2024
Viewed by 359
Abstract
This paper proposes a new type of omnidirectional mobile robot for land and air, which has three motion modes, combines the motion characteristics of land motion and air flight, has the ability to climb walls, and can be actively deformed to adapt to [...] Read more.
This paper proposes a new type of omnidirectional mobile robot for land and air, which has three motion modes, combines the motion characteristics of land motion and air flight, has the ability to climb walls, and can be actively deformed to adapt to the working conditions according to the current working environment. The robot incorporates an innovative “rotor blade–single row omnidirectional wheel” composite structure, which is mainly characterized by a single row of continuous switching wheels covering the outside of each rotor blade, and does not need to provide additional power when moving on the ground and walls, relying on the driving force generated by the rotor blades to drive the continuous switching wheels driven by the rotor blades. This structure can effectively combine the land movement mode, wall crawling mode, and air flight mode, which reduces the energy consumption of the robot without increasing the weight, and we design a deformation device that can realize the transformation of the three modes into each other. This paper mainly focuses on the design of the robot structure and the analysis of the movement method, and the land omnidirectional movement experiments, wall crawling experiments, and air flight experiments were, respectively, carried out, and the results show that the proposed land and air omnidirectional mobile robot has the ability to adapt to the movement of each scene, and improves the upper limit of the robot’s operation. Full article
Show Figures

Graphical abstract

23 pages, 3457 KiB  
Review
Biofuel–Electric Hybrid Aircraft Application—A Way to Reduce Carbon Emissions in Aviation
by Shengfei Dong, Zehua Song, Zheyi Meng and Ziyu Liu
Aerospace 2024, 11(7), 575; https://doi.org/10.3390/aerospace11070575 - 13 Jul 2024
Viewed by 388
Abstract
As global warming intensifies, the world is increasingly concerned about carbon emissions. As an important industry that affects carbon emissions, the air transportation industry takes on the important task of energy saving and emission reduction. For this reason, major airlines have designed or [...] Read more.
As global warming intensifies, the world is increasingly concerned about carbon emissions. As an important industry that affects carbon emissions, the air transportation industry takes on the important task of energy saving and emission reduction. For this reason, major airlines have designed or will design different kinds of new-energy aircraft; however, each aircraft has a different scope of application according to its energy source. Biofuels have an obvious carbon emission reduction effect in the whole life cycle, which can offset the drawback of the high pollutant emission of traditional fossil fuels in the preparation and combustion stages. At the same time, a battery has zero emissions in the operating condition, while the low energy density also makes it more applicable to short-range navigation in small aircraft. In this paper, the development direction of a biofuel–electric hybrid aircraft is proposed based on the current development of green aviation, combining the characteristics of biofuel and electric aircraft. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

23 pages, 1958 KiB  
Article
A Novel Approach Using Non-Experts and Transformation Models to Predict the Performance of Experts in A/B Tests
by Phillip Stranger, Peter Judmaier, Gernot Rottermanner, Carl-Herbert Rokitansky, Istvan-Szilard Szilagyi, Volker Settgast and Torsten Ullrich
Aerospace 2024, 11(7), 574; https://doi.org/10.3390/aerospace11070574 - 12 Jul 2024
Viewed by 386
Abstract
The European Union is committed to modernising and improving air traffic management systems to promote environmentally friendly air transport. However, the safety-critical nature of ATM systems requires rigorous user testing, which is hampered by the scarcity and high cost of air traffic controllers. [...] Read more.
The European Union is committed to modernising and improving air traffic management systems to promote environmentally friendly air transport. However, the safety-critical nature of ATM systems requires rigorous user testing, which is hampered by the scarcity and high cost of air traffic controllers. In this article, we address this problem with a novel approach that involves non-experts in the evaluation of expert software in an A/B test setup. Using a transformation model that incorporates auxiliary information from a newly developed psychological questionnaire, we predict the performance of air traffic controllers with high accuracy based on the performance of students. The transformation model uses multiple linear regression and auxiliary information corrections. This study demonstrates the feasibility of using non-experts to test expert software, overcoming testing challenges and supporting user-centred design principles. Full article
(This article belongs to the Special Issue Human Factors during Flight Operations)
Show Figures

Figure 1

23 pages, 8181 KiB  
Article
Experimental Study on the Influence of Microwave Energy Pulse Width and Duty Cycle on Evaporation and Ignition Characteristics of ADN-Based Liquid Propellant Droplets
by Dezhao Yu, Jiale Yao, Jiafu Ma, Yangyang Hou, Shaoyun Zhang and Yusong Yu
Aerospace 2024, 11(7), 573; https://doi.org/10.3390/aerospace11070573 - 12 Jul 2024
Viewed by 335
Abstract
This study investigates the evaporation and ignition characteristics of a single droplet of ammonium dinitramide (ADN)-based liquid propellant utilizing a waveguide resonant cavity device, in conjunction with a high-speed photographic imaging system and testing system. Experimental methods are employed to analyze the impact [...] Read more.
This study investigates the evaporation and ignition characteristics of a single droplet of ammonium dinitramide (ADN)-based liquid propellant utilizing a waveguide resonant cavity device, in conjunction with a high-speed photographic imaging system and testing system. Experimental methods are employed to analyze the impact of microwave pulse width and duty cycle on the puffing and meicro-explosion phenomena of the droplet, as well as the delay time and duration of ignition. The experimental findings reveal that increasing the duty cycle enhances the ignition success rate and diminishes flame development time. Specifically, elevating the microwave duty cycle from 60% to 80% reduces the ignition delay time of the droplet from 132.8 ms to 88.1 ms, and the ignition duration from 23.1 ms to 19.9 ms. Furthermore, an increase in microwave energy pulse width expedites the combustion process of the flame and influences plasma generation. Increasing the pulse width of microwave energy from 20 µs to 40 µs prolongs the ignition delay time from 140.3 ms to 200.5 ms and extends the ignition duration from 56.7 ms to 77.8 ms. Additionally, it is observed that a higher duty cycle leads to a more pronounced puffing phenomenon that initiates earlier. In contrast, a higher pulse width results in a more pronounced puffing phenomenon that commences later. This study provides a thorough investigation into the microwave ignition mechanism of ADN-based liquid propellants, offering theoretical insights into the ignition and combustion stability of such propellants in microwave-assisted ignition systems. Full article
Show Figures

Figure 1

26 pages, 8694 KiB  
Article
Semianalytical Research on Aerothermoelastic Behaviors of Functionally Graded Plates under Arbitrary Temperature Fields in Hypersonic Vehicles
by Chang Li, Zhiqiang Wan, Xiaozhe Wang, Chao Yang and Keyu Li
Aerospace 2024, 11(7), 572; https://doi.org/10.3390/aerospace11070572 - 12 Jul 2024
Viewed by 321
Abstract
Hypersonic vehicles are susceptible to considerable aerodynamic heating and noticeable aerothermoelastic effects during flight due to their high speeds. Functionally graded materials (FGMs), which enable continuous changes in material properties by varying the ratio of different materials, provide both thermal protection and load-bearing [...] Read more.
Hypersonic vehicles are susceptible to considerable aerodynamic heating and noticeable aerothermoelastic effects during flight due to their high speeds. Functionally graded materials (FGMs), which enable continuous changes in material properties by varying the ratio of different materials, provide both thermal protection and load-bearing capabilities. Therefore, they are widely used in thermal protection structures for hypersonic vehicles. In this work, the aerothermoelastic behaviors of functionally graded (FG) plates under arbitrary temperature fields are analyzed via a semianalytical method. This research develops a method considering the influence of thermal loading, specifically the decrease in stiffness due to thermal stresses, as well as the correlation between material properties and temperatures under arbitrary temperature fields, based on Ritz’s method. The classical plate theory, von–Karman’s large defection plate theory and piston theory are employed to formulate the strain energy, kinetic energy and external work functions of the system. This paper presents a novel analysis of static aerothermoelasticity of FG plates, in addition to the linear/nonlinear flutter under arbitrary temperature fields, such as uniform, linear and nonlinear temperature fields. In addition, the effects of the volume fraction index, dynamic pressure, and temperature increase on the aerothermoelastic characteristics of FG plates are analyzed. Full article
(This article belongs to the Special Issue Aeroelasticity, Volume IV)
Show Figures

Figure 1

25 pages, 8866 KiB  
Article
Role of Partial Flexibility on Flow Evolution and Aerodynamic Power Efficiency over a Turbine Blade Airfoil
by Kemal Koca and Mustafa Serdar Genç
Aerospace 2024, 11(7), 571; https://doi.org/10.3390/aerospace11070571 - 11 Jul 2024
Viewed by 380
Abstract
In this study, the aerodynamic performance of a cambered wind turbine airfoil with a partially flexible membrane material on its suction surface was examined experimentally across various angles of attack and Reynolds numbers. It encompassed physical explanation at the pre/post-stall regions. The results [...] Read more.
In this study, the aerodynamic performance of a cambered wind turbine airfoil with a partially flexible membrane material on its suction surface was examined experimentally across various angles of attack and Reynolds numbers. It encompassed physical explanation at the pre/post-stall regions. The results of particle image velocimetry revealed that the laminar separation bubble was diminished or even suppressed when a local flexible membrane material was employed on the suction surface of the wind turbine blade close to the leading edge. The results of the deformation measurement indicated that the membrane had a range of flow modes. This showed that the distribution of aerodynamic fluctuations due to the presence of LSB-induced vortices was reduced. This also led to a narrower wake region occurring. Aerodynamic performance improved and aerodynamic vibration significantly lowered, particularly at the post-stall zone, according to the results of the aerodynamic force measurement. In addition to the lift force, the drag force was enormously reduced, corroborating and matching well with the results of PIV and deformation measurements. Consequently, significant benefits for a turbine blade were notably observed, including aerodynamic performance enhancement, increased aerodynamic power efficiency, and reduced aerodynamic vibration. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop