Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
Next Article in Journal
The Optimal Balance between Oncolytic Viruses and Natural Killer Cells: A Mathematical Approach
Previous Article in Journal
Intelligent Multi-Strategy Hybrid Fuzzy K-Nearest Neighbor Using Improved Hybrid Sine Cosine Algorithm
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Existence of Common Fixed Points of Generalized ∆-Implicit Locally Contractive Mappings on Closed Ball in Multiplicative G-Metric Spaces with Applications

1
Department of Mathematics, University of Poonch Rawalakot Azad Kashmir, Azad Kashmir 12350, Pakistan
2
Department of Mathematics, Allama Iqbal Open University, Islamabad 44000, Pakistan
3
Institut Supérieur d’Informatique et des Techniques de Communication, Université de Sousse, H. Sousse 4000, Tunisia
4
Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University, Ga-Rankuwa 0204, South Africa
5
Department of Mathematics, Texas A&M University-Kingsville, 700 University Blvd., MSC 172, Kingsville, TX 78363-8202, USA
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Mathematics 2022, 10(18), 3369; https://doi.org/10.3390/math10183369
Submission received: 24 August 2022 / Revised: 11 September 2022 / Accepted: 13 September 2022 / Published: 16 September 2022

Abstract

:
In this paper, we introduce a generalized Δ -implicit locally contractive condition and give some examples to support it and show its significance in fixed point theory. We prove that the mappings satisfying the generalized Δ -implicit locally contractive condition admit a common fixed point, where the ordered multiplicative G M -metric space is chosen as the underlying space. The obtained fixed point theorems generalize many earlier fixed point theorems on implicit locally contractive mappings. In addition, some nontrivial and interesting examples are provided to support our findings. To demonstrate the originality of our new main result, we apply it to show the existence of solutions to a system of nonlinear—Volterra type—integral equations.

1. Introduction

In the subject of functional analysis, fixed point theory (FPT) plays a vibrant, fascinating and vital role. Banach (1922) [1] provided a foundational principle that has become a significant instrument in the field of metric fixed point theory to ensure the existence and uniqueness of the fixed point (FP). The Banach fixed point theorem (also known as contraction mapping theorem) is the core principle in the metric fixed point theory. Because of its benefits, numerous authors have demonstrated various improvements and expansions of this theorem in diverse distance spaces (see [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22]).
Bashirov et al. [4] presented the concept of multiplicative calculus and proved its foundational theorem with certain fundamental features. Multiplicative calculus has a vast area of applications and it deals with only positive functions as opposed to the calculus of Newton and Leibniz. Bashirov et al. showed that multiplicative calculus became an important mathematical tool for economics and finance because of the interpretation given to the multiplicative derivative. Furthermore, they proved multiplicative differential and multiplicative integral equations by using the notion of a multiplicative distance space. The research work on the properties of multiplicative metric space was done in [23,24,25,26]. In 2012, Özavsar et al. [27] came up with the definition of multiplicative contraction mappings on multiplicative metric space by using the multiplicative triangle inequality instead of the usual triangular inequality and obtained different existence results of fixed points as well as various topological characteristics of multiplicative metric space. For other examples of fixed point theorems in multiplicative metric space, see weak commutative mappings, locally contractive mappings, E . A -property, compatible-type mappings and generalized contraction mappings with cyclic ( α , β )-admissible mapping ([2,11,28,29,30,31]). In 2016, Nagpal et al. [32] introduced the concept of multiplicative generalized metric space and studied the notion of weakly commuting compatible maps and its variants by using ( C L R ) and ( E . A ) properties in a multiplicative metric space.
Rasham et al. [33] recently presented fixed point results for a pair of dominated fuzzy maps in multiplicative metric space on a closed ball and discussed relevant applications to graph theory, integral equations and functional equations. For additional information on the closed ball, (see [34,35,36]).
According to this perspective, the main objective of this paper was to establish some new fixed point results on a closed ball in an ordered multiplicative δ M -metric space that satisfies a new generalized Δ -implicit contraction. To support new results, we present various nontrivial examples and an application for nonlinear—Volterra type—integral equations. The choice of the multiplicative δ M -metric is based on the concept of generality. The corresponding results in a multiplicative metric space are special cases of the obtained results in a multiplicative δ M -metric space. We think that any new idea regarding contraction and fixed point theorem should be investigated in a most general metric space so that corresponding results can be derived as special cases. The paper is organized as follows. In Section 2, we state basic notions related to fixed point theorems and multiplicative metric spaces. In Section 3, we present many fixed point theorems and related corollaries and examples as explanations of the stated results. In Section 4, we present two applications of the obtained fixed point results in Section 2, moreover, some numerical examples are given.

2. Preliminaries

Now, we recall some well-known notations and definitions that are used in our subsequent discussion.
Definition 1
([4]). Consider a nonempty set ℜ and let L M : × R + be a function satisfying the following properties:
( L 1 )
L M ( e ˇ , ς ) 1 , e ˇ , ς ℜ;
( L 2 )
L M ( e ˇ , ς ) = 1 if and only if e ˇ = ς ;
( L 3 )
L M ( e ˇ , ς ) = L M ( ς , e ˇ ) (symmetry);
( L 4 )
L M ( e ˇ , ς ) L M ( e ˇ , ) . L M ( , ς ) e ˇ , ς , ℜ (multiplicative triangle inequality).
Then, L M is a multiplicative metric on ℜ and the pair (ℜ, L M ) is a multiplicative metric space.
Definition 2
([37]). Let be a nonempty set and the function L : 3 [ 0 , + ) satisfies the following conditions:
(1)
L ( u ¯ , e ˇ , z ) = 0 iff u ¯ = e ˇ = ś ;
(2)
0 < L ( u ¯ , u ¯ , e ˇ ) for all u ¯ , e ˇ with u ¯ = e ˇ ;
(3)
L ( u ¯ , u ¯ , e ˇ ) L ( u ¯ , ś , ś ) for all u ¯ , e ˇ , ś with e ˇ = ś ;
(4)
L ( u ¯ , e ˇ , ś ) = L ( ś , u ¯ , ś ) = L ( e ˇ , ś , ś ) .
(5)
L ( u ¯ , ś , ś ) L ( u ¯ , a , a ) + L ( a , ś , ś ) for all u ¯ , ś , ś , a .
Then, L is said to be an L -metric onand ( , L ) is called a L -metric space.
Definition 3
([32]). Suppose that ℜ is a nonempty set and δ M : 3 R + is a function satisfying the following conditions:
(δ M 1 )
δ M ( e ˇ , ς , ) = 1 if e ˇ = ς = ;
(δ M 2 )
1 < δ M ( e ˇ , e ˇ , ς ) e ˇ , ς ℜ with e ˇ ς ;
(δ M 3 )
δ M ( e ˇ , e ˇ , ς ) δ M ( e ˇ , ς , ) e ˇ , ς , ℜ with ς ;
(δ M 4 )
δ M ( e ˇ , ς , ) = δ M ( e ˇ , , ς ) = δ M ( ς , , e ˇ ) = (symmetry);
(δ M 5 )
δ M ( e ˇ , ς , ) δ M ( e ˇ , τ ˇ , τ ˇ ) . δ M ( τ ˇ , ς , ) e ˇ , ς , , τ ˇ ℜ, (rectangular inequality).
Then, the function δ M is called a multiplicative generalized metric or, more accurately, multiplicative δ M -metric on ℜ and the pair (ℜ, δ M ) is called a multiplicative δ M -metric space.
We note that δ M ( e ˇ , ς , ) = e L ( e ˇ , ς , ) e ˇ , ς , . The δ M -ball with centre e ˇ 0 and radius γ > 0 is defined by
γ ( e ˇ 0 , γ ) ¯ = { ϱ : δ M ( e ˇ 0 , ϱ , ϱ ) γ } .
Assume that ( , d ) is a usual metric space and δ M : 3 R + is defined by δ M ( e ˇ , ς , ) = a d ( e ˇ , ς ) + d ( ς , ) + d ( , e ˇ ) e ˇ , ς , , where a > 1 is any fixed real number. Then, for each a , δ M is a multiplicative δ M -metric on and ( , δ M ) is called a multiplicative δ M -metric space. Note that a multiplicative δ M -metric is not a multiplicative metric space nor a L -metric space. Moreover, a multiplicative metric space is usually different from a metric space (see [33]).
Lemma 1
([32]). Let ( R , δ M ) be a multiplicative δ M -metric space. Then, for all ν ˇ , ϖ ˇ , ϑ ˇ , τ ˇ R , the following conditions hold:
(1)
δ M ( ν ˇ , ϖ ˇ , ϑ ˇ ) = 1 if ν ˇ = ϖ ˇ = ϑ ˇ ;
(2)
δ M ( ν ˇ , ϖ ˇ , ϑ ˇ ) δ M ( ν ˇ , τ ˇ , τ ˇ ) δ M ( ϖ ˇ , τ ˇ , τ ˇ ) δ M ( ϑ ˇ , τ ˇ , τ ˇ ) ;
(3)
δ M ( ν ˇ , ϖ ˇ , ϑ ˇ ) δ M ( ν ˇ , ν ˇ , ϖ ˇ ) δ M ( ν ˇ , ν ˇ , ϑ ˇ ) ;
(4)
δ M ( ν ˇ , ϖ ˇ , ϖ ˇ ) δ M 2 ( ϖ ˇ , ν ˇ , ν ˇ ) .
Lemma 2
([32]). Let { e ˇ k } be a sequence in ( , δ M ) . If the sequence { e ˇ k } is multiplicative δ M -convergent, then it is a multiplicative δ M -Cauchy sequence.
Lemma 3.
Let { e ˇ k } be a sequence in ( , δ M ) . The sequence { e ˇ k } in ℜ is multiplicative δ M -convergent to p ℜ iff δ M ( e ˇ k , p , p ) 1 as k + .
Now, we state our main results with illustrative examples.

3. Main Results

The requirements for the presence of a fixed point of mapping : ξ ξ are stated in the following theorem.
Theorem 1.
Let ( ξ , , δ M ) be an ordered complete multiplicative δ M -metric space. Suppose that the mapping : ξ ξ with η [ 0 , 1 ) , γ > 0 and m 1 satisfies the following,
δ M ( e ˇ , ς , ) m δ M ( e ˇ , ς , ) m η ,
and
δ M ( e ˇ 0 , e ˇ 0 , e ˇ 0 ) ( 1 η ) γ ,
for e ˇ , ς , γ ( e ˇ 0 , γ ) ¯ . If for a nonincreasing sequence { e ˇ n } s γ ( e ˇ 0 , γ ) ¯ such that s e ˇ n , then, there exists a point e ˇ in γ ( e ˇ 0 , γ ) ¯ so that e ˇ = e ˇ and δ M ( e ˇ , e ˇ , e ˇ ) = 1 . Moreover, if for any three points e ˇ , ς and e ¯ in γ ( e ˇ 0 , γ ) ¯ , there exists a point t γ ( e ˇ 0 , γ ) ¯ such that u ˜ e ˇ , u ˜ ς and u ˜ ς , that is, every three elements in γ ( e ˇ 0 , γ ) ¯ has a lower bound ( L B ), then, the point e ˇ is unique in γ ( e ˇ 0 , γ ) ¯ .
Proof. 
Let e ˇ 0 be any arbitrary point in ξ and e ˇ j + 1 = e ˇ j e ˇ j for all n N { 0 } . From inequality (2), we get
δ M ( e ˇ 0 , e ˇ 1 , e ˇ 1 ) ( 1 η ) γ γ ,
thereby implying e ˇ 1 γ ( e ˇ 0 , γ ) ¯ . By the multiplicative triangle inequality, we have
δ M ( e ˇ 0 , e ˇ 2 , e ˇ 2 ) m δ M ( e ˇ 0 , e ˇ 1 , e ˇ 1 ) m δ M ( e ˇ 1 , e ˇ 2 , e ˇ 2 ) m
                              = δ M ( e ˇ 0 , e ˇ 1 , e ˇ 1 ) m δ M ( e ˇ 0 , e ˇ 1 , e ˇ 1 ) m
δ M ( e ˇ 0 , e ˇ 1 , e ˇ 1 ) m 1 + η ,                        
that is,
δ M ( e ˇ 0 , e ˇ 2 , e ˇ 2 ) δ M ( e ˇ 0 , e ˇ 0 , e ˇ 0 ) 1 + η
                                                            ( 1 η ) γ 1 + η γ .
Then, e ˇ 2 γ ( e ˇ 0 , γ ) ¯ . Consider e ˇ 3 , e ˇ 4 , , e ˇ q for every q N . Taking (1) in consideration, we obtain
δ M ( e ˇ q , e ˇ q + 1 , e ˇ q + 1 ) m = δ M ( e ˇ q 1 , e ˇ q , e ˇ q ) m δ M ( e ˇ q 1 , e ˇ q , e ˇ q ) m η δ M ( e ˇ q 2 , e ˇ q 1 , e ˇ q 1 ) m η 2 δ M ( e ˇ 0 , e ˇ 1 , e ˇ 1 ) m η q .
Using (1) and (3), we find
δ M ( e ˇ 0 , e ˇ q + 1 , e ˇ q + 1 ) m δ M ( e ˇ 0 , e ˇ 1 , e ˇ 1 ) m . δ M ( e ˇ 1 , e ˇ 2 , e ˇ 2 ) m δ M ( e ˇ q , e ˇ q + 1 , e ˇ q + 1 ) m
δ M ( e ˇ 0 , e ˇ 1 , e ˇ 1 ) m 1 + η + + η q ,
which becomes
δ M ( e ˇ 0 , e ˇ q + 1 , e ˇ q + 1 ) [ δ M ( e ˇ 0 , e ˇ 0 , e ˇ 0 ) ] 1 η q + 1 1 η
                                              ( 1 η ) γ 1 η q + 1 1 η γ .
Hence, e ˇ q + 1 γ ( e ˇ 0 , γ ) ¯ . Thus, e ˇ j γ ( e ˇ 0 , γ ) ¯ for all j N . Consequently, (3) converts to
δ M ( e ˇ j , e ˇ j + 1 , e ˇ j + 1 ) m δ M ( e ˇ 0 , e ˇ 1 , e ˇ 1 ) m η j .
From inequality (4), we have
δ M ( e ˇ j , e ˇ j + k , e ˇ j + k ) m                                                                                                                
                                                              δ M ( e ˇ j , e ˇ j + 1 , e ˇ j + 1 ) m . δ M ( e ˇ j + 1 , e ˇ j + 2 , e ˇ j + 2 ) m δ M ( e ˇ j + k 1 , e ˇ j + k , e ˇ j + k ) m
              δ M ( e ˇ 0 , e ˇ 1 , e ˇ 1 ) m η j 1 η k 1 η 1 , j + .
This means that the sequence { e ˇ j } is a M δ M C sequence in ( β γ ( e ˇ 0 , γ ) ¯ , δ M ) .
Furthermore, there exists e ˇ γ ( e ˇ 0 , γ ) ¯ with
lim j + δ M ( e ˇ j , e ˇ , e ˇ ) m = lim j + δ M ( e ˇ , e ˇ j , e ˇ j ) m = 1 .
Now, assume that e ˇ e ˇ j e ˇ j 1 ,
δ M ( e ˇ , e ˇ , e ˇ ) m δ M ( e ˇ , e ˇ j , e ˇ j ) m δ M ( e ˇ j , e ˇ , e ˇ ) m = δ M ( e ˇ , e ˇ j , e ˇ j ) m δ M ( e ˇ j 1 , e ˇ , e ˇ ) m δ M ( e ˇ , e ˇ j , e ˇ j ) m δ M ( e ˇ j 1 , e ˇ , e ˇ ) m η lim j + δ M ( e ˇ , e ˇ j , e ˇ j ) m δ M ( e ˇ j 1 , e ˇ , e ˇ ) m η = 1 ,
which is a contradiction. Then, e ˇ = e ˇ . By a similar method, δ M ( e ˇ , e ˇ , e ˇ ) = 1 and hence e ˇ = e ˇ . Now,
δ M ( e ˇ , e ˇ , e ˇ ) m = δ M ( e ˇ , e ˇ , e ˇ ) m δ M ( e ˇ , e ˇ , e ˇ ) m η
which is a contradiction, since η [ 0 , 1 ) . Thus, δ M ( e ˇ , e ˇ , e ˇ ) = 1 .    
Uniqueness:
Consider ς as another point in γ ( e ˇ 0 , γ ) ¯ such that ς = F ς . If e ˇ and ς are comparable, then
δ M ( e ˇ , ς , ς ) m = δ M ( e ˇ , ς , ς ) m δ M ( e ˇ , ς , ς ) m η ,
which is a contradiction and thus,
δ M ( e ˇ , ς , ς ) = 1 implies e ˇ = ς .
Similarly, we can prove δ M ( ς , ς , e ˇ ) = 1 .
On the other hand, if e ˇ and ς are not comparable, then there is a point u ˜ γ ( e ˇ 0 , γ ) ¯ which is the lower bound of e ˇ and ς , that is, u ˜ e ˇ and u ˜ ς . Furthermore, by the same argument, e ˇ e ˇ n as e ˇ n e ˇ . Thus, u ˜ e ˇ e ˇ n e ˇ 0 .
δ M ( e ˇ 0 , u ˜ , u ˜ ) m δ M ( e ˇ 0 , e ˇ 1 , e ˇ 1 ) m . δ M ( e ˇ 1 , u ˜ , u ˜ ) m = δ M ( e ˇ 0 , e ˇ 0 , e ˇ 0 ) m . δ M ( e ˇ 0 , u ˜ , u ˜ ) m δ M ( e ˇ 0 , e ˇ 0 , e ˇ 0 ) m . δ M ( e ˇ 0 , u ˜ , u ˜ ) m η ,
that is,
δ M ( e ˇ 0 , u ˜ , u ˜ ) δ M ( e ˇ 0 , e ˇ 0 , e ˇ 0 ) . δ M ( e ˇ 0 , u ˜ , u ˜ ) η
                                                                    ( 1 η ) γ ( 1 η ) γ η γ     ( by ( 1 ) and ( 2 ) )
where e ˇ 0 , u ˜ γ ( e ˇ 0 , γ ) ¯ and this means that u ˜ γ ( e ˇ 0 , γ ) ¯ .
Now, we show that j u ˜ γ ( e ˇ 0 , γ ) ¯ by using mathematical induction.
Suppose that 2 u ˜ , 3 u ˜ , , q u ˜ γ ( e ˇ 0 , γ ) ¯ for all q N . As q u ˜ q 1 u ˜ u ˜ e ˇ e ˇ n e ˇ 0 , then
δ M ( e ˇ q + 1 , q + 1 u ˜ , q + 1 u ˜ ) m = δ M ( e ˇ q , ( q u ˜ ) , ( q u ˜ ) ) m δ M ( e ˇ q , q u ˜ , q u ˜ ) m η δ M ( e ˇ q , q u ˜ , q u ˜ ) m η q + 1 .
It follows that
δ M ( e ˇ q + 1 , q + 1 u ˜ , q + 1 u ˜ ) δ M ( e ˇ 0 , u ˜ , u ˜ ) η q + 1 .
Now,
δ M ( e ˇ 0 , q + 1 u ˜ , q + 1 u ˜ ) δ M ( e ˇ 0 , e ˇ 1 , e ˇ 1 ) δ M ( e ˇ q , e ˇ q + 1 , e ˇ q + 1 ) . δ M ( e ˇ q + 1 , q + 1 u ˜ , q + 1 u ˜ ) δ M ( e ˇ 0 , e ˇ 1 , e ˇ 1 ) δ M ( e ˇ 0 , e ˇ 1 , e ˇ 1 ) η q δ M ( e ˇ 0 , u ˜ , u ˜ ) η q + 1 δ M ( e ˇ 0 , e ˇ 1 , e ˇ 1 ) 1 + η + + η q δ M ( e ˇ 0 , u ˜ , u ˜ ) η q + 1 ( 1 η ) γ 1 η q + 1 1 η ( 1 η ) γ η q + 1 ( 1 η ) γ 1 η q + 2 1 η γ .
It means that q + 1 u ˜ γ ( e ˇ 0 , γ ) ¯ and so j u ˜ γ ( e ˇ 0 , γ ) ¯ for every j N . Further,
δ M ( e ˇ , ς , ς ) δ M ( j e ˇ , j 1 u ˜ , j 1 u ˜ ) . δ M ( j 1 u ˜ , j ς , j ς ) = δ M ( ( j 1 e ˇ ) , ( j 2 u ˜ ) , ( j 2 u ˜ ) ) . δ M ( ( j 2 u ˜ ) , ( j 1 ς ) , ( j 1 ς ) ) δ M ( j 1 e ˇ , F j 2 u ˜ , j 2 u ˜ ) η δ M ( j 2 u ˜ , j 1 ς , j 1 ς ) η δ M ( e ˇ , u ˜ , u ˜ ) η j δ M ( u ˜ , ς , ς ) η j 1 , w h e n j + .
Hence, δ M ( e ˇ , ς , ς ) = 1 e ˇ = ς . By a similar method
δ M ( ς , ς , e ˇ ) = 1 implies ς = e ˇ .
Therefore, a point e ˇ is unique in ξ .
Corollary 1.
Let ( ξ , , δ M ) be an ordered complete multiplicative δ M metric space. Suppose the mapping : ξ ξ with η [ 0 , 1 ) and γ > 0 satisfies the following,
δ M ( e ˇ , ς , ) G M ( e ˇ , ς , ) η ,
for e ˇ , ς , γ ( e ˇ 0 , γ ) ¯ , with the condition (2).
If for a nonincreasing sequence { e ˇ n } s β γ ( e ˇ 0 , γ ) ¯ such that s e ˇ n , then there exists a point e ˇ in γ ( e ˇ 0 , γ ) ¯ so that e ˇ = e ˇ and δ M ( e ˇ , e ˇ , e ˇ ) = 1 . Moreover, if for any three points e ˇ , ς and e ¯ in γ ( e ˇ 0 , γ ) ¯ , there exists a point u ˜ γ ( e ˇ 0 , γ ) ¯ such that u ˜ e ˇ , u ˜ ς and u ˜ ς , that is, every two points in γ ( e ˇ 0 , γ ) ¯ has a lower bound, then the point e ˇ is unique.
Example 1.
Let ξ be a set of non-negative rationals with δ M : ξ 3 ξ a multiplicative δ M -metric on ξ defined as follows:
δ M ( e ˇ , ς , ) = e e ˇ ς + ς + e ˇ .
Furthermore, let : ξ ξ be defined as
e ˇ = e ˇ 4 if e ˇ 0 , 1 3 ; e ˇ 1 3 if e ˇ 1 3 , .
For e ˇ 0 = 1 3 , γ = 11 2 , η = 5 8 and γ ( e ˇ 0 , γ ) ¯ = 0 , 11 2 , we have
( 1 η ) γ = 3 8 . 11 2 = 33 16 = 2.0625 ,
and
δ M ( e ˇ 0 , e ˇ 0 , e ˇ 0 ) = δ M ( 1 3 , 1 3 , 1 3 ) = δ M ( 1 3 , 0 , 0 ) = e 2 / 3 = 1.9477 ( 1 η ) γ .
Step 1: (when the points are in a closed ball).If e ˇ , ς , 0 , 1 3 γ ( e ˇ 0 , γ ) ¯ = 0 , 11 2 , we get
δ M ( e ˇ , ς , ) = e 1 4 ( e ˇ ς + ς + e ˇ ) e 5 8 ( e ˇ ς + ς + e ˇ ) = δ M ( x , y , z ) η .
Step 2: (when the points are not in a closed ball).If e ˇ , ς , 1 3 , , we have
δ M ( x , y , z ) = e e ˇ ς + ς + e ˇ e 5 8 ( e ˇ ς + ς + e ˇ ) = δ M ( e ˇ , ς , ) η .
Clearly, the contractive condition is not satisfied in ξ and is satisfied in γ ( e ˇ 0 , γ ) ¯ . Hence, all the conditions of Corollary 1 are verified in the case of e ˇ , ς , γ ( e ˇ 0 , γ ) ¯ .
Since every multiplicative δ M -metric space generates a multiplicative d M -metric space, we get the following corollaries.
Corollary 2.
Let ( ξ , , d M ) be an ordered complete multiplicative d M -metric space. Suppose the mapping : ξ ξ with η [ 0 , 1 ) and γ > 0 satisfies the following,
d M ( e ˇ , ς ) m d M ( e ˇ , ς ) m η ,
and
d M ( e ˇ 0 , e ˇ 0 ) ( 1 η ) γ ,
for e ˇ , ς γ ( e ˇ 0 , γ ) ¯ . If for a nonincreasing sequence { e ˇ n } s γ ( e ˇ 0 , γ ) ¯ such that s e ˇ n , then, there exists a point e ˇ in γ ( e ˇ 0 , γ ) ¯ so that e ˇ = e ˇ and d M ( e ˇ , e ˇ ) = 1 . Moreover, if for any two points e ˇ , ς in γ ( e ˇ 0 , γ ) ¯ , there exists a point u ˜ γ ( e ˇ 0 , γ ) ¯ such that u ˜ e ˇ and u ˜ ς , that is, every two points in γ ( e ˇ 0 , γ ) ¯ has a lower bound, then e ˇ is the unique point in γ ( e ˇ 0 , γ ) ¯ .
Corollary 3.
Consider ( ξ , , d M ) as an ordered complete multiplicative d M metric space. Suppose that the mapping : ξ ξ with η [ 0 , 1 ) and γ > 0 satisfies the following,
d M ( e ˇ , ς ) d M ( e ˇ , ς ) η ,
for e ˇ , ς γ ( e ˇ 0 , γ ) ¯ , with condition (9).
If for a nonincreasing sequence { e ˇ n } s γ ( e ˇ 0 , γ ) ¯ implies that s e ˇ n , then there is a point e ˇ in γ ( e ˇ 0 , γ ) ¯ such that e ˇ = e ˇ and d M ( e ˇ , e ˇ ) = 1 . Moreover, if for any two points e ˇ , ς in γ ( e ˇ 0 , γ ) ¯ , there exists a point u ˜ γ ( e ˇ 0 , γ ) ¯ such that u ˜ e ˇ and u ˜ ς , that is, every two points in γ ( e ˇ 0 , γ ) ¯ has a lower bound, then a fixed point e ˇ is unique in γ ( e ˇ 0 , γ ) ¯ .
Theorem 2.
Let ( ξ , , δ M ) be an ordered complete multiplicative δ M -metric space. Suppose that the mapping : ξ ξ with η [ 0 , 1 ) and γ > 0 satisfies the following,
δ M ( e ˇ , ς , ) m M ,
since
M = max δ M ( e ˇ , ς , ) m , δ M ( e ˇ , e ˇ , e ˇ ) m , δ M ( ς , ς , ς ) m , δ M ( e ˇ , ς , ς ) m , min δ M ( , e ˇ , e ˇ ) , δ M ( e ˇ , , ) m η ,
and
G M ( e ˇ 0 , e ˇ 0 , e ˇ 0 ) ( 1 η ) γ ,
for e ˇ , ς , γ ( e ˇ 0 , γ ) ¯ . If for a nonincreasing sequence { e ˇ n } in γ ( e ˇ 0 , γ ) ¯ , { e ˇ n } v γ ( e ˇ 0 , γ ) ¯ so that v e ˇ n , then there exists a unique fixed point e ˇ such that δ M ( e ˇ , e ˇ , e ˇ ) = 1 and e ˇ = e ˇ .
Proof. 
Consider an arbitrary point e ˇ 0 in ξ and e ˇ q + 1 = e ˇ q e ˇ q for all n N { 0 } . From inequality (12), we find
δ M ( e ˇ 0 , e ˇ 1 , e ˇ 1 ) ( 1 η ) γ γ ,
for all j N { 0 } . Now, from inequality (12), we obtain δ M ( e ˇ 0 , e ˇ 1 , e ˇ 1 ) γ and δ M ( e ˇ 1 , e ˇ 2 , e ˇ 2 ) γ , which yields e ˇ 1 , e ˇ 2 γ ( e ˇ 0 , γ ) ¯ . Similarly e ˇ 3 , , e ˇ q γ ( e ˇ 0 , γ ) ¯ for all q N . Now,
δ M ( e ˇ q , e ˇ q + 1 , e ˇ q + 1 ) m = δ M ( e ˇ q 1 , e ˇ q , e ˇ q ) m max δ M ( e ˇ q 1 , e ˇ q , e ˇ q ) m , δ M ( e ˇ q 1 , e ˇ q 1 , e ˇ q 1 ) m , δ M ( e ˇ q , e ˇ q , e ˇ q ) m , δ M ( e ˇ q 1 , e ˇ q , e ˇ q ) m , min δ M ( e ˇ q , e ˇ q 1 , e ˇ q 1 ) , δ M ( e ˇ q 1 , e ˇ q , e ˇ q ) m η max δ M ( e ˇ q 1 , e ˇ q , e ˇ q ) m , δ M ( e ˇ q 1 , e ˇ q , e ˇ q ) m , δ M ( e ˇ q , e ˇ q + 1 , e ˇ q + 1 ) m , δ M ( e ˇ q 1 , e ˇ q + 1 , e ˇ q + 1 ) m , min G M ( e ˇ q , e ˇ q , e ˇ q ) , δ M ( e ˇ q 1 , e ˇ q , e ˇ q ) m η max δ M ( e ˇ q 1 , e ˇ q , e ˇ q ) m , δ M ( e ˇ q 1 , e ˇ q , e ˇ q ) m , δ M ( e ˇ q , e ˇ q + 1 , e ˇ q + 1 ) m , δ M ( e ˇ q 1 , e ˇ q , e ˇ q ) m . δ M ( e ˇ q , e ˇ q + 1 , e ˇ q + 1 ) m , 1 η ( using ( δ M 1 ) and ( δ M 5 ) ) ,
thereby implying,
δ M ( e ˇ q , e ˇ q + 1 , e ˇ q + 1 ) m δ M ( e ˇ q 1 , e ˇ q , e ˇ q ) m . δ M ( e ˇ q , e ˇ q + 1 , e ˇ q + 1 ) m η ,
that is,
δ M ( e ˇ q , e ˇ q + 1 , e ˇ q + 1 ) δ M ( e ˇ q 1 , e ˇ q , e ˇ q ) μ δ M ( e ˇ q 2 , e ˇ q 1 , e ˇ q 1 ) μ 2 δ M ( e ˇ 0 , e ˇ 1 , e ˇ 1 ) μ q ,
where 0 < μ = η 1 η < 1 2 . Taking (11) and (12) in consideration, we get
δ M ( e ˇ 0 , e ˇ q + 1 , e ˇ q + 1 ) δ M ( e ˇ 0 , e ˇ 1 , e ˇ 1 ) δ M ( e ˇ 1 , e ˇ 2 , e ˇ 2 ) δ M ( e ˇ q , e ˇ q + 1 , e ˇ q + 1 ) δ M ( e ˇ 0 , e ˇ 1 , e ˇ 1 ) 1 μ q + 1 1 μ ( 1 η ) γ 1 μ q + 1 1 μ γ .
Then, e ˇ q + 1 γ ( e ˇ 0 , γ ) ¯ . Thus, e ˇ j γ ( e ˇ 0 , γ ) ¯ for every j N . Now, inequa- lity (13) becomes
δ M ( e ˇ j , e ˇ j + 1 , e ˇ j + 1 ) δ M ( e ˇ 0 , e ˇ 1 , e ˇ 1 ) μ j .
From inequality (14), we find
δ M ( e ˇ j , e ˇ j + k , e ˇ j + k ) δ M ( e ˇ j , e ˇ j + 1 , e ˇ j + 1 ) δ M ( e ˇ j + 1 , e ˇ j + 2 , e ˇ j + 2 ) δ δ M ( e ˇ j + k 1 , e ˇ j + k , e ˇ j + k ) [ δ δ M ( e ˇ 0 , e ˇ 1 , e ˇ 1 ) ] μ j 1 μ k 1 μ 1 , j + .
This shows that the sequence { e ˇ j } is a M δ M C sequence in ( γ ( e ˇ 0 , γ ) ¯ , δ M ) . Then, there exists e ˇ γ ( e ˇ 0 , γ ) ¯ with (5) verified.
Now, suppose that e ˇ e ˇ j e ˇ j 1 ,
δ M ( e ˇ , e ˇ , e ˇ ) m δ M ( e ˇ , e ˇ j , e ˇ j ) m δ M ( e ˇ j , e ˇ , e ˇ ) m = δ M ( e ˇ , e ˇ j , e ˇ j ) m δ M ( e ˇ j 1 , e ˇ , e ˇ ) m δ M ( e ˇ , e ˇ j , e ˇ j ) m δ M ( e ˇ j 1 , e ˇ , e ˇ ) m η lim j δ M ( e ˇ , e ˇ j , e ˇ j ) m δ M ( e ˇ j 1 , e ˇ , e ˇ ) m η = 1 ,
which is a contradiction. Then, e ˇ = e ˇ . By a similar method, δ M ( e ˇ , e ˇ , e ˇ ) = 1 and hence e ˇ = e ˇ . Now,
δ M ( e ˇ , e ˇ , e ˇ ) m = δ M ( e ˇ , e ˇ , e ˇ ) m δ M ( e ˇ , e ˇ , e ˇ ) m η
which is a contradiction, since η [ 0 , 1 ) . Thus, δ M ( e ˇ , e ˇ , e ˇ ) = 1 .    
Uniqueness:
Let ς be another point in γ ( e ˇ 0 , γ ) ¯ such that ς = ς . If e ˇ and ς are comparable, then
δ M ( e ˇ , ς , ς ) m = δ M ( e ˇ , ς , ς ) m δ M ( e ˇ , ς , ς ) m η
which is a contradiction that leads us to
δ M ( e ˇ , ς , ς ) = 1 implies e ˇ = ς .
Similarly, we can prove δ M ( ς , ς , e ˇ ) = 1 .
On the other hand, if e ˇ and ς are not comparable, then there exists a point u ˜ γ ( e ˇ 0 , γ ) ¯ which is the lower bound of e ˇ and ς , that is, u ˜ e ˇ and u ˜ ς . Furthermore, e ˇ e ˇ n as e ˇ n e ˇ , u ˜ e ˇ e ˇ n e ˇ 0 .
δ M ( e ˇ 0 , u ˜ , u ˜ ) m δ M ( e ˇ 0 , e ˇ 1 , e ˇ 1 ) m . δ M ( e ˇ 1 , u ˜ , u ˜ ) m = δ M ( e ˇ 0 , e ˇ 0 , e ˇ 0 ) m δ M ( e ˇ 0 , u ˜ , u ˜ ) m δ M ( e ˇ 0 , e ˇ 0 , e ˇ 0 ) m . δ M ( e ˇ 0 , u ˜ , u ˜ ) m η ,
that is,
δ M ( e ˇ 0 , u ˜ , u ˜ ) δ M ( e ˇ 0 , e ˇ 0 , e ˇ 0 ) . δ M ( e ˇ 0 , u ˜ , u ˜ ) η                                     ( 1 η ) γ ( 1 η ) γ η γ     ( by   ( 12 ) )
where e ˇ 0 , u ˜ γ ( e ˇ 0 , γ ) ¯ and this means that u ˜ γ ( e ˇ 0 , γ ) ¯ .
Now, we prove that j u ˜ γ ( e ˇ 0 , γ ) ¯ by using mathematical induction.
Suppose 2 u ˜ , 3 u ˜ , , q u ˜ γ ( e ˇ 0 , γ ) ¯ for all q N . As q u ˜ q 1 u ˜ u ˜ e ˇ e ˇ n e ˇ 0 , then
δ M ( e ˇ q + 1 , q + 1 u ˜ , q + 1 u ˜ ) m = δ M ( e ˇ q , ( q u ˜ ) , ( q u ˜ ) ) m                                                                                                                                     δ M ( e ˇ q , q u ˜ , q u ˜ ) m η δ M ( e ˇ q , q u ˜ , q u ˜ ) m η q + 1 ,
it follows that
δ M ( e ˇ q + 1 , q + 1 u ˜ , q + 1 u ˜ ) δ M ( e ˇ 0 , u ˜ , u ˜ ) η q + 1 .
Now,
δ M ( e ˇ 0 , q + 1 u ˜ , q + 1 u ˜ ) δ M ( e ˇ 0 , e ˇ 1 , e ˇ 1 ) δ M ( e ˇ q , e ˇ q + 1 , e ˇ q + 1 ) . δ M ( e ˇ q + 1 , q + 1 u ˜ , q + 1 u ˜ ) δ M ( e ˇ 0 , e ˇ 1 , e ˇ 1 ) δ M ( e ˇ 0 , e ˇ 1 , e ˇ 1 ) η q δ M ( e ˇ 0 , u ˜ , u ˜ ) η q + 1 δ M ( e ˇ 0 , e ˇ 1 , e ˇ 1 ) 1 + η + + η q δ M ( e ˇ 0 , u ˜ , u ˜ ) η q + 1 ( 1 η ) γ 1 η q + 1 1 η ( 1 η ) γ η q + 1 ( 1 η ) γ 1 η q + 2 1 η γ .
It follows that q + 1 u ˜ γ ( e ˇ 0 , γ ) ¯ and so j u ˜ γ ( e ˇ 0 , γ ) ¯ for every j N . Furthermore
δ M ( e ˇ , ς , ς ) δ M ( j e ˇ , j 1 u ˜ , j 1 u ˜ ) . δ M ( j 1 u ˜ , j ς , j ς )                                                                             = δ M ( ( j 1 e ˇ ) , ( j 2 u ˜ ) , ( j 2 u ˜ ) ) . δ M ( ( j 2 u ˜ ) , ( j 1 ς ) , ( j 1 ς ) )         δ M ( j 1 e ˇ , j 2 u ˜ , j 2 u ˜ ) η . δ M ( j 2 u ˜ , j 1 ς , j 1 ς ) η                                                                                               δ M ( e ˇ , u ˜ , u ˜ ) η j δ M ( u ˜ , ς , ς ) η j 1 ,       where j + .
Hence, δ M ( e ˇ , ς , ς ) = 1 e ˇ = ς . Similarly,
δ M ( ς , ς , e ˇ ) = 1 implies ς = e ˇ .
Therefore, a point e ˇ is unique in ξ .
As illustrated, Theorem 1 is a corollary to Theorem 6.
Example 2.
Consider ξ = R + { 0 } with δ M : ξ 3 ξ a multiplicative G M -metric on ξ defined by
δ M ( e ˇ , ς , ) = e e ˇ ς + ς + e ˇ .
Furthermore, let the mapping : ξ ξ be defined as
e ˇ = e ˇ 6 if e ˇ 0 , 1 5 ξ ; e ˇ 1 8 if e ˇ 1 5 , ξ ,
and
M = max δ M ( e ˇ , ς , ) m , G M ( e ˇ , e ˇ , e ˇ ) m , δ M ( ς , ς , ς ) m , δ M ( e ˇ , ς , ς ) m , min δ M ( , e ˇ , e ˇ ) , δ M ( e ˇ , , ) m η .
For e ˇ 0 = 1 4 , γ = 13 2 , η = 2 3 and γ ( e ˇ 0 , γ ) ¯ = 0 , 13 2 , we have
( 1 η ) γ = 1 3 . 13 2 = 13 6 = 2.16 ,
and
δ M ( e ˇ 0 , e ˇ 0 , e ˇ 0 ) = δ M ( 1 4 , 1 4 , 1 4 ) = δ M ( 1 4 , 1 16 , 1 16 ) = e 6 / 16 = 1.4533 ( 1 η ) γ .
Step 1:If e ˇ , ς , 0 , 1 5 ξ γ ( e ˇ 0 , γ ) ¯ = 0 , 13 2 , we obtain
δ M ( e ˇ , ς , ) m = e 1 2 ( e ˇ ς + ς + e ˇ ) m max e e ˇ ς + ς + e ˇ m , e e ˇ m , e ς m , e ς 2 e ˇ m , min e e ˇ 2 , e 2 e ˇ m η = e e ˇ ς + ς + e ˇ m η = δ M ( e ˇ , ς , ) m η .
Step 2:If e ˇ , ς , 1 5 , ξ , we have
δ M ( x , y , z ) m = e e ˇ ς + ς + e ˇ m max e e ˇ ς + ς + e ˇ m , e 1 2 m , e 1 2 m , e 2 e ˇ ς + 1 4 m , min e 2 e ˇ + 1 4 , e 2 e ˇ m η = e e ˇ ς + ς + e ˇ m : η = e e ˇ ς + ς + e ˇ m 5 / 8 .
Clearly, the contractive condition is not verified in 1 5 , ξ and is verified in γ ( e ˇ 0 , γ ) ¯ . Hence, all the assertions of Theorem 6 are satisfied in the case of e ˇ , ς , γ ( e ˇ 0 , γ ) ¯ .

4. Application for Nonlinear Volterra Type Integral Equations

Clearly, many researchers have justified many kinds of linear and nonlinear Volterra and Fredhlom type integral equations by using various contraction principles. Rasham et al. [38] proved an expressive fixed point results for sufficient conditions to solve two systems of nonlinear integral equations. For further fixed point results with applications related to integral equations, (see [39,40,41,42,43,44]).
Theorem 3.
Let ( ξ , , δ M ) be an ordered complete multiplicative δ M -metric space. Suppose the mapping : ξ ξ with η [ 0 , 1 ) and γ > 0 satisfies the following,
δ M ( e ˇ , ς , ) m δ M ( e ˇ , ς , ) m η .
Then, every nonincreasing sequence { e ˇ n } in a multiplicative δ M -metric space converges to e ˇ . Moreover, e ˇ is the fixed point of the mapping ℑ.
Proof. 
The proof of Theorem 3 is similar to that of Theorem 1. Consider the nonlinear Volterra type integral equations as follows:
e ˇ ( u ˜ ) = 0 u ˜ H 1 ( u ˜ , h , e ˇ ) d h ,
ς ( u ˜ ) = 0 u ˜ H 2 ( u ˜ , h , ς ) d h ,
( u ˜ ) = 0 u ˜ H 3 ( u ˜ , h , ) d h ,
for all u ˜ [ 0 , 1 ] , and H 1 , H 2 , H 3 : [ 0 , 1 ] × [ 0 , 1 ] × C ( [ 0 , 1 ] , R + ) R + . We prove the existence of the solution of (16)–(18). For e ˇ C ( [ 0 , 1 ] , R + ) , define its norm as:
e ˇ τ = sup u ˜ [ 0 , 1 ] e e ˇ ( u ˜ ) .
Then, define
δ M ( e ˇ , ς , ) = [ sup u ˜ [ 0 , 1 ] e e ˇ ς + ς + e ˇ ] = e e ˇ ς τ + ς τ + e ˇ τ ,
where τ > 0 , for all e ˇ , ς and C ( [ 0 , 1 ] , R + ) . With these settings, C ( [ 0 , 1 ] , R + ) , δ M becomes a complete multiplicative δ M -metric space.
Now, we prove the following theorem to show the existence of the solution to integral equations.
Theorem 4.
Suppose the following conditions are satisfied:
(i)
H 1 , H 2 , H 3 : [ 0 , 1 ] × [ 0 , 1 ] × C ( [ 0 , 1 ] , R + ) R + ;
(ii)
Define
( e ˇ ) ( u ˜ ) = 0 u ˜ H 1 ( u ˜ , h , e ˇ ) d h ; ( ς ) ( u ˜ ) = 0 u ˜ H 2 ( u ˜ , h , ς ) d h ; ( ) ( u ˜ ) = 0 u ˜ H 3 ( u ˜ , h , ) d h .
If there exists
e 0 u ˜ H 1 ( u ˜ , h , e ˇ ) H 2 ( u ˜ , h , ς ) + H 2 ( u ˜ , h , ς ) H 3 ( u ˜ , h , ) + H 3 ( u ˜ , h , ) H 1 ( u ˜ , h , e ˇ ) d h m η 0 u ˜ e e ˇ ς + ς + e ˇ m η d h .
for every u ˜ , h [ 0 , 1 ] and e ˇ , ς , C ( [ 0 , 1 ] , R + ) , then the integral Equations (16)–(18) have one solution in C ( [ 0 , 1 ] , R + ) .
Proof. 
By (ii),
δ M ( e ˇ , ς , ) m = e 0 u ˜ e ˇ ς + ς + e ˇ d h m = e 0 u ˜ H 1 ( u ˜ , h , e ˇ ) H 2 ( u ˜ , h , ς ) + H 2 ( u ˜ , h , ς ) H 3 ( u ˜ , h , ) + H 3 ( u ˜ , h , ) H 1 ( u ˜ , h , e ˇ ) d h m η 0 u ˜ e e ˇ ς + ς + e ˇ m η d h δ M ( e ˇ , ς , ) m η .
So, all the conditions of Theorem 3 are satisfied. Hence, the integral Equations (16)–(18) have a unique solution.  □
Example 3.
Take E = [ 0 , 1 ] . If we put u ˜ = 1 in (16)–(18), then we get the following integral equations
( e ˇ ) ( u ˜ ) = 0 u ˜ H 1 ( u ˜ , h , e ˇ ) d h = 0 1 4 9 ( u ˜ + 1 + e ˇ ( h ) d h
( ς ) ( u ˜ ) = 0 u ˜ H 2 ( u ˜ , h , ς ) d h = 0 1 4 9 ( u ˜ + 1 + ς ( h ) d h
( ) ( u ˜ ) = 0 u ˜ H 3 ( u ˜ , h , ) d h = 0 1 4 9 ( u ˜ + 1 + ( h ) d h .
Equations (19)–(21) are the special case of (16)–(18), respectively, where u ˜ [ 0 , 1 ] .
δ M ( e ˇ , ς , ) m = exp { e ˇ ς + ς + e ˇ m = 0 1 exp H 1 ( u ˜ , h , e ˇ ) H 2 ( u ˜ , h , ς ) + H 2 ( u ˜ , h , ς ) H 3 ( u ˜ , h , ) H 3 ( u ˜ , h , ) H 1 ( u ˜ , h , e ˇ ) d h m = 0 1 exp 4 9 ( u ˜ + 1 + e ˇ ( h ) ) 4 9 ( u ˜ + 1 + ς ( h ) ) + 4 9 ( u ˜ + 1 + ς ( h ) ) 4 9 ( u ˜ + 1 + ( h ) ) + 4 9 ( u ˜ + 1 + ( h ) ) 4 9 ( u ˜ + 1 + e ˇ ( h ) ) d h m = e 2 3 0 1 exp 1 ( u ˜ + 1 + e ˇ ( h ) ) 1 ( u ˜ + 1 + ς ( h ) ) + 1 ( u ˜ + 1 + ς ( h ) ) 1 ( u ˜ + 1 + ( h ) ) + 1 ( u ˜ + 1 + ( h ) ) 1 ( u ˜ + 1 + e ˇ ( h ) ) d h m = e 2 3 0 1 exp ς ( h ) e ˇ ( h ) ( u ˜ + 1 + e ˇ ( h ) ) ( u ˜ + 1 + ς ( h ) ) + ( h ) ς ( h ) ( u ˜ + 1 + ς ( h ) ) ( u ˜ + 1 + ( h ) ) + e ˇ ( h ) ( h ) ( u ˜ + 1 + ( h ) ) ( u ˜ + 1 + e ˇ ( h ) d h m = e 2 3 exp 0 1 ς ( h ) e ˇ ( h ) ( u ˜ + 1 + e ˇ ( h ) ) ( u ˜ + 1 + ς ( h ) ) d h + 0 1 ( h ) ς ( h ) ( u ˜ + 1 + ς ( h ) ) ( u ˜ + 1 + ( h ) ) d h + 0 1 e ˇ ( h ) ( h ) ( u ˜ + 1 + ( h ) ) ( u ˜ + 1 + e ˇ ( h ) d h m = e 2 3 exp ς ( h ) e ˇ ( h ) + ( h ) ς ( h ) + e ˇ ( h ) ( h ) m δ M ( e ˇ , ς , ) m η η = 2 3 [ 0 , 1 ] .
It follows that
δ M ( e ˇ , ς , ) m δ M ( e ˇ , ς , ) m η .
Hence, all the conditions of Theorem 16 hold. The integral Equations (19)–(21) have a unique solution by using Theorem 16.

5. Conclusions

We provided some novel fixed point results in an ordered complete multiplicative δ M -metric space that satisfied a generalized locally Δ -implicit contractive mapping. In these spaces, some new definitions and examples were presented. Furthermore, we provided examples to support our new findings. To demonstrate the originality of our main theorems, we apply them to show the existence of the solutions to a system of nonlinear integral equations. The obtained results improved and generalized the corresponding results in the ordered metric space, ordered dislocated metric space, ordered G-metric space, dislocated G-metric space, ordered partial metric space, multiplicative metric space, ordered multiplicative metric space and multiplicative D-metric space. The research work done in this paper will set a direction to work on multivalued mappings, fuzzy mappings, bipolar fuzzy mappings, L-fuzzy mappings and intuitionistic fuzzy mappings.

Author Contributions

Conceptualization, T.R.; methodology, T.R.; software, M.N.; validation, M.N., H.A. and R.P.A.; formal analysis, T.R.; investigation, T.R.; resources, M.N.; writing—original draft preparation, T.R.; writing—review and editing, M.N. and H.A.; supervision, R.P.A.; project administration, T.R. and M.N.; funding acquisition, T.R., M.N. and H.A. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

The authors are grateful to the referees for reviewing this article and providing constructive remarks that helped to improve this article.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux equations itegrales. Fundam. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
  2. Abbas, M.; Ali, B.; Suleiman, Y.I. Common fixed points of locally contractive mappings in multiplicative metric spaces with application. Int. J. Math. Math. Sci. 2015, 2015, 218683. [Google Scholar] [CrossRef]
  3. Ali, U.; Kamran, T.; Kurdi, A. Fixed point in b-multiplicative metric spaces. UPB Sci. Bull. Ser. A 2017, 79, 15–20. [Google Scholar]
  4. Bashirov, A.E.; Kurpamar, E.M.; Özyapici, A. Multiplicative calculus and its applications. J. Math. Anal. Appl. 2008, 337, 36–48. [Google Scholar] [CrossRef]
  5. Bhatt, S.; Chaukiyal, S.; Dimri, R.C. A common fixed point theorem for weakly compatible maps in complex valued metric spaces, Int. J. Math. Sci. Appl. 2011. J. Math. Sci. Appl. 2011, 1, 1385–1389. [Google Scholar]
  6. Bojor, F. Fixed point theorems for Reich type contraction on metric spaces with a graph. Nonlinear Anal. 2012, 75, 3895–3901. [Google Scholar] [CrossRef]
  7. Boriceanu, M. Fixed point theory for multivalued generalized contraction on a set with two b-metrics. Studia Univ. Babes-Bolyai Math. 2009, 3, 3–14. [Google Scholar]
  8. Butnariu, D. Fixed point for fuzzy mapping. Fuzzy Sets Syst. 1982, 7, 191–207. [Google Scholar] [CrossRef]
  9. Došenović, T.; Radenović, S. Multiplicative metric spaces and contractions of rational type. Adv. Theor. Nonlin. Anal. Appl. 2018, 2, 195–201. [Google Scholar]
  10. Gu, F.; Cho, Y.J. Common fixed points results for four maps satisfying ϕ-contractive condition in multiplicative metric spaces. Fixed Point Theory Appl. 2015, 2015, 165. [Google Scholar] [CrossRef]
  11. He, X.; Song, M.; Chen, D. Common fixed points for weak commutative mappings on a multiplicative metric space. Fixed Point Theory Appl. 2014, 2014, 48. [Google Scholar] [CrossRef]
  12. Hu, P.; Gu, F. Some fixed point theorems of λ-contractive mappings in Menger PSM-spaces. J. Nonlinear Funct. Anal. 2020, 2020, 33. [Google Scholar]
  13. Hussain, N.; Roshan, J.R.; Paravench, V.; Abbas, M. Common fixed point results for weak contractive mappings in ordered dislocated b-metric space with applications. J. Inequal. Appl. 2013, 2013, 486. [Google Scholar] [CrossRef]
  14. Jachymski, J. The contraction principle for mappings on a metric space with a graph. Proc. Am. Math. Soc. 2008, 136, 1359–1373. [Google Scholar] [CrossRef]
  15. Jain, K.; Kaur, J. Some fixed point results in b-metric spaces and b-metric-like spaces with new contractive mappings. Axioms 2021, 10, 55. [Google Scholar] [CrossRef]
  16. Jiang, Y.; Gu, F. Common coupled fixed point results in multiplicative metric spaces and applications. J. Nonlinear Sci. Appl. 2017, 10, 1881–1895. [Google Scholar] [CrossRef]
  17. Kang, S.M.; Kumar, P.; Kumar, S.; Nagpal, P.; Garg, S.K. Common fixed points for compatible mappings and its variants in multiplicative metric spaces. Int. J. Pure Appl. Math. 2015, 102, 383–406. [Google Scholar] [CrossRef]
  18. Nazam, M. On Jc-contraction and related fixed point problem with applications. Math. Meth. Appl. Sci. 2020, 43, 10221–10236. [Google Scholar] [CrossRef]
  19. Nazam, M.; Arif, A.; Park, C.; Mahmood, H. Some results in cone metric spaces with applications in homotopy theory. Open Math. 2020, 18, 295–306. [Google Scholar] [CrossRef]
  20. Nazam, M.; Aydi, H.; Hussain, A. Existence theorems for (Φ, Ψ)-orthogonal interpolative contractions and an application to fractional differential equations. Optimization 2022. [Google Scholar] [CrossRef]
  21. Piao, Y. Unique fixed points for four non-continuous mappings satisfying Ψ-contractive condition on non-complete multiplicative metric spaces. Adv. Fixed Point Theory 2019, 9, 135–145. [Google Scholar]
  22. Reich, S.; Zaslavski, A.J. Fixed points and convergence results for a class of contractive mappings. J. Nonlinear Var. Anal. 2021, 5, 665–671. [Google Scholar]
  23. Došenović, T.; Postolache, M.; Radenović, S. On multiplicative metric spaces: Survey. Fixed Point Theory Appl. 2016, 2016, 92. [Google Scholar] [CrossRef]
  24. Bashirov, A.E.; Misirli, E.; Tandoǧdu, Y.; Özyapici, A. On modeling with multiplicative differential equations. Appl. Math. J. Chin. Univ. Ser. B 2011, 26, 425–438. [Google Scholar] [CrossRef]
  25. Debnath, P.; Konwar, N.; Radenović, S. Metric Fixed Point Theory, Applications in Science, Engineering and Behavioural Sciences; Forum for Interdisciplinary Mathematics; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
  26. Florack, L.; Assen, H.V. Multiplicative calculus in biomedical image analysis. J. Math. Imaging Vis. 2012, 42, 64–75. [Google Scholar] [CrossRef]
  27. Özavsar, M.; Çevikel, A.C. Fixed points of multiplicative contraction mappings on multiplicative metric spaces. J. Eng. Technol. Appl. Sci. 2017, 2, 65–79. [Google Scholar] [CrossRef]
  28. Abdou, A.A.N. Common fixed point results for compatible-type mappings in multiplicative metric spaces. J. Nonlinear Sci. Appl. 2016, 9, 2244–2257. [Google Scholar] [CrossRef] [Green Version]
  29. Srinivas, V.; Tirupathi, T.; Mallaiah, K. A fixed point theorem using EA property on multiplicative metric space. J. Math. Comput. Sci. 2020, 10, 1788–1800. [Google Scholar]
  30. Todorćević, V. Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics; Springer Nature Switzerland AG: Cham, Switzerland, 2019. [Google Scholar]
  31. Yamaod, O.; Sintunavarat, W. Some fixed point results for generalized contraction mappings with cyclic (α, β)-admissible mapping in multiplicative metric spaces. J. Inequal. Appl. 2014, 2014, 488. [Google Scholar] [CrossRef]
  32. Nagpal, P.; Kumar, S.; Garg, S.K. Fixed point results in multiplicative generalized metric spaces. Adv. Fixed Point Theory 2016, 6, 352–386. [Google Scholar]
  33. Rasham, T.; Shabbir, M.S.; Agarwal, P.; Momani, S. On a pair of fuzzy dominated mappings on closed ball in the multiplicative metric space with applications. Fuzzy Sets Syst. 2022, 437, 81–96. [Google Scholar] [CrossRef]
  34. Rasham, T.; Shoaib, A.; Zaman, Q.; Shabbir, M.S. Fixed point results for a generalized F-contractive mapping on closed ball with application. Math. Sci. 2020, 14, 177–184. [Google Scholar] [CrossRef]
  35. Shoaib, A.; Arshad, M.; Rasham, T. Some fixed point results in ordered complete dislocated quasi Gd metric space. J. Comput. Anal. Appl. 2021, 29, 1036–1046. [Google Scholar]
  36. Shoaib, A.; Arshad, M.; Rasham, T.; Abbas, M. Unique fixed point results on closed ball for dislocated quasi G-metric spaces. Trans. A Razmadze Math. Inst. 2017, 17, 221–230. [Google Scholar] [CrossRef]
  37. Jleli, M.; Samet, B. Remarks on G-metric spaces and fixed point theorems. Fixed Point Theory Appl. 2012, 2012, 210. [Google Scholar] [CrossRef]
  38. Rasham, T.; Shoaib, A.; Marino, G.; Alamri, B.A.S.; Arshad, M. Sufficient conditions to solve two systems of integral equations via fixed point results. J. Inequal. Appl. 2019, 2019, 182. [Google Scholar] [CrossRef]
  39. Singh, S.; Kumar, S.; Metwali, M.M.; Aldosary, S.F.; Nisar, K.S. An existence theorem for nonlinear functional Volterra integral equations via Petryshyn’s fixed point theorem. AIMS Math. 2022, 7, 5594–5604. [Google Scholar] [CrossRef]
  40. Deep, A.; Abbas, S.; Singh, B.; Alharthi, M.R.; Nisar, K.S. Solvability of functional stochastic integral equations via Darboâ2122s fixed point theorem. Alex. Eng. J. 2021, 60, 5631–5636. [Google Scholar] [CrossRef]
  41. Hammad, H.A.; Aydi, H.; Park, C. Fixed point approach for solving a system of Volterra integral equations and Lebesgue integral concept in FCM-spaces. AIMS Math. 2022, 7, 9003–9022. [Google Scholar] [CrossRef]
  42. Kazemi, M.; Ezzati, R. Existence of solutions for some nonlinear Volterra integral equations via Petryshyn’s fixed point theorem. Int. J. Nonlin. Anal. Appl. 2018, 9, 1–12. [Google Scholar]
  43. Panda, S.K.; Karapınar, E.; Atangana, A. A numerical schemes and comparisons for fixed point results with applications to the solutions of Volterra integral equations in dislocated extended b-metric space. Alex. Eng. J. 2020, 59, 815–827. [Google Scholar] [CrossRef]
  44. Abbas, M.; Nemeth, S.Z. Finding solutions of implict complementarity problems by isotonicty of metric projection. Nonlinear Anal. 2012, 75, 2349–2361. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Rasham, T.; Nazam, M.; Aydi, H.; Agarwal, R.P. Existence of Common Fixed Points of Generalized ∆-Implicit Locally Contractive Mappings on Closed Ball in Multiplicative G-Metric Spaces with Applications. Mathematics 2022, 10, 3369. https://doi.org/10.3390/math10183369

AMA Style

Rasham T, Nazam M, Aydi H, Agarwal RP. Existence of Common Fixed Points of Generalized ∆-Implicit Locally Contractive Mappings on Closed Ball in Multiplicative G-Metric Spaces with Applications. Mathematics. 2022; 10(18):3369. https://doi.org/10.3390/math10183369

Chicago/Turabian Style

Rasham, Tahair, Muhammad Nazam, Hassen Aydi, and Ravi P. Agarwal. 2022. "Existence of Common Fixed Points of Generalized ∆-Implicit Locally Contractive Mappings on Closed Ball in Multiplicative G-Metric Spaces with Applications" Mathematics 10, no. 18: 3369. https://doi.org/10.3390/math10183369

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop