Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 

Neurotrauma: Mechanisms, Pathways, and Emerging Therapeutic Interventions

A special issue of Biomedicines (ISSN 2227-9059). This special issue belongs to the section "Neurobiology and Clinical Neuroscience".

Deadline for manuscript submissions: 30 September 2024 | Viewed by 4516

Special Issue Editors


E-Mail Website
Guest Editor
Department of Radiology, University of Florida, Gainesville, FL, USA
Interests: neurotrauma; radiology; neuroscience; neurointervention

Special Issue Information

Dear Colleagues,

Neurotrauma encompasses traumatic brain and spinal cord injuries. Its pathophysiological mechanisms, particularly primary injuries followed by secondary cascades like inflammation, oxidative stress, and excitotoxicity, merit further elucidation and serve as treatment targets. This Special Issue of Biomedicines focuses on the molecular and cellular pathways associated with neurotrauma. We aim to address advancements in diagnostic biomarkers, the utility of advanced imaging techniques, and the current and emerging treatments for neuroprotection and regeneration. We invite submissions of original research, reviews, and comprehensive studies that provide insights into these important areas.

The scope of this Special Issue includes but is not limited to:

  • Primary and secondary injury mechanisms in neurotrauma;
  • Molecular and cellular pathways in neurotrauma;
  • Role of inflammation post-neurotrauma;
  • Identification of new diagnostic biomarkers;
  • Utility of advanced imaging techniques in neurotrauma;
  • Therapeutic strategies focusing on neuroprotection and regeneration;
  • Reviews on current and emerging trends in neurotrauma research.

Dr. Kevin Pierre
Dr. Brandon Lucke-Wold
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biomedicines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • neurotrauma
  • traumatic brain injury
  • spinal cord injury
  • inflammation
  • oxidative stress
  • excitotoxicity
  • diagnostic biomarkers
  • imaging techniques
  • neuroprotection
  • neuroregeneration

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

16 pages, 2889 KiB  
Article
Brachial Plexus Injury Influences Efferent Transmission on More than Just the Symptomatic Side, as Verified with Clinical Neurophysiology Methods Using Magnetic and Electrical Stimulation
by Agnieszka Wiertel-Krawczuk, Agnieszka Szymankiewicz-Szukała and Juliusz Huber
Biomedicines 2024, 12(7), 1401; https://doi.org/10.3390/biomedicines12071401 - 24 Jun 2024
Viewed by 533
Abstract
The variety of sources of brachial plexus injuries (BPIs) and the severity and similarity of their clinical symptoms with those of other injuries make their differential diagnosis difficult. Enriching their diagnosis with objective high-sensitivity diagnostics such as clinical neurophysiology may lead to satisfactory [...] Read more.
The variety of sources of brachial plexus injuries (BPIs) and the severity and similarity of their clinical symptoms with those of other injuries make their differential diagnosis difficult. Enriching their diagnosis with objective high-sensitivity diagnostics such as clinical neurophysiology may lead to satisfactory treatment results, and magnetic stimulation (MEP) might be an advantageous addition to the diagnostic standard of electrical stimulation used in electroneurography (ENG). The asymptomatic side in BPI cases sometimes shows only subclinical neurological deficits; this study aimed to clarify the validity and utility of using MEP vs. ENG to detect neural conduction abnormalities. Twenty patients with a BPI and twenty healthy volunteers with matching demographic and anthropometric characteristics were stimulated at their Erb’s point in order to record the potentials evoked using magnetic and electrical stimuli to evaluate their peripheral motor neural transmission in their axillar, musculocutaneous, radial, and ulnar nerves. MEP was also used to verify the neural transmission in participants’ cervical roots following transvertebral stimulations, checking the compatibility and repeatability of the evoked potential recordings. The clinical assessment resulted in an average muscle strength of 3–1 (with a mean of 2.2), analgesia that mainly manifested in the C5–C7 spinal dermatomes, and a pain evaluation of 6–4 (mean of 5.4) on the symptomatic side using the Visual Analog Scale, with no pathological symptoms on the contralateral side. A comparison of the recorded potentials evoked with magnetic versus electrical stimuli revealed that the MEP amplitudes were usually higher, at p = 0.04–0.03, in most of the healthy volunteers’ recorded muscles than in those of the group of BPI patients, whose recordings showed that their CMAP and MEP amplitude values were lower on their more symptomatic than asymptomatic sides, at p = 0.04–0.009. In recordings following musculocutaneous and radial nerve electrical stimulation and ulnar nerve magnetic stimulation at Erb’s point, the values of the latencies were also longer on the patient’s asymptomatic side compared to those in the control group. The above outcomes prove the mixed axonal and demyelination natures of brachial plexus injuries. They indicate that different types of traumatic BPIs also involve the clinically asymptomatic side. Cases with predominantly median nerve lesions were detected in sensory nerve conduction studies (SNCSs). In 16 patients, electromyography revealed neurogenic damage to the deltoid and biceps muscles, with an active denervation process at work. The predominance of C5 and C6 brachial plexus injuries in the cervical root and upper/middle trunk of patients with BPI has been confirmed. A probable explanation for the bilateral symptoms of dysfunction detected via clinical neurophysiology methods in the examined BPI patients, who showed primarily unilateral damage, maybe the reaction of their internal neural spinal center’s organization. Even when subclinical, this may explain the poor BPI treatment outcomes that sometimes occur following long-term physical therapy or surgical treatment. Full article
Show Figures

Figure 1

Review

Jump to: Research

34 pages, 7340 KiB  
Review
Neurotrauma—From Injury to Repair: Clinical Perspectives, Cellular Mechanisms and Promoting Regeneration of the Injured Brain and Spinal Cord
by Andrew R. Stevens, Antonio Belli and Zubair Ahmed
Biomedicines 2024, 12(3), 643; https://doi.org/10.3390/biomedicines12030643 - 13 Mar 2024
Cited by 1 | Viewed by 1745
Abstract
Traumatic injury to the brain and spinal cord (neurotrauma) is a common event across populations and often causes profound and irreversible disability. Pathophysiological responses to trauma exacerbate the damage of an index injury, propagating the loss of function that the central nervous system [...] Read more.
Traumatic injury to the brain and spinal cord (neurotrauma) is a common event across populations and often causes profound and irreversible disability. Pathophysiological responses to trauma exacerbate the damage of an index injury, propagating the loss of function that the central nervous system (CNS) cannot repair after the initial event is resolved. The way in which function is lost after injury is the consequence of a complex array of mechanisms that continue in the chronic phase post-injury to prevent effective neural repair. This review summarises the events after traumatic brain injury (TBI) and spinal cord injury (SCI), comprising a description of current clinical management strategies, a summary of known cellular and molecular mechanisms of secondary damage and their role in the prevention of repair. A discussion of current and emerging approaches to promote neuroregeneration after CNS injury is presented. The barriers to promoting repair after neurotrauma are across pathways and cell types and occur on a molecular and system level. This presents a challenge to traditional molecular pharmacological approaches to targeting single molecular pathways. It is suggested that novel approaches targeting multiple mechanisms or using combinatorial therapies may yield the sought-after recovery for future patients. Full article
Show Figures

Figure 1

21 pages, 1844 KiB  
Review
Navigating the Complexities of Traumatic Encephalopathy Syndrome (TES): Current State and Future Challenges
by Arman Fesharaki-Zadeh
Biomedicines 2023, 11(12), 3158; https://doi.org/10.3390/biomedicines11123158 - 27 Nov 2023
Cited by 2 | Viewed by 1661
Abstract
Chronic traumatic encephalopathy (CTE) is a unique neurodegenerative disease that is associated with repetitive head impacts (RHI) in both civilian and military settings. In 2014, the research criteria for the clinical manifestation of CTE, traumatic encephalopathy syndrome (TES), were proposed to improve the [...] Read more.
Chronic traumatic encephalopathy (CTE) is a unique neurodegenerative disease that is associated with repetitive head impacts (RHI) in both civilian and military settings. In 2014, the research criteria for the clinical manifestation of CTE, traumatic encephalopathy syndrome (TES), were proposed to improve the clinical identification and understanding of the complex neuropathological phenomena underlying CTE. This review provides a comprehensive overview of the current understanding of the neuropathological and clinical features of CTE, proposed biomarkers of traumatic brain injury (TBI) in both research and clinical settings, and a range of treatments based on previous preclinical and clinical research studies. Due to the heterogeneity of TBI, there is no universally agreed-upon serum, CSF, or neuroimaging marker for its diagnosis. However, as our understanding of this complex disease continues to evolve, it is likely that there will be more robust, early diagnostic methods and effective clinical treatments. This is especially important given the increasing evidence of a correlation between TBI and neurodegenerative conditions, such as Alzheimer’s disease and CTE. As public awareness of these conditions grows, it is imperative to prioritize both basic and clinical research, as well as the implementation of necessary safe and preventative measures. Full article
Show Figures

Graphical abstract

Back to TopTop