Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
materials-logo

Journal Browser

Journal Browser

Development of Advanced Aluminum and Magnesium Alloys: Microstructure, Mechanical Properties and Processing

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Metals and Alloys".

Deadline for manuscript submissions: 20 October 2024 | Viewed by 10659

Special Issue Editor


E-Mail Website
Guest Editor
State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Interests: magnesium and aluminum alloys; metal matrix composites; casting technology; solidification microstructure control; 3D printing technology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Mg and Al alloys are the first and second engineering light metals, which are widely used in aviation, aerospace, navigation, automotive, and electronics fields. With the rapid development of these fields, the demand for the properties of Mg and Al alloys is further increased, and the requirements of the large complex light Mg and Al alloys components are higher and higher. Therefore, high-performance advanced Mg and Al light alloys will have great application potentials in the future, which has also become a research hotspot. The development of the advanced Mg and Al alloys involves in-depth studies of the microstructures, mechanical properties, and processing processes of the Mg and Al alloys.

For the Special Issue reviews, short communications and full-length research papers focused on the following topics are welcome:

  • High-strength, high-toughness, and high-modulus Mg and Al alloys;
  • Processing of innovative high-strength Mg and Al alloys, such as casting, plastic forming, welding, 3D printing or powder metallurgy methods;
  • Relationships among the microstructure, mechanical properties, and processing conditions of the Mg and Al alloys;
  • Composition design and calculation, and microstructure regulation of the Mg and Al alloys;
  • Control of formation and defects of the Mg and Al alloys components during the processing processes.

Common light alloys such as aluminum, magnesium, or their composites are considered. Special attention should be paid to the relationships among the microstructure, mechanical properties, and processing conditions.

Prof. Dr. Wenming Jiang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Mg alloys
  • Al alloys
  • composites
  • microstructure
  • mechanical properties
  • processing

Published Papers (11 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

17 pages, 7994 KiB  
Article
Insight into Role of Arc Torch Angle on Wire Arc Additive Manufacturing Characteristics of ZL205A Aluminum Alloy
by Bingqiu Wang, Ruihan Li, Xiaohui Zhou, Fuyun Liu, Lianfeng Wei, Lei Tian, Xiaoguo Song and Caiwang Tan
Materials 2024, 17(15), 3771; https://doi.org/10.3390/ma17153771 - 31 Jul 2024
Viewed by 379
Abstract
The arc torch angle greatly affected the deposition characteristics in the wire arc additive manufacturing (WAAM) process, and the relation between the droplet transition behavior and macrostructure morphology was unclear. This work researched the effect of torch angle on the formation accuracy, droplet [...] Read more.
The arc torch angle greatly affected the deposition characteristics in the wire arc additive manufacturing (WAAM) process, and the relation between the droplet transition behavior and macrostructure morphology was unclear. This work researched the effect of torch angle on the formation accuracy, droplet transition behavior and the mechanical properties in the WAAM process on a ZL205A aluminum alloy. The results suggested that at the obtuse torch angle, part of the energy input was used to heat the existing molten pool, which was optimized for the longer solidification period of the molten pool. Therefore, the greater layer penetration depth at 100° resulted in the improved layer-by-layer combination ability. The obtuse torch angle was associated with the better formation accuracy on the sidewall surface due to the smaller impact on the molten pool, which was influenced by both the arc pressure and droplet impact force. The eliminated pores were optimized for the mechanical properties of depositions at a torch angle of 100°; thus, the tensile strength and elongation attained maximum values of 258.6 MPa and 17.1%, respectively. These aspects made WAAM an attractive mode for manufacturing large structural components on ZL205A aluminum alloy. Full article
Show Figures

Figure 1

13 pages, 10085 KiB  
Article
Development of Low-Pressure Die-Cast Al−Zn−Mg−Cu Alloy Propellers—Part Ⅰ: Hot Tearing Simulations for Alloy Optimization
by Min-Seok Kim and Jiwon Kim
Materials 2024, 17(13), 3133; https://doi.org/10.3390/ma17133133 - 26 Jun 2024
Viewed by 892
Abstract
Recent advances in the leisure boat industry have spurred demand for improved materials for propeller manufacturing, particularly high-strength aluminum alloys. While traditional Al-Si alloys like A356 are commonly used due to their excellent castability, they have limited mechanical properties. In contrast, 7xxx series [...] Read more.
Recent advances in the leisure boat industry have spurred demand for improved materials for propeller manufacturing, particularly high-strength aluminum alloys. While traditional Al-Si alloys like A356 are commonly used due to their excellent castability, they have limited mechanical properties. In contrast, 7xxx series alloys (Al−Zn−Mg−Cu based) offer superior mechanical characteristics but present significant casting challenges, including hot-tearing susceptibility (HTS). This study investigates the optimization of 7xxx series aluminum alloys for low-pressure die-casting (LPDC) processes to enhance propeller performance and durability. Using a constrained rod-casting (CRC) method and finite element simulations, we evaluated the HTS of various alloy compositions. The results indicate that increasing Zn and Cu contents generally increase HTS, while a sufficient Mg content of 2 wt.% mitigates this effect. Two optimized quaternary Al−Zn−Mg−Cu alloys with relatively low HTS were selected for LPDC propeller production. Simulation and experimental results demonstrated the effectiveness of the proposed alloy compositions, highlighting the need for further process optimization to prevent hot tearing in high Mg and Cu content alloys. Full article
Show Figures

Figure 1

16 pages, 6345 KiB  
Article
Effect of Alloying Elements in Steels on the Interfacial Structure and Mechanical Properties of Mg to Steel by Laser-GTAW Hybrid Direct Lap Welding
by Xin Liu, Qiang Lang, Jifeng Wang, Gang Song and Liming Liu
Materials 2024, 17(7), 1624; https://doi.org/10.3390/ma17071624 - 2 Apr 2024
Viewed by 805
Abstract
Mg alloy AZ31B was directly bonded to SK7 with a low alloy content, DP980 with a high Mn content, 316L with a high Cr and high Ni content by laser-gas tungsten arc welding (GTAW) and hybrid direct lap welding. The results showed that [...] Read more.
Mg alloy AZ31B was directly bonded to SK7 with a low alloy content, DP980 with a high Mn content, 316L with a high Cr and high Ni content by laser-gas tungsten arc welding (GTAW) and hybrid direct lap welding. The results showed that the tensile loads of AZ31B/SK7 and AZ31B/DP980 joints were 283 N/mm and 285 N/mm respectively, while the tensile load of AZ31B/316L joint was only 115 N/mm. The fracture and interface microstructures were observed using scanning electron microscopy (SEM), electron probe microanalysis (EPMA), and identified through X-ray diffractometry (XRD). For AZ31B/SK7 and AZ31B/DP980, the interface of the front reaction area and the keyhole reaction area was mainly composed of an Fe-Al phase and an Al-Mn phase. However, for AZ31B/316L, the interface of the keyhole reaction area was mainly composed of an Fe-Al phase and an Al-Mn phase, but a multi-layer composite structure consisting of the Mg17Al12 compound layer and eutectic layer was formed in the front reaction area, which led to a deterioration in the joint property. The influencing mechanism of Mn, Cr and Ni elements in steel on the properties and interface structure of the laser-GTAW lap joint between the Mg alloy and the steel was systematically analyzed. Full article
Show Figures

Figure 1

17 pages, 10975 KiB  
Article
The Effect of Micron-Sized TiB2 Particles on the Properties of Al6061 Strengthened with 4% TiB2 Nano-TiB2
by Xinbing Zheng, Wei Long, Changshun Zhu, Longbin Zhao, Xinbin Hu, Sheng Liu, Wenming Jiang and Yaxiong Peng
Materials 2024, 17(1), 182; https://doi.org/10.3390/ma17010182 - 28 Dec 2023
Cited by 1 | Viewed by 822
Abstract
Dual-scale (nano and micron) particle-reinforced TiB2/6061Al matrix composites with different contents of TiB2 were prepared using powder metallurgy, and then analyzed via microstructure observation and tests of microhardness, tensile properties, and friction and wear properties. The 6061Al powders’ particles changed [...] Read more.
Dual-scale (nano and micron) particle-reinforced TiB2/6061Al matrix composites with different contents of TiB2 were prepared using powder metallurgy, and then analyzed via microstructure observation and tests of microhardness, tensile properties, and friction and wear properties. The 6061Al powders’ particles changed from spherical to flaky after two rounds of high-energy ball milling, and the TiB2 enhancer was embedded in or wrapped by the matrix particles after high-energy ball milling. Metallurgical bonding between TiB2 particles and the matrix was achieved, and Al3Ti was synthesized in situ during sintering. The hot-pressing process eliminated the internal defects of the composites, and the TiB2 particles were diffusely distributed in the matrix. The best comprehensive mechanical properties (hardness and tensile strength) were achieved when the mass fraction of TiB2 was 5% (1% micron + 4% nano); the hardness and tensile strength of the composites reached 131 HV and 221 MPa—79.5% and 93.9% higher than those of the pure matrix, respectively. The composites’ average coefficient of friction and volumetric wear rate were reduced. Composites with a TiB2 mass fraction of 7% (3% micron + 4% nano) had the highest average coefficients of friction and the lowest volumetric wear rate of 0.402 and 0.216 mm3∙N−1∙m−1, respectively. It was observed that adhesion influences the friction mechanism, which transitions from adhesive wear with slight oxidative wear to abrasive wear. Full article
Show Figures

Figure 1

14 pages, 6323 KiB  
Article
A Polymer-Based Metallurgical Route to Produce Aluminum Metal-Matrix Composite with High Strength and Ductility
by Bindu Gutta, Prashant Huilgol, Chandra S. Perugu, Govind Kumar, S. Tejanath Reddy, Laszlo S. Toth, Olivier Bouaziz and Satish V. Kailas
Materials 2024, 17(1), 84; https://doi.org/10.3390/ma17010084 - 23 Dec 2023
Viewed by 1191
Abstract
In this investigation, an attempt was made to develop a new high-strength and high-ductility aluminum metal–matrix composite. It was achieved by incorporating ceramic reinforcement into the metal which was formed in situ from a polymer by pyrolysis. A crosslinked PMHS polymer was introduced [...] Read more.
In this investigation, an attempt was made to develop a new high-strength and high-ductility aluminum metal–matrix composite. It was achieved by incorporating ceramic reinforcement into the metal which was formed in situ from a polymer by pyrolysis. A crosslinked PMHS polymer was introduced into commercially pure aluminum via friction stir processing (FSP). The distributed micro- and nano-sized polymer was then converted into ceramic particles by heating at 500 °C for 10 h and processed again via FSP. The produced composite showed a 2.5-fold increase in yield strength (to 119 MPa from 48 MPa) and 3.5-fold increase in tensile strength (to 286 MPa from 82 MPa) with respect to the base metal. The ductility was marginally reduced from 40% to 30%. The increase in strength is attributed to the grain refinement and the larger ceramic particles. High-temperature grain stability was obtained, with minimal loss to mechanical properties, up to 500 °C due to the Zenner pinning effect of the nano-sized ceramic particles at the grain boundaries. Fractures took place throughout the matrix up to 300 °C. Above 300 °C, the interfacial bonding between the particle and matrix became weak, and fractures took place at the particle–matrix interface. Full article
Show Figures

Graphical abstract

16 pages, 6661 KiB  
Article
Effects of Bulk LPSO Phases on Mechanical Properties and Fracture Behavior of As-Extruded Mg-Gd-Y-Zn-Zr Alloys
by Dongjie Chen, Ting Li, Zhaoqian Sun, Qi Wang, Jiawei Yuan, Minglong Ma, Yonggang Peng, Kui Zhang and Yongjun Li
Materials 2023, 16(23), 7258; https://doi.org/10.3390/ma16237258 - 21 Nov 2023
Viewed by 884
Abstract
Despite the consensus on the constructive effect of LPSO (long-period stacking-ordered) phases, the true effect of bulk LPSO phases on strengthening and toughening in deformed magnesium alloys is still controversial. This article, which introduces the alloys Mg-8Gd-4Y-0.6Zn-0.5Zr, without bulk LPSO phases, and Mg-8Gd-4Y-1.6Zn-0.5Zr, [...] Read more.
Despite the consensus on the constructive effect of LPSO (long-period stacking-ordered) phases, the true effect of bulk LPSO phases on strengthening and toughening in deformed magnesium alloys is still controversial. This article, which introduces the alloys Mg-8Gd-4Y-0.6Zn-0.5Zr, without bulk LPSO phases, and Mg-8Gd-4Y-1.6Zn-0.5Zr, containing bulk LPSO phases, details a systematically comparative analysis conducted to clarify the true contribution of bulk LPSO phases to the properties of as-extruded alloys. The results indicate that bulk LPSO phases significantly improve strength by refining grain sizes remarkably. But contrary to expectations, bulk LPSO phases themselves only provide a small strengthening effect and deteriorate plasticity, ascribed to the poor compatible plastic deformation of bulk LPSO phases. More importantly, this work may offer new insights into the strengthening and toughening of LPSO phases for further research and engineering applications of this series of alloys. Additionally, an example of a design strategy for Mg-Gd-Y-Zn alloys with superior strength and excellent plasticity is proposed at the end of this article. Full article
Show Figures

Figure 1

14 pages, 3871 KiB  
Article
Effect of Stacking Sequence on Mechanical Properties and Microstructural Features within Al/Cu Laminates
by Lenka Kunčická and Radim Kocich
Materials 2023, 16(19), 6555; https://doi.org/10.3390/ma16196555 - 4 Oct 2023
Cited by 1 | Viewed by 891
Abstract
The study presents a method to prepare Al/Cu laminated conductors featuring two different stacking sequences using rotary swaging, a method of intensive plastic deformation. The primary focus of the work was to perform detailed characterization of the effects of room temperature swaging on [...] Read more.
The study presents a method to prepare Al/Cu laminated conductors featuring two different stacking sequences using rotary swaging, a method of intensive plastic deformation. The primary focus of the work was to perform detailed characterization of the effects of room temperature swaging on the development of microstructures, including the Al/Cu interfaces, and internal misorientations pointed to the presence of residual stress within the laminates. The results revealed that both the Al and Cu components of the final laminates with 5 mm in diameter featured fine, more or less equiaxed, grains with no dominating preferential texture orientations (the maximum observed texture intensity was 2.3 × random for the Cu components of both the laminates). This fact points to the development of dynamic restoration processes during swaging. The analyses of misorientations within the grains showed that residual stress was locally present primarily in the Cu components. The Al components did not feature a substantial presence of misorientations, which confirms the dynamic recrystallization. Tensile testing revealed that the laminates with both the designed stacking sequences exhibited comparable UTS (ultimate tensile strength) of almost 280 MPa. However, notable differences were observed with regard to the plasticity (~3.5% compared to less than 1%). The laminate consisting of Al sheath and Cu wires exhibited very low plasticity as a result of significant work hardening of Al; this hypothesis was also confirmed with microhardness measurements. Observations of the interfaces confirmed satisfactory bonding of both the metallic components. Full article
Show Figures

Figure 1

18 pages, 6249 KiB  
Article
High-Temperature Compression Behaviors and Constitutive Models of a 7046-Aluminum Alloy
by Daoguang He, Han Xie, Yongcheng Lin, Zhengbing Xu, Xianhua Tan and Gang Xiao
Materials 2023, 16(19), 6412; https://doi.org/10.3390/ma16196412 - 26 Sep 2023
Cited by 2 | Viewed by 944
Abstract
High-temperature forming behaviors of a 7046-aluminum alloy were investigated by hot compression experiments. The microstructural evolution features with the changes in deformation parameters were dissected. Results indicated the formation of massive dislocation clusters/cells and subgrains through the intense DRV mechanism at low compression [...] Read more.
High-temperature forming behaviors of a 7046-aluminum alloy were investigated by hot compression experiments. The microstructural evolution features with the changes in deformation parameters were dissected. Results indicated the formation of massive dislocation clusters/cells and subgrains through the intense DRV mechanism at low compression temperature. With an increase in deformation temperature, the annihilation of dislocations and the coarsening of subgrains/DRX grains became prominent, due to the collaborative effects of the DRV and DRX mechanisms. However, the growth of subgrains and DRX grains displayed the weakening trend at high strain rates. Moreover, two constitutive models involving a physically based (PB) model and a gate recurrent unit (GRU) model were proposed for predicting the hot compression features. By validation analysis, the predicted values of true stress perfectly fit with the experimental data, indicating that both the proposed PB model and the GRU model can accurately predict the hot compression behaviors of 7046-aluminum alloys. Full article
Show Figures

Figure 1

14 pages, 6975 KiB  
Article
Microstructure and Mechanical Properties of Al-Si Alloys Produced by Rapid Solidification and Hot Extrusion
by Piotr Noga, Tomasz Skrzekut and Maciej Wędrychowicz
Materials 2023, 16(15), 5223; https://doi.org/10.3390/ma16155223 - 25 Jul 2023
Cited by 5 | Viewed by 1622
Abstract
The paper presents the results of tests of rapid solidification (RS) aluminum alloys with the addition of silicon (5%, 11%, and 20%). Casting by melt-spinning on the surface of an intensively cooled copper cylinder allowed to obtain a metallic material in the form [...] Read more.
The paper presents the results of tests of rapid solidification (RS) aluminum alloys with the addition of silicon (5%, 11%, and 20%). Casting by melt-spinning on the surface of an intensively cooled copper cylinder allowed to obtain a metallic material in the form of flakes, which were then consolidated in the process of pressing and direct extrusion. The effect of refinement on structural components after rapid solidification was determined. Rapidly solidified AlSi materials are characterized by a comparable size of Si particles, regardless of the silicon content, and the shape of these particles is close to spheroidal. Not only Si particles are fragmented, but also the Al-Si-Fe phase, which also changed its shape from irregular with sharp edges to regular and spherical. The melt-spinning process resulted in a fine-grained structure compared to materials obtained by gravity-casting and extrusion. The influence of the high-temperature compression test on the mechanical properties of rapidly solidified materials was analyzed, and the results were compared with those of gravity-cast materials. An increase in strength properties was found in the case of the AlSi5 RS alloy by 20%, in the case of AlSi11RS by 25%, and in the case of the alloy containing 20% Si by as much as 86% (tensile test). On the basis of the homogeneity of the particle distribution determined by the SEM method, it was found that rapid solidification is an effective method of increasing the strength properties and improving the plastic properties of Al-Si alloys. Full article
Show Figures

Figure 1

20 pages, 22251 KiB  
Article
Development of Al/Mg Bimetal Processed by Ultrasonic Vibration-Assisted Compound Casting: Effects of Ultrasonic Vibration Treatment Duration Time
by Qingqing Li, Feng Guan, Yuancai Xu, Zheng Zhang, Zitian Fan and Wenming Jiang
Materials 2023, 16(14), 5009; https://doi.org/10.3390/ma16145009 - 15 Jul 2023
Cited by 3 | Viewed by 904
Abstract
In this work, ultrasonic vibration treatment (UVT) was introduced to improve the interfacial microstructure and bonding strength of A356/AZ91D bimetal processed via lost foam compound casting (LFCC). The interfacial microstructure and mechanical properties of the Al/Mg bimetal processed via LFCC with different UVT [...] Read more.
In this work, ultrasonic vibration treatment (UVT) was introduced to improve the interfacial microstructure and bonding strength of A356/AZ91D bimetal processed via lost foam compound casting (LFCC). The interfacial microstructure and mechanical properties of the Al/Mg bimetal processed via LFCC with different UVT durations were investigated. Results revealed the UVT did not change the composition of phases at the interface. The Al/Mg bimetallic interface consisted of an intermetallic compound area (β-Al3Mg2 + γ-Al12Mg17 + Mg2Si) and eutectic area (δ-Mg + γ-Al12Mg17 + Mg2Si). When the duration of the UVT was increased, the gathered Mg2Si particles at the intermetallic compound area were refined to sizes of no more than 5 μm and became more homogeneously dispersed in the intermetallic compound area and diffused in the eutectic area, which could be attributed to the removal of oxide film and the acoustic cavitation and streaming flow effects induced by the UVT. The microhardness of the Al/Mg bimetallic interface was not obviously changed by the increase in UVT duration. The shear strength of the Al/Mg bimetal was increased with UVT and reached maximum with a UVT duration of 5 s, with a value of 56.7 MPa, which was increased by 70.3%, compared with Al/Mg bimetal without UVT. This could be attributed to the removal of the oxide film at the Al/Mg bimetallic interface, which improved the metallurgical bonding of the Al/Mg interface. Additionally, the refined and homogeneously dispersed Mg2Si particles played an important role in suppressing the propagation of cracks and enhancing the shear strength of the Al/Mg bimetal. Full article
Show Figures

Figure 1

Review

Jump to: Research

22 pages, 4887 KiB  
Review
Recent Progress in Creep-Resistant Aluminum Alloys for Diesel Engine Applications: A Review
by Raul Irving Arriaga-Benitez and Mihriban Pekguleryuz
Materials 2024, 17(13), 3076; https://doi.org/10.3390/ma17133076 - 22 Jun 2024
Viewed by 464
Abstract
Diesel engines in heavy-duty vehicles are predicted to maintain a stable presence in the future due to the difficulty of electrifying heavy trucks, mine equipment, and railway cars. This trend encourages the effort to develop new aluminum alloy systems with improved performance at [...] Read more.
Diesel engines in heavy-duty vehicles are predicted to maintain a stable presence in the future due to the difficulty of electrifying heavy trucks, mine equipment, and railway cars. This trend encourages the effort to develop new aluminum alloy systems with improved performance at diesel engine conditions of elevated temperature and stress combinations to reduce vehicle weight and, consequently, CO2 emissions. Aluminum alloys need to provide adequate creep resistance at ~300 °C and room-temperature tensile properties better than the current commercial aluminum alloys used for powertrain applications. The studies for improving creep resistance for aluminum casting alloys indicate that their high-temperature stability depends on the formation of high-density uniform dispersoids with low solid solubility and low diffusivity in aluminum. This review summarizes three generations of diesel engine aluminum alloys and focuses on recent work on the third-generation dispersoid-strengthened alloys. Additionally, new trends in developing creep resistance through the development of alloy systems other than Al-Si-based alloys, the optimization of manufacturing processes, and the use of thermal barrier coatings and composites are discussed. New progress on concepts regarding the thermal stability of rapidly solidified and nano-structured alloys and on creep-resistant alloy design via machine learning-based algorithms is also presented. Full article
Show Figures

Figure 1

Back to TopTop