Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (477)

Search Parameters:
Keywords = ABCG2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 664 KiB  
Communication
The Expression of Genes Related to Reverse Cholesterol Transport and Leptin Receptor Pathways in Peripheral Blood Mononuclear Cells Are Decreased in Morbid Obesity and Related to Liver Function
by Carlos Jiménez-Cortegana, Soledad López-Enríquez, Gonzalo Alba, Consuelo Santa-María, Gracia M. Martín-Núñez, Francisco J. Moreno-Ruiz, Sergio Valdés, Sara García-Serrano, Cristina Rodríguez-Díaz, Ailec Ho-Plágaro, María I. Fontalba-Romero, Eduardo García-Fuentes, Lourdes Garrido-Sánchez and Víctor Sánchez-Margalet
Int. J. Mol. Sci. 2024, 25(14), 7549; https://doi.org/10.3390/ijms25147549 - 9 Jul 2024
Viewed by 371
Abstract
Obesity is frequently accompanied by non-alcoholic fatty liver disease (NAFLD). These two diseases are associated with altered lipid metabolism, in which reverse cholesterol transport (LXRα/ABCA1/ABCG1) and leptin response (leptin receptor (Ob-Rb)/Sam68) are involved. The two pathways were evaluated in peripheral blood mononuclear cells [...] Read more.
Obesity is frequently accompanied by non-alcoholic fatty liver disease (NAFLD). These two diseases are associated with altered lipid metabolism, in which reverse cholesterol transport (LXRα/ABCA1/ABCG1) and leptin response (leptin receptor (Ob-Rb)/Sam68) are involved. The two pathways were evaluated in peripheral blood mononuclear cells (PBMCs) from 86 patients with morbid obesity (MO) before and six months after Roux-en-Y gastric bypass (RYGB) and 38 non-obese subjects. In the LXRα pathway, LXRα, ABCA1, and ABCG1 mRNA expressions were decreased in MO compared to non-obese subjects (p < 0.001, respectively). Ob-Rb was decreased (p < 0.001), whereas Sam68 was increased (p < 0.001) in MO. RYGB did not change mRNA gene expressions. In the MO group, the LXRα pathway (LXRα/ABCA1/ABCG1) negatively correlated with obesity-related variables (weight, body mass index, and hip), inflammation (C-reactive protein), and liver function (alanine-aminotransferase, alkaline phosphatase, and fatty liver index), and positively with serum albumin. In the Ob-R pathway, Ob-Rb and Sam68 negatively correlated with alanine-aminotransferase and positively with albumin. The alteration of LXRα and Ob-R pathways may play an important role in NAFLD development in MO. It is possible that MO patients may require more than 6 months following RYBGB to normalize gene expression related to reverse cholesterol transport or leptin responsiveness. Full article
11 pages, 944 KiB  
Article
Altered Expression of BCRP Impacts Fetal Accumulation of Rosuvastatin in a Rat Model of Preeclampsia
by Wanying Dai and Micheline Piquette-Miller
Pharmaceutics 2024, 16(7), 884; https://doi.org/10.3390/pharmaceutics16070884 - 30 Jun 2024
Viewed by 473
Abstract
Expression of the breast cancer resistance protein (BCRP/ABCG2) transporter is downregulated in placentas from women with preeclampsia (PE) and in an immunological rat model of PE. While many drugs are substrates of this important efflux transporter, the impact of PE associated BCRP downregulation [...] Read more.
Expression of the breast cancer resistance protein (BCRP/ABCG2) transporter is downregulated in placentas from women with preeclampsia (PE) and in an immunological rat model of PE. While many drugs are substrates of this important efflux transporter, the impact of PE associated BCRP downregulation on maternal and fetal drug exposure has not been investigated. Using the PE rat model, we performed a pharmacokinetic study with rosuvastatin (RSV), a BCRP substrate, to investigate this impact. PE was induced in rats during gestational days (GD) 13 to 16 with daily low-dose endotoxin. On GD18, RSV (3 mg/kg) was administrated intravenously, and rats were sacrificed at time intervals between 0.5 and 6 h. As compared to controls, placental expression of Bcrp and Oatp2b1 significantly decreased in PE rats. A corresponding increase in RSV levels was seen in fetal tissues and amniotic fluid of the PE group (p < 0.05), while maternal plasma concentrations remained unchanged from the controls. An increase in Bcrp expression and decreased RSV concentration were seen in the livers of PE dams. This suggests that PE-mediated transporter dysregulation leads to significant changes in the maternal and fetal RSV disposition. Overall, our findings demonstrate that altered placental expression of transporters in PE can increase fetal accumulation of their substrates. Full article
(This article belongs to the Special Issue New Insights into Transporters in Drug Development)
Show Figures

Figure 1

12 pages, 2051 KiB  
Article
Inhibition of Toll-like Receptors Alters Macrophage Cholesterol Efflux and Foam Cell Formation
by Jaemi Kim, Ji-Yun Kim, Hye-Eun Byeon, Ji-Won Kim, Hyoun-Ah Kim, Chang-Hee Suh, Sangdun Choi, MacRae F. Linton and Ju-Yang Jung
Int. J. Mol. Sci. 2024, 25(12), 6808; https://doi.org/10.3390/ijms25126808 - 20 Jun 2024
Viewed by 567
Abstract
Arterial macrophage cholesterol accumulation and impaired cholesterol efflux lead to foam cell formation and the development of atherosclerosis. Modified lipoproteins interact with toll-like receptors (TLR), causing an increased inflammatory response and altered cholesterol homeostasis. We aimed to determine the effects of TLR antagonists [...] Read more.
Arterial macrophage cholesterol accumulation and impaired cholesterol efflux lead to foam cell formation and the development of atherosclerosis. Modified lipoproteins interact with toll-like receptors (TLR), causing an increased inflammatory response and altered cholesterol homeostasis. We aimed to determine the effects of TLR antagonists on cholesterol efflux and foam cell formation in human macrophages. Stimulated monocytes were treated with TLR antagonists (MIP2), and the cholesterol efflux transporter expression and foam cell formation were analyzed. The administration of MIP2 attenuated the foam cell formation induced by lipopolysaccharides (LPS) and oxidized low-density lipoproteins (ox-LDL) in stimulated THP-1 cells (p < 0.001). The expression of ATP-binding cassette transporters A (ABCA)-1, ABCG-1, scavenger receptor (SR)-B1, liver X receptor (LXR)-α, and peroxisome proliferator-activated receptor (PPAR)-γ mRNA and proteins were increased (p < 0.001) following MIP2 administration. A concentration-dependent decrease in the phosphorylation of p65, p38, and JNK was also observed following MIP2 administration. Moreover, an inhibition of p65 phosphorylation enhanced the expression of ABCA1, ABCG1, SR-B1, and LXR-α. TLR inhibition promoted the cholesterol efflux pathway by increasing the expression of ABCA-1, ABCG-1, and SR-B1, thereby reducing foam cell formation. Our results suggest a potential role of the p65/NF-kB/LXR-α/ABCA1 axis in TLR-mediated cholesterol homeostasis. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

14 pages, 1221 KiB  
Review
Regulation of Urate Homeostasis by Membrane Transporters
by Tappei Takada, Hiroshi Miyata, Yu Toyoda, Akiyoshi Nakayama, Kimiyoshi Ichida and Hirotaka Matsuo
Gout Urate Cryst. Depos. Dis. 2024, 2(2), 206-219; https://doi.org/10.3390/gucdd2020016 - 19 Jun 2024
Viewed by 371
Abstract
Uric acid is the final purine metabolite in humans. Serum urate levels are regulated by a balance between urate production, mainly in the liver, and its excretion via the kidneys and small intestine. Given that uric acid exists as a urate anion at [...] Read more.
Uric acid is the final purine metabolite in humans. Serum urate levels are regulated by a balance between urate production, mainly in the liver, and its excretion via the kidneys and small intestine. Given that uric acid exists as a urate anion at physiological pH 7.4, membrane transporters are required to regulate urate homeostasis. In the kidney, urate transporter 1, glucose transporter 9, and organic anion transporter 10 contribute to urate reabsorption, whereas sodium-dependent phosphate transport protein 1 would be involved in urate excretion. Other transporters have been suggested to be involved in urate handling in the kidney; however, further evidence is required in humans. ATP-binding cassette transporter G2 (ABCG2) is another urate transporter, and its physiological role as a urate exporter is highly demonstrated in the intestine. In addition to urate, ABCG2 regulates the behavior of endogenous substances and drugs; therefore, the functional inhibition of ABCG2 has physiological and pharmacological effects. Although these transporters explain a large part of the urate regulation system, they are not sufficient for understanding the whole picture of urate homeostasis. Therefore, numerous studies have been conducted to find novel urate transporters. This review provides the latest evidence of urate transporters from pathophysiological and clinical pharmacological perspectives. Full article
Show Figures

Figure 1

22 pages, 8430 KiB  
Article
Gut Dysbiosis Shaped by Cocoa Butter-Based Sucrose-Free HFD Leads to Steatohepatitis, and Insulin Resistance in Mice
by Shihab Kochumon, Md. Zubbair Malik, Sardar Sindhu, Hossein Arefanian, Texy Jacob, Fatemah Bahman, Rasheeba Nizam, Amal Hasan, Reeby Thomas, Fatema Al-Rashed, Steve Shenouda, Ajit Wilson, Shaima Albeloushi, Nourah Almansour, Ghadeer Alhamar, Ashraf Al Madhoun, Fawaz Alzaid, Thangavel Alphonse Thanaraj, Heikki A. Koistinen, Jaakko Tuomilehto, Fahd Al-Mulla and Rasheed Ahmadadd Show full author list remove Hide full author list
Nutrients 2024, 16(12), 1929; https://doi.org/10.3390/nu16121929 - 18 Jun 2024
Viewed by 790
Abstract
Background: High-fat diets cause gut dysbiosis and promote triglyceride accumulation, obesity, gut permeability changes, inflammation, and insulin resistance. Both cocoa butter and fish oil are considered to be a part of healthy diets. However, their differential effects on gut microbiome perturbations in mice [...] Read more.
Background: High-fat diets cause gut dysbiosis and promote triglyceride accumulation, obesity, gut permeability changes, inflammation, and insulin resistance. Both cocoa butter and fish oil are considered to be a part of healthy diets. However, their differential effects on gut microbiome perturbations in mice fed high concentrations of these fats, in the absence of sucrose, remains to be elucidated. The aim of the study was to test whether the sucrose-free cocoa butter-based high-fat diet (C-HFD) feeding in mice leads to gut dysbiosis that associates with a pathologic phenotype marked by hepatic steatosis, low-grade inflammation, perturbed glucose homeostasis, and insulin resistance, compared with control mice fed the fish oil based high-fat diet (F-HFD). Results: C57BL/6 mice (5–6 mice/group) were fed two types of high fat diets (C-HFD and F-HFD) for 24 weeks. No significant difference was found in the liver weight or total body weight between the two groups. The 16S rRNA sequencing of gut bacterial samples displayed gut dysbiosis in C-HFD group, with differentially-altered microbial diversity or relative abundances. Bacteroidetes, Firmicutes, and Proteobacteria were highly abundant in C-HFD group, while the Verrucomicrobia, Saccharibacteria (TM7), Actinobacteria, and Tenericutes were more abundant in F-HFD group. Other taxa in C-HFD group included the Bacteroides, Odoribacter, Sutterella, Firmicutes bacterium (AF12), Anaeroplasma, Roseburia, and Parabacteroides distasonis. An increased Firmicutes/Bacteroidetes (F/B) ratio in C-HFD group, compared with F-HFD group, indicated the gut dysbiosis. These gut bacterial changes in C-HFD group had predicted associations with fatty liver disease and with lipogenic, inflammatory, glucose metabolic, and insulin signaling pathways. Consistent with its microbiome shift, the C-HFD group showed hepatic inflammation and steatosis, high fasting blood glucose, insulin resistance, increased hepatic de novo lipogenesis (Acetyl CoA carboxylases 1 (Acaca), Fatty acid synthase (Fasn), Stearoyl-CoA desaturase-1 (Scd1), Elongation of long-chain fatty acids family member 6 (Elovl6), Peroxisome proliferator-activated receptor-gamma (Pparg) and cholesterol synthesis (β-(hydroxy β-methylglutaryl-CoA reductase (Hmgcr). Non-significant differences were observed regarding fatty acid uptake (Cluster of differentiation 36 (CD36), Fatty acid binding protein-1 (Fabp1) and efflux (ATP-binding cassette G1 (Abcg1), Microsomal TG transfer protein (Mttp) in C-HFD group, compared with F-HFD group. The C-HFD group also displayed increased gene expression of inflammatory markers including Tumor necrosis factor alpha (Tnfa), C-C motif chemokine ligand 2 (Ccl2), and Interleukin-12 (Il12), as well as a tendency for liver fibrosis. Conclusion: These findings suggest that the sucrose-free C-HFD feeding in mice induces gut dysbiosis which associates with liver inflammation, steatosis, glucose intolerance and insulin resistance. Full article
(This article belongs to the Special Issue The Effects of Dietary Fat on Gut Microbiota and Metabolic Health)
Show Figures

Figure 1

13 pages, 2737 KiB  
Article
Extracellular Vesicles Secreted by Adipose Tissue during Obesity and Type 2 Diabetes Mellitus Influence Reverse Cholesterol Transport-Related Gene Expression in Human Macrophages
by Kseniia V. Dracheva, Irina A. Pobozheva, Kristina A. Anisimova, Aleksandra A. Panteleeva, Luiza A. Garaeva, Stanislav G. Balandov, Zarina M. Hamid, Dmitriy I. Vasilevsky, Sofya N. Pchelina and Valentina V. Miroshnikova
Int. J. Mol. Sci. 2024, 25(12), 6457; https://doi.org/10.3390/ijms25126457 - 12 Jun 2024
Viewed by 415
Abstract
Obesity is a risk factor for type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD). Adipose tissue (AT) extracellular vesicles (EVs) could play a role in obesity and T2DM associated CVD progression via the influence of their specific cargo on gene expression in [...] Read more.
Obesity is a risk factor for type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD). Adipose tissue (AT) extracellular vesicles (EVs) could play a role in obesity and T2DM associated CVD progression via the influence of their specific cargo on gene expression in recipient cells. The aim of this work was to evaluate the effects of AT EVs of patients with obesity with/without T2DM on reverse cholesterol transport (RCT)-related gene expression in human monocyte-derived macrophages (MDMs) from healthy donors. AT EVs were obtained after ex vivo cultivation of visceral and subcutaneous AT (VAT and SAT, respectively). ABCA1, ABCG1, PPARG, LXRβ (NR1H2), and LXRα (NR1H3) mRNA levels in MDMs as well as in origine AT were determined by a real-time PCR. T2DM VAT and SAT EVs induced ABCG1 gene expression whereas LXRα and PPARG mRNA levels were simultaneously downregulated. PPARG mRNA levels also decreased in the presence of VAT EVs of obese patients without T2DM. In contrast ABCA1 and LXRβ mRNA levels tended to increase with the addition of obese AT EVs. Thus, AT EVs can influence RCT gene expression in MDMs during obesity, and the effects are dependent on T2DM status. Full article
(This article belongs to the Special Issue Molecular Linkage between Atherosclerosis and Extracellular Vesicles)
Show Figures

Figure 1

21 pages, 2670 KiB  
Article
Silicon as a Functional Meat Ingredient Improves Jejunal and Hepatic Cholesterol Homeostasis in a Late-Stage Type 2 Diabetes Mellitus Rat Model
by Marina Hernández-Martín, Alba Garcimartín, Aránzazu Bocanegra, Rocío Redondo-Castillejo, Claudia Quevedo-Torremocha, Adrián Macho-González, Rosa Ana García Fernández, Sara Bastida, Juana Benedí, Francisco José Sánchez-Muniz and María Elvira López-Oliva
Foods 2024, 13(12), 1794; https://doi.org/10.3390/foods13121794 - 7 Jun 2024
Viewed by 695
Abstract
Silicon included in a restructured meat (RM) matrix (Si-RM) as a functional ingredient has been demonstrated to be a potential bioactive antidiabetic compound. However, the jejunal and hepatic molecular mechanisms by which Si-RM exerts its cholesterol-lowering effects remain unclear. Male Wistar rats fed [...] Read more.
Silicon included in a restructured meat (RM) matrix (Si-RM) as a functional ingredient has been demonstrated to be a potential bioactive antidiabetic compound. However, the jejunal and hepatic molecular mechanisms by which Si-RM exerts its cholesterol-lowering effects remain unclear. Male Wistar rats fed an RM included in a high-saturated-fat high-cholesterol diet (HSFHCD) combined with a low dose of streptozotocin plus nicotinamide injection were used as late-stage type 2 diabetes mellitus (T2DM) model. Si-RM was included into the HSFHCD as a functional food. An early-stage TD2M group fed a high-saturated-fat diet (HSFD) was taken as reference. Si-RM inhibited the hepatic and intestinal microsomal triglyceride transfer protein (MTP) reducing the apoB-containing lipoprotein assembly and cholesterol absorption. Upregulation of liver X receptor (LXRα/β) by Si-RM turned in a higher low-density lipoprotein receptor (LDLr) and ATP-binding cassette transporters (ABCG5/8, ABCA1) promoting jejunal cholesterol efflux and transintestinal cholesterol excretion (TICE), and facilitating partially reverse cholesterol transport (RCT). Si-RM decreased the jejunal absorptive area and improved mucosal barrier integrity. Consequently, plasma triglycerides and cholesterol levels decreased, as well as the formation of atherogenic lipoprotein particles. Si-RM mitigated the dyslipidemia associated with late-stage T2DM by Improving cholesterol homeostasis. Silicon could be used as an effective nutritional approach in diabetic dyslipidemia management. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

26 pages, 3965 KiB  
Article
Multidrug-Resistant Profiles in Non-Small Cell Lung Carcinoma Patient-Derived Cells: Implications for Personalized Approaches with Tyrosine Kinase Inhibitors
by Jelena Dinić, Miodrag Dragoj, Sofija Jovanović Stojanov, Ana Stepanović, Ema Lupšić, Milica Pajović, Thomas Mohr, Sofija Glumac, Dragana Marić, Maja Ercegovac, Ana Podolski-Renić and Milica Pešić
Cancers 2024, 16(11), 1984; https://doi.org/10.3390/cancers16111984 - 23 May 2024
Viewed by 685
Abstract
The impact of tyrosine kinase inhibitors (TKIs) on multidrug resistance (MDR) in non-small cell lung carcinoma (NSCLC) is a critical aspect of cancer therapy. While TKIs effectively target specific signaling pathways of cancer cells, they can also act as substrates for ABC transporters, [...] Read more.
The impact of tyrosine kinase inhibitors (TKIs) on multidrug resistance (MDR) in non-small cell lung carcinoma (NSCLC) is a critical aspect of cancer therapy. While TKIs effectively target specific signaling pathways of cancer cells, they can also act as substrates for ABC transporters, potentially triggering MDR. The aim of our study was to evaluate the response of 17 patient-derived NSCLC cultures to 10 commonly prescribed TKIs and to correlate these responses with patient mutational profiles. Using an ex vivo immunofluorescence assay, we analyzed the expression of the MDR markers ABCB1, ABCC1, and ABCG2, and correlated these data with the genetic profiles of patients for a functional diagnostic approach. NSCLC cultures responded differently to TKIs, with erlotinib showing good efficacy regardless of mutation burden or EGFR status. However, the modulation of MDR mechanisms by erlotinib, such as increased ABCG2 expression, highlights the challenges associated with erlotinib treatment. Other TKIs showed limited efficacy, highlighting the variability of response in NSCLC. Genetic alterations in signaling pathways associated with drug resistance and sensitivity, including TP53 mutations, likely contributed to the variable responses to TKIs. The relationships between ABC transporter expression, gene alterations, and response to TKIs did not show consistent patterns. Our results suggest that in addition to mutational status, performing functional sensitivity screening is critical for identifying appropriate treatment strategies with TKIs. These results underscore the importance of considering drug sensitivity, off-target effects, MDR risks, and patient-specific genetic profiles when optimizing NSCLC treatment and highlight the potential for personalized approaches, especially in early stages. Full article
(This article belongs to the Special Issue Cancer Chemotherapy Resistance)
Show Figures

Figure 1

13 pages, 1804 KiB  
Article
Mesothelioma-Associated Fibroblasts Modulate the Response of Mesothelioma Patient-Derived Organoids to Chemotherapy via Interleukin-6
by Mario Cioce, Veronica Gatti, Fabiana Napolitano, Noemi Maria Giorgiano, Andrea Marra, Giuseppe Portella, Alfonso Fiorelli, Francesca Pentimalli and Vito Michele Fazio
Int. J. Mol. Sci. 2024, 25(10), 5355; https://doi.org/10.3390/ijms25105355 - 14 May 2024
Viewed by 997
Abstract
Malignant pleural mesothelioma (MPM) remains an incurable disease. This is partly due to the lack of experimental models that fully recapitulate the complexity and heterogeneity of MPM, a major challenge for therapeutic management of the disease. In addition, the contribution of the MPM [...] Read more.
Malignant pleural mesothelioma (MPM) remains an incurable disease. This is partly due to the lack of experimental models that fully recapitulate the complexity and heterogeneity of MPM, a major challenge for therapeutic management of the disease. In addition, the contribution of the MPM microenvironment is relevant for the adaptive response to therapy. We established mesothelioma patient-derived organoid (mPDO) cultures from MPM pleural effusions and tested their response to pemetrexed and cisplatin. We aimed to evaluate the contribution of mesothelioma-associated fibroblasts (MAFs) to the response to pemetrexed and cisplatin (P+C). Organoid cultures were obtained from eight MPM patients using specific growth media and conditions to expand pleural effusion-derived cells. Flow cytometry was used to verify the similarity of the organoid cultures to the original samples. MAFs were isolated and co-cultured with mPDOs, and the addition of MAFs reduced the sensitivity of mPDOs to P+C. Organoid formation and expression of cancer stem cell markers such as ABCG2, NANOG, and CD44 were altered by conditioned media from treated MAFs. We identified IL-6 as the major contributor to the attenuated response to chemotherapy. IL-6 secretion by MAFs is correlated with increased resistance of mPDOs to pemetrexed and cisplatin. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Therapies of Malignant Mesothelioma 2.0)
Show Figures

Figure 1

16 pages, 3458 KiB  
Article
Machine Learning Model for Prediction of Development of Cancer Stem Cell Subpopulation in Tumurs Subjected to Polystyrene Nanoparticles
by Amra Ramović Hamzagić, Marina Gazdić Janković, Danijela Cvetković, Dalibor Nikolić, Sandra Nikolić, Nevena Milivojević Dimitrijević, Nikolina Kastratović, Marko Živanović, Marina Miletić Kovačević and Biljana Ljujić
Toxics 2024, 12(5), 354; https://doi.org/10.3390/toxics12050354 - 10 May 2024
Viewed by 730
Abstract
Cancer stem cells (CSCs) play a key role in tumor progression, as they are often responsible for drug resistance and metastasis. Environmental pollution with polystyrene has a negative impact on human health. We investigated the effect of polystyrene nanoparticles (PSNPs) on cancer cell [...] Read more.
Cancer stem cells (CSCs) play a key role in tumor progression, as they are often responsible for drug resistance and metastasis. Environmental pollution with polystyrene has a negative impact on human health. We investigated the effect of polystyrene nanoparticles (PSNPs) on cancer cell stemness using flow cytometric analysis of CD24, CD44, ABCG2, ALDH1 and their combinations. This study uses simultaneous in vitro cell lines and an in silico machine learning (ML) model to predict the progression of cancer stem cell (CSC) subpopulations in colon (HCT-116) and breast (MDA-MB-231) cancer cells. Our findings indicate a significant increase in cancer stemness induced by PSNPs. Exposure to polystyrene nanoparticles stimulated the development of less differentiated subpopulations of cells within the tumor, a marker of increased tumor aggressiveness. The experimental results were further used to train an ML model that accurately predicts the development of CSC markers. Machine learning, especially genetic algorithms, may be useful in predicting the development of cancer stem cells over time. Full article
(This article belongs to the Section Novel Methods in Toxicology Research)
Show Figures

Figure 1

11 pages, 3091 KiB  
Article
ABCG2 Mediates Resistance to the Dual EGFR and PI3K Inhibitor MTX-211 in Cancer Cells
by Chung-Pu Wu, Cheng-Yu Hung, Megumi Murakami, Yu-Shan Wu, Yi-Hsuan Chu, Yang-Hui Huang, Jau-Song Yu and Suresh V. Ambudkar
Int. J. Mol. Sci. 2024, 25(10), 5160; https://doi.org/10.3390/ijms25105160 - 9 May 2024
Viewed by 630
Abstract
MTX-211 is a first-in-class dual inhibitor of epidermal growth factor receptor (EGFR) and phosphoinositide-3 kinase (PI3K) signaling pathways with a compelling pharmaceutical profile and could enhance the effectiveness of mitogen-activated protein kinase kinase (MEK) inhibitor therapy in colorectal tumors with KRAS mutations. However, [...] Read more.
MTX-211 is a first-in-class dual inhibitor of epidermal growth factor receptor (EGFR) and phosphoinositide-3 kinase (PI3K) signaling pathways with a compelling pharmaceutical profile and could enhance the effectiveness of mitogen-activated protein kinase kinase (MEK) inhibitor therapy in colorectal tumors with KRAS mutations. However, the specific mechanisms contributing to the acquired resistance to MTX-211 in human cancers remain elusive. Here, we discovered that the overexpression of the ATP-binding cassette (ABC) drug transporter ABCG2, a prevalent mechanism associated with multidrug resistance (MDR), could diminish the effectiveness of MTX-211 in human cancer cells. We showed that the drug efflux activity of ABCG2 substantially decreased the intracellular accumulation of MTX-211 in cancer cells. As a result, the cytotoxicity and effectiveness of MTX-211 in suppressing the activation of the EGFR and PI3K pathways were significantly attenuated in cancer cells overexpressing ABCG2. Moreover, the enhancement of the MTX-211-stimulated ATPase activity of ABCG2 and the computational molecular docking analysis illustrating the binding of MTX-211 to the substrate-binding sites of ABCG2 offered a further indication for the interaction between MTX-211 and ABCG2. In summary, our findings indicate that MTX-211 acts as a substrate for ABCG2, underscoring the involvement of ABCG2 in the emergence of resistance to MTX-211. This finding carries clinical implications and merits further exploration. Full article
Show Figures

Figure 1

17 pages, 2088 KiB  
Review
Genetic Variants in the ABCB1 and ABCG2 Gene Drug Transporters Involved in Gefitinib-Associated Adverse Reaction: A Systematic Review and Meta-Analysis
by Mariana Vieira Morau, Cecília Souto Seguin, Marília Berlofa Visacri, Eder de Carvalho Pincinato and Patricia Moriel
Genes 2024, 15(5), 591; https://doi.org/10.3390/genes15050591 - 7 May 2024
Viewed by 742
Abstract
This systematic review and meta-analysis aimed to verify the association between the genetic variants of adenosine triphosphate (ATP)-binding cassette subfamily B member 1 (ABCB1) and ATP-binding cassette subfamily G member 2 (ABCG2) genes and the presence and severity of [...] Read more.
This systematic review and meta-analysis aimed to verify the association between the genetic variants of adenosine triphosphate (ATP)-binding cassette subfamily B member 1 (ABCB1) and ATP-binding cassette subfamily G member 2 (ABCG2) genes and the presence and severity of gefitinib-associated adverse reactions. We systematically searched PubMed, Virtual Health Library/Bireme, Scopus, Embase, and Web of Science databases for relevant studies published up to February 2024. In total, five studies were included in the review. Additionally, eight genetic variants related to ABCB1 (rs1045642, rs1128503, rs2032582, and rs1025836) and ABCG2 (rs2231142, rs2231137, rs2622604, and 15622C>T) genes were analyzed. Meta-analysis showed a significant association between the ABCB1 gene rs1045642 TT genotype and presence of diarrhea (OR = 5.41, 95% CI: 1.38–21.14, I2 = 0%), the ABCB1 gene rs1128503 TT genotype and CT + TT group and the presence of skin rash (OR = 4.37, 95% CI: 1.51–12.61, I2 = 0% and OR = 6.99, 95%CI: 1.61–30.30, I2= 0%, respectively), and the ABCG2 gene rs2231142 CC genotype and presence of diarrhea (OR = 3.87, 95% CI: 1.53–9.84, I2 = 39%). No ABCB1 or ABCG2 genes were positively associated with the severity of adverse reactions associated with gefitinib. In conclusion, this study showed that ABCB1 and ABCG2 variants are likely to exhibit clinical implications in predicting the presence of adverse reactions to gefitinib. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

11 pages, 1657 KiB  
Article
Circadian ABCG2 Expression Influences the Brain Uptake of Donepezil across the Blood–Cerebrospinal Fluid Barrier
by André Furtado, Ana Catarina Duarte, Ana R. Costa, Isabel Gonçalves, Cecília R. A. Santos, Eugenia Gallardo and Telma Quintela
Int. J. Mol. Sci. 2024, 25(9), 5014; https://doi.org/10.3390/ijms25095014 - 3 May 2024
Viewed by 893
Abstract
Donepezil (DNPZ) is a cholinesterase inhibitor used for the management of Alzheimer’s disease (AD) and is dependent on membrane transporters such as ABCG2 to actively cross brain barriers and reach its target site of action in the brain. Located in the brain ventricles, [...] Read more.
Donepezil (DNPZ) is a cholinesterase inhibitor used for the management of Alzheimer’s disease (AD) and is dependent on membrane transporters such as ABCG2 to actively cross brain barriers and reach its target site of action in the brain. Located in the brain ventricles, the choroid plexus (CP) forms an interface between the cerebrospinal fluid (CSF) and the bloodstream, known as the blood–CSF barrier (BCSFB). Historically, the BCSFB has received little attention as a potential pathway for drug delivery to the central nervous system (CNS). Nonetheless, this barrier is presently viewed as a dynamic transport interface that limits the traffic of molecules into and out of the CNS through the presence of membrane transporters, with parallel activity with the BBB. The localization and expression of drug transporters in brain barriers represent a huge obstacle for drug delivery to the brain and a major challenge for the development of therapeutic approaches to CNS disorders. The widespread interest in understanding how circadian clocks modulate many processes that define drug delivery in order to predict the variability in drug safety and efficacy is the next bridge to improve effective treatment. In this context, this study aims at characterizing the circadian expression of ABCG2 and DNPZ circadian transport profile using an in vitro model of the BCSFB. We found that ABCG2 displays a circadian pattern and DNPZ is transported in a circadian way across this barrier. This study will strongly impact on the capacity to modulate the BCSFB in order to control the penetration of DNPZ into the brain and improve therapeutic strategies for the treatment of AD according to the time of the day. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

20 pages, 1736 KiB  
Article
Comprehensive Analysis of Drug Utilization Patterns, Gender Disparities, Lifestyle Influences, and Genetic Factors: Insights from Elderly Cohort Using g-Nomic® Software
by Bárbara Rodríguez Castillo, Marc Cendrós, Carlos J. Ciudad and Ana Sabater
Pharmaceuticals 2024, 17(5), 565; https://doi.org/10.3390/ph17050565 - 28 Apr 2024
Viewed by 870
Abstract
Polypharmacy is a global healthcare concern, especially among the elderly, leading to drug interactions and adverse reactions, which are significant causes of death in developed nations. However, the integration of pharmacogenetics can help mitigate these risks. In this study, the data from 483 [...] Read more.
Polypharmacy is a global healthcare concern, especially among the elderly, leading to drug interactions and adverse reactions, which are significant causes of death in developed nations. However, the integration of pharmacogenetics can help mitigate these risks. In this study, the data from 483 patients, primarily elderly and polymedicated, were analyzed using Eugenomic®’s personalized prescription software, g-Nomic®. The most prescribed drug classes included antihypertensives, platelet aggregation inhibitors, cholesterol-lowering drugs, and gastroprotective medications. Drug–lifestyle interactions primarily involved inhibitions but also included inductions. Interactions were analyzed considering gender. Significant genetic variants identified in the study encompassed ABCB1, SLCO1B1, CYP2C19, CYP2C9, CYP2D6, CYP3A4, ABCG2, NAT2, SLC22A1, and G6PD. To prevent adverse reactions and enhance medication effectiveness, it is strongly recommended to consider pharmacogenetics testing. This approach shows great promise in optimizing medication regimens and ultimately improving patient outcomes. Full article
(This article belongs to the Special Issue Drug Safety and Relevant Issues in the Real-World 2024)
Show Figures

Figure 1

16 pages, 14746 KiB  
Article
Naringin Inhibits Macrophage Foam Cell Formation by Regulating Lipid Homeostasis and Metabolic Phenotype
by Yan Liu, Xiaohan Tang, Hailong Yuan and Rong Gao
Nutrients 2024, 16(9), 1321; https://doi.org/10.3390/nu16091321 - 28 Apr 2024
Viewed by 924
Abstract
Imbalances in lipid uptake and efflux and inflammation are major contributors to foam cell formation, which is considered a therapeutic target to protect against atherosclerosis. Naringin, a citrus flavonoid abundant in citrus fruits, has been reported to exert an antiatherogenic function, but its [...] Read more.
Imbalances in lipid uptake and efflux and inflammation are major contributors to foam cell formation, which is considered a therapeutic target to protect against atherosclerosis. Naringin, a citrus flavonoid abundant in citrus fruits, has been reported to exert an antiatherogenic function, but its pharmacological mechanism is unclear. Naringin treatment effectively inhibits foam cell formation in THP-1 and RAW264.7 macrophages. In this study, mechanically, naringin maintained lipid homeostasis within macrophages through downregulation of the key genes for lipid uptake (MSR1 and CD36) and the upregulation of ABCA1, ABCG1 and SR-B1, which are responsible for cholesterol efflux. Meanwhile, naringin significantly decreased the cholesterol synthesis-related genes and increased the genes involved in cholesterol metabolism. Subsequently, the results showed that ox-LDL-induced macrophage inflammatory responses were inhibited by naringin by reducing the proinflammatory cytokines IL-1β, IL-6 and TNF-α, and increasing the anti- inflammatory cytokine IL-10, which was further verified by the downregulation of pro-inflammatory and chemokine-related genes. Additionally, we found that naringin reprogrammed the metabolic phenotypes of macrophages by suppressing glycolysis and promoting lipid oxidation metabolism to restore macrophage phenotypes and functions. These results suggest that naringin is a potential drug for the treatment of AS as it inhibits macrophage foam cell formation by regulating metabolic phenotypes and inflammation. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

Back to TopTop