Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,069)

Search Parameters:
Keywords = ARDS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4117 KiB  
Article
Leveraging Hypotension Prediction Index to Forecast LPS-Induced Acute Lung Injury and Inflammation in a Porcine Model: Exploring the Role of Hypoxia-Inducible Factor in Circulatory Shock
by Yuan-Ming Tsai, Yu-Chieh Lin, Chih-Yuan Chen, Hung-Che Chien, Hung Chang and Ming-Hsien Chiang
Biomedicines 2024, 12(8), 1665; https://doi.org/10.3390/biomedicines12081665 - 25 Jul 2024
Viewed by 176
Abstract
Acute respiratory distress syndrome (ARDS) is a critical illness in critically unwell patients, characterized by refractory hypoxemia and shock. This study evaluates an early detection tool and investigates the relationship between hypoxia and circulatory shock in ARDS, to improve diagnostic precision and therapy [...] Read more.
Acute respiratory distress syndrome (ARDS) is a critical illness in critically unwell patients, characterized by refractory hypoxemia and shock. This study evaluates an early detection tool and investigates the relationship between hypoxia and circulatory shock in ARDS, to improve diagnostic precision and therapy customization. We used a porcine model, inducing ARDS with mechanical ventilation and intratracheal plus intravenous lipopolysaccharide (LPS) injection. Hemodynamic changes were monitored using an Acumen IQ sensor and a ForeSight Elite sensor connected to the HemoSphere platform. We evaluated tissue damage, inflammatory response, and hypoxia-inducible factor (HIF) alterations using enzyme-linked immunosorbent assay and immunohistochemistry. The results showed severe hypotension and increased heart rates post-LPS exposure, with a notable rise in the hypotension prediction index (HPI) during acute lung injury (p = 0.024). Tissue oxygen saturation dropped considerably in the right brain region. Interestingly, post-injury HIF-2α levels were lower at the end of the experiment. Our findings imply that the HPI can effectively predict ARDS-related hypotension. HIF expression levels may serve as possible markers of rapid ARDS progression. Further research should be conducted on the clinical value of this novel approach in critical care, as well as the relationship between the HIF pathway and ARDS-associated hypotension. Full article
Show Figures

Figure 1

12 pages, 1951 KiB  
Systematic Review
Corticosteroid Treatment for Leptospirosis: A Systematic Review and Meta-Analysis
by Pavlo Petakh, Valentyn Oksenych and Oleksandr Kamyshnyi
J. Clin. Med. 2024, 13(15), 4310; https://doi.org/10.3390/jcm13154310 - 24 Jul 2024
Viewed by 387
Abstract
Background: Leptospirosis, a zoonotic disease prevalent in tropical regions, often leads to severe complications such as Weil’s disease and acute respiratory distress syndrome (ARDS). This pioneering meta-analysis investigated the role of corticosteroids in treating severe leptospirosis, addressing a critical gap in the current [...] Read more.
Background: Leptospirosis, a zoonotic disease prevalent in tropical regions, often leads to severe complications such as Weil’s disease and acute respiratory distress syndrome (ARDS). This pioneering meta-analysis investigated the role of corticosteroids in treating severe leptospirosis, addressing a critical gap in the current clinical knowledge. Methods: We systematically reviewed studies from PubMed and Scopus, focusing on randomized controlled trials and observational cohort studies involving adult patients diagnosed with leptospirosis. Five studies comprising 279 participants met the inclusion criteria. Results: Although some studies suggest potential benefits, particularly for pulmonary complications, the evidence remains inconclusive due to the limited number of studies and their methodological limitations. Notably, while four of the five reviewed studies indicated a possible positive role of corticosteroids, the single randomized controlled trial showed no significant benefit, highlighting the need for more robust research. Conclusions: While the current evidence provides a basis for potential benefits, it is not sufficient to make definitive clinical recommendations. Further research is essential to clarify the role of corticosteroids in the treatment of severe leptospirosis, with the aim of improving patient outcomes and guiding clinical practices effectively. Full article
(This article belongs to the Special Issue Clinical Aspects of Infectious Diseases)
Show Figures

Figure 1

13 pages, 977 KiB  
Perspective
Recruitment-Potential-Oriented Mechanical Ventilation Protocol and Narrative Review for Patients with Acute Respiratory Distress Syndrome
by Chieh-Jen Wang, I-Ting Wang, Chao-Hsien Chen, Yen-Hsiang Tang, Hsin-Wei Lin, Chang-Yi Lin and Chien-Liang Wu
J. Pers. Med. 2024, 14(8), 779; https://doi.org/10.3390/jpm14080779 - 23 Jul 2024
Viewed by 371
Abstract
Even though much progress has been made to improve clinical outcomes, acute respiratory distress syndrome (ARDS) remains a significant cause of acute respiratory failure. Protective mechanical ventilation is the backbone of supportive care for these patients; however, there are still many unresolved issues [...] Read more.
Even though much progress has been made to improve clinical outcomes, acute respiratory distress syndrome (ARDS) remains a significant cause of acute respiratory failure. Protective mechanical ventilation is the backbone of supportive care for these patients; however, there are still many unresolved issues in its setting. The primary goal of mechanical ventilation is to improve oxygenation and ventilation. The use of positive pressure, especially positive end-expiratory pressure (PEEP), is mandatory in this approach. However, PEEP is a double-edged sword. How to safely set positive end-inspiratory pressure has long been elusive to clinicians. We hereby propose a pressure–volume curve measurement-based method to assess whether injured lungs are recruitable in order to set an appropriate PEEP. For the most severe form of ARDS, extracorporeal membrane oxygenation (ECMO) is considered as the salvage therapy. However, the high level of medical resources required and associated complications make its use in patients with severe ARDS controversial. Our proposed protocol also attempts to propose how to improve patient outcomes by balancing the possible overuse of resources with minimizing patient harm due to dangerous ventilator settings. A recruitment-potential-oriented evaluation-based protocol can effectively stabilize hypoxemic conditions quickly and screen out truly serious patients. Full article
(This article belongs to the Section Personalized Critical Care)
Show Figures

Figure 1

13 pages, 4955 KiB  
Article
Pirfenidone Alleviates Inflammation and Fibrosis of Acute Respiratory Distress Syndrome by Modulating the Transforming Growth Factor-β/Smad Signaling Pathway
by Seung Sook Paik, Jeong Mi Lee, Il-Gyu Ko, Sae Rom Kim, Sung Wook Kang, Jin An, Jin Ah Kim, Dongyon Kim, Lakkyong Hwang, Jun-Jang Jin, Sang-Hoon Kim, Jun-Youl Cha and Cheon Woong Choi
Int. J. Mol. Sci. 2024, 25(15), 8014; https://doi.org/10.3390/ijms25158014 - 23 Jul 2024
Viewed by 195
Abstract
Acute respiratory distress syndrome (ARDS) occurs as an acute onset condition, and patients present with diffuse alveolar damage, refractory hypoxemia, and non-cardiac pulmonary edema. ARDS progresses through an initial exudative phase, an inflammatory phase, and a final fibrotic phase. Pirfenidone, a powerful anti-fibrotic [...] Read more.
Acute respiratory distress syndrome (ARDS) occurs as an acute onset condition, and patients present with diffuse alveolar damage, refractory hypoxemia, and non-cardiac pulmonary edema. ARDS progresses through an initial exudative phase, an inflammatory phase, and a final fibrotic phase. Pirfenidone, a powerful anti-fibrotic agent, is known as an agent that inhibits the progression of fibrosis in idiopathic pulmonary fibrosis. In this study, we studied the treatment efficiency of pirfenidone on lipopolysaccharide (LPS) and bleomycin-induced ARDS using rats. The ARDS rat model was created by the intratracheal administration of 3 mg/kg LPS of and 3 mg/kg of bleomycin dissolved in 0.2 mL of normal saline. The pirfenidone treatment group was administered 100 or 200 mg/kg of pirfenidone dissolved in 0.5 mL distilled water orally 10 times every 2 days for 20 days. The administration of LPS and bleomycin intratracheally increased lung injury scores and significantly produced pro-inflammatory cytokines. ARDS induction increased the expressions of transforming growth factor (TGF)-β1/Smad-2 signaling factors. Additionally, matrix metalloproteinase (MMP)-9/tissue inhibitor of metalloproteinase (TIMP)-1 imbalance occurred, resulting in enhanced fibrosis-related factors. Treatment with pirfenidone strongly suppressed the expressions of TGF-β1/Smad-2 signaling factors and improved the imbalance of MMP-9/TIMP-1 compared to the untreated group. These effects led to a decrease in fibrosis factors and pro-inflammatory cytokines, promoting the recovery of damaged lung tissue. These results of this study showed that pirfenidone administration suppressed inflammation and fibrosis in the ARDS animal model. Therefore, pirfenidone can be considered a new early treatment for ARDS. Full article
Show Figures

Graphical abstract

22 pages, 2111 KiB  
Review
Cytokine Storm in COVID-19: Insight into Pathological Mechanisms and Therapeutic Benefits of Chinese Herbal Medicines
by Qingyuan Yu, Xian Zhou, Rotina Kapini, Anthony Arsecularatne, Wenting Song, Chunguang Li, Yang Liu, Junguo Ren, Gerald Münch, Jianxun Liu and Dennis Chang
Medicines 2024, 11(7), 14; https://doi.org/10.3390/medicines11070014 - 18 Jul 2024
Viewed by 518
Abstract
Cytokine storm (CS) is the main driver of SARS-CoV-2-induced acute respiratory distress syndrome (ARDS) in severe coronavirus disease-19 (COVID-19). The pathological mechanisms of CS are quite complex and involve multiple critical molecular targets that turn self-limited and mild COVID-19 into a severe and [...] Read more.
Cytokine storm (CS) is the main driver of SARS-CoV-2-induced acute respiratory distress syndrome (ARDS) in severe coronavirus disease-19 (COVID-19). The pathological mechanisms of CS are quite complex and involve multiple critical molecular targets that turn self-limited and mild COVID-19 into a severe and life-threatening concern. At present, vaccines are strongly recommended as safe and effective treatments for preventing serious illness or death from COVID-19. However, effective treatment options are still lacking for people who are at the most risk or hospitalized with severe disease. Chinese herbal medicines have been shown to improve the clinical outcomes of mild to severe COVID-19 as an adjunct therapy, particular preventing the development of mild to severe ARDS. This review illustrates in detail the pathogenesis of CS-involved ARDS and its associated key molecular targets, cytokines and signalling pathways. The therapeutic targets were identified particularly in relation to the turning points of the development of COVID-19, from mild symptoms to severe ARDS. Preclinical and clinical studies were reviewed for the effects of Chinese herbal medicines together with conventional therapies in reducing ARDS symptoms and addressing critical therapeutic targets associated with CS. Multiple herbal formulations, herbal extracts and single bioactive phytochemicals with or without conventional therapies demonstrated strong anti-CS effects through multiple mechanisms. However, evidence from larger, well-designed clinical trials is lacking and their detailed mechanisms of action are yet to be well elucidated. More research is warranted to further evaluate the therapeutic value of Chinese herbal medicine for CS in COVID-19-induced ARDS. Full article
Show Figures

Figure 1

13 pages, 1719 KiB  
Article
Comparative Efficacy of Inhaled and Intravenous Corticosteroids in Managing COVID-19-Related Acute Respiratory Distress Syndrome
by Ahmed A. Abdelkader, Bshra A. Alsfouk, Asmaa Saleh, Mohamed E. A. Abdelrahim and Haitham Saeed
Pharmaceutics 2024, 16(7), 952; https://doi.org/10.3390/pharmaceutics16070952 - 18 Jul 2024
Viewed by 379
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening condition in which the lungs fail to provide sufficient oxygen to the body’s vital organs. It is commonly associated with COVID-19 patients. Severe cases of COVID-19 can lead to lung damage and organ failure due [...] Read more.
Acute respiratory distress syndrome (ARDS) is a life-threatening condition in which the lungs fail to provide sufficient oxygen to the body’s vital organs. It is commonly associated with COVID-19 patients. Severe cases of COVID-19 can lead to lung damage and organ failure due to an immune response in the body. To mitigate these effects, corticosteroids, which are known for their anti-inflammatory properties, have been suggested as a potential treatment option. The primary focus of this study was to assess the impact of various corticosteroid administration methods on the outcomes of patients with COVID-19. Methods: The current study was conducted on COVID-19 patients divided into three groups. The first group was administered 6 mg of intravenous (IV) dexamethasone; the second group received 1 mg/kg of IV methylprednisolone (methylprednisolone); and the third group received budesonide respirable solution at a dosage of 1mg twice daily. The neubilizer used was a vibrating mesh nebulizer (VMN). All patients received standard care. We found that dexamethasone administered intravenously led to a significant reduction in C-reactive protein levels, surpassing the effectiveness of both IV methylprednisolone and inhaled budesonide. Oxygen saturation without mask change over time showed statistically significant differences (p = 0.004) in favor of the budesonide and dexamethasone groups for all days. Individuals who received methylprednisolone showed a significant decrease in mortality rate and an extended survival duration, with statistical significance observed at p = 0.024. The rest of the parameters, including ferritin, lymphocytes, total leukocyte count, platelets, hemoglobin, urea, serum potassium, serum sodium, serum creatinine, serum glutamic-pyruvic transaminase, serum glutamic-oxaloacetic transaminase, uric acid, albumin, globulin, erythrocyte sedimentation rate, international normalized ratio, oxygen saturation with flow, and oxygen flow, showed no statistically significant differences between the three drugs. In conclusion, treatment with IV methylprednisolone (1 mg/kg) resulted in a shorter hospital stay, decreased reliance on ventilation, and improved health outcomes for COVID-19 patients compared to using dexamethasone at a daily dosage of 6 mg or budesonide respirable solution at a dosage of 1mg twice daily. Full article
Show Figures

Figure 1

11 pages, 576 KiB  
Proceeding Paper
Shadows of Resilience: Exploring the Impact of the Shadow Economy on Economic Stability
by Charalampos Agiropoulos, James Ming Chen, Thomas Poufinas and George Galanos
Eng. Proc. 2024, 68(1), 44; https://doi.org/10.3390/engproc2024068044 - 15 Jul 2024
Viewed by 180
Abstract
This study analyzes the shadow economy within the European Union and its influence on the economic resilience of member countries. Data spanning almost two decades and covering a broad spectrum provide a unique opportunity to examine the impact of the shadow economy on [...] Read more.
This study analyzes the shadow economy within the European Union and its influence on the economic resilience of member countries. Data spanning almost two decades and covering a broad spectrum provide a unique opportunity to examine the impact of the shadow economy on economic stability across various economic cycles. Regularization techniques such as Lasso and Automatic Relevance Determination (ARD) combat possible collinearity and overfitting arising from the inclusion of irrelevant and redundant variables. The shadow economy interacts with key indicators of economic resilience, such as GDP, national debt, and population, across different phases of economic stability and turbulence. The preliminary findings suggest a complex and varied interaction between the shadow economy and economic resilience. This study provides a valuable foundation for policies aimed at stability and sustainable economic growth. Full article
(This article belongs to the Proceedings of The 10th International Conference on Time Series and Forecasting)
Show Figures

Figure 1

10 pages, 1438 KiB  
Article
Polyuria in COVID-19 Patients Undergoing Extracorporeal Membrane Oxygenation
by Johannes Rausch, Andrea U. Steinbicker, Benjamin Friedrichson, Armin N. Flinspach, Kai Zacharowski, Elisabeth H. Adam and Florian Piekarski
J. Clin. Med. 2024, 13(14), 4081; https://doi.org/10.3390/jcm13144081 - 12 Jul 2024
Viewed by 455
Abstract
Background: The COVID-19 pandemic caused an unprecedented number of patients requiring veno-venous extracorporeal membrane oxygenation (VV ECMO) therapy. Clinical polyuria was observed at our ECMO center during the pandemic. This study aims to investigate the incidence, potential causes, and implications of polyuria [...] Read more.
Background: The COVID-19 pandemic caused an unprecedented number of patients requiring veno-venous extracorporeal membrane oxygenation (VV ECMO) therapy. Clinical polyuria was observed at our ECMO center during the pandemic. This study aims to investigate the incidence, potential causes, and implications of polyuria in COVID-19 patients undergoing VV ECMO therapy. Methods: Here, 68 SARS-CoV-2 positive patients receiving VV ECMO were stratified into the following two groups: polyuria (PU), characterized by an average urine output of ≥3000 mL/day within seven days following initiation, and non-polyuria (NPU), defined by <3000 mL/day. Polyuria in ECMO patients occurred in 51.5% (n = 35) within seven days after ECMO initiation. No significant difference in mortality was observed between PU and NPU groups (60.0% vs. 60.6%). Differences were found in the fluid intake (p < 0.01) and balance within 24 h (p = 0.01), creatinine (p < 0.01), plasma osmolality (p = < 0.01), lactate (p < 0.01), urea (p < 0.01), and sodium levels (p < 0.01) between the groups. Plasma osmolality increased (p < 0.01) after ECMO initiation during the observation period. Results: Diuresis and plasma osmolality increased during VV ECMO treatment, while mortality was not affected by polyuria. Conclusions: Polyuria does not appear to impact mortality. Further investigations are warranted to elucidate its underlying mechanisms and clinical implications in the context of VV ECMO therapy and COVID-19 management. Full article
Show Figures

Figure 1

15 pages, 938 KiB  
Review
Clinical and Experimental Evidence for Patient Self-Inflicted Lung Injury (P-SILI) and Bedside Monitoring
by Ines Marongiu, Douglas Slobod, Marco Leali, Elena Spinelli and Tommaso Mauri
J. Clin. Med. 2024, 13(14), 4018; https://doi.org/10.3390/jcm13144018 - 10 Jul 2024
Viewed by 1329
Abstract
Patient self-inflicted lung injury (P-SILI) is a major challenge for the ICU physician: although spontaneous breathing is associated with physiological benefits, in patients with acute respiratory distress syndrome (ARDS), the risk of uncontrolled inspiratory effort leading to additional injury needs to be assessed [...] Read more.
Patient self-inflicted lung injury (P-SILI) is a major challenge for the ICU physician: although spontaneous breathing is associated with physiological benefits, in patients with acute respiratory distress syndrome (ARDS), the risk of uncontrolled inspiratory effort leading to additional injury needs to be assessed to avoid delayed intubation and increased mortality. In the present review, we analyze the available clinical and experimental evidence supporting the existence of lung injury caused by uncontrolled high inspiratory effort, we discuss the pathophysiological mechanisms by which increased effort causes P-SILI, and, finally, we consider the measurements and interpretation of bedside physiological measures of increased drive that should alert the clinician. The data presented in this review could help to recognize injurious respiratory patterns that may trigger P-SILI and to prevent it. Full article
(This article belongs to the Section Intensive Care)
Show Figures

Figure 1

22 pages, 1786 KiB  
Review
Unveiling the Potential of Sulfur-Containing Gas Signaling Molecules in Acute Lung Injury: A Promising Therapeutic Avenue
by Xutao Sun, Caiyun Mao, Jiaxin Wang, Siyu Wu, Ying Qu, Ying Xie, Fengqi Sun, Deyou Jiang and Yunjia Song
Curr. Issues Mol. Biol. 2024, 46(7), 7147-7168; https://doi.org/10.3390/cimb46070426 - 7 Jul 2024
Viewed by 443
Abstract
Acute lung injury (ALI) and its most severe form, acute respiratory distress syndrome (ARDS), are pulmonary conditions that cause significant morbidity and mortality. The common etiologies of these conditions include pneumonia, pulmonary contusion, fat embolism, smoke inhalation, sepsis, shock, and acute pancreatitis. Inflammation, [...] Read more.
Acute lung injury (ALI) and its most severe form, acute respiratory distress syndrome (ARDS), are pulmonary conditions that cause significant morbidity and mortality. The common etiologies of these conditions include pneumonia, pulmonary contusion, fat embolism, smoke inhalation, sepsis, shock, and acute pancreatitis. Inflammation, oxidative stress, apoptosis, and autophagy are key pathophysiological mechanisms underlying ALI. Hydrogen sulfide (H2S) and sulfur dioxide (SO2) are sulfur-containing gas signaling molecules that can mitigate these pathogenic processes by modulating various signaling pathways, such as toll-like receptor 4 (TLR4)/nod-like receptor protein 3 (NLRP3), extracellular signal-regulating protein kinase 1/2 (ERK1/2), mitogen-activated protein kinase (MAPK), phosphatidyl inositol 3 kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR), and nuclear factor kappa B (NF-κB), thereby conferring protection against ALI. Given the limited clinical effectiveness of prevailing ALI treatments, investigation of the modulation of sulfur-containing gas signaling molecules (H2S and SO2) in ALI is imperative. This article presents an overview of the regulatory pathways of sulfur-containing gas signaling molecules in ALI animal models induced by various stimuli, such as lipopolysaccharide, gas inhalation, oleic acid, and ischemia-reperfusion. Furthermore, this study explored the therapeutic prospects of diverse H2S and SO2 donors for ALI, stemming from diverse etiologies. The aim of the present study was to establish a theoretical framework, in order to promote the new treatment of ALI. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

25 pages, 1824 KiB  
Review
Cellular Senescence and Inflammaging in the Bone: Pathways, Genetics, Anti-Aging Strategies and Interventions
by Merin Lawrence, Abhishek Goyal, Shelly Pathak and Payal Ganguly
Int. J. Mol. Sci. 2024, 25(13), 7411; https://doi.org/10.3390/ijms25137411 - 5 Jul 2024
Viewed by 585
Abstract
Advancing age is associated with several age-related diseases (ARDs), with musculoskeletal conditions impacting millions of elderly people worldwide. With orthopedic conditions contributing towards considerable number of patients, a deeper understanding of bone aging is the need of the hour. One of the underlying [...] Read more.
Advancing age is associated with several age-related diseases (ARDs), with musculoskeletal conditions impacting millions of elderly people worldwide. With orthopedic conditions contributing towards considerable number of patients, a deeper understanding of bone aging is the need of the hour. One of the underlying factors of bone aging is cellular senescence and its associated senescence associated secretory phenotype (SASP). SASP comprises of pro-inflammatory markers, cytokines and chemokines that arrest cell growth and development. The accumulation of SASP over several years leads to chronic low-grade inflammation with advancing age, also known as inflammaging. The pathways and molecular mechanisms focused on bone senescence and inflammaging are currently limited but are increasingly being explored. Most of the genes, pathways and mechanisms involved in senescence and inflammaging coincide with those associated with cancer and other ARDs like osteoarthritis (OA). Thus, exploring these pathways using techniques like sequencing, identifying these factors and combatting them with the most suitable approach are crucial for healthy aging and the early detection of ARDs. Several approaches can be used to aid regeneration and reduce senescence in the bone. These may be pharmacological, non-pharmacological and lifestyle interventions. With increasing evidence towards the intricate relationship between aging, senescence, inflammation and ARDs, these approaches may also be used as anti-aging strategies for the aging bone marrow (BM). Full article
(This article belongs to the Special Issue Molecular Studies in Aging: New Advances)
Show Figures

Figure 1

15 pages, 942 KiB  
Article
Biofumigation Treatment Using Tagetes patula, Sinapis alba and Raphanus sativus Changes the Biological Properties of Replanted Soil in a Fruit Tree Nursery
by Robert Wieczorek, Zofia Zydlik and Piotr Zydlik
Agriculture 2024, 14(7), 1023; https://doi.org/10.3390/agriculture14071023 - 27 Jun 2024
Viewed by 329
Abstract
Apple replant disease (ARD) may cause significant losses both in commercial orchards and in fruit tree nurseries. The negative effects of ARD may be limited by using biofumigation. The aim of the study was to assess the influence of this treatment on the [...] Read more.
Apple replant disease (ARD) may cause significant losses both in commercial orchards and in fruit tree nurseries. The negative effects of ARD may be limited by using biofumigation. The aim of the study was to assess the influence of this treatment on the biological properties of replanted soil in a tree nursery. In two-year experiment, apple trees of the ‘Golden Delicious’ cultivar were used. The trees were planted into soil from two sites. The soil from one site had not been used in a nursery before (crop rotation soil). The other soil had been used for the production of apple trees (replanted soil). Three species of plants were used in the replanted soil as a forecrop: French marigold (Tagetes patula), white mustard (Sinapis alba), and oilseed radish (Raphanus sativus var. oleifera). The following parameters were assessed in the experiment: the enzyme and respiratory activity of the soil, the total count of bacteria, fungi, oomycetes and actinobacteria in the soil, as well as the count and species composition of soil nematodes. The vegetative growth parameters of the apple trees were also assessed. The biological properties of the replanted soil were worse than those of the crop rotation soil. In the replanted soil, the organic matter content, enzyme and respiratory activity as well as the count of soil microorganisms were lower. The biofumigants, used as a forecrop on the replanted soil, significantly increased its enzyme activity and respiratory activity. Dehydrogenase activity increased more than twofold. Growth parameters of the trees were significantly improved. The height of the trees increased by more than 50%, and the leaf area, weight and total length of side shoots were higher as well. The density of nematodes in the replanted soil after biofumigation was significantly reduced, with a larger reduction in the marigold fumigated soil. Eight of the eleven nematode species were completely reduced in the first year after biofumigation treatment. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

11 pages, 1105 KiB  
Article
The Ventilatory Ratio as a Predictor of Successful Weaning from a Veno-Venous Extracorporeal Membrane Oxygenator
by Anna Fischbach, Steffen B. Wiegand, Julia Alexandra Simons, Liselotte Ammon, Rüdger Kopp, Guillermo Ignacio Soccoro Matos, Julio Javier Baigorri, Jerome C. Crowley and Aranya Bagchi
J. Clin. Med. 2024, 13(13), 3758; https://doi.org/10.3390/jcm13133758 - 27 Jun 2024
Viewed by 1022
Abstract
Background: Veno-venous extracorporeal membrane oxygenation (VV-ECMO) is a critical intervention for patients with severe lung failure, especially acute respiratory distress syndrome (ARDS). The weaning process from ECMO relies largely on expert opinion due to a lack of evidence-based guidelines. The ventilatory ratio (VR), [...] Read more.
Background: Veno-venous extracorporeal membrane oxygenation (VV-ECMO) is a critical intervention for patients with severe lung failure, especially acute respiratory distress syndrome (ARDS). The weaning process from ECMO relies largely on expert opinion due to a lack of evidence-based guidelines. The ventilatory ratio (VR), which correlates with dead space and mortality in ARDS, is calculated as [minute ventilation (mL/min) x arterial pCO2 (mmHg)]/[predicted body weight × 100 × 37.5]. Objectives: The aim of this study was to determine whether the VR alone can serve as a reliable predictor of safe or unsafe liberation from VV-ECMO in critically ill patients. Methods: A multicenter retrospective analysis was conducted, involving ARDS patients undergoing VV-ECMO weaning at Massachusetts General Hospital (January 2016 – December 2020) and at the University Hospital Aachen (January 2012–December 2021). Safe liberation was defined as no need for ECMO recannulation within 48 h after decannulation. Clinical parameters were obtained for both centers at the same time point: 30 min after the start of the SGOT (sweep gas off trial). Results: Of the patients studied, 83.3% (70/84) were successfully weaned from VV-ECMO. The VR emerged as a significant predictor of unsafe liberation (OR per unit increase: 0.38; CI: 0.17–0.81; p = 0.01). Patients who could not be safely liberated had longer ICU and hospital stays, with a trend towards higher mortality (38% vs. 13%; p = 0.05). Conclusions: The VR may be a valuable predictor for safe liberation from VV-ECMO in ARDS patients, with higher VR values associated with an elevated risk of unsuccessful weaning and adverse clinical outcomes. Full article
Show Figures

Figure 1

10 pages, 533 KiB  
Article
The Behaviour of IL-6 and Its Soluble Receptor Complex during Different Waves of the COVID-19 Pandemic
by Gaetano Di Spigna, Bianca Covelli, Maria Vargas, Roberta Di Caprio, Valentina Rubino, Carmine Iacovazzo, Filomena Napolitano, Giuseppe Servillo and Loredana Postiglione
Life 2024, 14(7), 814; https://doi.org/10.3390/life14070814 - 27 Jun 2024
Viewed by 361
Abstract
In late December 2019, SARS-CoV-2 was identified as the cause of a new pneumonia (COVID-19), leading to a global pandemic declared by the WHO on 11 March 2020, with significant human, economic, and social costs. Although most COVID-19 cases are asymptomatic or mild, [...] Read more.
In late December 2019, SARS-CoV-2 was identified as the cause of a new pneumonia (COVID-19), leading to a global pandemic declared by the WHO on 11 March 2020, with significant human, economic, and social costs. Although most COVID-19 cases are asymptomatic or mild, 14% progress to severe disease, and 5% develop critical illness with complications such as interstitial pneumonia, acute respiratory distress syndrome (ARDS), and multiple organ dysfunction syndrome (MODS). SARS-CoV-2 primarily targets the respiratory system but can affect multiple organs due to the widespread presence of angiotensin-converting enzyme 2 (ACE2) receptors, which the virus uses to enter cells. This broad distribution of ACE2 receptors means that SARS-CoV-2 infection can lead to cardiovascular, gastrointestinal, renal, hepatic, central nervous system, and ocular damage. The virus triggers the innate and adaptive immune systems, resulting in a massive cytokine release, known as a “cytokine storm”, which is linked to tissue damage and poor outcomes in severe lung disease. Interleukin-6 (IL-6) is particularly important in this cytokine release, with elevated levels serving as a marker of severe COVID-19. IL-6 is a multifunctional cytokine with both anti-inflammatory and pro-inflammatory properties, acting through two main pathways: classical signalling and trans-signalling. Classical signalling involves IL-6 binding to its membrane-bound receptor IL-6R and then to the gp130 protein, while trans-signalling occurs when IL-6 binds to the soluble form of IL-6R (sIL-6R) and then to membrane-bound gp130 on cells that do not express IL-6R. The soluble form of gp130 (sgp130) can inhibit IL-6 trans-signalling by binding to sIL-6R, thereby preventing it from interacting with membrane-bound gp130. Given the central role of IL-6 in COVID-19 inflammation and its association with severe disease, we aimed to analyse the behaviour of IL-6 and its soluble receptor complex during different waves of the pandemic. This analysis could help determine whether IL-6 levels can serve as prognostic markers of disease severity. Full article
Show Figures

Figure 1

13 pages, 2383 KiB  
Review
Electrical Impedance Tomography, Artificial Intelligence, and Variable Ventilation: Transforming Respiratory Monitoring and Treatment in Critical Care
by Iacopo Cappellini, Lorenzo Campagnola and Guglielmo Consales
J. Pers. Med. 2024, 14(7), 677; https://doi.org/10.3390/jpm14070677 - 24 Jun 2024
Viewed by 548
Abstract
Background: Electrical Impedance Tomography (EIT), combined with variable ventilation strategies and Artificial Intelligence (AI), is poised to revolutionize critical care by transitioning from reactive to predictive approaches. This integration aims to enhance patient outcomes through personalized interventions and real-time monitoring. Methods: this narrative [...] Read more.
Background: Electrical Impedance Tomography (EIT), combined with variable ventilation strategies and Artificial Intelligence (AI), is poised to revolutionize critical care by transitioning from reactive to predictive approaches. This integration aims to enhance patient outcomes through personalized interventions and real-time monitoring. Methods: this narrative review explores the principles and applications of EIT, variable ventilation, and AI in critical care. EIT impedance sensing creates dynamic images of internal physiology, aiding the management of conditions like Acute Respiratory Distress Syndrome (ARDS). Variable ventilation mimics natural breathing variability to improve lung function and minimize ventilator-induced lung injury. AI enhances EIT through advanced image reconstruction techniques, neural networks, and digital twin technology, offering more accurate diagnostics and tailored therapeutic interventions. Conclusions: the confluence of EIT, variable ventilation, and AI represents a significant advancement in critical care, enabling a predictive, personalized approach. EIT provides real-time insights into lung function, guiding precise ventilation adjustments and therapeutic interventions. AI integration enhances EIT diagnostic capabilities, facilitating the development of personalized treatment plans. This synergy fosters interdisciplinary collaborations and sets the stage for innovative research, ultimately improving patient outcomes and advancing the future of critical care. Full article
(This article belongs to the Section Personalized Critical Care)
Show Figures

Figure 1

Back to TopTop