Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = Abraham solvation model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4396 KiB  
Article
Screening Disinfection Byproducts in Arid-Coastal Wastewater: A Workflow Using GC×GC-TOFMS, Passive Sampling, and NMF Deconvolution Algorithm
by Muhammad Usman Siddiqui, Muhammad Sibtain, Farrukh Ahmad, Yasuyuki Zushi and Deedar Nabi
J. Xenobiot. 2024, 14(2), 554-574; https://doi.org/10.3390/jox14020033 - 1 May 2024
Viewed by 962
Abstract
Disinfection during tertiary municipal wastewater treatment is a necessary step to control the spread of pathogens; unfortunately, it also gives rise to numerous disinfection byproducts (DBPs), only a few of which are regulated because of the analytical challenges associated with the vast number [...] Read more.
Disinfection during tertiary municipal wastewater treatment is a necessary step to control the spread of pathogens; unfortunately, it also gives rise to numerous disinfection byproducts (DBPs), only a few of which are regulated because of the analytical challenges associated with the vast number of potential DBPs. This study utilized polydimethylsiloxane (PDMS) passive samplers, comprehensive two-dimensional gas chromatography (GC×GC) coupled with time-of-flight mass spectrometry (TOFMS), and non-negative matrix factorization (NMF) spectral deconvolution for suspect screening of DBPs in treated wastewater. PDMS samplers were deployed upstream and downstream of the chlorination unit in a municipal wastewater treatment plant located in Abu Dhabi, and their extracts were analyzed using GC×GC-TOFMS. A workflow incorporating a multi-tiered, eight-filter screening process was developed, which successfully enabled the reliable isolation of 22 candidate DBPs from thousands of peaks. The NMF spectral deconvolution improved the match factor score of unknown mass spectra to the reference mass spectra available in the NIST library by 17% and facilitated the identification of seven additional DBPs. The close match of the first-dimension retention index data and the GC×GC elution patterns of DBPs, both predicted using the Abraham solvation model, with their respective experimental counterparts—with the measured data available in the NIST WebBook and the GC×GC elution patterns being those observed for the candidate peaks—significantly enhanced the accuracy of peak assignment. Isotopic pattern analysis revealed a close correspondence for 11 DBPs with clearly visible isotopologues in reference spectra, thereby further strengthening the confidence in the peak assignment of these DBPs. Brominated analogues were prevalent among the detected DBPs, possibly due to seawater intrusion. The fate, behavior, persistence, and toxicity of tentatively identified DBPs were assessed using EPI Suite™ and the CompTox Chemicals Dashboard. This revealed their significant toxicity to aquatic organisms, including developmental, mutagenic, and endocrine-disrupting effects in certain DBPs. Some DBPs also showed activity in various CompTox bioassays, implicating them in adverse molecular pathways. Additionally, 11 DBPs demonstrated high environmental persistence and resistance to biodegradation. This combined approach offers a powerful tool for future research and environmental monitoring, enabling accurate identification and assessment of DBPs and their potential risks. Full article
(This article belongs to the Section Emerging Chemicals)
Show Figures

Graphical abstract

31 pages, 7460 KiB  
Article
Evaluation of Thermodynamic and Kinetic Contributions to Over-Extraction of Extractables by Nonpolar Organic Solvents in Comparison to Lipids in Exhaustive and Exaggerated Extractions of Medical Devices Based on Abraham Solvation Model and Solvent–Material Interactions Using Low-Density Polyethylene as a Representative Material
by Jianwei Li
Liquids 2024, 4(1), 117-147; https://doi.org/10.3390/liquids4010006 - 23 Jan 2024
Viewed by 1050
Abstract
The thermodynamic and kinetic contributions to the over-extraction of extractables by nonpolar organic solvents relative to biological lipids in exhaustive and exaggerated extractions of medical devices are studied based on the Abraham solvation model and solvent–material interactions, using low-density polyethylene (LDPE) as an [...] Read more.
The thermodynamic and kinetic contributions to the over-extraction of extractables by nonpolar organic solvents relative to biological lipids in exhaustive and exaggerated extractions of medical devices are studied based on the Abraham solvation model and solvent–material interactions, using low-density polyethylene (LDPE) as an exemplary material. The thermodynamic effect is evaluated by the partition constant of extractables between LDPE and extraction solvents, hexane and lipids, defined as the concentration in the polymer phase divided by the concentration in the solvent phase. The Abraham solvation model is used to correlate the measured LDPE-lipid partition constant (log10Pldpe/lipid) to construct the predictive model. Similar models are also derived from the thermodynamic cycle conversion, using the system constants of LDPE-water and Lipid-water partition systems. These constructed models, together with the predictive LDPE-hexane (log10Pldpe/hexane) model established from a previous study, are used to predict and compare the ranges and values of Pldpe/s (s = lipids and hexane) for the observed LDPE extractables over a wide hydrophobicity range in log10Po/w from zero to 30. The solvent-LDPE interactions are examined by the degree of swelling of LDPE by hexane (or other nonpolar solvents) and lipids, including the solvent diffusion rates into the material. These parameters allow the evaluation of kinetic effect on the over-extraction. The extent of over-extraction is compiled directly by experimental “overall” or “specific” migration data or indirectly calculated by the diffusion coefficient of extractables when extracted by hexane or lipids. It is concluded from this study that the extractables distribution between LDPE and lipids highly favors the lipid phase thermodynamically (Pldpe/lipid<1), and the values of Pldpe/lipid are always lower than those of Pldpe/hexane, thereby indicating that the thermodynamic effect is not the cause of over-extraction. It is the kinetic effect that dominantly contributes to the over-extraction, as supported by the material swelling and solvent diffusion rates. Finally, the extent of over-extraction has been established from a few folds to over a hundred-fold, and the median value is 7. Furthermore, the methods adopted and developed in this study can be invaluable tools in other disciplines such as the reliable prediction of extractables from other device materials and environmental sampling. Full article
Show Figures

Figure 1

12 pages, 1104 KiB  
Article
Evaluation of the Ability of PAMPA Membranes to Emulate Biological Processes through the Abraham Solvation Parameter Model
by Sara Soriano-Meseguer, Elisabet Fuguet, Adriana Port and Martí Rosés
Membranes 2023, 13(7), 640; https://doi.org/10.3390/membranes13070640 - 30 Jun 2023
Cited by 3 | Viewed by 1140
Abstract
Two parallel artificial membrane permeability assay (PAMPA) systems intended for emulating skin permeability have been characterized through the solvation parameter model of Abraham using multilinear regression analysis. The coefficients of the obtained equations have been compared to the ones already established for other [...] Read more.
Two parallel artificial membrane permeability assay (PAMPA) systems intended for emulating skin permeability have been characterized through the solvation parameter model of Abraham using multilinear regression analysis. The coefficients of the obtained equations have been compared to the ones already established for other PAMPA membranes using statistical tools. The results indicate that both skin membranes are similar to each other in their physicochemical properties. However, they are different from other PAMPA membranes (e.g., intestinal absorption and blood–brain PAMPAs), mainly in terms of hydrophobicity and hydrogen bonding properties. Next, all PAMPA membranes have been compared to relevant biological processes also characterized through the solvation parameter model. The results highlight that skin-PAMPA membranes are a very good choice to emulate skin permeability. Full article
(This article belongs to the Section Membrane Analysis and Characterization)
Show Figures

Figure 1

19 pages, 1329 KiB  
Article
Abraham Solvation Parameter Model: Revised Predictive Expressions for Solute Transfer into Polydimethylsiloxane Based on Much Larger and Chemically Diverse Datasets
by Amy Zhou, Laine Longacre, Ramya Motati and William E. Acree
Compounds 2023, 3(1), 205-223; https://doi.org/10.3390/compounds3010017 - 20 Feb 2023
Cited by 1 | Viewed by 1664
Abstract
Updated Abraham model correlations are reported for the transfer of organic solutes and inorganic gases to a polydimethylsiloxane coating from both water and the gas phase based on published experimental data for more than 220 different compounds. The derived mathematical expressions back-calculate the [...] Read more.
Updated Abraham model correlations are reported for the transfer of organic solutes and inorganic gases to a polydimethylsiloxane coating from both water and the gas phase based on published experimental data for more than 220 different compounds. The derived mathematical expressions back-calculate the observed partitioning behavior to within standard deviations of the residuals of 0.206 and 0.176 log units, respectively. Full article
(This article belongs to the Special Issue Feature Papers in Compounds (2022–2023))
Show Figures

Figure 1

24 pages, 1178 KiB  
Article
Linear Solvation–Energy Relationships (LSER) and Equation-of-State Thermodynamics: On the Extraction of Thermodynamic Information from the LSER Database
by Costas Panayiotou, Ioannis Zuburtikudis, Hadil Abu Khalifeh and Vassily Hatzimanikatis
Liquids 2023, 3(1), 66-89; https://doi.org/10.3390/liquids3010007 - 11 Jan 2023
Cited by 4 | Viewed by 2235
Abstract
There is a remarkable wealth of thermodynamic information in freely accessible databases, the LSER database being a classical example. The LSER, or Abraham solvation parameter model, is a very successful predictive tool in a variety of applications in the (bio)chemical and environmental sector. [...] Read more.
There is a remarkable wealth of thermodynamic information in freely accessible databases, the LSER database being a classical example. The LSER, or Abraham solvation parameter model, is a very successful predictive tool in a variety of applications in the (bio)chemical and environmental sector. The model and the associated database are very rich in thermodynamic information and information on intermolecular interactions, which, if extracted properly, would be particularly useful in various thermodynamic developments for further applications. Partial Solvation Parameters (PSP), based on equation-of-state thermodynamics, are designed as a versatile tool that would facilitate this extraction of information. The present work explores the possibilities of such an LSER–PSP interconnection and the challenging issues this effort is faced with. The thermodynamic basis of the very linearity of the LSER model is examined, especially, with respect to the contribution of strong specific interactions in the solute/solvent system. This is done by combining the equation-of-state solvation thermodynamics with the statistical thermodynamics of hydrogen bonding. It is verified that there is, indeed, a thermodynamic basis of the LFER linearity. Besides the provenance of the sought linearity, an insight is gained on the thermodynamic character and content of coefficients and terms of the LSER linearity equations. The perspectives from this insight for the further development of LSER and related databases are discussed. The thermodynamic LSER–PSP interconnection is examined as a model for the exchange in information between QSPR-type databases and equation-of-state developments and the associated challenges are examined with representative calculations. Full article
(This article belongs to the Special Issue Modeling of Liquids Behavior: Experiments, Theory and Simulations)
Show Figures

Figure 1

10 pages, 519 KiB  
Article
Correlation of Surface Tension of Mono-Solvents at Various Temperatures
by Navid Kabudi, Ali Shayanfar, William E. Acree and Abolghasem Jouyban
Liquids 2022, 2(4), 378-387; https://doi.org/10.3390/liquids2040021 - 26 Oct 2022
Cited by 2 | Viewed by 2214
Abstract
Surface tension is among the most important factors in chemical and pharmaceutical processes. Modeling the surface tension of solvents at different temperatures helps to optimize the type of solvent and temperature. The surface tension of solvents at different temperatures with their solvation parameters [...] Read more.
Surface tension is among the most important factors in chemical and pharmaceutical processes. Modeling the surface tension of solvents at different temperatures helps to optimize the type of solvent and temperature. The surface tension of solvents at different temperatures with their solvation parameters was used in this study to develop a model based on the van’t Hoff equation by multiple linear regression. Abraham solvation parameters, Hansen solubility parameters, and Catalan parameters are among the most discriminating descriptors. The overall MPD of the model was 3.48%, with a minimum and maximum MPD of 0.04% and 11.62%, respectively. The model proposed in this study could be useful for predicting the surface tension of mono-solvents at different temperatures. Full article
(This article belongs to the Special Issue Modeling of Liquids Behavior: Experiments, Theory and Simulations)
Show Figures

Figure 1

16 pages, 753 KiB  
Article
Abraham Solvation Parameter Model: Examination of Possible Intramolecular Hydrogen-Bonding Using Calculated Solute Descriptors
by Sneha Sinha, Chelsea Yang, Emily Wu and William E. Acree
Liquids 2022, 2(3), 131-146; https://doi.org/10.3390/liquids2030009 - 24 Jul 2022
Cited by 20 | Viewed by 1939
Abstract
Published solubility data for 4,5-dihydroxyanthraquinone-2-carboxylic acid dissolved in several organic solvents of varying polarity and hydrogen-bonding character are used to calculate the Abraham model solute descriptors. Calculated descriptor values suggest that 4,5-dihydroxyanthraquinone-2-carboxylic acid engages in intramolecular hydrogen formation between the two phenolic hydrogens [...] Read more.
Published solubility data for 4,5-dihydroxyanthraquinone-2-carboxylic acid dissolved in several organic solvents of varying polarity and hydrogen-bonding character are used to calculate the Abraham model solute descriptors. Calculated descriptor values suggest that 4,5-dihydroxyanthraquinone-2-carboxylic acid engages in intramolecular hydrogen formation between the two phenolic hydrogens and the proton acceptor sites (the lone electron pairs) on the neighboring quinone oxygen atom. Our study further shows that existing group contribution and machine learning methods provide rather poor estimates of the experimental-based solute descriptors of 4,5-dihydroxyanthraquinone-2-carboxylic acid, in part because the estimation methods to not account for the likely intramolecular hydrogen-bonds. The predictive aspect of the Abraham model is illustrated by predicting the solubility of 4,5-dihydroxyanthraquinone-2-carboxylic acid in 28 additional organic mono-solvents for which experimental data does not exist. Full article
(This article belongs to the Section Molecular Liquids)
Show Figures

Figure 1

21 pages, 504 KiB  
Article
Abraham Solvation Parameter Model: Calculation of L Solute Descriptors for Large C11 to C42 Methylated Alkanes from Measured Gas–Liquid Chromatographic Retention Data
by Emily Wu, Sneha Sinha, Chelsea Yang, Miles Zhang and William E. Acree
Liquids 2022, 2(3), 85-105; https://doi.org/10.3390/liquids2030007 - 5 Jul 2022
Cited by 2 | Viewed by 1626
Abstract
Abraham model L solute descriptors have been determined for 149 additional C11 to C42 monomethylated and polymethylated alkanes based on published Kovat’s retention indices based upon gas–liquid chromatographic measurements. The calculated solute descriptors, in combination with previously published Abraham model correlations, [...] Read more.
Abraham model L solute descriptors have been determined for 149 additional C11 to C42 monomethylated and polymethylated alkanes based on published Kovat’s retention indices based upon gas–liquid chromatographic measurements. The calculated solute descriptors, in combination with previously published Abraham model correlations, can be used to predict a number of very important chemical and thermodynamic properties including partition coefficients, molar solubility ratios, gas–liquid chromatographic and HPLC retention data, infinite dilution activity coefficients, molar enthalpies of solvation, standard molar vaporization and sublimation at 298 K, vapor pressures, and limiting diffusion coefficients. The predictive computations are illustrated by estimating both the standard molar enthalpies of sublimation and the enthalpies of solvation in benzene for the monomethylated and polymethylated alkanes considered in the current study. Full article
(This article belongs to the Collection Feature Papers in Solutions and Liquid Mixtures Research)
Show Figures

Figure 1

Back to TopTop