Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (216)

Search Parameters:
Keywords = BiFC

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 11097 KiB  
Article
Bicubic Splines for Fast-Contracting Control Nets
by Kȩstutis Karčiauskas, Kyle Shih-Huang Lo, Erkan Gunpinar and Jörg Peters
Axioms 2024, 13(6), 390; https://doi.org/10.3390/axioms13060390 - 9 Jun 2024
Viewed by 339
Abstract
Merging parallel quad strips facilitates narrowing surface passages, and allows a design to transition to a simpler shape. While a number of spline surface constructions exist for the isotropic case where n pieces join, few existing spline constructions deliver a good shape for [...] Read more.
Merging parallel quad strips facilitates narrowing surface passages, and allows a design to transition to a simpler shape. While a number of spline surface constructions exist for the isotropic case where n pieces join, few existing spline constructions deliver a good shape for control nets that merge parameter lines. Additionally, untilrecently, none provided a good shape for fast-contracting polyhedral control nets. This work improves the state-of-the-art of piecewise polynomial spline surfaces accommodating fast-contracting control nets. The new fast-contracting (FC) surface algorithm yields the industry-preferred uniform degree bi-3 (bi-cubic). The surfaces are by default differentiable, have an improved shape, measured empirically as to highlight the line distribution, and require fewer pieces compared to existing methods. Full article
Show Figures

Graphical abstract

13 pages, 4719 KiB  
Article
Characterization of a Small Cysteine-Rich Secreted Effector, TcSCP_9014, in Tilletia controversa
by Zhenzhen Du, Han Weng, Huanyu Jia, Bin Zhang, Boming Wu, Wanquan Chen, Taiguo Liu and Li Gao
Plants 2024, 13(11), 1523; https://doi.org/10.3390/plants13111523 - 31 May 2024
Viewed by 333
Abstract
Tilletia controversa J. G. Kühn is the causal agent of wheat dwarf bunt (DB), a destructive disease causing tremendous economic losses. Small cysteine-rich secreted proteins (SCPs) of plant fungi are crucial in modulating host immunity and promoting infection. Little is known about the [...] Read more.
Tilletia controversa J. G. Kühn is the causal agent of wheat dwarf bunt (DB), a destructive disease causing tremendous economic losses. Small cysteine-rich secreted proteins (SCPs) of plant fungi are crucial in modulating host immunity and promoting infection. Little is known about the virulence effectors of T. controversa. Here, we characterized TcSCP_9014, a novel effector of SCPs, in T. controversa which suppressed programmed cell death triggered by BAX without relying on its signal peptide (SP). The SP in the N-terminus of TcSCP_9014 was functional in the secretory process. Live-cell imaging in the epidermal cells of Nicothiana benthamiana suggested that TcSCP_9014 localized to the plasma membrane, cytoplasm, and nucleus. Furthermore, yeast cDNA library screening was performed to obtain the interacting proteins in wheat. Yeast two-hybrid and BiFC assays were applied to validate the interaction of TcSCP_9014 with TaMTAN and TaGAPDH. Our work revealed that the novel effector TcSCP_9014 is vital in modulating plant immunity, which opens up new avenues for plant-pathogen interactions in the T. controversa infection process. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

10 pages, 2350 KiB  
Article
Ferrocene Bis(Sulfonate) Salt as Redoxmer for Fast and Steady Redox Flow Desalination
by Rongxuan Xie, Briana R. Schrage, Junhua Jiang, Christopher J. Ziegler and Zhenmeng Peng
Molecules 2024, 29(11), 2506; https://doi.org/10.3390/molecules29112506 - 25 May 2024
Viewed by 468
Abstract
Desalination is considered a promising solution to alleviate water shortages, yet current methods are often restricted, due to challenges like high energy consumption, significant cost, or limited desalination capacity. In this study, we present a novel approach of redox flow desalination (RFD) utilizing [...] Read more.
Desalination is considered a promising solution to alleviate water shortages, yet current methods are often restricted, due to challenges like high energy consumption, significant cost, or limited desalination capacity. In this study, we present a novel approach of redox flow desalination (RFD) utilizing the highly aqueous-soluble and reversible redox-active compound, potassium 1,1′-bis(sulfonate) ferrocene (1,1′-FcDS). This water-soluble organic compound yielded stable and rapid desalination, sustaining extended operation without notable decay and achieving an impressive desalination rate of up to 457.5 mmol·h−1·m−2 and energy consumption as low as 40.2 kJ·molNaCl−1. Specifically, the RFD device effectively desalinated a 50 mM NaCl solution to potable standards within 6000 s using 1,1′-FcDS. It maintained an average energy consumption of 178.16 kJ·molNaCl−1 and exhibited negligible deterioration in desalination rate, energy efficiency, and charge efficiency throughout a rigorous 12,000 s cycling test. Furthermore, the versatility of this method was demonstrated by effectively treating saline water with varying initial concentrations from 10 mM to 50 mM, showcasing its potential across a broad spectrum of applications. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Electrochemistry)
Show Figures

Figure 1

18 pages, 4414 KiB  
Article
Safflower CtFLS1-Induced Drought Tolerance by Stimulating the Accumulation of Flavonols and Anthocyanins in Arabidopsis thaliana
by Xintong Ma, Yuying Hou, Abdul Wakeel Umar, Yuhan Wang, Lili Yu, Naveed Ahmad, Na Yao, Min Zhang and Xiuming Liu
Int. J. Mol. Sci. 2024, 25(10), 5546; https://doi.org/10.3390/ijms25105546 - 19 May 2024
Viewed by 518
Abstract
Flavonol synthase gene (FLS) is a member of the 2-oxoglutarate-dependent dioxygenase (2-ODD) superfamily and plays an important role in plant flavonoids biosynthetic pathways. Safflower (Carthamus tinctorius L.), a key source of traditional Chinese medicine, is widely cultivated in [...] Read more.
Flavonol synthase gene (FLS) is a member of the 2-oxoglutarate-dependent dioxygenase (2-ODD) superfamily and plays an important role in plant flavonoids biosynthetic pathways. Safflower (Carthamus tinctorius L.), a key source of traditional Chinese medicine, is widely cultivated in China. Although the flavonoid biosynthetic pathway has been studied in several model species, it still remains to be explored in safflower. In this study, we aimed to elucidate the role of CtFLS1 gene in flavonoid biosynthesis and drought stress responses. The bioinformatics analysis on the CtFLS1 gene showed that it contains two FLS-specific motifs (PxxxIRxxxEQP and SxxTxLVP), suggesting its independent evolution. Further, the expression level of CtFLS1 in safflower showed a positive correlation with the accumulation level of total flavonoid content in four different flowering stages. In addition, CtFLS1-overexpression (OE) Arabidopsis plants significantly induced the expression levels of key genes involved in flavonol pathway. On the contrary, the expression of anthocyanin pathway-related genes and MYB transcription factors showed down-regulation. Furthermore, CtFLS1-OE plants promoted seed germination, as well as resistance to osmotic pressure and drought, and reduced sensitivity to ABA compared to mutant and wild-type plants. Moreover, CtFLS1 and CtANS1 were both subcellularly located at the cell membrane and nucleus; the yeast two-hybrid and bimolecular fluorescence complementation (BiFC) assay showed that they interacted with each other at the cell membrane. Altogether, these findings suggest the positive role of CtFLS1 in alleviating drought stress by stimulating flavonols and anthocyanin accumulation in safflower. Full article
(This article belongs to the Special Issue Nutrients and Active Substances in Natural Products)
Show Figures

Figure 1

11 pages, 4015 KiB  
Article
Overexpression of Calcineurin B-like Interacting Protein Kinase 31 Promotes Lodging and Sheath Blight Resistance in Rice
by Jingsheng Chen, Siting Wang, Shiqi Jiang, Tian Gan, Xin Luo, Rujie Shi, Yuanhu Xuan, Guosheng Xiao and Huan Chen
Plants 2024, 13(10), 1306; https://doi.org/10.3390/plants13101306 - 9 May 2024
Viewed by 633
Abstract
A breakthrough “Green Revolution” in rice enhanced lodging resistance by using gibberellin-deficient semi-dwarf varieties. However, the gibberellic acid (GA) signaling regulation on rice disease resistance remains unclear. The resistance test showed that a positive GA signaling regulator DWARF1 mutant d1 was more susceptible [...] Read more.
A breakthrough “Green Revolution” in rice enhanced lodging resistance by using gibberellin-deficient semi-dwarf varieties. However, the gibberellic acid (GA) signaling regulation on rice disease resistance remains unclear. The resistance test showed that a positive GA signaling regulator DWARF1 mutant d1 was more susceptible while a negative GA signaling regulator Slender rice 1 (SLR1) mutant was less susceptible to sheath blight (ShB), one of the major rice diseases, suggesting that GA signaling positively regulates ShB resistance. To isolate the regulator, which simultaneously regulates rice lodging and ShB resistance, SLR1 interactors were isolated. Yeast two-hybrid (Y2H), bimolecular fluorescence complementation (BiFC), and Co-IP assay results indicate that SLR1 interacts with Calcineurin B-like-interacting protein kinase 31 (CIPK31). cipk31 mutants exhibited normal plant height, but CIPK31 OXs showed semi-dwarfism. In addition, the SLR1 level was much higher in CIPK31 OXs than in the wild-type, suggesting that CIPK31 OX might accumulate SLR1 to inhibit GA signaling and thus regulate its semi-dwarfism. Recently, we demonstrated that CIPK31 interacts and inhibits Catalase C (CatC) to accumulate ROS, which promotes rice disease resistance. Interestingly, CIPK31 interacts with Vascular Plant One Zinc Finger 2 (VOZ2) in the nucleus, and expression of CIPK31 accumulated VOZ2. Inoculation of Rhizoctonia solani AG1-IA revealed that the voz2 mutant was more susceptible to ShB. Thus, these data prove that CIPK31 promotes lodging and ShB resistance by regulating GA signaling and VOZ2 in rice. This study provides a valuable reference for rice ShB-resistant breeding. Full article
(This article belongs to the Special Issue Plant Pathology and Epidemiology for Grain, Pulses, and Cereal Crops)
Show Figures

Figure 1

15 pages, 5092 KiB  
Article
A 14-3-3 Protein Ca16R Acts Positively in Pepper Immunity against Ralstonia solanacearum by Interacting with CaASR1
by Sheng Yang, Meiyun Wan, Xingge Cheng, Qing Cheng and Huolin Shen
Plants 2024, 13(10), 1289; https://doi.org/10.3390/plants13101289 - 7 May 2024
Viewed by 705
Abstract
Although 14-3-3 proteins have been implicated in plant growth, development, and stress response, their roles in pepper immunity against R. solanacearum remain poorly understood. In this study, a 14-3-3-encoding gene in pepper, Ca16R, was found to be upregulated by R. solanacearum inoculation [...] Read more.
Although 14-3-3 proteins have been implicated in plant growth, development, and stress response, their roles in pepper immunity against R. solanacearum remain poorly understood. In this study, a 14-3-3-encoding gene in pepper, Ca16R, was found to be upregulated by R. solanacearum inoculation (RSI), its silencing significantly reduced the resistance of pepper plants to RSI, and its overexpression significantly enhanced the resistance of Nicotiana benthamiana to RSI. Consistently, its transient overexpression in pepper leaves triggered HR cell death, indicating that it acts positively in pepper immunity against RSI, and it was further found to act positively in pepper immunity against RSI by promoting SA but repressing JA signaling. Ca16R was also found to interact with CaASR1, originally using pull-down combined with a spectrum assay, and then confirmed using bimolecular fluorescence complementation (BiFC) and a pull-down assay. Furthermore, we found that CaASR1 transient overexpression induced HR cell death and SA-dependent immunity while repressing JA signaling, although this induction and repression was blocked by Ca16R silencing. All these data indicate that Ca16R acts positively in pepper immunity against RSI by interacting with CaASR1, thereby promoting SA-mediated immunity while repressing JA signaling. These results provide new insight into mechanisms underlying pepper immunity against RSI. Full article
(This article belongs to the Special Issue Genetics of Disease Resistance in Horticultural Crops)
Show Figures

Figure 1

14 pages, 6180 KiB  
Article
Plastid Molecular Chaperone HSP90C Interacts with the SecA1 Subunit of Sec Translocase for Thylakoid Protein Transport
by Adheip Monikantan Nair, Tim Jiang, Bona Mu and Rongmin Zhao
Plants 2024, 13(9), 1265; https://doi.org/10.3390/plants13091265 - 1 May 2024
Viewed by 884
Abstract
The plastid stroma-localized chaperone HSP90C plays a crucial role in maintaining optimal proteostasis within chloroplasts and participates in protein translocation processes. While existing studies have revealed HSP90C’s direct interaction with the Sec translocase-dependent client pre-protein PsbO1 and the SecY1 subunit of the thylakoid [...] Read more.
The plastid stroma-localized chaperone HSP90C plays a crucial role in maintaining optimal proteostasis within chloroplasts and participates in protein translocation processes. While existing studies have revealed HSP90C’s direct interaction with the Sec translocase-dependent client pre-protein PsbO1 and the SecY1 subunit of the thylakoid membrane-bound Sec1 translocase channel system, its direct involvement with the extrinsic homodimeric Sec translocase subunit, SecA1, remains elusive. Employing bimolecular fluorescence complementation (BiFC) assay and other in vitro analyses, we unraveled potential interactions between HSP90C and SecA1. Our investigation revealed dynamic interactions between HSP90C and SecA1 at the thylakoid membrane and stroma. The thylakoid membrane localization of this interaction was contingent upon active HSP90C ATPase activity, whereas their stromal interaction was associated with active SecA1 ATPase activity. Furthermore, we observed a direct interaction between these two proteins by analyzing their ATP hydrolysis activities, and their interaction likely impacts their respective functional cycles. Additionally, using PsbO1, a model Sec translocase client pre-protein, we studied the intricacies of HSP90C’s possible involvement in pre-protein translocation via the Sec1 system in chloroplasts. The results suggest a complex nature of the HSP90C-SecA1 interaction, possibly mediated by the Sec client protein. Our studies shed light on the nuanced aspects of HSP90C’s engagement in orchestrating pre-protein translocation, and we propose a potential collaborative role of HSP90C with SecA1 in actively facilitating pre-protein transport across the thylakoid membrane. Full article
(This article belongs to the Special Issue Plant Protein Biochemistry and Biomolecular Interactions)
Show Figures

Figure 1

19 pages, 3499 KiB  
Article
Interaction of Soybean (Glycine max (L.) Merr.) Class II ACBPs with MPK2 and SAPK2 Kinases: New Insights into the Regulatory Mechanisms of Plant ACBPs
by Atieh Moradi, Shiu-Cheung Lung and Mee-Len Chye
Plants 2024, 13(8), 1146; https://doi.org/10.3390/plants13081146 - 19 Apr 2024
Viewed by 702
Abstract
Plant acyl-CoA-binding proteins (ACBPs) function in plant development and stress responses, with some ACBPs interacting with protein partners. This study tested the interaction between two Class II GmACBPs (Glycine max ACBPs) and seven kinases, using yeast two-hybrid (Y2H) assays and bimolecular fluorescence [...] Read more.
Plant acyl-CoA-binding proteins (ACBPs) function in plant development and stress responses, with some ACBPs interacting with protein partners. This study tested the interaction between two Class II GmACBPs (Glycine max ACBPs) and seven kinases, using yeast two-hybrid (Y2H) assays and bimolecular fluorescence complementation (BiFC). The results revealed that both GmACBP3.1 and GmACBP4.1 interact with two soybean kinases, a mitogen-activated protein kinase MPK2, and a serine/threonine-protein kinase SAPK2, highlighting the significance of the ankyrin-repeat (ANK) domain in facilitating protein–protein interactions. Moreover, an in vitro kinase assay and subsequent Phos-tag SDS-PAGE determined that GmMPK2 and GmSAPK2 possess the ability to phosphorylate Class II GmACBPs. Additionally, the kinase-specific phosphosites for Class II GmACBPs were predicted using databases. The HDOCK server was also utilized to predict the binding models of Class II GmACBPs with these two kinases, and the results indicated that the affected residues were located in the ANK region of Class II GmACBPs in both docking models, aligning with the findings of the Y2H and BiFC experiments. This is the first report describing the interaction between Class II GmACBPs and kinases, suggesting that Class II GmACBPs have potential as phospho-proteins that impact signaling pathways. Full article
(This article belongs to the Special Issue Plant Protein Biochemistry and Biomolecular Interactions)
Show Figures

Figure 1

13 pages, 1767 KiB  
Article
Visualization of the Association of Dimeric Protein Complexes on Specific Enhancers in the Salivary Gland Nuclei of Drosophila Larva
by Solène Vanderperre and Samir Merabet
Cells 2024, 13(7), 613; https://doi.org/10.3390/cells13070613 - 1 Apr 2024
Viewed by 775
Abstract
Transcription factors (TFs) regulate gene expression by recognizing specific target enhancers in the genome. The DNA-binding and regulatory activity of TFs depend on the presence of additional protein partners, leading to the formation of versatile and dynamic multimeric protein complexes. Visualizing these protein–protein [...] Read more.
Transcription factors (TFs) regulate gene expression by recognizing specific target enhancers in the genome. The DNA-binding and regulatory activity of TFs depend on the presence of additional protein partners, leading to the formation of versatile and dynamic multimeric protein complexes. Visualizing these protein–protein interactions (PPIs) in the nucleus is key for decrypting the molecular cues underlying TF specificity in vivo. Over the last few years, Bimolecular Fluorescence Complementation (BiFC) has been developed in several model systems and applied in the analysis of different types of PPIs. In particular, BiFC has been applied when analyzing PPIs with hundreds of TFs in the nucleus of live Drosophila embryos. However, the visualization of PPIs at the level of specific target enhancers or genomic regions of interest awaits the advent of DNA-labelling methods that can be coupled with BiFC. Here, we present a novel experimental strategy that we have called BiFOR and that is based on the coupling of BiFC with the bacterial ANCHOR DNA-labelling system. We demonstrate that BiFOR enables the precise quantification of the enrichment of specific dimeric protein complexes on target enhancers in Drosophila salivary gland nuclei. Given its versatility and sensitivity, BiFOR could be applied more widely to other tissues during Drosophila development. Our work sets up the experimental basis for future applications of this strategy. Full article
(This article belongs to the Special Issue Cell Biology Research in Model Organism Drosophila)
Show Figures

Figure 1

13 pages, 6030 KiB  
Article
BcBZR1 Regulates Leaf Inclination Angle in Non-Heading Chinese Cabbage (Brassica campestris ssp. chinensis Makino)
by Wenyuan Lin, Yiran Li, Ying He, Ying Wu and Xilin Hou
Horticulturae 2024, 10(4), 324; https://doi.org/10.3390/horticulturae10040324 - 27 Mar 2024
Viewed by 763
Abstract
Brassinosteroids (BRs) play critical roles in plant growth by promoting cell elongation and division, leading to increased leaf inclination angles. BRASSINAZOLE RESISTANT 1 (BZR1) and BRI1-EMS-SUPPRESSOR 1 (BES1) act as transcription factors in the brassinosteroid signaling pathway and are involved in several physiological [...] Read more.
Brassinosteroids (BRs) play critical roles in plant growth by promoting cell elongation and division, leading to increased leaf inclination angles. BRASSINAZOLE RESISTANT 1 (BZR1) and BRI1-EMS-SUPPRESSOR 1 (BES1) act as transcription factors in the brassinosteroid signaling pathway and are involved in several physiological activities regulated by BRs. In this study, we identified and cloned BcBZR1 from the heitacai non-heading Chinese cabbage (NHCC) cultivar. The sequence analysis showed that the coding sequence length of BcBZR1 is 996 bp, encoding 331 amino acid residues. Subcellular localization assays showed that BcBZR1 is localized in the nucleus and cytoplasm and that BcBZR1 protein is transported to the nucleus after receiving BR signals. Compared with Col-0, the leaf inclination angle was smaller in BcBZR1-OX. The EBR treatment experiment indicated that BRs regulate the differential expression of paclobutrazol resistance1 (PRE1) and ILI1 binding bHLH1 (IBH1) in the adaxial and abaxial cells of the petiole through BZR1, thus regulating the leaf inclination angle. The bimolecular fluorescence complementation (BiFC) assay indicated that BcBZR1 interacts with C-repeat Binding Factor2 (BcCBF2) and CBF3. Taken together, our findings not only validate the function of BcBZR1 in leaf inclination angle distribution in non-heading Chinese cabbage, but also contribute to the mechanism of leaf inclination angle regulation in this species under cold stress. Full article
(This article belongs to the Special Issue New Advances in Molecular Biology of Horticultural Plants)
Show Figures

Figure 1

17 pages, 3066 KiB  
Article
StMAPKK5 Positively Regulates Response to Drought and Salt Stress in Potato
by Yu Luo, Kaitong Wang, Liping Zhu, Ning Zhang and Huaijun Si
Int. J. Mol. Sci. 2024, 25(7), 3662; https://doi.org/10.3390/ijms25073662 - 25 Mar 2024
Cited by 2 | Viewed by 990
Abstract
MAPKKs, as one of the main members of the mitogen-activated protein kinase (MAPK) cascade pathway, are located in the middle of the cascade and are involved in many physiological processes of plant growth and development, as well as stress tolerance. Previous studies have [...] Read more.
MAPKKs, as one of the main members of the mitogen-activated protein kinase (MAPK) cascade pathway, are located in the middle of the cascade and are involved in many physiological processes of plant growth and development, as well as stress tolerance. Previous studies have found that StMAPKK5 is responsive to drought and salt stress. To further investigate the function and regulatory mechanism of StMAPKK5 in potato stress response, potato variety ‘Atlantic’ was subjected to drought and NaCl treatments, and the expression of the StMAPKK5 gene was detected by qRT-PCR. StMAPKK5 overexpression and RNA interference-mediated StMAPKK5 knockdown potato plants were constructed. The relative water content, superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) activities, as well as proline (Pro) and malondialdehyde (MDA) contents of plant leaves, were also assayed under drought and NaCl stress. The StMAPKK5 interacting proteins were identified and validated by yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC). The results showed that the expression of StMAPKK5 was significantly up-regulated under drought and NaCl stress conditions. The StMAPKK5 protein was localized in the nucleus, cytoplasm, and cell membrane. The expression of StMAPKK5 affected the relative water content, the enzymatic activities of SOD, CAT, and POD, and the proline and MDA contents of potatoes under drought and salt stress conditions. These results suggest that StMAPKK5 plays a significant role in regulating drought and salt tolerance in potato crop. Yeast two-hybrid (Y2H) screening identified four interacting proteins: StMYB19, StZFP8, StPUB-like, and StSKIP19. BiFC confirmed the authenticity of the interactions. These findings suggest that StMAPKK5 is crucial for potato growth, development, and response to adversity. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

13 pages, 937 KiB  
Article
Examining Students’ Acceptance and Use of ChatGPT in Saudi Arabian Higher Education
by Abu Elnasr E. Sobaih, Ibrahim A. Elshaer and Ahmed M. Hasanein
Eur. J. Investig. Health Psychol. Educ. 2024, 14(3), 709-721; https://doi.org/10.3390/ejihpe14030047 - 17 Mar 2024
Viewed by 1795
Abstract
This study examines students’ acceptance and use of ChatGPT in Saudi Arabian (SA) higher education, where there is growing interest in the use of this tool since its inauguration in 2022. Quantitative research data, through a self-reporting survey drawing on the “Unified Theory [...] Read more.
This study examines students’ acceptance and use of ChatGPT in Saudi Arabian (SA) higher education, where there is growing interest in the use of this tool since its inauguration in 2022. Quantitative research data, through a self-reporting survey drawing on the “Unified Theory of Acceptance and Use of Technology” (UTAUT2), were collected from 520 students in one of the public universities in SA at the start of the first semester of the study year 2023–2024. The findings of structural equation modeling partially supported the UTAUT and previous research in relation to the significant direct effect of performance expectancy (PE), social influence (SI), and effort expectancy (EE) on behavioral intention (BI) on the use of ChatGPT and the significant direct effect of PE, SI, and BI on actual use of ChatGPT. Nonetheless, the results did not support earlier research in relation to the direct relationship between facilitating conditions (FCs) and both BI and actual use of ChatGPT, which was found to be negative in the first relationship and insignificant in the second one. These findings were because of the absence of resources, support, and aid from external sources in relation to the use of ChatGPT. The results showed partial mediation of BI in the link between PE, SI, and FC and actual use of ChatGPT in education and a full mediation in the link of BI between EE and actual use of ChatGPT in education. The findings provide numerous implications for scholars and higher education institutions in SA, which are also of interest to other institutions in similar contexts. Full article
Show Figures

Figure 1

16 pages, 2676 KiB  
Article
Complex Formation between the Transcription Factor WRKY53 and Antioxidative Enzymes Leads to Reciprocal Inhibition
by Ana Gabriela Andrade Galan, Jasmin Doll, Natalie Faiß, Patricia Weber and Ulrike Zentgraf
Antioxidants 2024, 13(3), 315; https://doi.org/10.3390/antiox13030315 - 5 Mar 2024
Viewed by 1111
Abstract
The transcription factor WRKY53 of the model plant Arabidopsis thaliana is an important regulator of leaf senescence. Its expression, activity and degradation are tightly controlled by various mechanisms and feedback loops. Hydrogen peroxide is one of the inducing agents for WRKY53 expression, and [...] Read more.
The transcription factor WRKY53 of the model plant Arabidopsis thaliana is an important regulator of leaf senescence. Its expression, activity and degradation are tightly controlled by various mechanisms and feedback loops. Hydrogen peroxide is one of the inducing agents for WRKY53 expression, and a long-lasting intracellular increase in H2O2 content accompanies the upregulation of WRKY53 at the onset of leaf senescence. We have identified different antioxidative enzymes, including catalases (CATs), superoxide dismutases (SODs) and ascorbate peroxidases (APXs), as protein interaction partners of WRKY53 in a WRKY53-pulldown experiment at different developmental stages. The interaction of WRKY53 with these enzymes was confirmed in vivo by bimolecular fluorescence complementation assays (BiFC) in Arabidopsis protoplasts and transiently transformed tobacco leaves. The interaction with WRKY53 inhibited the activity of the enzyme isoforms CAT2, CAT3, APX1, Cu/ZuSOD1 and FeSOD1 (and vice versa), while the function of WRKY53 as a transcription factor was also inhibited by these complex formations. Other WRKY factors like WRKY18 or WRKY25 had no or only mild inhibitory effects on the enzyme activities, indicating that WRKY53 has a central position in this crosstalk. Taken together, we identified a new additional and unexpected feedback regulation between H2O2, the antioxidative enzymes and the transcription factor WRKY53. Full article
(This article belongs to the Section ROS, RNS and RSS)
Show Figures

Figure 1

22 pages, 23951 KiB  
Article
Development of an NLR-ID Toolkit and Identification of Novel Disease-Resistance Genes in Soybean
by Wei Shao, Gongfu Shi, Han Chu, Wenjia Du, Zikai Zhou and Hada Wuriyanghan
Plants 2024, 13(5), 668; https://doi.org/10.3390/plants13050668 - 28 Feb 2024
Viewed by 1041
Abstract
The recognition of pathogen effectors through the nucleotide-binding leucine-rich repeat receptor (NLR) family is an important component of plant immunity. In addition to typical domains such as TIR, CC, NBS, and LRR, NLR proteins also contain some atypical integrated domains (IDs), the roles [...] Read more.
The recognition of pathogen effectors through the nucleotide-binding leucine-rich repeat receptor (NLR) family is an important component of plant immunity. In addition to typical domains such as TIR, CC, NBS, and LRR, NLR proteins also contain some atypical integrated domains (IDs), the roles of which are rarely investigated. Here, we carefully screened the soybean (Glycine max) genome and identified the IDs that appeared in the soybean TNL-like proteins. Our results show that multiple IDs (36) are widely present in soybean TNL-like proteins. A total of 27 Gm-TNL-ID genes (soybean TNL-like gene encoding ID) were cloned and their antiviral activity towards the soybean mosaic virus (SMV)/tobacco mosaic virus (TMV) was verified. Two resistance (R) genes, SRA2 (SMV resistance gene contains AAA_22 domain) and SRZ4 (SMV resistance gene contains zf-RVT domain), were identified to possess broad-spectrum resistance characteristics towards six viruses including SMV, TMV, plum pox virus (PPV), cabbage leaf curl virus (CaLCuV), barley stripe mosaic virus (BSMV), and tobacco rattle virus (TRV). The effects of Gm-TNL-IDX (the domain of the Gm-TNL-ID gene after the TN domain) on the antiviral activity of a R protein SRC7TN (we previously reported the TN domain of the soybean broad-spectrum resistance gene SRC7) were validated, and most of Gm-TNL-IDX inhibits antiviral activity mediated by SRC7TN, possibly through intramolecular interactions. Yeast-two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays showed that seven Gm-TNL-IDX interacted with SMV-component proteins. Truncation analysis on a broad-spectrum antiviral protein SRZ4 indicated that SRZ4TIR is sufficient to mediate antiviral activity against SMV. Soybean cDNA library screening on SRZ4 identified 48 interacting proteins. In summary, our results indicate that the integration of IDs in soybean is widespread and frequent. The NLR-ID toolkit we provide is expected to be valuable for elucidating the functions of atypical NLR proteins in the plant immune system and lay the foundation for the development of engineering NLR for plant-disease control in the future. Full article
(This article belongs to the Special Issue Molecular Genetics and Breeding of Oilseed Crops)
Show Figures

Figure 1

16 pages, 4918 KiB  
Article
Syntheses, Structures, and Properties of Mono- and Dinuclear Acetylacetonato Ruthenium(III) Complexes with Chlorido or Thiocyanato Ligands
by Kai Nakashima, Chihiro Hayami, Shino Nakashima, Haruo Akashi, Masahiro Mikuriya and Makoto Handa
Magnetochemistry 2024, 10(3), 16; https://doi.org/10.3390/magnetochemistry10030016 - 27 Feb 2024
Viewed by 1357
Abstract
The mononuclear and dinuclear ruthenium(III) complexes trans-Ph4P[RuIII(acac)2Cl2] (1), Ph4P[{RuIII(acac)Cl}2(μ-Cl)3] (2) and trans-Ph4P[RuIII(acac)2(NCS)2 [...] Read more.
The mononuclear and dinuclear ruthenium(III) complexes trans-Ph4P[RuIII(acac)2Cl2] (1), Ph4P[{RuIII(acac)Cl}2(μ-Cl)3] (2) and trans-Ph4P[RuIII(acac)2(NCS)2]·0.5C6H14 (3·0.5C6H14) were synthesized. Single crystals of 1, 2·H2O and 3·CH3CN suitable for X-ray crystal structure analyses were obtained through recrystallization from DMF for 1 and 2·H2O and from acetonitrile for 3·CH3CN. An octahedral Ru with bis-chelate-acac ligands and axial chlorido or κ-N-thiocyanido ligands (for 1 and 3·CH3CN) and triply µ-chlorido-bridged dinuclear Ru2 for 2·H2O were confirmed through the structure analyses. The Ru–Ru distance of 2.6661(2) of 2·H2O is indicative of the existence of the direct metal–metal interaction. The room temperature magnetic moments (μeff) are 2.00 and 1.93 μB for 1 and 3·0.5C6H14, respectively, and 0.66 μB for 2. The temperature-dependent (2–300 K) magnetic susceptibility showed that the strong antiferromagnetic interaction (J ≤ −800 cm−1) is operative between the ruthenium(III) ions within the dinuclear core. In the 1H NMR spectra measured in CDCl3 at 298 K, the dinuclear complex 2 showed signals for the acac ligand protons at 2.50 and 2.39 ppm (for CH3) and 5.93 ppm (for CH), respectively, while 1 and 3·0.5C6H14 showed signals with large paramagnetic shifts; −17.59 ppm (for CH3) and −57.01 ppm (for CH) for 1 and −16.89 and −17.36 ppm (for CH3) and −53.67 and −55.53 ppm (for CH) for 3·0.5C6H14. Cyclic voltammograms in CH2Cl2 with an electrolyte of nBu4N(ClO4) showed the RuIII → RuIV redox wave at 0.23 V (vs. Fc/Fc+) for 1 and the RuIII → RuII waves at −1.39 V for 1 and −1.25 V for 3·0.5C6H14 and the RuIII–RuIII → RuIII–RuIV and RuIII–RuIII → RuIII–RuIV waves at 0.91 V and −0.79 V for 2. Full article
(This article belongs to the Section Molecular Magnetism)
Show Figures

Graphical abstract

Back to TopTop