Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Cortex Fraxini

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1521 KiB  
Article
Target Screen of Anti-Hyperuricemia Compounds from Cortex Fraxini In Vivo Based on ABCG2 and Bioaffinity Ultrafiltration Mass Spectrometry
by Xiuxiu Huang, Wenqing Dong, Xiao Luo, Lu Xu and Yinan Wang
Molecules 2023, 28(23), 7896; https://doi.org/10.3390/molecules28237896 - 1 Dec 2023
Cited by 2 | Viewed by 1082
Abstract
The ATP-binding cassette (ABC) transporter ABCG2 is a significant urate transporter with a high capacity, and it plays a crucial role in the development of hyperuricemia and gout. Therefore, it has the potential to be targeted for therapeutic interventions. Cortex Fraxini, a traditional [...] Read more.
The ATP-binding cassette (ABC) transporter ABCG2 is a significant urate transporter with a high capacity, and it plays a crucial role in the development of hyperuricemia and gout. Therefore, it has the potential to be targeted for therapeutic interventions. Cortex Fraxini, a traditional Chinese medicine (TCM), has been found to possess anti-hyperuricemia properties. However, the specific constituents of Cortex Fraxini responsible for this effect are still unknown, particularly the compound that is responsible for reducing uric acid levels in vivo. In this study, we propose a target screening protocol utilizing bio-affinity ultrafiltration mass spectrometry (BA-UF-MS) to expediently ascertain ABCG2 ligands from the plasma of rats administered with Cortex Fraxini. Our screening protocol successfully identified fraxin as a potential ligand that interacts with ABCG2 when it functions as the target protein. Subsequent investigations substantiated fraxin as an activated ligand of ABCG2. These findings imply that fraxin exhibits promise as a drug candidate for the treatment of hyperuricemia. Furthermore, the utilization of BA-UF-MS demonstrates its efficacy as a valuable methodology for identifying hit compounds that exhibit binding affinity towards ABCG2 within TCMs. Full article
Show Figures

Figure 1

11 pages, 839 KiB  
Article
An Ultra-Fast and Green LC-MS Method for Quantitative Analysis of Aesculin and Aesculetin in Cortex Fraxini
by Xiaodong Wang, Wenhao Wang, Qinggui Lei, Zhengming Qian and Wenbin Deng
Separations 2023, 10(9), 515; https://doi.org/10.3390/separations10090515 - 19 Sep 2023
Viewed by 1584
Abstract
This study aims to develop a fast and eco-friendly liquid chromatography–mass spectrometry (LC-MS) method for the determination of aesculin and aesculetin in Cortex Fraxini. Ultrapure water was used as the solvent during the microwave-assisted extraction process to prepare the Cortex Fraxini sample. This [...] Read more.
This study aims to develop a fast and eco-friendly liquid chromatography–mass spectrometry (LC-MS) method for the determination of aesculin and aesculetin in Cortex Fraxini. Ultrapure water was used as the solvent during the microwave-assisted extraction process to prepare the Cortex Fraxini sample. This extraction method reduces the cost of the harmful solvent (only ultrapure water was used) and microwave extraction time (1 min). The LC separation was conducted using an Agilent InfinityLab Poroshell 120 EC-C18 column (2.1 mm × 30 mm, 2.7 µm) with a mobile phase consisting of 0.1% formic acid and acetonitrile (90:10, v/v) at a flow rate of 0.6 mL/min. Isocratic elution was employed, and the analytes were detected by MS. Through careful optimization and selection of LC-MS conditions, the analysis time was reduced to 1 min, demonstrating the method’s efficiency. The developed method was validated and exhibited excellent specificity, linearity, limit, precision, accuracy, and stability in quantifying aesculin and aesculetin in the Cortex Fraxini samples. The analysis result revealed the presence of aesculin (ranging from 3.55 to 18.8 mg/g) and aesculetin (ranging from 1.01 to 16.2 mg/g) in all ten batches of Cortex Fraxini samples. Compared to the reported LC methods, this approach substantially reduces the total analysis time and requires a minuscule volume of organic solvents. An “Analytical Eco-Scale” assessment was used to evaluate the different assay methods of Cortex Fraxini. The current LC-MS method scored an impressive 90; it was better than the other four reports’ LC methods. Thus, the developed LC-MS method is rapid and green, which is helpful for the quality evaluation of Cortex Fraxini. Full article
Show Figures

Figure 1

2934 KiB  
Review
Pharmacological Activities and Synthesis of Esculetin and Its Derivatives: A Mini-Review
by Chengyuan Liang, Weihui Ju, Shaomeng Pei, Yonghong Tang and Yadong Xiao
Molecules 2017, 22(3), 387; https://doi.org/10.3390/molecules22030387 - 2 Mar 2017
Cited by 95 | Viewed by 10059
Abstract
Esculetin, synonymous with 6,7-dihydroxycoumarin, is the main active ingredient of the traditional Chinese medicine Cortex Fraxini. The twig skin or trunk bark of Cortex Fraxini are used by herb doctors as a mild, bitter liver and gallbladder meridians’ nontoxic drug as well [...] Read more.
Esculetin, synonymous with 6,7-dihydroxycoumarin, is the main active ingredient of the traditional Chinese medicine Cortex Fraxini. The twig skin or trunk bark of Cortex Fraxini are used by herb doctors as a mild, bitter liver and gallbladder meridians’ nontoxic drug as well as dietary supplement. Recently, with a variety of novel esculetin derivatives being reported, the molecular mechanism research as well as clinical application of Cortex Fraxini and esculetin are becoming more attractive. This mini-review will consolidate what is known about the biological activities, the mechanism of esculetin and its synthetic derivatives over the past decade in addition to providing a brief synopsis of the properties of esculetin. Full article
(This article belongs to the Special Issue Natural Products and Chronic Diseases)
Show Figures

Graphical abstract

Back to TopTop