Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,602)

Search Parameters:
Keywords = DFT

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2207 KiB  
Article
The Effect of α-Fe2O3(0001) Surface Containing Hydroxyl Radicals and Ozone on the Formation Mechanism of Environmentally Persistent Free Radicals
by Danli Liang, Jiarong Liu, Chunlin Wang, Kaipeng Tu, Li Wang, Lili Qiu, Xiuhui Zhang and Ling Liu
Toxics 2024, 12(8), 582; https://doi.org/10.3390/toxics12080582 (registering DOI) - 10 Aug 2024
Abstract
The formation of environmentally persistent free radicals (EPFRs) is mediated by the particulate matter's surface, especially transition metal oxide surfaces. In the context of current atmospheric complex pollution, various atmospheric components, such as key atmospheric oxidants ·OH and O3, are often [...] Read more.
The formation of environmentally persistent free radicals (EPFRs) is mediated by the particulate matter's surface, especially transition metal oxide surfaces. In the context of current atmospheric complex pollution, various atmospheric components, such as key atmospheric oxidants ·OH and O3, are often absorbed on particulate matter surfaces, forming particulate matter surfaces containing ·OH and O3. This, in turn, influences EPFRs formation. Here, density functional theory (DFT) calculations were used to explore the formation mechanism of EPFRs by C6H5OH on α-Fe2O3(0001) surface containing the ·OH and O3, and compare it with that on clean surface. The results show that, compared to EPFRs formation with an energy barrier on a clean surface, EPFRs can be rapidly formed through a barrierless process on these surfaces. Moreover, during the hydrogen abstraction mechanism leading to EPFRs formation, the hydrogen acceptor shifts from a surface O atom on a clean surface to an O atom of ·OH or O₃ on these surfaces. However, the detailed hydrogen abstraction process differs on surfaces containing oxidants: on surfaces containing ·OH, it occurs directly through a one-step mechanism, while, on surfaces containing O3, it occurs through a two-step mechanism. But, in both types of surfaces, the essence of this promotional effect mainly lies in increasing the electron transfer amounts during the reaction process. This research provides new insights into EPFRs formation on particle surfaces within the context of atmospheric composite pollution. Full article
Show Figures

Figure 1

16 pages, 6315 KiB  
Article
A Theoretical Exploration of the Photoinduced Breaking Mechanism of the Glycosidic Bond in Thymine Nucleotide
by Xiao Huang, Yuuichi Orimoto and Yuriko Aoki
Molecules 2024, 29(16), 3789; https://doi.org/10.3390/molecules29163789 (registering DOI) - 10 Aug 2024
Viewed by 64
Abstract
DNA glycosidic bond cleavage may induce cancer under the ultraviolet (UV) effect. Yet, the mechanism of glycosidic bond cleavage remains unclear and requires more detailed clarification. Herein, quantum chemical studies on its photoinduced mechanism are performed using a 5′-thymidine monophosphate (5′-dTMPH) model. In [...] Read more.
DNA glycosidic bond cleavage may induce cancer under the ultraviolet (UV) effect. Yet, the mechanism of glycosidic bond cleavage remains unclear and requires more detailed clarification. Herein, quantum chemical studies on its photoinduced mechanism are performed using a 5′-thymidine monophosphate (5′-dTMPH) model. In this study, four possible paths were examined to study the glycosidic bond cleavage. The results showed that, upon excitation, the electronic transition from the π bonding to π antibonding orbitals of the thymine ring leads to the damage of the thymine ring. Afterwards, the glycosidic bond is cleaved. At first, the doublet ground state (GS) path of glycosidic bond cleavage widely studied by other groups is caused by free electron generated by photoirradiation, with a kinetically feasible energy barrier of ~23 kcal/mol. Additionally, then, the other three paths were proposed that also might cause the glycosidic bond cleavage. The first one is the doublet excited state (ES) path, triggered by free electron along with UV excitation, which can result in a very-high-energy barrier ~49 kcal/mol that is kinetically unfavorable. The second one is the singlet ES path, induced by direct UV excitation, which assumes DNA is directly excited by UV light, which features a very low-energy barrier ~16 kcal/mol that is favored in kinetics. The third one is the triplet ES path, from the singlet state via intersystem crossing (ISC), which refers to a feasible ~27 kcal/mol energy barrier. This study emphasizes the pivotal role of the DNA glycosidic bond cleavage by our proposed direct UV excitation (especially singlet ES path) in addition to the authorized indirect free-electron-induced path, which should provide essential insights to future mechanistic comprehension and novel anti-cancer drug design. Full article
(This article belongs to the Special Issue Molecular Spectroscopy in Applied Chemistry)
Show Figures

Figure 1

16 pages, 3013 KiB  
Article
A Study on the Early Degradation of the Non-Additive Polypropylene–Polyethylene Composite Sampled between the Polymerization Reactor and the Deactivation-Degassing Tank
by Joaquín Alejandro Hernández Fernández, Rodrigo Ortega-Toro and Eduardo Antonio Espinosa Fuentes
J. Compos. Sci. 2024, 8(8), 311; https://doi.org/10.3390/jcs8080311 - 9 Aug 2024
Viewed by 218
Abstract
The industrial production of polypropylene–polyethylene composites (C-PP-PE) involves the generation of waste that is not usable, resulting in a significant environmental impact globally. In this research, we identified different concentrations of aluminum (8–410 ppm), chlorine (13–205 ppm), and iron (4–100 ppm) residues originating [...] Read more.
The industrial production of polypropylene–polyethylene composites (C-PP-PE) involves the generation of waste that is not usable, resulting in a significant environmental impact globally. In this research, we identified different concentrations of aluminum (8–410 ppm), chlorine (13–205 ppm), and iron (4–100 ppm) residues originating from traces of the Ziegler–Natta catalyst and the triethylaluminum (TEAL) co-catalyst. These residues accelerate the generation of plastic waste and affect the thermo-kinetic performance of C-PP-PE, as well as the formation of volatile organic compounds that reduce the commercial viability of C-PP-PE. Several families of organic compounds were quantified by gas chromatography with mass spectrometry, and it is evident that these concentrations varied directly with the ppm of Al, Cl, and Fe present in C-PP-PE. This research used kinetic models of Coats–Redfern, Horowitz–Metzger, Flynn–Wall–Ozawa, and Kissinger–Akahira–Sunose. The activation energy values (Ea) were inversely correlated with Al, Cl, and Fe concentrations. In samples PP0 and W3, with low Al, Cl, and Fe concentrations, the values (Ea) were 286 and 224 kJ mol−1, respectively, using the Horowitz method. Samples W1 and W5, with a high ppm of these elements, showed Ea values of 80.83 and 102.99 kJ mol−1, respectively. This knowledge of the thermodynamic behavior and the elucidation of possible chemical reactions in the industrial production of C-PP-PE allowed us to search for a suitable remediation technique to give a new commercial life to C-PP-PE waste, thus supporting the management of plastic waste and improving the process—recycling to promote sustainability and industrial efficiency. One option was using the antioxidant additive Irgafos P-168 (IG-P168), which stabilized some of these C-PP-PE residues very well until thermal properties similar to those of pure C-PP-PE were obtained. Full article
(This article belongs to the Special Issue Progress in Polymer Composites, Volume III)
Show Figures

Figure 1

14 pages, 1269 KiB  
Review
The Influence of 2′-Deoxyguanosine Lesions on the Electronic Properties of OXOG:::C Base Pairs in Ds-DNA: A Comparative Analysis of Theoretical Studies
by Boleslaw T. Karwowski
Molecules 2024, 29(16), 3756; https://doi.org/10.3390/molecules29163756 - 8 Aug 2024
Viewed by 236
Abstract
DNA is continuously exposed to a variety of harmful factors, which, on the one hand, can force undesirable processes such as ageing, carcinogenesis and mutagenesis, while on the other hand, can accelerate evolutionary changes. Of all the canonical nucleosides, 2′-deoxyguanosine (dG) exhibits the [...] Read more.
DNA is continuously exposed to a variety of harmful factors, which, on the one hand, can force undesirable processes such as ageing, carcinogenesis and mutagenesis, while on the other hand, can accelerate evolutionary changes. Of all the canonical nucleosides, 2′-deoxyguanosine (dG) exhibits the lowest ionization potential, making it particularly prone to the one-electron oxidizing process. The most abundant type of nucleobase damage is constituted by 7,8-dihydro-8-oxo-2′-deoxyguanosine (OXOdG), with an oxidation potential that is 0.56 V lower than that of canonical dG. All this has led to OXOdG, as an isolated lesion, being perceived as a sink for radical cations in the genome. In this paper, a comparative analysis of the electronic properties of an OXOGC base pair within the context of a clustered DNA lesion (CDL) has been conducted. It is based on previous DFT studies that were carried out at the M06-2x/6-31++G** level of theory in non-equilibrated and equilibrated condensed phases. The results of the comparative analysis presented here reveal the following: (A) The ionization potentials of OXOG4C2 were largely unaffected by a second lesion. (B) The positive charge and spin were found predominantly on the OXOG4C2 moiety. (C) The electron-hole transfers A3T3→G4C2 and G4C2←A5T1 were found in the Marcus inverted region and were resistant to the presence of a second DNA lesion in close proximity. It can therefore be reasonably postulated that OXOGC becomes the sink for a radical cation migrating through the double helix, irrespective of the presence of other 2′-deoxyguanosine lesions in the CDL structure. Full article
(This article belongs to the Section Bioorganic Chemistry)
Show Figures

Figure 1

12 pages, 12974 KiB  
Article
Effect of Ca, Ba, Be, Mg, and Sr Substitution on Electronic and Optical Properties of XNb2Bi2O9 for Energy Conversion Application Using Generalized Gradient Approximation–Perdew–Burke–Ernzerhof
by Fatima Kainat, Nawishta Jabeen, Ali Yaqoob, Najam Ul Hassan, Ahmad Hussain and Mohamed E. Khalifa
Crystals 2024, 14(8), 710; https://doi.org/10.3390/cryst14080710 - 7 Aug 2024
Viewed by 262
Abstract
Bismuth layered structure ferroelectrics (BLSFs), also known as Aurivillius phase materials, are ideal for energy-efficient applications, particularly for solar cells. This work reports the first comprehensive detailed theoretical study on the fascinating structural, electronic, and optical properties of XNb2Bi2O [...] Read more.
Bismuth layered structure ferroelectrics (BLSFs), also known as Aurivillius phase materials, are ideal for energy-efficient applications, particularly for solar cells. This work reports the first comprehensive detailed theoretical study on the fascinating structural, electronic, and optical properties of XNb2Bi2O9 (X = Ca, Ba, Be, Mg, Sr). The Perdew–Burke–Ernzerhof approach and generalized gradient approximation (GGA) are implemented to thoroughly investigate the structural, bandgap, optical, and electronic properties of the compounds. The optical conductivity, band topologies, dielectric function, bandgap values, absorption coefficient, reflectivity, extinction coefficient, refractive index, and partial and total densities of states are thoroughly investigated from a photovoltaics standpoint. The material exhibits distinct behaviors, including significant optical anisotropy and an elevated absorption coefficient > 105 cm−1 in the region of visible; ultraviolet energy is observed, the elevated transparency lies in the visible and infrared regions for the imaginary portion of the dielectric function, and peaks in the optical spectra caused by inter-band transitions are detected. According to the data reported, it becomes obvious that XNb2Bi2O9 (X = Ca, Ba, Be, Mg, and Sr) is a suitable candidate for implementation in solar energy conversion applications. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

11 pages, 4002 KiB  
Article
Chalcogen Doping in SnO2: A DFT Investigation of Optical and Electronic Properties for Enhanced Photocatalytic Applications
by Nikolaos Kelaidis, Yerassimos Panayiotatos and Alexander Chroneos
Materials 2024, 17(16), 3910; https://doi.org/10.3390/ma17163910 - 7 Aug 2024
Viewed by 197
Abstract
Tin dioxide (SnO2) is an important transparent conductive oxide (TCO), highly desirable for its use in various technologies due to its earth abundance and non-toxicity. It is studied for applications such as photocatalysis, energy harvesting, energy storage, LEDs, and photovoltaics as [...] Read more.
Tin dioxide (SnO2) is an important transparent conductive oxide (TCO), highly desirable for its use in various technologies due to its earth abundance and non-toxicity. It is studied for applications such as photocatalysis, energy harvesting, energy storage, LEDs, and photovoltaics as an electron transport layer. Elemental doping has been an established method to tune its band gap, increase conductivity, passivate defects, etc. In this study, we apply density functional theory (DFT) calculations to examine the electronic and optical properties of SnO2 when doped with members of the oxygen family, namely S, Se, and Te. By calculating defect formation energies, we find that S doping is energetically favourable in the oxygen substitutional position, whereas Se and Te prefer the Sn substitutional site. We show that S and Se substitutional doping leads to near gap states and can be an effective way to reduce the band gap, which results in an increased absorbance in the optical part of the spectrum, leading to improved photocatalytic activity, whereas Te doping results in several mid-gap states. Full article
(This article belongs to the Special Issue Feature Papers in Materials Physics (2nd Edition))
Show Figures

Figure 1

16 pages, 4651 KiB  
Article
Design of Novel Membranes for the Efficient Separation of Bee Alarm Pheromones in Portable Membrane Inlet Mass Spectrometric Systems
by Stevan Armaković, Daria Ilić and Boris Brkić
Int. J. Mol. Sci. 2024, 25(16), 8599; https://doi.org/10.3390/ijms25168599 - 7 Aug 2024
Viewed by 238
Abstract
Bee alarm pheromones are essential molecules that are present in beehives when some threats occur in the bee population. In this work, we have applied multilevel modeling techniques to understand molecular interactions between representative bee alarm pheromones and polymers such as polymethyl siloxane [...] Read more.
Bee alarm pheromones are essential molecules that are present in beehives when some threats occur in the bee population. In this work, we have applied multilevel modeling techniques to understand molecular interactions between representative bee alarm pheromones and polymers such as polymethyl siloxane (PDMS), polyethylene glycol (PEG), and their blend. This study aimed to check how these interactions can be manipulated to enable efficient separation of bee alarm pheromones in portable membrane inlet mass spectrometric (MIMS) systems using new membranes. The study involved the application of powerful computational atomistic methods based on a combination of modern semiempirical (GFN2-xTB), first principles (DFT), and force-field calculations. As a fundamental work material for the separation of molecules, we considered the PDMS polymer, a well-known sorbent material known to be applicable for light polar molecules. To improve its applicability as a sorbent material for heavier polar molecules, we considered two main factors—temperature and the addition of PEG polymer. Additional insights into molecular interactions were obtained by studying intrinsic reactive properties and noncovalent interactions between bee alarm pheromones and PDMS and PEG polymer chains. Full article
(This article belongs to the Special Issue Carbon–Multidisciplinary Investigations and Innovative Solutions)
Show Figures

Figure 1

11 pages, 3638 KiB  
Article
Density Functional Theory Study on Structure and Properties of Sulfurized Cerussite (110) Surface
by Cong Han, Yuxin Ao, Yanbai Shen, Sikai Zhao, Qiang Zhao and Shijie Zhou
Minerals 2024, 14(8), 801; https://doi.org/10.3390/min14080801 - 7 Aug 2024
Viewed by 244
Abstract
Cerussite is an essential lead oxide mineral with increasing economic importance as lead sulfide resources deplete. This study utilizes density functional theory (DFT) to investigate the structural and electronic properties of the sulfurized cerussite (110) surface. The results show that when the cerussite [...] Read more.
Cerussite is an essential lead oxide mineral with increasing economic importance as lead sulfide resources deplete. This study utilizes density functional theory (DFT) to investigate the structural and electronic properties of the sulfurized cerussite (110) surface. The results show that when the cerussite crystal cleaves along the (110) plane, only the surface layer atoms undergo relaxation to reconstruct the surface, while the atoms located deeper have almost no impact on the reconstructed surface structure. The Pb atoms on the cerussite (110) surface react with the sulfurizing agent to form a PbS deposition layer with a structure similar to galena. This PbS deposition layer is tightly adsorbed onto the lead oxide layer through Pb-S bonds formed by S and subsurface lead oxide structure Pb atoms. The chemical reactivity of Pb atoms in the PbS layer on the sulfurized cerussite (110) surface is more potent than that of Pb atoms on the galena surface; additionally, the Pb atoms closer to the lead oxide layer exhibit slightly higher chemical reactivity than those farther away. This study provides insight into sulfurized cerussite surfaces’ structure and properties at an atomic level and assists in explaining the floating behavior of cerussite. Full article
(This article belongs to the Special Issue Interfacial Chemistry of Critical Mineral Flotation)
Show Figures

Figure 1

33 pages, 6911 KiB  
Article
Designing Accurate Moment Tensor Potentials for Phonon-Related Properties of Crystalline Polymers
by Lukas Reicht, Lukas Legenstein, Sandro Wieser and Egbert Zojer
Molecules 2024, 29(16), 3724; https://doi.org/10.3390/molecules29163724 - 6 Aug 2024
Viewed by 495
Abstract
The phonon-related properties of crystalline polymers are highly relevant for various applications. Their simulation is, however, particularly challenging, as the systems that need to be modeled are often too extended to be treated by ab initio methods, while classical force fields are too [...] Read more.
The phonon-related properties of crystalline polymers are highly relevant for various applications. Their simulation is, however, particularly challenging, as the systems that need to be modeled are often too extended to be treated by ab initio methods, while classical force fields are too inaccurate. Machine-learned potentials parametrized against material-specific ab initio data hold the promise of being extremely accurate and also highly efficient. Still, for their successful application, protocols for their parametrization need to be established to ensure an optimal performance, and the resulting potentials need to be thoroughly benchmarked. These tasks are tackled in the current manuscript, where we devise a protocol for parametrizing moment tensor potentials (MTPs) to describe the structural properties, phonon band structures, elastic constants, and forces in molecular dynamics simulations for three prototypical crystalline polymers: polyethylene (PE), polythiophene (PT), and poly-3-hexylthiophene (P3HT). For PE, the thermal conductivity and thermal expansion are also simulated and compared to experiments. A central element of the approach is to choose training data in view of the considered use case of the MTPs. This not only yields a massive speedup for complex calculations while essentially maintaining DFT accuracy, but also enables the reliable simulation of properties that, so far, have been entirely out of reach. Full article
(This article belongs to the Special Issue Exclusive Feature Papers on Molecular Structure)
Show Figures

Graphical abstract

18 pages, 4137 KiB  
Article
Synthesis, X-ray Crystallography, Spectroscopic Characterizations, Density Functional Theory, and Hirshfeld Surface Analyses of a Novel (Carbonato) Picket Fence Iron(III) Complex
by Mondher Dhifet, Bouzid Gassoumi, Maxim A. Lutoshkin, Anna S. Kazachenko, Aleksandr S. Kazachenko, Omar Al-Dossary, Noureddine Issaoui and Habib Nasri
Molecules 2024, 29(16), 3722; https://doi.org/10.3390/molecules29163722 - 6 Aug 2024
Viewed by 412
Abstract
An Fe(III)-carbonato six-coordinate picket fence porphyrin complex with the formula [K(2,2,2-crypt)][FeIII(TpivPP)(CO3)]·C6H5Cl·3H2O (I) has been synthesized and characterized by UV-Vis and FT-IR spectra. The structure of (carbonato)(α,α,α,α-tetrakis(o-pivalamidophenyl)porphinato)ferrate(III) was also established [...] Read more.
An Fe(III)-carbonato six-coordinate picket fence porphyrin complex with the formula [K(2,2,2-crypt)][FeIII(TpivPP)(CO3)]·C6H5Cl·3H2O (I) has been synthesized and characterized by UV-Vis and FT-IR spectra. The structure of (carbonato)(α,α,α,α-tetrakis(o-pivalamidophenyl)porphinato)ferrate(III) was also established by XRD. The iron atom is hexa-coordinated by the four nitrogen atoms of the pyrrol rings and the two oxygen atoms of the CO32− group. Complex I, characterized as a ferric high-spin complex (S = 5/2), presented higher Fe-Np (2.105(6) Å) and Fe-PC (0.654(2) Å) distances. Both X-ray molecular structure and Hirshfeld surface analysis results show that the crystal packing of I is made by C-H⋯O and C-H⋯Cg weak intermolecular hydrogen interactions involving neighboring [FeIII(TpivPP)(CO3)] ion complexes. Computational studies were carried out at DFT/B3LYP-D3/LanL2DZ to investigate the HOMO and LUMO molecular frontier orbitals and the reactivity within the studied compound. The stability of compound I was investigated by analyzing both intra- and inter-molecular interactions using the 2D and 3DHirshfeld surface (HS) analyses. Additionally, the frontier molecular orbital (FMO) calculations and the molecular electronic potential (MEP) analyses were conducted to determine the electron localizations, electrophilic, and nucleophilic regions, as well as charge transfer (ECT) within the studied system. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Figure 1

26 pages, 23787 KiB  
Article
Hierarchical Modeling of the Nonlinear Optical Response of Composite Materials Based on Tetrathiafulvalene Derivatives
by Lucia Mydlova, Bouchta Sahraoui, Abdelkrim El-Ghayoury, Janusz Berdowski, Anna Migalska-Zalas and Malgorzata Makowska-Janusik
Molecules 2024, 29(16), 3720; https://doi.org/10.3390/molecules29163720 - 6 Aug 2024
Viewed by 403
Abstract
The presented work concerns computational investigations of the physical properties of composite materials based on polymer matrix and nonlinear optical (NLO) active chromophores. The structural, electronic, and optical properties of selected tetrathiafulvalene (TTF)-based chromophores have been calculated using quantum chemical methods. The polymer [...] Read more.
The presented work concerns computational investigations of the physical properties of composite materials based on polymer matrix and nonlinear optical (NLO) active chromophores. The structural, electronic, and optical properties of selected tetrathiafulvalene (TTF)-based chromophores have been calculated using quantum chemical methods. The polymer matrix changes the physical properties of the inserted chromophores influencing their optical parameters. To explain the mechanism of the NLO signal occurrence from the composites based on poly(methyl methacrylate) (PMMA) matrix and TTF chromophores, their structures are modeled using the classical molecular dynamics. In consequence, the structural properties of the composites are discussed according to the NLO requirements. By developing the theoretical model based on a discrete multipole local field approach, the impact of polymer matrix on the optical properties of chromophores is explained. Full article
(This article belongs to the Special Issue Advances in Computational and Theoretical Chemistry—2nd Edition)
Show Figures

Graphical abstract

12 pages, 2733 KiB  
Article
A New BODIPY-Based Receptor for the Fluorescent Sensing of Catecholamines
by Roberta Puglisi, Alessia Cavallaro, Andrea Pappalardo, Manuel Petroselli, Rossella Santonocito and Giuseppe Trusso Sfrazzetto
Molecules 2024, 29(15), 3714; https://doi.org/10.3390/molecules29153714 - 5 Aug 2024
Viewed by 419
Abstract
The human body synthesizes catecholamine neurotransmitters, such as dopamine and noradrenaline. Monitoring the levels of these molecules is crucial for the prevention of important diseases, such as Alzheimer’s, schizophrenia, Parkinson’s, Huntington’s, attention-deficit hyperactivity disorder, and paragangliomas. Here, we have synthesized, characterized, and functionalized [...] Read more.
The human body synthesizes catecholamine neurotransmitters, such as dopamine and noradrenaline. Monitoring the levels of these molecules is crucial for the prevention of important diseases, such as Alzheimer’s, schizophrenia, Parkinson’s, Huntington’s, attention-deficit hyperactivity disorder, and paragangliomas. Here, we have synthesized, characterized, and functionalized the BODIPY core with picolylamine (BDPy-pico) in order to create a sensor capable of detecting these biomarkers. The sensing properties of the BDPy-pico probe in solution were studied using fluorescence titrations and supported by DFT studies. Catecholamine sensing was also performed in the solid state by a simple strip test, using an optical fiber as the detector of emissions. In addition, the selectivity and recovery of the sensor were assessed, suggesting the possibility of using this receptor to detect dopamine and norepinephrine in human saliva. Full article
(This article belongs to the Special Issue Boron Dipyrromethene (BODIPY) Dyes and Their Derivatives)
Show Figures

Graphical abstract

47 pages, 16103 KiB  
Review
Comprehensive Review on the Impact of Chemical Composition, Plasma Treatment, and Vacuum Ultraviolet (VUV) Irradiation on the Electrical Properties of Organosilicate Films
by Mikhail R. Baklanov, Andrei A. Gismatulin, Sergej Naumov, Timofey V. Perevalov, Vladimir A. Gritsenko, Alexey S. Vishnevskiy, Tatyana V. Rakhimova and Konstantin A. Vorotilov
Polymers 2024, 16(15), 2230; https://doi.org/10.3390/polym16152230 - 5 Aug 2024
Viewed by 391
Abstract
Organosilicate glass (OSG) films are a critical component in modern electronic devices, with their electrical properties playing a crucial role in device performance. This comprehensive review systematically examines the influence of chemical composition, vacuum ultraviolet (VUV) irradiation, and plasma treatment on the electrical [...] Read more.
Organosilicate glass (OSG) films are a critical component in modern electronic devices, with their electrical properties playing a crucial role in device performance. This comprehensive review systematically examines the influence of chemical composition, vacuum ultraviolet (VUV) irradiation, and plasma treatment on the electrical properties of these films. Through an extensive survey of literature and experimental findings, we elucidate the intricate interplay between these factors and the resulting alterations in electrical conductivity, dielectric constant, and breakdown strength of OSG films. Key focus areas include the impact of diverse organic moieties incorporated into the silica matrix, the effects of VUV irradiation on film properties, and the modifications induced by various plasma treatment techniques. Furthermore, the underlying mechanisms governing these phenomena are discussed, shedding light on the complex molecular interactions and structural rearrangements occurring within OSG films under different environmental conditions. It is shown that phonon-assisted electron tunneling between adjacent neutral traps provides a more accurate description of charge transport in OSG low-k materials compared to the previously reported Fowler–Nordheim mechanism. Additionally, the quality of low-k materials significantly influences the behavior of leakage currents. Materials retaining residual porogens or adsorbed water on pore walls show electrical conductivity directly correlated with pore surface area and porosity. Conversely, porogen-free materials, developed by Urbanowicz, exhibit leakage currents that are independent of porosity. This underscores the critical importance of considering internal defects such as oxygen-deficient centers (ODC) or similar entities in understanding the electrical properties of these materials. Full article
(This article belongs to the Special Issue Polymer-SiO2 Composites II)
Show Figures

Figure 1

14 pages, 1886 KiB  
Article
Ab Initio Studies of Mechanical, Dynamical, and Thermodynamic Properties of Fe-Pt Alloys
by Ndanduleni Lesley Lethole and Patrick Mukumba
Materials 2024, 17(15), 3879; https://doi.org/10.3390/ma17153879 - 5 Aug 2024
Viewed by 332
Abstract
The density functional theory (DFT) framework in the generalized gradient approximation (GGA) was employed to study the mechanical, dynamical, and thermodynamic properties of the ordered bimetallic Fe-Pt alloys with stoichiometric structures Fe3Pt, FePt, and FePt3. These alloys exhibit remarkable [...] Read more.
The density functional theory (DFT) framework in the generalized gradient approximation (GGA) was employed to study the mechanical, dynamical, and thermodynamic properties of the ordered bimetallic Fe-Pt alloys with stoichiometric structures Fe3Pt, FePt, and FePt3. These alloys exhibit remarkable magnetic properties, high coercivity, excellent chemical stability, high magnetization, and corrosion resistance, making them potential candidates for application in high-density magnetic storage devices, magnetic recording media, and spintronic devices. The calculations of elastic constants showed that all the considered Fe-Pt alloys satisfy the Born necessary conditions for mechanical stability. Calculations on macroscopic elastic moduli showed that Fe-Pt alloys are ductile and characterized by greater resistance to deformation and volume change under external shearing forces. Furthermore, Fe-Pt alloys exhibit significant anisotropy due to variations in elastic constants and deviation of the universal anisotropy index value from zero. The equiatomic FePt showed dynamical stability, while the others showed softening of soft modes along high symmetry lines in the Brillouin zone. Moreover, from the phonon densities of states, we observed that Fe atomic vibrations are dominant at higher frequencies in Fe-rich compositions, while Pt vibrations are prevalent in Pt-rich. Full article
(This article belongs to the Special Issue Progress in Plastic Deformation of Metals and Alloys (Second Volume))
Show Figures

Figure 1

18 pages, 2492 KiB  
Article
Product Selectivity Control in the Brønsted Acid-Mediated Reactions with 2-Alkynylanilines
by Valerio Morlacci, Massimiliano Aschi, Marco Chiarini, Caterina Momoli, Laura Palombi and Antonio Arcadi
Molecules 2024, 29(15), 3693; https://doi.org/10.3390/molecules29153693 - 4 Aug 2024
Viewed by 377
Abstract
Brønsted acid-catalysed/mediated reactions of the 2-alkynylanilines are reported. While metal-catalysed reactions of these valuable building blocks have led to the establishment of robust protocols for the selective, diverse-oriented syntheses of significant heterocyclic derivatives, we here demonstrate the practical advantages of an alternative methodology [...] Read more.
Brønsted acid-catalysed/mediated reactions of the 2-alkynylanilines are reported. While metal-catalysed reactions of these valuable building blocks have led to the establishment of robust protocols for the selective, diverse-oriented syntheses of significant heterocyclic derivatives, we here demonstrate the practical advantages of an alternative methodology under metal-free conditions. Our investigation into the key factors influencing the product selectivity in Brønsted acid-catalysed/mediated reactions of 2-alkynylanilines reveals that different reaction pathways can be directed towards the formation of diverse valuable products by simply choosing appropriate reaction conditions. The origins of chemo- and regioselectivity switching have been explored through Density Functional Theory (DFT) calculations. Full article
(This article belongs to the Special Issue Advances in Heterocyclic Synthesis)
Show Figures

Graphical abstract

Back to TopTop