Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = Diamond–Blackfan anemia

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3065 KiB  
Review
The Paradox of Ribosomal Insufficiency Coupled with Increased Cancer: Shifting the Perspective from the Cancer Cell to the Microenvironment
by Giacomo D’Andrea, Giorgia Deroma, Annarita Miluzio and Stefano Biffo
Cancers 2024, 16(13), 2392; https://doi.org/10.3390/cancers16132392 - 28 Jun 2024
Viewed by 284
Abstract
Ribosomopathies are defined as inherited diseases in which ribosomal factors are mutated. In general, they present multiorgan symptoms. In spite of the fact that in cellular models, ribosomal insufficiency leads to a reduced rate of oncogenic transformation, patients affected by ribosomopathies present a [...] Read more.
Ribosomopathies are defined as inherited diseases in which ribosomal factors are mutated. In general, they present multiorgan symptoms. In spite of the fact that in cellular models, ribosomal insufficiency leads to a reduced rate of oncogenic transformation, patients affected by ribosomopathies present a paradoxical increase in cancer incidence. Several hypotheses that explain this paradox have been formulated, mostly on the assumption that altered ribosomes in a stem cell induce compensatory changes that lead to a cancer cell. For instance, the lack of a specific ribosomal protein can lead to the generation of an abnormal ribosome, an oncoribosome, that itself leads to altered translation and increased tumorigenesis. Alternatively, the presence of ribosomal stress may induce compensatory proliferation that in turns selects the loss of tumor suppressors such as p53. However, modern views on cancer have shifted the focus from the cancer cell to the tumor microenvironment. In particular, it is evident that human lymphocytes are able to eliminate mutant cells and contribute to the maintenance of cancer-free tissues. Indeed, many tumors develop in conditions of reduced immune surveillance. In this review, we summarize the current evidence and attempt to explain cancer and ribosomopathies from the perspective of the microenvironment. Full article
(This article belongs to the Section Tumor Microenvironment)
Show Figures

Figure 1

16 pages, 2723 KiB  
Review
Towards a Cure for Diamond–Blackfan Anemia: Views on Gene Therapy
by Matilde Vale, Jan Prochazka and Radislav Sedlacek
Cells 2024, 13(11), 920; https://doi.org/10.3390/cells13110920 - 27 May 2024
Viewed by 951
Abstract
Diamond–Blackfan anemia (DBA) is a rare genetic disorder affecting the bone marrow’s ability to produce red blood cells, leading to severe anemia and various physical abnormalities. Approximately 75% of DBA cases involve heterozygous mutations in ribosomal protein (RP) genes, classifying it as a [...] Read more.
Diamond–Blackfan anemia (DBA) is a rare genetic disorder affecting the bone marrow’s ability to produce red blood cells, leading to severe anemia and various physical abnormalities. Approximately 75% of DBA cases involve heterozygous mutations in ribosomal protein (RP) genes, classifying it as a ribosomopathy, with RPS19 being the most frequently mutated gene. Non-RP mutations, such as in GATA1, have also been identified. Current treatments include glucocorticosteroids, blood transfusions, and hematopoietic stem cell transplantation (HSCT), with HSCT being the only curative option, albeit with challenges like donor availability and immunological complications. Gene therapy, particularly using lentiviral vectors and CRISPR/Cas9 technology, emerges as a promising alternative. This review explores the potential of gene therapy, focusing on lentiviral vectors and CRISPR/Cas9 technology in combination with non-integrating lentiviral vectors, as a curative solution for DBA. It highlights the transformative advancements in the treatment landscape of DBA, offering hope for individuals affected by this condition. Full article
(This article belongs to the Special Issue Gene Therapy for Rare Diseases)
Show Figures

Figure 1

11 pages, 1335 KiB  
Review
The Diverse Genomic Landscape of Diamond–Blackfan Anemia: Two Novel Variants and a Mini-Review
by Iordanis Pelagiadis, Ioannis Kyriakidis, Nikolaos Katzilakis, Chrysoula Kosmeri, Danai Veltra, Christalena Sofocleous, Stavros Glentis, Antonis Kattamis, Alexandros Makis and Eftichia Stiakaki
Children 2023, 10(11), 1812; https://doi.org/10.3390/children10111812 - 15 Nov 2023
Viewed by 1710
Abstract
Diamond–Blackfan anemia (DBA) is a ribosomopathy characterized by bone marrow erythroid hypoplasia, which typically presents with severe anemia within the first months of life. DBA is typically attributed to a heterozygous mutation in a ribosomal protein (RP) gene along with a defect in [...] Read more.
Diamond–Blackfan anemia (DBA) is a ribosomopathy characterized by bone marrow erythroid hypoplasia, which typically presents with severe anemia within the first months of life. DBA is typically attributed to a heterozygous mutation in a ribosomal protein (RP) gene along with a defect in the ribosomal RNA (rRNA) maturation or levels. Besides classic DBA, DBA-like disease has been described with variations in 16 genes (primarily in GATA1, followed by ADA2 alias CECR1, HEATR3, and TSR2). To date, more than a thousand variants have been reported in RP genes. Splice variants represent 6% of identifiable genetic defects in DBA, while their prevalence is 14.3% when focusing on pathogenic and likely pathogenic (P/LP) variants, thus highlighting the impact of such alterations in RP translation and, subsequently, in ribosome levels. We hereby present two cases with novel pathogenic splice variants in RPS17 and RPS26. Associations of DBA-related variants with specific phenotypic features and malignancies and the molecular consequences of pathogenic variations for each DBA-related gene are discussed. The determinants of the spontaneous remission, cancer development, variable expression of the same variants between families, and selectivity of RP defects towards the erythroid lineage remain to be elucidated. Full article
Show Figures

Graphical abstract

9 pages, 1680 KiB  
Case Report
A De Novo Frameshift Mutation in RPL5 with Classical Phenotype Abnormalities and Worsening Anemia Diagnosed in a Young Adult—A Case Report and Review of the Literature
by Moritz Dorenkamp, Naomi Porret, Miriam Diepold and Alicia Rovó
Medicina 2023, 59(11), 1953; https://doi.org/10.3390/medicina59111953 - 5 Nov 2023
Viewed by 1643
Abstract
Diamond–Blackfan anemia (DBA) is a congenital bone marrow failure syndrome associated with malformations. DBA is related to defective ribosome biogenesis, which impairs erythropoiesis, causing hyporegenerative macrocytic anemia. The disease has an autosomal dominant inheritance and is commonly diagnosed in the first year of [...] Read more.
Diamond–Blackfan anemia (DBA) is a congenital bone marrow failure syndrome associated with malformations. DBA is related to defective ribosome biogenesis, which impairs erythropoiesis, causing hyporegenerative macrocytic anemia. The disease has an autosomal dominant inheritance and is commonly diagnosed in the first year of life, requiring continuous treatment. We present the case of a young woman who, at the age of 21, developed severe symptomatic anemia. Although, due to malformations, a congenital syndrome had been suspected since birth, a confirmation diagnosis was not made until the patient was referred to our center for an evaluation of her anemia. In her neonatal medical history, she presented with anemia that required red blood cell transfusions, but afterwards remained with a stable, mild, asymptomatic anemia throughout her childhood and adolescence. Her family history was otherwise unremarkable. To explain the symptomatic anemia, vitamin deficiencies, autoimmune diseases, bleeding causes, and myeloid and lymphoid neoplasms were investigated and ruled out. A molecular investigation showed the RPL5 gene variant c.392dup, p.(Asn131Lysfs*6), confirming the diagnosis of DBA. All family members have normal blood values and none harbored the mutation. Here, we will discuss the unusual evolution of this case and revisit the literature. Full article
(This article belongs to the Section Hematology and Immunology)
Show Figures

Figure 1

14 pages, 1576 KiB  
Review
p53 in the Molecular Circuitry of Bone Marrow Failure Syndromes
by Jeanne Rakotopare and Franck Toledo
Int. J. Mol. Sci. 2023, 24(19), 14940; https://doi.org/10.3390/ijms241914940 - 6 Oct 2023
Cited by 1 | Viewed by 1627
Abstract
Mice with a constitutive increase in p53 activity exhibited features of dyskeratosis congenita (DC), a bone marrow failure syndrome (BMFS) caused by defective telomere maintenance. Further studies confirmed, in humans and mice, that germline mutations affecting TP53 or its regulator MDM4 may cause [...] Read more.
Mice with a constitutive increase in p53 activity exhibited features of dyskeratosis congenita (DC), a bone marrow failure syndrome (BMFS) caused by defective telomere maintenance. Further studies confirmed, in humans and mice, that germline mutations affecting TP53 or its regulator MDM4 may cause short telomeres and alter hematopoiesis, but also revealed features of Diamond–Blackfan anemia (DBA) or Fanconi anemia (FA), two BMFSs, respectively, caused by defects in ribosomal function or DNA repair. p53 downregulates several genes mutated in DC, either by binding to promoter sequences (DKC1) or indirectly via the DREAM repressor complex (RTEL1, DCLRE1B), and the p53-DREAM pathway represses 22 additional telomere-related genes. Interestingly, mutations in any DC-causal gene will cause telomere dysfunction and subsequent p53 activation to further promote the repression of p53-DREAM targets. Similarly, ribosomal dysfunction and DNA lesions cause p53 activation, and p53-DREAM targets include the DBA-causal gene TSR2, at least 9 FA-causal genes, and 38 other genes affecting ribosomes or the FA pathway. Furthermore, patients with BMFSs may exhibit brain abnormalities, and p53-DREAM represses 16 genes mutated in microcephaly or cerebellar hypoplasia. In sum, positive feedback loops and the repertoire of p53-DREAM targets likely contribute to partial phenotypic overlaps between BMFSs of distinct molecular origins. Full article
Show Figures

Figure 1

19 pages, 1779 KiB  
Review
The Molecular and Genetic Mechanisms of Inherited Bone Marrow Failure Syndromes: The Role of Inflammatory Cytokines in Their Pathogenesis
by Nozomu Kawashima, Valentino Bezzerri and Seth J. Corey
Biomolecules 2023, 13(8), 1249; https://doi.org/10.3390/biom13081249 - 16 Aug 2023
Cited by 2 | Viewed by 3094
Abstract
Inherited bone marrow failure syndromes (IBMFSs) include Fanconi anemia, Diamond–Blackfan anemia, Shwachman–Diamond syndrome, dyskeratosis congenita, severe congenital neutropenia, and other rare entities such as GATA2 deficiency and SAMD9/9L mutations. The IBMFS monogenic disorders were first recognized by their phenotype. Exome sequencing has validated [...] Read more.
Inherited bone marrow failure syndromes (IBMFSs) include Fanconi anemia, Diamond–Blackfan anemia, Shwachman–Diamond syndrome, dyskeratosis congenita, severe congenital neutropenia, and other rare entities such as GATA2 deficiency and SAMD9/9L mutations. The IBMFS monogenic disorders were first recognized by their phenotype. Exome sequencing has validated their classification, with clusters of gene mutations affecting DNA damage response (Fanconi anemia), ribosome structure (Diamond–Blackfan anemia), ribosome assembly (Shwachman–Diamond syndrome), or telomere maintenance/stability (dyskeratosis congenita). The pathogenetic mechanisms of IBMFSs remain to be characterized fully, but an overarching hypothesis states that different stresses elicit TP53-dependent growth arrest and apoptosis of hematopoietic stem, progenitor, and precursor cells. Here, we review the IBMFSs and propose a role for pro-inflammatory cytokines, such as TGF-β, IL-1β, and IFN-α, in mediating the cytopenias. We suggest a pathogenic role for cytokines in the transformation to myeloid neoplasia and hypothesize a role for anti-inflammatory therapies. Full article
(This article belongs to the Special Issue Regulation of Cytokine Signaling in Health and Disease)
Show Figures

Figure 1

12 pages, 1167 KiB  
Review
Unusual Association of Diamond–Blackfan Anemia and Severe Sinus Bradycardia in a Six-Month-Old White Infant: A Case Report and Literature Review
by Stefana Maria Moisa, Elena-Lia Spoiala, Laura Mihaela Trandafir, Lacramioara Ionela Butnariu, Ingrith-Crenguta Miron, Antonela Ciobanu, Adriana Mocanu, Anca Ivanov, Carmen Iulia Ciongradi, Ioan Sarbu, Anamaria Ciubara, Carmen Daniela Rusu, Alina Costina Luca and Alexandru Burlacu
Medicina 2023, 59(2), 362; https://doi.org/10.3390/medicina59020362 - 14 Feb 2023
Viewed by 2885
Abstract
Diamond–Blackfan anemia is a rare (6–7 million live births), inherited condition manifesting as severe anemia due to the impaired bone marrow production of red blood cells. We present the unusual case of a six month old infant with a de novo mutation of [...] Read more.
Diamond–Blackfan anemia is a rare (6–7 million live births), inherited condition manifesting as severe anemia due to the impaired bone marrow production of red blood cells. We present the unusual case of a six month old infant with a de novo mutation of the RPS19 gene causing Diamond–Blackfan anemia who additionally suffers from severe sinus bradycardia. The infant was diagnosed with this condition at the age of four months; at the age of 6 months, she presents with severe anemia causing hypoxia which, in turn, caused severe dyspnea and polypnea, which had mixed causes (hypoxic and infectious) as the child was febrile. After correction of the overlapping diarrhea, metabolic acidosis, and severe anemia (hemoglobin < 3 g/dL), she developed severe persistent sinus bradycardia immediately after mild sedation (before central venous catheter insertion), not attributable to any of the more frequent causes, with a heart rate as low as 49 beats/min on 24 h Holter monitoring, less than the first percentile for age, but with a regular QT interval and no arrhythmia. The echocardiogram was unremarkable, showing a small interatrial communication (patent foramen ovale with left-to-right shunting), mild left ventricular hypertrophy, normal systolic and diastolic function, and mild tricuspid regurgitation. After red cell transfusion and appropriate antibiotic and supportive treatment, the child’s general condition improved dramatically but the sinus bradycardia persisted. We consider this a case of well-tolerated sinus bradycardia and foresee a good cardiologic prognosis, while the hematologic prognosis remains determined by future corticoid response, treatment-related complications and risk of leukemia. Full article
(This article belongs to the Section Pediatrics)
Show Figures

Figure 1

12 pages, 1751 KiB  
Article
GATA-1 Defects in Diamond–Blackfan Anemia: Phenotypic Characterization Points to a Specific Subset of Disease
by Birgit van Dooijeweert, Sima Kheradmand Kia, Niklas Dahl, Odile Fenneteau, Roos Leguit, Edward Nieuwenhuis, Wouter van Solinge, Richard van Wijk, Lydie Da Costa and Marije Bartels
Genes 2022, 13(3), 447; https://doi.org/10.3390/genes13030447 - 28 Feb 2022
Cited by 10 | Viewed by 3404
Abstract
Diamond–Blackfan anemia (DBA) is one of the inherited bone marrow failure syndromes marked by erythroid hypoplasia. Underlying variants in ribosomal protein (RP) genes account for 80% of cases, thereby classifying DBA as a ribosomopathy. In addition to RP genes, extremely rare variants in [...] Read more.
Diamond–Blackfan anemia (DBA) is one of the inherited bone marrow failure syndromes marked by erythroid hypoplasia. Underlying variants in ribosomal protein (RP) genes account for 80% of cases, thereby classifying DBA as a ribosomopathy. In addition to RP genes, extremely rare variants in non-RP genes, including GATA1, the master transcription factor in erythropoiesis, have been reported in recent years in patients with a DBA-like phenotype. Subsequently, a pivotal role for GATA-1 in DBA pathophysiology was established by studies showing the impaired translation of GATA1 mRNA downstream of the RP haploinsufficiency. Here, we report on a patient from the Dutch DBA registry, in which we found a novel hemizygous variant in GATA1 (c.220+2T>C), and an Iranian patient with a previously reported variant in the initiation codon of GATA1 (c.2T>C). Although clinical features were concordant with DBA, the bone marrow morphology in both patients was not typical for DBA, showing moderate erythropoietic activity with signs of dyserythropoiesis and dysmegakaryopoiesis. This motivated us to re-evaluate the clinical characteristics of previously reported cases, which resulted in the comprehensive characterization of 18 patients with an inherited GATA-1 defect in exon 2 that is presented in this case-series. In addition, we re-investigated the bone marrow aspirate of one of the previously published cases. Altogether, our observations suggest that DBA caused by GATA1 defects is characterized by distinct phenotypic characteristics, including dyserythropoiesis and dysmegakaryopoiesis, and therefore represents a distinct phenotype within the DBA disease spectrum, which might need specific clinical management. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

9 pages, 873 KiB  
Case Report
Individualized Dosage Optimization for Myeloablative Conditioning before Unrelated Cord Blood Transplantation in a Diamond–Blackfan Anemia Patient with Germline RPL11 Mutation: A Case Study
by Rong-Long Chen, Li-Hua Fang and Liuh-Yow Chen
Processes 2022, 10(2), 201; https://doi.org/10.3390/pr10020201 - 21 Jan 2022
Viewed by 1896
Abstract
Unrelated cord blood transplantation (CBT) for Diamond–Blackfan anemia (DBA), a systemic ribosomopathy affecting the disposition of conditioning agents, has resulted in outcomes inferior to those by transplantations from matched donors. We report the experience of the pharmacokinetics-guided myeloablative unrelated CBT in a DBA [...] Read more.
Unrelated cord blood transplantation (CBT) for Diamond–Blackfan anemia (DBA), a systemic ribosomopathy affecting the disposition of conditioning agents, has resulted in outcomes inferior to those by transplantations from matched donors. We report the experience of the pharmacokinetics-guided myeloablative unrelated CBT in a DBA patient with a germline RPL11 mutation. The conditioning consisted of individualized dosing of fludarabine (based on weight and renal function with a target area under the curve (AUC) of 17.5 mg·h/L) and busulfan (based on therapeutic drug monitoring with a target AUC of 90 mg·h/L), as well as dosing and timing of thymoglobulin (based on body weight and pre-dose lymphocyte count to target pre-CBT AUC of 30.7 AU·day/mL and post-CBT AUC of 4.3 AU·day/mL, respectively). The pharmacokinetic measures resulted in a 27.5% reduction in busulfan and a 35% increase in fludarabine, as well as an over three-fold increase in thymoglobulin dosage with the start time changed to day-9 instead of day-2 compared to regular regimens. The transplantation resulted in rapid, complete, and sustained hematopoietic engraftment. The patient is now healthy over 3 years after CBT. A pharmacokinetics-guided individualized dosing strategy for conditioning might be a feasible option to improve the outcomes of DBA patients receiving unrelated myeloablative CBT. Full article
Show Figures

Figure 1

11 pages, 510 KiB  
Review
Early Onset Colorectal Cancer: An Emerging Cancer Risk in Patients with Diamond Blackfan Anemia
by Jeffrey M. Lipton, Christine L. S. Molmenti, Pooja Desai, Alexander Lipton, Steven R. Ellis and Adrianna Vlachos
Genes 2022, 13(1), 56; https://doi.org/10.3390/genes13010056 - 26 Dec 2021
Cited by 11 | Viewed by 4189
Abstract
Diamond Blackfan anemia (DBA) is a rare inherited bone marrow failure syndrome, the founding member of a class of disorders known as ribosomopathies. Most cases result from loss of function mutations or deletions in 1 of 23 genes encoding either a small or [...] Read more.
Diamond Blackfan anemia (DBA) is a rare inherited bone marrow failure syndrome, the founding member of a class of disorders known as ribosomopathies. Most cases result from loss of function mutations or deletions in 1 of 23 genes encoding either a small or large subunit-associated ribosomal protein (RP), resulting in RP haploinsufficiency. DBA is characterized by red cell hypoplasia or aplasia, poor linear growth and congenital anomalies. Small case series and case reports demonstrate DBA to be a cancer predisposition syndrome. Recent analyses from the Diamond Blackfan Anemia Registry of North America (DBAR) have quantified the cancer risk in DBA. These studies reveal the most prevalent solid tumor, presenting in young adults and in children and adolescents, to be colorectal cancer (CRC) and osteogenic sarcoma, respectively. Of concern is that these cancers are typically detected at an advanced stage in patients who, because of their constitutional bone marrow failure, may not tolerate full-dose chemotherapy. Thus, the inability to provide optimal therapy contributes to poor outcomes. CRC screening in individuals over the age of 50 years, and now 45 years, has led to early detection and significant improvements in outcomes for non-DBA patients with CRC. These screening and surveillance strategies have been adapted to detect familial early onset CRC. With the recognition of DBA as a moderately penetrant cancer risk syndrome a rational screening and surveillance strategy will be implemented. The downstream molecular events, resulting from RP haploinsufficiency and leading to cancer, are the subject of significant scientific inquiry. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

18 pages, 1340 KiB  
Review
Using the Zebrafish as a Genetic Model to Study Erythropoiesis
by Yuhan Zhang, Mengying Chen and Caiyong Chen
Int. J. Mol. Sci. 2021, 22(19), 10475; https://doi.org/10.3390/ijms221910475 - 28 Sep 2021
Cited by 10 | Viewed by 4771
Abstract
Vertebrates generate mature red blood cells (RBCs) via a highly regulated, multistep process called erythropoiesis. Erythropoiesis involves synthesis of heme and hemoglobin, clearance of the nuclei and other organelles, and remodeling of the plasma membrane, and these processes are exquisitely coordinated by specific [...] Read more.
Vertebrates generate mature red blood cells (RBCs) via a highly regulated, multistep process called erythropoiesis. Erythropoiesis involves synthesis of heme and hemoglobin, clearance of the nuclei and other organelles, and remodeling of the plasma membrane, and these processes are exquisitely coordinated by specific regulatory factors including transcriptional factors and signaling molecules. Defects in erythropoiesis can lead to blood disorders such as congenital dyserythropoietic anemias, Diamond–Blackfan anemias, sideroblastic anemias, myelodysplastic syndrome, and porphyria. The molecular mechanisms of erythropoiesis are highly conserved between fish and mammals, and the zebrafish (Danio rerio) has provided a powerful genetic model for studying erythropoiesis. Studies in zebrafish have yielded important insights into RBC development and established a number of models for human blood diseases. Here, we focus on latest discoveries of the molecular processes and mechanisms regulating zebrafish erythropoiesis and summarize newly established zebrafish models of human anemias. Full article
(This article belongs to the Special Issue Zebrafish: A Powerful Model for Genetics and Genomics)
Show Figures

Figure 1

20 pages, 2866 KiB  
Review
Zebrafish, an In Vivo Platform to Screen Drugs and Proteins for Biomedical Use
by Hung-Chieh Lee, Cheng-Yung Lin and Huai-Jen Tsai
Pharmaceuticals 2021, 14(6), 500; https://doi.org/10.3390/ph14060500 - 24 May 2021
Cited by 18 | Viewed by 7335
Abstract
The nearly simultaneous convergence of human genetics and advanced molecular technologies has led to an improved understanding of human diseases. At the same time, the demand for drug screening and gene function identification has also increased, albeit time- and labor-intensive. However, bridging the [...] Read more.
The nearly simultaneous convergence of human genetics and advanced molecular technologies has led to an improved understanding of human diseases. At the same time, the demand for drug screening and gene function identification has also increased, albeit time- and labor-intensive. However, bridging the gap between in vitro evidence from cell lines and in vivo evidence, the lower vertebrate zebrafish possesses many advantages over higher vertebrates, such as low maintenance, high fecundity, light-induced spawning, transparent embryos, short generation interval, rapid embryonic development, fully sequenced genome, and some phenotypes similar to human diseases. Such merits have popularized the zebrafish as a model system for biomedical and pharmaceutical studies, including drug screening. Here, we reviewed the various ways in which zebrafish serve as an in vivo platform to perform drug and protein screening in the fields of rare human diseases, social behavior and cancer studies. Since zebrafish mutations faithfully phenocopy many human disorders, many compounds identified from zebrafish screening systems have advanced to early clinical trials, such as those for Adenoid cystic carcinoma, Dravet syndrome and Diamond–Blackfan anemia. We also reviewed and described how zebrafish are used to carry out environmental pollutant detection and assessment of nanoparticle biosafety and QT prolongation. Full article
(This article belongs to the Special Issue Zebrafish as a Powerful Tool for Drug Discovery 2021)
Show Figures

Figure 1

18 pages, 2990 KiB  
Article
Eltrombopag Improves Erythroid Differentiation in a Human Induced Pluripotent Stem Cell Model of Diamond Blackfan Anemia
by Husam Qanash, Yongqin Li, Richard H. Smith, Kaari Linask, Sara Young-Baird, Waleed Hakami, Keyvan Keyvanfar, John S. Choy, Jizhong Zou and Andre Larochelle
Cells 2021, 10(4), 734; https://doi.org/10.3390/cells10040734 - 26 Mar 2021
Cited by 9 | Viewed by 4409
Abstract
Diamond Blackfan Anemia (DBA) is a congenital macrocytic anemia associated with ribosomal protein haploinsufficiency. Ribosomal dysfunction delays globin synthesis, resulting in excess toxic free heme in erythroid progenitors, early differentiation arrest, and pure red cell aplasia. In this study, DBA induced pluripotent stem [...] Read more.
Diamond Blackfan Anemia (DBA) is a congenital macrocytic anemia associated with ribosomal protein haploinsufficiency. Ribosomal dysfunction delays globin synthesis, resulting in excess toxic free heme in erythroid progenitors, early differentiation arrest, and pure red cell aplasia. In this study, DBA induced pluripotent stem cell (iPSC) lines were generated from blood mononuclear cells of DBA patients with inactivating mutations in RPS19 and subjected to hematopoietic differentiation to model disease phenotypes. In vitro differentiated hematopoietic cells were used to investigate whether eltrombopag, an FDA-approved mimetic of thrombopoietin with robust intracellular iron chelating properties, could rescue erythropoiesis in DBA by restricting the labile iron pool (LIP) derived from excessive free heme. DBA iPSCs exhibited RPS19 haploinsufficiency, reduction in the 40S/60S ribosomal subunit ratio and early erythroid differentiation arrest in the absence of eltrombopag, compared to control isogenic iPSCs established by CRISPR/Cas9-mediated correction of the RPS19 point mutation. Notably, differentiation of DBA iPSCs in the presence of eltrombopag markedly improved erythroid maturation. Consistent with a molecular mechanism based on intracellular iron chelation, we observed that deferasirox, a clinically licensed iron chelator able to permeate into cells, also enhanced erythropoiesis in our DBA iPSC model. In contrast, erythroid maturation did not improve substantially in DBA iPSC differentiation cultures supplemented with deferoxamine, a clinically available iron chelator that poorly accesses LIP within cellular compartments. These findings identify eltrombopag as a promising new therapeutic to improve anemia in DBA. Full article
(This article belongs to the Special Issue iPS Cells (iPSCs) for Modelling and Treatment of Human Diseases)
Show Figures

Figure 1

22 pages, 4155 KiB  
Article
Oxidative DNA Damage, Inflammatory Signature, and Altered Erythrocytes Properties in Diamond-Blackfan Anemia
by Katarina Kapralova, Ondrej Jahoda, Pavla Koralkova, Jan Gursky, Lucie Lanikova, Dagmar Pospisilova, Vladimir Divoky and Monika Horvathova
Int. J. Mol. Sci. 2020, 21(24), 9652; https://doi.org/10.3390/ijms21249652 - 17 Dec 2020
Cited by 14 | Viewed by 3071
Abstract
Molecular pathophysiology of Diamond-Blackfan anemia (DBA) involves disrupted erythroid-lineage proliferation, differentiation and apoptosis; with the activation of p53 considered as a key component. Recently, oxidative stress was proposed to play an important role in DBA pathophysiology as well. CRISPR/Cas9-created Rpl5- and Rps19-deficient murine [...] Read more.
Molecular pathophysiology of Diamond-Blackfan anemia (DBA) involves disrupted erythroid-lineage proliferation, differentiation and apoptosis; with the activation of p53 considered as a key component. Recently, oxidative stress was proposed to play an important role in DBA pathophysiology as well. CRISPR/Cas9-created Rpl5- and Rps19-deficient murine erythroleukemia (MEL) cells and DBA patients’ samples were used to evaluate proinflammatory cytokines, oxidative stress, DNA damage and DNA damage response. We demonstrated that the antioxidant defense capacity of Rp-mutant cells is insufficient to meet the greater reactive oxygen species (ROS) production which leads to oxidative DNA damage, cellular senescence and activation of DNA damage response signaling in the developing erythroblasts and altered characteristics of mature erythrocytes. We also showed that the disturbed balance between ROS formation and antioxidant defense is accompanied by the upregulation of proinflammatory cytokines. Finally, the alterations detected in the membrane of DBA erythrocytes may cause their enhanced recognition and destruction by reticuloendothelial macrophages, especially during infections. We propose that the extent of oxidative stress and the ability to activate antioxidant defense systems may contribute to high heterogeneity of clinical symptoms and response to therapy observed in DBA patients. Full article
Show Figures

Figure 1

17 pages, 1472 KiB  
Review
How Altered Ribosome Production Can Cause or Contribute to Human Disease: The Spectrum of Ribosomopathies
by Giulia Venturi and Lorenzo Montanaro
Cells 2020, 9(10), 2300; https://doi.org/10.3390/cells9102300 - 15 Oct 2020
Cited by 37 | Viewed by 5275
Abstract
A number of different defects in the process of ribosome production can lead to a diversified spectrum of disorders that are collectively identified as ribosomopathies. The specific factors involved may either play a role only in ribosome biogenesis or have additional extra-ribosomal functions, [...] Read more.
A number of different defects in the process of ribosome production can lead to a diversified spectrum of disorders that are collectively identified as ribosomopathies. The specific factors involved may either play a role only in ribosome biogenesis or have additional extra-ribosomal functions, making it difficult to ascribe the pathogenesis of the disease specifically to an altered ribosome biogenesis, even if the latter is clearly affected. We reviewed the available literature in the field from this point of view with the aim of distinguishing, among ribosomopathies, the ones due to specific alterations in the process of ribosome production from those characterized by a multifactorial pathogenesis. Full article
(This article belongs to the Section Intracellular and Plasma Membranes)
Show Figures

Figure 1

Back to TopTop