Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (20,150)

Search Parameters:
Keywords = IL-33

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2164 KiB  
Article
Effect of Palmitoylethanolamide Compared to a Placebo on the Gut Microbiome and Biochemistry in an Overweight Adult Population: A Randomised, Placebo Controlled, Double-Blind Study
by Romeo Batacan, David Briskey, Yadav Sharma Bajagai, Chelsie Smith, Dana Stanley and Amanda Rao
Biomedicines 2024, 12(7), 1620; https://doi.org/10.3390/biomedicines12071620 (registering DOI) - 20 Jul 2024
Viewed by 125
Abstract
This study investigates the effects of palmitoylethanolamide (PEA) on the gut microbiome of overweight adults. Fifty-eight participants (twenty males, thirty-eight females) aged 18–65 years with a BMI range of 30–40 kg/m2 were recruited. Participants were randomised to receive PEA (n = [...] Read more.
This study investigates the effects of palmitoylethanolamide (PEA) on the gut microbiome of overweight adults. Fifty-eight participants (twenty males, thirty-eight females) aged 18–65 years with a BMI range of 30–40 kg/m2 were recruited. Participants were randomised to receive PEA (n = 36) or a placebo (n = 22) for 12 weeks. Microbiota composition, richness, diversity, and metabolic functions, faecal short chain fatty acids and calprotectin, pathology markers, and health-related questionnaires were analysed throughout the 12 weeks of supplementation. PEA supplementation significantly reduced triglyceride levels and IL-2 concentrations. No significant differences were found in the overall microbiota composition between the groups, and microbiota richness and diversity remained consistent for both groups. Functional analysis demonstrated no differences in functional richness and diversity, but specific pathways were modified. PEA supplementation resulted in a decrease in the abundance of pathways related to aromatic compound degradation, NAD interconversion, and L-glutamate degradation, while pathways associated with molybdopterin biosynthesis and O-antigen building blocks exhibited increased abundance. Increased production of O-antigen results in smooth LPS associated with reduced pathogenic stealth and persistence. PEA supplementation may influence specific microbial species, metabolic pathways, and reduce serum triglyceride and IL-2 concentration, shedding light on the intricate relationship between PEA, the microbiome, and host health. Full article
(This article belongs to the Section Microbiology in Human Health and Disease)
Show Figures

Figure 1

14 pages, 15375 KiB  
Article
Fat Phagocytosis Promotes Anti-Inflammatory Responses of Macrophages in a Mouse Model of Osteonecrosis
by Zhuo Deng, Harry K. W. Kim, Paula A. Hernandez and Yinshi Ren
Cells 2024, 13(14), 1227; https://doi.org/10.3390/cells13141227 (registering DOI) - 20 Jul 2024
Viewed by 126
Abstract
Osteonecrosis (ON) of the femoral head (ONFH) is a devastating bone disease affecting over 20 million people worldwide. ONFH is caused by a disruption of the blood supply, leading to necrotic cell death and increased inflammation. Macrophages are the key cells mediating the [...] Read more.
Osteonecrosis (ON) of the femoral head (ONFH) is a devastating bone disease affecting over 20 million people worldwide. ONFH is caused by a disruption of the blood supply, leading to necrotic cell death and increased inflammation. Macrophages are the key cells mediating the inflammatory responses in ON. It is unclear what the dynamic phenotypes of macrophages are and what mechanisms may affect macrophage polarization and, therefore, the healing process. In our preliminary study, we found that there is an invasion of macrophages into the repair tissue during ON healing. Interestingly, in both ONFH patients and a mouse ON model, fat was co-labeled within macrophages using immunofluorescence staining, indicating the phagocytosis of fat by macrophages. To study the effects of fat phagocytosis on the macrophage phenotype, we set up an in vitro macrophage and fat co-culture system. We found that fat phagocytosis significantly decreased M1 marker expression, such as IL1β and iNOS, in macrophages, whereas the expression of the M2 marker Arg1 was significantly increased with fat phagocytosis. To investigate whether the polarization change is indeed mediated by phagocytosis, we treated the cells with Latrunculin A (LA, which inhibits actin polymerization and phagocytosis). LA supplementation significantly reversed the polarization marker gene changes induced by fat phagocytosis. To provide an unbiased transcriptional gene analysis, we submitted the RNA for bulk RNA sequencing. Differential gene expression (DGE) analysis revealed that the top upregulated genes were related to anti-inflammatory responses, while proinflammatory genes were significantly downregulated. Additionally, using pathway enrichment and network analyses (Metascape), we confirmed that gene-enriched categories related to proinflammatory responses were significantly downregulated in macrophages with fat phagocytosis. Finally, we validated the similar macrophage phenotype changes in vivo. To summarize, we discovered that fat phagocytosis occurs in both ONFH patients and an ON mouse model, which inhibits proinflammatory responses with increased anabolic gene expression in macrophages. This fat-phagocytosis-induced macrophage phenotype is consistent with the in vivo changes shown in the ON mouse model. Our study reveals a novel phagocytosis-mediated macrophage polarization mechanism in ON, which fills in our knowledge gaps of macrophage functions and provides new concepts in macrophage immunomodulation as a promising treatment for ON. Full article
(This article belongs to the Special Issue Signaling Regulation of Bone and Tooth Development)
Show Figures

Graphical abstract

14 pages, 726 KiB  
Article
Effects of Mink-Origin Enterococcus faecium on Growth Performance, Antioxidant Capacity, Immunity, and Intestinal Microbiota of Growing Male Minks
by Lin Cao, Fengxue Sun, Qifeng Ren, Ziyi Jiang, Jian Chen, Yalin Li and Lihua Wang
Animals 2024, 14(14), 2120; https://doi.org/10.3390/ani14142120 (registering DOI) - 20 Jul 2024
Viewed by 104
Abstract
The purpose of this experiment was to explore the effects of dietary Enterococcus faecium (EF) on the growth performance, antioxidant capacity, immunity, and intestinal microbiota of growing male minks. A total of 60 male Regal White minks at 12 weeks of age were [...] Read more.
The purpose of this experiment was to explore the effects of dietary Enterococcus faecium (EF) on the growth performance, antioxidant capacity, immunity, and intestinal microbiota of growing male minks. A total of 60 male Regal White minks at 12 weeks of age were randomly assigned to two groups, each with 15 replicates of two minks per replicate. The minks in two groups were fed the basal diets and the basal diets with viable Enterococcus faecium (more than 107 cfu/kg of diet), respectively. Compared with the minks in control, Enterococcus faecium minks had heavier body weight (BW) at week 4 and week 8 of the study (p < 0.05), greater average daily gain (ADG), and a lower feed/gain ratio (F/G) of male minks during the initial 4 weeks and the entire 8-week study period (p < 0.05). Furthermore, Enterococcus faecium increased the apparent digestibility of crude protein (CP) and dry matter (DM) compared to the control (p < 0.05). Moreover, Enterococcus faecium enhanced the serum superoxide dismutase (SOD) activity and decreased the malondialdehyde (MDA) contents (p < 0.05). The results also confirmed that Enterococcus faecium increased the levels of serum immunoglobulin A (IgA), immunoglobulin G (IgG), and the concentrations of secretory immunoglobulin A (SIgA) in the jejunal mucosa while decreasing the interleukin-8 (IL-8) and interleukin-1β (IL-1β) levels in the jejunal mucosa (p < 0.05). Intestinal microbiota analysis revealed that Enterococcus faecium increased the species numbers at the OUT level. Compared with the control, Enterococcus faecium had significant effects on the relative abundance of Paraclostridium, Brevinema, and Comamonas (p < 0.05). The results showed that Enterococcus faecium could improve the growth performance, increase the antioxidant capacity, improve the immunity of growing male minks, and also modulate the gut microbiota. Full article
(This article belongs to the Special Issue Recent Advances in Probiotics Application on Animal Health)
24 pages, 1050 KiB  
Review
Saffron as a Promising Therapy for Inflammatory Bowel Disease
by Mudasir Rashid, Rumaisa Rashid, Sabtain Saroya, Mrinalini Deverapalli, Hassan Brim and Hassan Ashktorab
Nutrients 2024, 16(14), 2353; https://doi.org/10.3390/nu16142353 (registering DOI) - 20 Jul 2024
Viewed by 104
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory illness of the gastrointestinal tract (GI), characterized by recurrent episodes of inflammation and tissue destruction. It affects an increasing number of individuals worldwide who suffer from Crohn’s disease (CD) or ulcerative colitis (UC). Despite substantial [...] Read more.
Inflammatory bowel disease (IBD) is a chronic inflammatory illness of the gastrointestinal tract (GI), characterized by recurrent episodes of inflammation and tissue destruction. It affects an increasing number of individuals worldwide who suffer from Crohn’s disease (CD) or ulcerative colitis (UC). Despite substantial advances in understanding the underlying causes of IBD, the available treatments remain restricted and are sometimes accompanied by severe consequences. Consequently, there is an urgent need to study alternate therapeutic options. This review assesses the present drugs, identifies their limitations, and proposes the use of saffron, a natural plant with great therapeutic potential based on preclinical and clinical investigations. Saffron has gained attention for its potential therapeutic benefits in treating various ailments due to its established bioactive compounds possessing antioxidant and anti-inflammatory properties. This review covers how saffron impacts the levels of calprotectin, an inflammatory marker, for various inflammatory responses in multiple diseases including IBD. Data from clinical trials were assessed to determine the efficacy and safety of using saffron to counter inflammation in multiple diseases. Studies have shown that saffron may protect against inflammatory bowel disease (IBD) through several mechanisms by inhibiting pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6), reducing oxidative stress through antioxidant effects, enhancing mucosal barrier function by upregulating tight junction proteins, and modulating the gut microbiota composition to promote beneficial bacteria while suppressing pathogenic ones; these combined actions contribute to its therapeutic potential in managing and alleviating the symptoms of IBD. This will enable future research endeavors and expedite the translation of saffron-based interventions into clinical practice as a valuable adjunctive therapy or a potential alternative to conventional treatments, thereby enhancing the quality of life for individuals suffering from inflammatory diseases including IBD. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

10 pages, 2165 KiB  
Article
The Antibacterial Properties of a Reinforced Zinc Oxide Eugenol Combined with Cloisite 5A Nanoclay: An In-Vitro Study
by Bahareh Nazemisalman, Shaghayegh Niaz, Shayan Darvish, Ayda Notash, Ali Ramazani and Ionut Luchian
J. Funct. Biomater. 2024, 15(7), 198; https://doi.org/10.3390/jfb15070198 (registering DOI) - 20 Jul 2024
Viewed by 99
Abstract
Pulpotomies and pulpectomies are the most common clinical approach for dental caries in the primary dentition. Reinforced zinc oxide eugenol (ZOE) is an ideal material for filling in the pulp chamber after pulp therapies. The aim of this study was to assess the [...] Read more.
Pulpotomies and pulpectomies are the most common clinical approach for dental caries in the primary dentition. Reinforced zinc oxide eugenol (ZOE) is an ideal material for filling in the pulp chamber after pulp therapies. The aim of this study was to assess the addition of Cloisite 5A nanoclay material to ZOE and evaluate its antibacterial properties. In this case–control study, the nanoclay nanoparticles were dissolved using a solvent (Eugenol) in different concentrations and their antibacterial properties were assessed using the agar diffusion test and biofilm analysis of Streptococcus mutans (S. mutans), Enterococcus faecalis (E. faecalis), and Escherichia coli (E. coli) in in vitro conditions using the AATCC 100 standards. The diameter of the inhibition zone was measured and assessed statistically using the SPSS software (Version 28, IBM, Chicago, IL, USA) with a significance level of 0.05. The antibacterial properties of the ZOE with nanoclay particles were significantly greater in comparison to the plain ZOE against E. faecalis, S. mutans, and E. coli. The inhibition zone against E. coli under the effect of the ZOE and nanoclay particles combined was significantly higher than that against E. faecalis and S. mutans. The current study showed that the addition of Cloisite 5A nanoclay particles can improve the antibacterial properties of ZOE significantly at certain concentrations. Full article
(This article belongs to the Special Issue Nanostructured Materials/Biomaterials for Healthcare Applications)
Show Figures

Figure 1

15 pages, 2167 KiB  
Article
Sub-Chronic Methomyl Exposure Induces Oxidative Stress and Inflammatory Responses in Zebrafish with Higher Female Susceptibility
by Mingxiao Li, Xi Chen, Chao Song, Jing Xu, Limin Fan, Liping Qiu, Dandan Li, Huimin Xu, Shunlong Meng, Xiyan Mu, Bin Xia and Jun Ling
Antioxidants 2024, 13(7), 871; https://doi.org/10.3390/antiox13070871 (registering DOI) - 20 Jul 2024
Viewed by 146
Abstract
The widespread use of carbamate pesticides has raised significant environmental and health concerns, particularly regarding water contamination and the disruption of defense systems in organisms. Despite these concerns, research on the differential impacts of pesticides on male and female organisms remains limited. This [...] Read more.
The widespread use of carbamate pesticides has raised significant environmental and health concerns, particularly regarding water contamination and the disruption of defense systems in organisms. Despite these concerns, research on the differential impacts of pesticides on male and female organisms remains limited. This study focused on methomyl, investigating sex-specific differences in liver antioxidant defenses and inflammatory response indices in male and female zebrafish after 56 days of exposure to environmentally relevant concentrations (0, 0.05, 0.10, and 0.20 mg/L). Our findings indicate that methomyl exposure significantly increased ROS content in zebrafish livers, inducing oxidative stress and activating enzymatic antioxidant defenses such as SOD, CAT, and GSH-Px activities. Sub-chronic exposure altered the expression of apoptosis-related genes (Bax/Bcl2a and Caspases3a), resulting in liver cell apoptosis in a concentration-dependent manner, with the 0.20 mg/L concentration causing the most severe damage. Additionally, methomyl exposure at environmentally relevant concentrations triggered persistent inflammatory responses in liver tissues, evidenced by increased transcription levels of inflammatory factor genes and the activation of toll-like receptors, heightening susceptibility to exogenous allergens. It is noteworthy that oxidative damage indicators (AST, ROS, MDA) and inflammatory gene expressions (IL-1β, TNF-α) were significantly higher in female livers compared to male livers at 0.10–0.20 mg/L methomyl exposure. Consequently, our study underscores the potential adverse effects of environmental methomyl exposure on aquatic organisms and highlights the need for heightened consideration of the risks posed by environmental endocrine disruptors to female health and safety. Full article
Show Figures

Figure 1

10 pages, 667 KiB  
Article
The Association between Body Composition and the Parameters of Muscle Fitness in Selected Young Judokas
by Nikola Milošević, Dušan Stupar, Nemanja Stanković, Saša Pantelić, Nikola Stojanović, Stevan Stamenković, Nebojša Trajković and Igor Potparić
Appl. Sci. 2024, 14(14), 6327; https://doi.org/10.3390/app14146327 (registering DOI) - 20 Jul 2024
Viewed by 170
Abstract
This study aimed to determine the influence of body composition on the muscle fitness of selected judokas. This study was conducted on a sample of 23 judokas (cadets n = 12, juniors n = 11), members of the male national team of Serbia. [...] Read more.
This study aimed to determine the influence of body composition on the muscle fitness of selected judokas. This study was conducted on a sample of 23 judokas (cadets n = 12, juniors n = 11), members of the male national team of Serbia. The assessment of body composition was performed using the InBody 720 (Biospace Co., Ltd., Seoul, Republic of Korea) and calipers. Muscle fitness was assessed using “Optojump” (Microgate, Bolzano, Italy), Fitrodine Premium (Fitronic, Bratislava, Slovakia), and a digital force instrument IMADA Z2H-1100 (Imada Inc., Northbrook, IL, USA). Regression analysis revealed a notable association between muscle mass and measures of explosive strength (countermovement jump (CMJ) p = 0.023; drop jump (DJ) p = 0.026). Moreover, this study’s results showed that back extension (p = 0.006; R2 = 0.61) and hand grip (p = 0.009; R2 = 0.52) provide a strong positive association with muscle mass. The findings suggest that tailored training and nutritional strategies that improve muscle mass might significantly enhance muscle fitness in young judokas, optimizing their performance. Full article
(This article belongs to the Special Issue Athletes Performance and Analysis in Combat Sports and Martial Arts)
Show Figures

Figure 1

12 pages, 2291 KiB  
Article
Modulation of the Toll-like Receptor 3-Mediated Intestinal Immune Response by Water Kefir
by Stefania Dentice Maidana, Ramiro Ortiz Moyano, Mariano Elean, Yoshiya Imamura, Leonardo Albarracín, Fu Namai, Yoshihito Suda, Keita Nishiyama, Julio Villena and Haruki Kitazawa
Microbiol. Res. 2024, 15(3), 1239-1250; https://doi.org/10.3390/microbiolres15030083 (registering DOI) - 20 Jul 2024
Viewed by 188
Abstract
Kefir has been associated with beneficial effects on its host’s health. The previous works examining the impact of kefir on the immune system focused on milk kefir or the exopolysaccharides and bacterial strains derived from it, while water kefir has not been evaluated. [...] Read more.
Kefir has been associated with beneficial effects on its host’s health. The previous works examining the impact of kefir on the immune system focused on milk kefir or the exopolysaccharides and bacterial strains derived from it, while water kefir has not been evaluated. Furthermore, studies have focused on kefir’s ability to modulate immune system hemostasis and exert anti-inflammatory effects, while its specific action on antiviral immunity has not been investigated. Thus, the aim of this work was to examine the potential immunomodulatory effects of water kefir on the intestinal innate antiviral immunity mediated by Toll-like receptor-3 (TLR3). Adult BALB/c mice fed water kefir ad libitum, diluted 1:5, 1:10, or 1:20 in the drinking water, for 6 consecutive days. On day 7, the treated groups and the untreated control mice received an intraperitoneal injection of the TLR3 agonist poly(I:C). Two days after the TLR3 activation, the intestinal damage and the innate immune response were studied. The intraperitoneal administration of poly(I:C) induced inflammatory-mediated intestinal tissue damage, characterized by the upregulation of interferons (IFNs), pro-inflammatory mediators (TNF-α, IL-15, IL-6), and factors involved in epithelial destruction (RAE-1 and NKG2D). The histological analysis of small intestinal samples showed that mice receiving water kefir 1:5 exhibited reduced edema and a lower inflammatory cell infiltration. Kefir-treated mice had significantly lower levels of serum LDH, AST, and ALT as well as intestinal TNF-α, IL-15, IL-6, RAE-1, and NKG2D. This group also showed higher concentrations of intestinal IFN-β, IFN-γ, and IL-10. The treatment with 1:10 of water kefir reduced intestinal damage and modulated cytokines but its effect was significantly lower than the 1:5 treatment, while the water kefir 1:20 did not modify the parameters evaluated compared to control mice. The results indicate that water kefir exerts its immunomodulatory effects in a dose-dependent manner. The in vivo studies allow us to speculate that water kefir can induce two beneficial effects on the intestinal TLR3-mediated immune response: the enhancement of antiviral defenses and the protection against the inflammatory-mediated tissue damage. These protective effects of water kefir require further exploration to understand how water kefir, or its specific molecules/strains, can influence the immune response and to determine the extent of its protection against a real viral challenge. Full article
Show Figures

Figure 1

12 pages, 1773 KiB  
Article
The Development of a Multivalent Capripoxvirus-Vectored Vaccine Candidate to Protect against Sheeppox, Goatpox, Peste des Petits Ruminants, and Rift Valley Fever
by Hani Boshra, Graham A. D. Blyth, Thang Truong, Andrea Kroeker, Pravesh Kara, Arshad Mather, David Wallace and Shawn Babiuk
Vaccines 2024, 12(7), 805; https://doi.org/10.3390/vaccines12070805 (registering DOI) - 20 Jul 2024
Viewed by 213
Abstract
Capripoxviruses are the causative agents of sheeppox, goatpox, and lumpy skin disease (LSD) in cattle, which cause economic losses to the livestock industry in Africa and Asia. Capripoxviruses are currently controlled using several live attenuated vaccines. It was previously demonstrated that a lumpy [...] Read more.
Capripoxviruses are the causative agents of sheeppox, goatpox, and lumpy skin disease (LSD) in cattle, which cause economic losses to the livestock industry in Africa and Asia. Capripoxviruses are currently controlled using several live attenuated vaccines. It was previously demonstrated that a lumpy skin disease virus (LSDV) field isolate from Warmbaths (WB) South Africa, ORF 005 (IL-10) gene-deleted virus (LSDV WB005KO), was able to protect sheep and goats against sheeppox and goatpox. Subsequently, genes encoding the protective antigens for peste des petits ruminants (PPR) and Rift Valley fever (RVF) viruses have been inserted in the LSDV WB005KO construct in three different antigen forms (native, secreted, and fusion). These three multivalent vaccine candidates were evaluated for protection against PPR using a single immunization of 104 TCID50 in sheep. The vaccine candidates with the native and secreted antigens protected sheep against PPR clinical disease and decreased viral shedding, as detected using real-time RT-PCR in oral and nasal swabs. An anamnestic antibody response, measured using PPR virus-neutralizing antibody response production, was observed in sheep following infection. The vaccine candidates with the antigens expressed in their native form were evaluated for protection against RVF using a single immunization with doses of 104 or 105 TCID50 in sheep and goats. Following RVF virus infection, sheep and goats were protected against clinical disease and no viremia was detected in serum compared to control animals, where viremia was detected one day following infection. Sheep and goats developed RVFV-neutralizing antibodies prior to infection, and the antibody responses increased following infection. These results demonstrate that an LSD virus-vectored vaccine candidate can be used in sheep and goats to protect against multiple viral infections. Full article
(This article belongs to the Special Issue Animal Virus Infection, Immunity and Vaccines)
Show Figures

Figure 1

12 pages, 521 KiB  
Article
Baseline Blood CD8+ T Cell Activation Potency Discriminates Responders from Non-Responders to Immune Checkpoint Inhibition Combined with Stereotactic Radiotherapy in Non-Small-Cell Lung Cancer
by Hanneke Kievit, M. Benthe Muntinghe-Wagenaar, Wayel H. Abdulahad, Abraham Rutgers, Lucie B. M. Hijmering-Kappelle, Birgitta I. Hiddinga, J. Fred Ubbels, Robin Wijsman, Marcel J. van der Leij, Johan Bijzet, Harry J. M. Groen, Huib A. M. Kerstjens, Anthonie J. van der Wekken, Bart-Jan Kroesen and T. Jeroen N. Hiltermann
Cancers 2024, 16(14), 2592; https://doi.org/10.3390/cancers16142592 (registering DOI) - 19 Jul 2024
Viewed by 147
Abstract
Background: Tumor-infiltrating immune cells have been correlated with prognosis for patients treated with immune checkpoint inhibitor (ICI) treatment of various cancers. However, no robust biomarker has been described to predict treatment response yet. We hypothesized that the activation potency of circulating T cells [...] Read more.
Background: Tumor-infiltrating immune cells have been correlated with prognosis for patients treated with immune checkpoint inhibitor (ICI) treatment of various cancers. However, no robust biomarker has been described to predict treatment response yet. We hypothesized that the activation potency of circulating T cells may predict response to ICI treatment. Methods: An exploratory analysis was conducted to investigate the association between the response to immune checkpoint inhibition (ICI) combined with stereotactic radiotherapy (SBRT) and the potency of circulating T cells to be activated. Blood-derived lymphocytes from 14 patients were stimulated ex vivo with, among others, Staphylococcal enterotoxin B (SEB) and compared to healthy controls (HCs). Patients were grouped into responders (>median progression free survival (PFS)) and non-responders (<median PFS). The expression of the T cell activation marker CD69 and intracellular cytokines (IL-2, IFNγ, TNFα) in both CD4+ and CD8+ T cells in response to stimulation was measured using flow cytometry. In addition, serum levels of BAFF, IFNγ, and IL-2 receptor (sIL-2R) were measured by Luminex. Results: At baseline, a higher percentage of activated CD8+ T cells (15.8% vs. 3.5% (p = <0.01)) and IL-2+CD69+CD8+ T cells (8.8% vs. 2.9% (p = 0.02)) was observed in responders compared to non-responders upon ex vivo stimulation with SEB. The concurrently measured serum cytokine levels were not different between responders and non-responders. Conclusion: Baseline blood CD8+ T cell activation potency, measured by intracellular cytokine production after ex vivo stimulation, is a potential biomarker to discriminate responders from non-responders to SBRT combined with ICI. Full article
(This article belongs to the Special Issue Novel Biomarkers in Non-small Cell Lung Cancer (NSCLC))
23 pages, 11981 KiB  
Article
Hesperetin Alleviated Experimental Colitis via Regulating Ferroptosis and Gut Microbiota
by Jinzhi Wang, Yuanyuan Yao, Ting Yao, Qingmiao Shi, Yifan Zeng and Lanjuan Li
Nutrients 2024, 16(14), 2343; https://doi.org/10.3390/nu16142343 - 19 Jul 2024
Viewed by 209
Abstract
Hesperetin (HT) is a type of citrus flavonoid with various pharmacological activities, including anti-tumor, anti-inflammation, antioxidant, and neuroprotective properties. However, the role and mechanism of HT in ulcerative colitis (UC) have been rarely studied. Our study aimed to uncover the beneficial effects of [...] Read more.
Hesperetin (HT) is a type of citrus flavonoid with various pharmacological activities, including anti-tumor, anti-inflammation, antioxidant, and neuroprotective properties. However, the role and mechanism of HT in ulcerative colitis (UC) have been rarely studied. Our study aimed to uncover the beneficial effects of HT and its detailed mechanism in UC. Experimental colitis was induced by 2.5% dextran sodium sulfate (DSS) for seven days. HT ameliorated DSS-induced colitis in mice, showing marked improvement in weight loss, colon length, colonic pathological severity, and the levels of TNFα and IL6 in serum. A combination of informatics, network pharmacology, and molecular docking identified eight key targets and multi-pathways influenced by HT in UC. As a highlight, the experimental validation demonstrated that PTGS2, a marker of ferroptosis, along with other indicators of ferroptosis (such as ACSL4, Gpx4, and lipid peroxidation), were regulated by HT in vivo and in vitro. Additionally, the supplement of HT increased the diversity of gut microbiota, decreased the relative abundance of Proteobacteria and Gammaproteobacteria, and restored beneficial bacteria (Lachnospiraceae_NK4A136_group and Prevotellaceae_UCG-001). In conclusion, HT is an effective nutritional supplement against experimental colitis by suppressing ferroptosis and modulating gut microbiota. Full article
(This article belongs to the Special Issue Bioactive Compounds in Potential Disease Treatment)
8 pages, 740 KiB  
Review
Use of the CardioMEMS Device in Children and Patients with Congenital Heart Disease: A Literature Review
by Enrico Piccinelli, Giorgia Grutter, Mara Pilati, Micol Rebonato, Silvia Teresa Scalera, Rachele Adorisio, Antonio Amodeo, Gessica Ingrasciotta, Erica Mencarelli, Lorenzo Galletti and Gianfranco Butera
J. Clin. Med. 2024, 13(14), 4234; https://doi.org/10.3390/jcm13144234 - 19 Jul 2024
Viewed by 190
Abstract
The CardioMEMS HF System (Abbott, Abbott Park, IL) is the first FDA- and CE-Mark-approved device for monitoring patients with heart failure, significantly reducing hospitalizations and improving the quality of life for NYHA class III non-congenital adult patients. This device, implanted percutaneously, allows the [...] Read more.
The CardioMEMS HF System (Abbott, Abbott Park, IL) is the first FDA- and CE-Mark-approved device for monitoring patients with heart failure, significantly reducing hospitalizations and improving the quality of life for NYHA class III non-congenital adult patients. This device, implanted percutaneously, allows the direct monitoring of pulmonary arterial pressure with the wireless transfer of pressure data to the clinician, who can adjust the therapy remotely. Limited experience exists regarding its use in patients with congenital heart disease (CHD). CardioMEMS device implantation is feasible and safe in selected adults and children with CHD. The potential of the device to reduce heart failure hospitalizations in this population is enormous, but further multi-center studies are needed to demonstrate its efficacy. Full article
(This article belongs to the Section Cardiology)
11 pages, 2522 KiB  
Article
Unveiling Bladder Cancer Prognostic Insights by Integrating Patient-Matched Sample and CpG Methylation Analysis
by Chanbyeol Kim, Sangwon Oh, Hamin Im and Jungsoo Gim
Medicina 2024, 60(7), 1175; https://doi.org/10.3390/medicina60071175 - 19 Jul 2024
Viewed by 294
Abstract
Bladder cancer prognosis remains a pressing clinical challenge, necessitating the identification of novel biomarkers for precise survival prediction and improved quality of life outcomes. This study proposes a comprehensive strategy to uncover key prognostic biomarkers in bladder cancer using DNA methylation analysis and [...] Read more.
Bladder cancer prognosis remains a pressing clinical challenge, necessitating the identification of novel biomarkers for precise survival prediction and improved quality of life outcomes. This study proposes a comprehensive strategy to uncover key prognostic biomarkers in bladder cancer using DNA methylation analysis and extreme survival pattern observations in matched pairs of cancer and adjacent normal cells. Unlike traditional approaches that overlook cancer heterogeneity by analyzing entire samples, our methodology leverages patient-matched samples to account for this variability. Specifically, DNA methylation profiles from adjacent normal bladder tissue and bladder cancer tissue collected from the same individuals were analyzed to pinpoint critical methylation changes specific to cancer cells while mitigating confounding effects from individual genetic differences. Utilizing differential threshold settings for methylation levels within cancer-associated pathways enabled the identification of biomarkers that significantly impact patient survival. Our analysis identified distinct survival patterns associated with specific CpG sites, underscoring these sites’ pivotal roles in bladder cancer outcomes. By hypothesizing and testing the influence of methylation levels on survival, we pinpointed CpG biomarkers that profoundly affect the prognosis. Notably, CpG markers, such as cg16269144 (PRKCZ), cg16624272 (PTK2), cg11304234, and cg26534425 (IL18), exhibited critical methylation thresholds that correlate with patient mortality. This study emphasizes the importance of tailored approaches to enhancing prognostic accuracy and refining therapeutic strategies for bladder cancer patients. The identified biomarkers pave the way for personalized prognostication and targeted interventions, promising advancements in bladder cancer management and patient care. Full article
(This article belongs to the Section Oncology)
20 pages, 8211 KiB  
Article
Aspergillusidone G Potentiates the Anti-Inflammatory Effects of Polaprezinc in LPS-Induced BV2 Microglia: A Bioinformatics and Experimental Study
by Fangfang Ban, Longjian Zhou, Zhiyou Yang, Yayue Liu and Yi Zhang
Mar. Drugs 2024, 22(7), 324; https://doi.org/10.3390/md22070324 - 19 Jul 2024
Viewed by 171
Abstract
Neuroinflammation is one of the main mechanisms involved in the progression of neurodegenerative diseases (NDs), and microglial activation is the main feature of neuroinflammation. Polaprezinc (Pol), a chelator of L-carnosine and zinc, is widely used as a clinical drug for gastric ulcers. However, [...] Read more.
Neuroinflammation is one of the main mechanisms involved in the progression of neurodegenerative diseases (NDs), and microglial activation is the main feature of neuroinflammation. Polaprezinc (Pol), a chelator of L-carnosine and zinc, is widely used as a clinical drug for gastric ulcers. However, its potential effects on NDs remain unexplored. In LPS-induced BV-2 microglia, we found that Pol reduced the generation of NO and ROS and revealed inhibited expression of iNOS, COX-2, and inflammatory factors such as IL-6, TNF-α, and 1L-1β by Pol using qRT-PCR and Western blotting. These effects were found to be associated with the suppression of the NF-κB signaling pathway. Moreover, we evaluated the potential synergistic effects of aspergillusidone G (Asp G) when combined with Pol. Remarkably, co-treatment with low doses of Asp G enhanced the NO inhibition by Pol from approximately 30% to 80% in LPS-induced BV2 microglia, indicating a synergistic anti-inflammatory effect. A bioinformatics analysis suggested that the synergistic mechanism of Asp G and Pol might be attributed to several targets, including NFκB1, NRF2, ABL1, TLR4, and PPARα. These findings highlight the anti-neuroinflammatory properties of Pol and its enhanced efficacy when combined with Asp G, proposing a novel therapeutic strategy for managing neuroinflammation in NDs. Full article
(This article belongs to the Special Issue Marine Alkaloids: Sources, Discovery, Diversity, and Bioactivities)
Show Figures

Graphical abstract

26 pages, 1820 KiB  
Review
Galangin: A Promising Flavonoid for the Treatment of Rheumatoid Arthritis—Mechanisms, Evidence, and Therapeutic Potential
by Ghada Khawaja, Youmna El-Orfali, Aya Shoujaa and Sonia Abou Najem
Pharmaceuticals 2024, 17(7), 963; https://doi.org/10.3390/ph17070963 - 19 Jul 2024
Viewed by 192
Abstract
Rheumatoid Arthritis (RA) is a chronic autoimmune disease characterized by progressive joint inflammation and damage. Oxidative stress plays a critical role in the onset and progression of RA, significantly contributing to the disease’s symptoms. The complex nature of RA and the role of [...] Read more.
Rheumatoid Arthritis (RA) is a chronic autoimmune disease characterized by progressive joint inflammation and damage. Oxidative stress plays a critical role in the onset and progression of RA, significantly contributing to the disease’s symptoms. The complex nature of RA and the role of oxidative stress make it particularly challenging to treat effectively. This article presents a comprehensive review of RA’s development, progression, and the emergence of novel treatments, introducing Galangin (GAL), a natural flavonoid compound sourced from various plants, as a promising candidate. The bioactive properties of GAL, including its anti-inflammatory, antioxidant, and immunomodulatory effects, are discussed in detail. The review elucidates GAL’s mechanisms of action, focusing on its interactions with key targets such as inflammatory cytokines (e.g., TNF-α, IL-6), enzymes (e.g., SOD, MMPs), and signaling pathways (e.g., NF-κB, MAPK), which impact inflammatory responses, immune cell activation, and joint damage. The review also addresses the lack of comprehensive understanding of potential treatment options for RA, particularly in relation to the role of GAL as a therapeutic candidate. It highlights the need for further research and clinical studies to ascertain the effectiveness of GAL in RA treatment and to elucidate its mechanisms of action. Overall, this review provides valuable insights into the potential of GAL as a therapeutic option for RA, shedding light on its multifaceted pharmacological properties and mechanisms of action, while suggesting avenues for future research and clinical applications. Full article
(This article belongs to the Special Issue Bioactive Substances, Oxidative Stress, and Inflammation)
Show Figures

Figure 1

Back to TopTop