Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (381)

Search Parameters:
Keywords = Inverse Distance Weighting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 16192 KiB  
Article
Enhancing Forest Site Classification in Northwest Portugal: A Geostatistical Approach Employing Cokriging
by Barbara Pavani-Biju, José G. Borges, Susete Marques and Ana C. Teodoro
Sustainability 2024, 16(15), 6423; https://doi.org/10.3390/su16156423 - 26 Jul 2024
Viewed by 466
Abstract
Forest managers need inventory data and information to address sustainability concerns over extended temporal horizons. In situ information is usually derived from field data and computed using appropriate equations. Nonetheless, fieldwork is time-consuming and costly. Thus, new technologies like Light Detection and Ranging [...] Read more.
Forest managers need inventory data and information to address sustainability concerns over extended temporal horizons. In situ information is usually derived from field data and computed using appropriate equations. Nonetheless, fieldwork is time-consuming and costly. Thus, new technologies like Light Detection and Ranging (LiDAR) have emerged as an alternative method for forest assessment. In this study, we evaluated the accuracy of geostatistical methods in predicting the Site Index (SI) using LiDAR metrics as auxiliary variables. Since primary variables, which were obtained from forestry inventory data, were used to calculate the SI, secondary variables obtained from LiDAR surveying were considered and multivariate kriging techniques were tested. The ordinary cokriging (CK) method outperformed the simple cokriging (SK) and Inverse Distance Weighted (IDW) methods, which was interpolated using only the primary variable. Aside from having fewer SI sample points, CK was proven to be a trustworthy interpolation method, minimizing interpolation errors due to the highly correlated auxiliary variables, highlighting the significance of the data’s spatial structure and autocorrelation in predicting forest stand attributes, such as the SI. CK increased the SI prediction accuracy by 36.6% for eucalyptus, 62% for maritime pine, 72% for pedunculate oak, and 43% for cork oak compared to IDW, outperforming this interpolation approach. Although cokriging modeling is challenging, it is an appealing alternative to non-spatial statistics for improving forest management sustainability since the results are unbiased and trustworthy, making the effort worthwhile when dense secondary variables are available. Full article
(This article belongs to the Section Sustainability in Geographic Science)
Show Figures

Figure 1

20 pages, 23849 KiB  
Article
Flood Inundation Probability Estimation by Integrating Physical and Social Sensing Data: Case Study of 2021 Heavy Rainfall in Henan, China
by Wenying Du, Qingyun Xia, Bingqing Cheng, Lei Xu, Zeqiang Chen, Xiang Zhang, Min Huang and Nengcheng Chen
Remote Sens. 2024, 16(15), 2734; https://doi.org/10.3390/rs16152734 - 26 Jul 2024
Viewed by 319
Abstract
Frequent flooding seriously affects people’s safety and economic construction, and assessing the inundation probability can help to strengthen the capacity of emergency management of floods. There are currently two general means of flood sensing: physical and social. Remote sensing data feature high reliability [...] Read more.
Frequent flooding seriously affects people’s safety and economic construction, and assessing the inundation probability can help to strengthen the capacity of emergency management of floods. There are currently two general means of flood sensing: physical and social. Remote sensing data feature high reliability but are often unavailable in disasters caused by persistent heavy rainfall. Social media is characterized by high timeliness and a large data volume but has high redundancy and low reliability. The existing studies have primarily relied on physical sensing data and have not fully exploited the potential of social media data. This paper combines traditional physical sensing data with social media and proposes an integrated physical and social sensing (IPS) method to estimate the probability distribution of flood inundation. Taking the “7·20” Henan rainstorm in 2021 and the study area of Xinxiang, China, as a case study, more than 60,000 messages and 1900 images about this occurrence were acquired from the Weibo platform. Taking filtered water depth points with their geographic location and water depth information as the main input, the inverse distance attenuation function was used to calculate the inundation potential layer of the whole image. Then, the Gaussian kernel was used to weight the physical sensing data based on each water depth point, and finally, the submergence probability layer of the whole image was enhanced. In the validation of the results using radar and social media points, accuracies of 88.77% and 75% were obtained by setting up a threshold classification, demonstrating the effectiveness and usefulness of the method. The significance of this study lies in obtaining discrete social media flood points and achieving space-continuous flood inundation probability mapping, providing decision-making support for urban flood diagnosis and mitigation. Full article
Show Figures

Figure 1

22 pages, 79680 KiB  
Article
Power Prediction of Regional Photovoltaic Power Stations Based on Meteorological Encryption and Spatio-Temporal Graph Networks
by Shunli Deng, Shuangxi Cui and Anchen Xu
Energies 2024, 17(14), 3557; https://doi.org/10.3390/en17143557 - 19 Jul 2024
Viewed by 388
Abstract
Distributed photovoltaic (PV) power stations generally lack historical meteorological data, which is one of the main reasons for their insufficient power prediction accuracy. To address this issue, this paper proposes a power prediction method for regional distributed PV power stations based on meteorological [...] Read more.
Distributed photovoltaic (PV) power stations generally lack historical meteorological data, which is one of the main reasons for their insufficient power prediction accuracy. To address this issue, this paper proposes a power prediction method for regional distributed PV power stations based on meteorological encryption and spatio-temporal graph networks. First, inverse distance weighted meteorological encryption technology is used to achieve the comprehensive coverage of key meteorological resources based on the geographical locations of PV power stations and the meteorological resources of weather stations. Next, the historical power correlations between PV power stations are analyzed, and highly correlated stations are connected to construct a topological graph structure. Then, an improved spatio-temporal graph network model is established based on this graph to deeply mine the spatio-temporal characteristics of regional PV power stations. Furthermore, a dual-layer attention mechanism is added to further learn the feature attributes of nodes and enhance the spatio-temporal features extracted by the spatio-temporal graph network, ultimately achieving power prediction for regional PV power stations. The simulation results indicate that the proposed model demonstrates excellent prediction accuracy, robustness, extensive generalization capability, and broad applicability. Full article
(This article belongs to the Special Issue Advances in Renewable Energy Power Forecasting and Integration)
Show Figures

Figure 1

18 pages, 8263 KiB  
Article
Inversion Method for Monitoring Daily Variations in Terrestrial Water Storage Changes in the Yellow River Basin Based on GNSS
by Wenqing Zhang and Xiaoping Lu
Water 2024, 16(13), 1919; https://doi.org/10.3390/w16131919 - 5 Jul 2024
Viewed by 499
Abstract
The uneven distribution of global navigation satellite system (GNSS) continuous stations in the Yellow River Basin, combined with the sparse distribution of GNSS continuous stations in some regions and the weak far-field load signals, poses challenges in using GNSS vertical displacement data to [...] Read more.
The uneven distribution of global navigation satellite system (GNSS) continuous stations in the Yellow River Basin, combined with the sparse distribution of GNSS continuous stations in some regions and the weak far-field load signals, poses challenges in using GNSS vertical displacement data to invert terrestrial water storage changes (TWSCs). To achieve the inversion of water reserves in the Yellow River Basin using unevenly distributed GNSS continuous station data, in this study, we employed the Tikhonov regularization method to invert the terrestrial water storage (TWS) in the Yellow River Basin using vertical displacement data from network engineering and the Crustal Movement Observation Network of China (CMONOC) GNSS continuous stations from 2011 to 2022. In addition, we applied an inverse distance weighting smoothing factor, which was designed to account for the GNSS station distribution density, to smooth the inversion results. Consequently, a gridded product of the TWS in the Yellow River Basin with a spatial resolution of 0.5 degrees on a daily scale was obtained. To validate the effectiveness of the proposed method, a correlation analysis was conducted between the inversion results and the daily TWS from the Global Land Data Assimilation System (GLDAS), yielding a correlation coefficient of 0.68, indicating a strong correlation, which verifies the effectiveness of the method proposed in this paper. Based on the inversion results, we analyzed the spatial–temporal distribution trends and patterns in the Yellow River Basin and found that the average TWS decreased at a rate of 0.027 mm/d from 2011 to 2017, and then increased at a rate of 0.010 mm/d from 2017 to 2022. The TWS decreased from the lower-middle to lower reaches, while it increased from the upper-middle to upper reaches. Furthermore, an attribution analysis of the terrestrial water storage changes in the Yellow River Basin was conducted, and the correlation coefficients between the monthly average water storage changes inverted from the results and the monthly average precipitation, evapotranspiration, and surface temperature (AvgSurfT) from the GLDAS were 0.63, −0.65, and −0.69, respectively. This indicates that precipitation, evapotranspiration, and surface temperature were significant factors affecting the TWSCs in the Yellow River Basin. Full article
Show Figures

Figure 1

23 pages, 9749 KiB  
Article
Time Delay Estimation for Acoustic Temperature Measurement of Loose Coal Based on Quadratic Correlation PHAT-β Algorithm
by Yin Liu, Jun Guo, Wenjing Gao, Hu Wen, Guobin Cai, Yongfei Jin and Kaixuan Wang
Fire 2024, 7(7), 228; https://doi.org/10.3390/fire7070228 - 1 Jul 2024
Viewed by 548
Abstract
The acoustic temperature measurement method has a broad application prospect due to its advantages of high precision, non-contact, etc. It is expected to become a new method for hidden fire source detection in mines. The acoustic time of flight (TOF) can directly affect [...] Read more.
The acoustic temperature measurement method has a broad application prospect due to its advantages of high precision, non-contact, etc. It is expected to become a new method for hidden fire source detection in mines. The acoustic time of flight (TOF) can directly affect the accuracy of acoustic temperature measurement. We proposed a quadratic correlation-based phase transform weighting (PHAT-β) algorithm for estimating the time delay of the acoustic temperature measurement of a loose coal. Validation was performed using an independently built experimental system for acoustic temperature measurement of loose coals under multi-factor coupling. The results show that the PHAT-β algorithm estimated acoustic TOF values closest to the reference line as the sound travelling distance increased. The results of coal temperature inversion experiments show that the absolute error of the PHAT-β algorithm never exceeds 1 °C, with a maximum value of 0.862 °C. Using the ROTH weighted error maximum, when the particle of the coal samples is 3.0–5.0 cm, the absolute error maximum is 4.896 °C, which is a difference of 3.693 °C from the error minimum of 1.203 °C in this particle size interval. The accuracy of six algorithms was ranked as PHAT-β > GCC > PHAT > SCOT > HB > ROTH, further validating the accuracy and reliability of the PHAT-β algorithm. Full article
Show Figures

Figure 1

10 pages, 5049 KiB  
Communication
Kriging Interpolation for Constructing Database of the Atmospheric Refractivity in Korea
by Doyoung Jang, Nammoon Kim and Hosung Choo
Remote Sens. 2024, 16(13), 2379; https://doi.org/10.3390/rs16132379 - 28 Jun 2024
Viewed by 353
Abstract
This paper presents a Kriging interpolation method for constructing a database of atmospheric refractivity in Korea. To collect as much data as possible for the interpolation, meteorological data from 120 regions of Korea, including both land and sea areas, are examined. Then, the [...] Read more.
This paper presents a Kriging interpolation method for constructing a database of atmospheric refractivity in Korea. To collect as much data as possible for the interpolation, meteorological data from 120 regions of Korea, including both land and sea areas, are examined. Then, the normalized atmospheric refractivity Nn is calculated for an altitude of 0 m, because the refractivity tends to vary depending on the altitude of the observation site. In addition, the optimal variogram model to obtain the spatial correlation required for the Kriging method is investigated. The estimation accuracy of the Kriging interpolation is compared with that of the inverse distance weighting (IDW) and the bi-linear methods. The average and maximum estimation errors when using the Kriging method are 0.24 and 1.32, respectively. The result demonstrates that the Kriging method is more suitable for the interpolation of atmospheric refractivity in Korea than the conventional methods. Full article
Show Figures

Figure 1

15 pages, 4809 KiB  
Article
LiDAR Point Cloud Super-Resolution Reconstruction Based on Point Cloud Weighted Fusion Algorithm of Improved RANSAC and Reciprocal Distance
by Xiaoping Yang, Ping Ni, Zhenhua Li and Guanghui Liu
Electronics 2024, 13(13), 2521; https://doi.org/10.3390/electronics13132521 - 27 Jun 2024
Viewed by 419
Abstract
This paper proposes a point-by-point weighted fusion algorithm based on an improved random sample consensus (RANSAC) and inverse distance weighting to address the issue of low-resolution point cloud data obtained from light detection and ranging (LiDAR) sensors and single technologies. By fusing low-resolution [...] Read more.
This paper proposes a point-by-point weighted fusion algorithm based on an improved random sample consensus (RANSAC) and inverse distance weighting to address the issue of low-resolution point cloud data obtained from light detection and ranging (LiDAR) sensors and single technologies. By fusing low-resolution point clouds with higher-resolution point clouds at the data level, the algorithm generates high-resolution point clouds, achieving the super-resolution reconstruction of lidar point clouds. This method effectively reduces noise in the higher-resolution point clouds while preserving the structure of the low-resolution point clouds, ensuring that the semantic information of the generated high-resolution point clouds remains consistent with that of the low-resolution point clouds. Specifically, the algorithm constructs a K-d tree using the low-resolution point cloud to perform a nearest neighbor search, establishing the correspondence between the low-resolution and higher-resolution point clouds. Next, the improved RANSAC algorithm is employed for point cloud alignment, and inverse distance weighting is used for point-by-point weighted fusion, ultimately yielding the high-resolution point cloud. The experimental results demonstrate that the proposed point cloud super-resolution reconstruction method outperforms other methods across various metrics. Notably, it reduces the Chamfer Distance (CD) metric by 0.49 and 0.29 and improves the Precision metric by 7.75% and 4.47%, respectively, compared to two other methods. Full article
(This article belongs to the Special Issue Digital Security and Privacy Protection: Trends and Applications)
Show Figures

Figure 1

19 pages, 9226 KiB  
Article
Sensitivity Analysis of the Inverse Distance Weighting and Bicubic Spline Smoothing Models for MERRA-2 Reanalysis PM2.5 Series in the Persian Gulf Region
by Alina Bărbulescu and Youssef Saliba
Atmosphere 2024, 15(7), 748; https://doi.org/10.3390/atmos15070748 - 22 Jun 2024
Viewed by 373
Abstract
Various studies have proved that PM2.5 pollution significantly impacts people’s health and the environment. Reliable models on pollutant levels and trends are essential for policy-makers to decide on pollution reduction. Therefore, this research presents the sensitivity analysis of the Bicubic Spline Smoothing [...] Read more.
Various studies have proved that PM2.5 pollution significantly impacts people’s health and the environment. Reliable models on pollutant levels and trends are essential for policy-makers to decide on pollution reduction. Therefore, this research presents the sensitivity analysis of the Bicubic Spline Smoothing (BSS) and Inverse Distance Weighting (IDW) models built for the PM2.5 monthly series from MERRA-2 Reanalysis collected during January 2010–April 2017 in the region of the Persian Gulf, in the neighborhood of the United Arab Emirates Coast. The models’ performances are assessed using the Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE). RMSE, Mean Bias Error (MBE), and Nash–Sutcliff Efficiency (NSE) were utilized to assess the models’ sensitivity to various parameters. For the IDW, the Mean RMSE decreases as the power parameter increases from 1 to approximately 4 (the optimal beta value) and then stabilizes with a further increase. NSE values close to 1 indicate that the model’s predictions are very efficient in capturing the variance of the observed data. NSE is almost constant as a function of the number of neighbors and the parameter when β > 4. In BSS, the RMSE and NBE plots suggest that incorporating more points into the mean calculation for buffer points leads to a general decrease in model accuracy. Moreover, the MBE plot shows that the mean bias error initially increases with the number of points but then starts to plateau. The increasing trend suggests that the model tends to systematically overestimate the PM2.5 values as more points are included. The leveling-off of the curve indicates that beyond a certain number of points, the bias introduced by including additional points does not significantly increase, suggesting a threshold beyond which further inclusion of points does not markedly change the mean bias. It was also proved that the methods’ generalizability may depend on the dataset’s specific spatial characteristics. Full article
(This article belongs to the Special Issue Measurement and Variability of Atmospheric Ozone)
Show Figures

Figure 1

32 pages, 2877 KiB  
Article
Cloud Manufacturing Service Composition Optimization Based on Improved Chaos Sparrow Search Algorithm with Time-Varying Reliability and Credibility Evaluation
by Yongxiang Li, Xifan Yao, Shanxiang Wei, Wenrong Xiao and Zongming Yin
Symmetry 2024, 16(6), 772; https://doi.org/10.3390/sym16060772 - 19 Jun 2024
Viewed by 523
Abstract
The economic friction and political conflicts between some countries and regions have made multinational corporations increasingly focus on the reliability and credibility of manufacturing supply chains. In view of the impact of poor manufacturing entity reliability and service reputation on the new-era manufacturing [...] Read more.
The economic friction and political conflicts between some countries and regions have made multinational corporations increasingly focus on the reliability and credibility of manufacturing supply chains. In view of the impact of poor manufacturing entity reliability and service reputation on the new-era manufacturing industry, the time-varying reliability and time-varying credibility of cloud manufacturing (CMfg) services were studied from the perspective of combining nature and society. Taking time-varying reliability, time-varying credibility, composition complexity, composition synergy, execution time, and execution cost as objective functions, a new six-dimension comprehensive evaluation model of service quality was constructed. To solve the optimization problem, this study proposes an improved chaos sparrow search algorithm (ICSSA), where the Bernoulli chaotic mapping formula was introduced to improve the basic sparrow search algorithm (BSSA), and the position calculation formulas of the explorer sparrow and the scouter sparrow were enhanced. The Bernoulli chaotic operator changed the symmetry of the BSSA, increased the uncertainty and randomness of the explorer sparrow position in the new algorithm, and affected the position update and movement strategies of the follower and scouter sparrows. The asymmetric chaotic characteristic brought better global search ability and optimization performance to the ICSSA. The comprehensive performance of the service composition (SvcComp) scheme was evaluated by calculating weighted relative deviation based on six evaluation elements. The WFG and DTLZ series test functions were selected, and the inverse generation distance (IGD) index and hyper volume (HV) index were used to compare and evaluate the convergence and diversity of the ICSSA, BSSA, PSO, SGA, and NSGA-III algorithms through simulation analysis experiments. The test results indicated that the ICSSA outperforms the BSSA, PSO, SGA, and NSGA-III in the vast majority of testing issues. Finally, taking disinfection robot manufacturing tasks as an example, the effectiveness of the proposed CMfg SvcComp optimization model and the ICSSA were verified. The case study results showed that the proposed ICSSA had faster convergence speed and better comprehensive performance for the CMfg SvcComp optimization problem compared with the BSSA, PSO, SGA, and NSGA-III. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

25 pages, 9955 KiB  
Article
Optimizing Interpolation Methods and Point Distances for Accurate Earthquake Hazard Mapping
by Sayyed Hadi Alavi, Alireza Bahrami, Mohammadreza Mashayekhi and Mohammadreza Zolfaghari
Buildings 2024, 14(6), 1823; https://doi.org/10.3390/buildings14061823 - 15 Jun 2024
Viewed by 538
Abstract
Earthquake hazard mapping assesses and visualizes seismic hazards in a region using data from specific points. Conducting a seismic hazard analysis for each point is essential, while continuous assessment for all points is impractical. The practical approach involves identifying hazards at specific points [...] Read more.
Earthquake hazard mapping assesses and visualizes seismic hazards in a region using data from specific points. Conducting a seismic hazard analysis for each point is essential, while continuous assessment for all points is impractical. The practical approach involves identifying hazards at specific points and utilizing interpolation for the rest. This method considers grid point spacing and chooses the right interpolation technique for estimating hazards at other points. This article examines different point distances and interpolation methods through a case study. To gauge accuracy, it tests 15 point distances and employs two interpolation methods, inverse distance weighted and ordinary kriging. Point distances are chosen as a percentage of longitude and latitude, ranging from 0.02 to 0.3. A baseline distance of 0.02 is set, and other distances and interpolation methods are compared with it. Five statistical indicators assess the methods. Ordinary kriging interpolation shows greater accuracy. With error rates and hazard map similarities in mind, a distance of 0.14 points seems optimal, balancing computational time and accuracy needs. Based on the research findings, this approach offers a cost-effective method for creating seismic hazard maps. It enables informed risk assessments for structures spanning various geographic areas, like linear infrastructures. Full article
Show Figures

Figure 1

24 pages, 7385 KiB  
Article
Analysis of Spatial and Temporal Distribution and Changes in Extreme Climate Events in Northwest China from 1960 to 2021: A Case Study of Xinjiang
by Yang Yang and Wei Chang
Sustainability 2024, 16(12), 4960; https://doi.org/10.3390/su16124960 - 10 Jun 2024
Viewed by 783
Abstract
Xinjiang, as a climate-sensitive region in Northwest China, holds significant importance in studying extreme climate events for agricultural production and socioeconomic development. Using data spanning from 1960 to 2021 from 52 meteorological stations across Xinjiang, encompassing 23 indices of extreme climate events, the [...] Read more.
Xinjiang, as a climate-sensitive region in Northwest China, holds significant importance in studying extreme climate events for agricultural production and socioeconomic development. Using data spanning from 1960 to 2021 from 52 meteorological stations across Xinjiang, encompassing 23 indices of extreme climate events, the 5-year moving average, linear trend fitting, and inverse distance weighting (IDW) are used to analyze the distribution patterns and temporal changes in extreme climatic phenomena within the region. The results indicate that, over the period from 1960 to 2021, the Amplitude Temperature Index, Heat Index, and Warm Spell Duration Index in Xinjiang exhibited a marked increasing trend, whereas the Cold Index and Cold Spell Duration Index displayed a significant decreasing trend. The range of changes in the extreme temperature indices from 1990 to 2021 is higher than that of 1960 to 1989. The areas with high values of amplitude temperature extreme indices are primarily concentrated in the southern part, while the areas with high values of cold indices are mainly distributed in the northern part. The upward/downward trends all account for over 80.00% of the entire region. The precipitation scale indices, precipitation day indices, intense precipitation index, and extreme precipitation index all showed a significant growth trend from 1960 to 2021, and the range of change in the extreme precipitation indices from 1990 to 2021 was lower than that from 1960 to 1989. Furthermore, areas with high precipitation values and regions with high trend values of climate tendency are predominantly concentrated in the northern and western parts of Xinjiang, with over 71.00% of the entire region experiencing an upward trend. The research results provide theoretical foundations for formulating climate risk strategies in the northwest region of China. Full article
Show Figures

Figure 1

15 pages, 3971 KiB  
Article
Modeling and Data Mining Analysis for Long-Term Temperature-Stress-Strain Monitoring Data of a Concrete Gravity Dam
by Tao Zhou, Ning Ma, Xiaojun Su, Zhigang Wu, Wen Zhong and Ye Zhang
Water 2024, 16(12), 1646; https://doi.org/10.3390/w16121646 - 8 Jun 2024
Viewed by 548
Abstract
The safety condition of concrete gravity dams is influenced by multiple factors, and assessing their safety solely based on a single factor is difficult to comprehensively evaluate. Therefore, this paper proposes a comprehensive modeling and analysis approach to assess dam safety by considering [...] Read more.
The safety condition of concrete gravity dams is influenced by multiple factors, and assessing their safety solely based on a single factor is difficult to comprehensively evaluate. Therefore, this paper proposes a comprehensive modeling and analysis approach to assess dam safety by considering long-term temperature, stress, and strain monitoring data of actual concrete gravity dams. Firstly, the K-means clustering algorithm is utilized to classify the data. Then, the study area of the dam is meshed and three indicator evaluation values for all the elements are calculated. The other elements’ evaluation values can be obtained by the Inverse Distance Weighting (IDW) method. Finally, the analytic hierarchy process extended by the D numbers preference relation (D-AHP) method is applied to compute the weights of temperature, stress, and strain and evaluate the dam’s safety comprehensively. The effectiveness of this method is validated through application to specific engineering cases. The results demonstrate that compared to assessing methods considering only single factors, the comprehensive evaluation method proposed in this paper can more comprehensively and accurately reflect the actual safety condition of concrete gravity dams, providing important references for engineering decision-making. Full article
Show Figures

Figure 1

13 pages, 2557 KiB  
Article
Selection of the Value of the Power Distance Exponent for Mapping with the Inverse Distance Weighting Method—Application in Subsurface Porosity Mapping, Northern Croatia Neogene
by Uroš Barudžija, Josip Ivšinović and Tomislav Malvić
Geosciences 2024, 14(6), 155; https://doi.org/10.3390/geosciences14060155 - 6 Jun 2024
Viewed by 387
Abstract
The correct selection of the value of p is a complex and iterative procedure that requires experience in the interpretation of the obtained interpolated maps. Inverse Distance Weighting is a method applied to the porosities of the K and L hydrocarbon reservoirs discovered [...] Read more.
The correct selection of the value of p is a complex and iterative procedure that requires experience in the interpretation of the obtained interpolated maps. Inverse Distance Weighting is a method applied to the porosities of the K and L hydrocarbon reservoirs discovered in the Neogene (Lower Pontian) subsurface sandstones in northern Croatia (Pannonian Basin System). They represent small and large data samples. Also, a standard statistical analysis of the data was made, followed by a qualitative–quantitative analysis of the maps, based on the selection of different values for the power distance exponent (p-value) for the K and L reservoir maps. According to the qualitative analysis, for a small data set, the p-value could be set at 1 or 2, giving the optimal result, while for a large data set, a p value of 3 or 4 could be applied. For quantitative analysis, in the case of a small data set, p = 2 is recommended, resulting in a root mean square error value of 0.03458, a mean absolute error of 0.02013 and a median absolute deviation of 0.00546. In contrast, a p-value of 3 or 4 is selected as appropriate for a large data set, with root mean square errors of 0.02435 and 0.02437, mean square errors of 0.01582 and 0.01509 and median absolute deviations 0.00896 and 0.00444. Eventually for a small data set, it is recommended to use a p-value of 2, and for a large data set, a p-value of 3 or 4. Full article
Show Figures

Figure 1

12 pages, 5307 KiB  
Article
Research on a Data Preprocessing Method for a Vehicle-Mounted Solar Occultation Flux–Fourier Transform Infrared Spectrometer
by Yasong Deng, Liang Xu, Ling Jin, Yongfeng Sun, Shengquan Shu, Jianguo Liu and Wenqing Liu
Photonics 2024, 11(6), 541; https://doi.org/10.3390/photonics11060541 - 5 Jun 2024
Viewed by 379
Abstract
A vehicle-mounted solar occultation flux–Fourier transform infrared spectrometer uses the sun as an infrared light source to quantify molecular absorption in the atmosphere. It can be used for the rapid three-dimensional monitoring of pollutant emissions and the column concentration monitoring of greenhouse gases. [...] Read more.
A vehicle-mounted solar occultation flux–Fourier transform infrared spectrometer uses the sun as an infrared light source to quantify molecular absorption in the atmosphere. It can be used for the rapid three-dimensional monitoring of pollutant emissions and the column concentration monitoring of greenhouse gases. The system has the advantages of high mobility and a capacity for noncontact measurement and measurement over long distances. However, in vehicle-mounted applications, vehicle bumps and obstacles introduce aberrations in the measured spectra, affecting the accuracy of gas concentration inversion results and flux calculations. In this paper, we propose a spectral data preprocessing method that combines a self-organizing mapping neural network and correlation analysis to reject anomalous spectral data measured by the solar occultation flux–Fourier transform infrared spectrometer during mobile observations. Compared to the traditional method, this method does not need to adjust the comparison threshold and obtain the training spectra in advance and has the advantage of automatically updating the weights without the need to set fixed correlation comparison coefficients. The accurate identification of all anomalous simulated spectra in the simulation experiments proved the effectiveness of the method. In the vehicle-mounted application experiment, 342 anomalous spectra were successfully screened from 1739 spectral data points. The experimental results show that the method can improve the accuracy of gas concentration measurement results and can be applied to a vehicle-mounted solar occultation flux–Fourier transform infrared spectrometer system to meet the preprocessing needs of a high number of spectral data in mobile monitoring. Full article
(This article belongs to the Special Issue Advances in Infrared Spectroscopy and Raman Spectroscopy)
Show Figures

Figure 1

18 pages, 5876 KiB  
Article
Prediction Method for Dynamic Subsidence Basin in Mining Area Based on SBAS-InSAR and Time Function
by Jibiao Hu, Yueguan Yan, Huayang Dai, Xun He, Biao Lv, Meng Han, Yuanhao Zhu and Yanjun Zhang
Remote Sens. 2024, 16(11), 1938; https://doi.org/10.3390/rs16111938 - 28 May 2024
Viewed by 636
Abstract
Dynamic predictions of surface subsidence are crucial for assessing ground damage and protecting surface buildings. Based on Small Baseline Subset Interferometric Synthetic Aperture Radar (SBAS-InSAR) technology, a method for making dynamic predictions of large-scale surface subsidence in mining areas can be established; however, [...] Read more.
Dynamic predictions of surface subsidence are crucial for assessing ground damage and protecting surface buildings. Based on Small Baseline Subset Interferometric Synthetic Aperture Radar (SBAS-InSAR) technology, a method for making dynamic predictions of large-scale surface subsidence in mining areas can be established; however, the problem of phase coherence loss in InSAR data makes it impossible to predict the complete dynamic subsidence basin. In this study, a method combining the WeiBull time function and the improved probabilistic integral method (IPIM) model was established based on the PIM model, and a method for predicting the dynamic subsidence basin in the mining area was proposed by integrating the IPIM and the combined WeiBull time function. Time-series subsidence data, obtained using SBAS-InSAR, were used as fitting data, and the parameters of the combined WeiBull function were inverted, pixel by pixel, to predict the dynamic subsidence of the working face in the study area. Based on the predicted surface subsidence results of a certain moment in the working face, the parameters of the IPIM model were inverted to predict the subsidence value in the incoherent region. The subsidence predictions of the combined WeiBull time function and the IPIM model were fused using inverse distance weighting (IDW) interpolation to restore the complete subsidence basin in the mining area. This method was tested at the Wannian Mine in Hebei, and the obtained complete subsidence basin was compared with the measured data, with an absolute error range of 0 to 10 mm. The results show that the dynamic subsidence basin prediction method for the SBAS-InSAR mining area, involving the combination of the IPIM model and the combined WeiBull model, can not only accurately fit the time series of surface observation points affected by mining but also accurately restore the subsidence data in the incoherent region to obtain complete subsidence basin information in the mining area. Full article
Show Figures

Figure 1

Back to TopTop