Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (179,181)

Search Parameters:
Keywords = M2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3839 KiB  
Article
Three-Dimensional Double-Layer Multi-Stage Thermal Management Fabric for Solar Desalination
by Xiao Feng, Can Ge, Heng Du, Xing Yang and Jian Fang
Materials 2024, 17(17), 4419; https://doi.org/10.3390/ma17174419 (registering DOI) - 7 Sep 2024
Abstract
Water scarcity is a serious threat to the survival and development of mankind. Interfacial solar steam generation (ISSG) can alleviate the global freshwater shortage by converting sustainable solar power into thermal energy for desalination. ISSG possesses many advantages such as high photothermal efficiency, [...] Read more.
Water scarcity is a serious threat to the survival and development of mankind. Interfacial solar steam generation (ISSG) can alleviate the global freshwater shortage by converting sustainable solar power into thermal energy for desalination. ISSG possesses many advantages such as high photothermal efficiency, robust durability, and environmental friendliness. However, conventional evaporators suffered from huge heat losses in the evaporation process due to the lack of efficient thermal management. Herein, hydrophilic Tencel yarn is applied to fabricate a three-dimensional double-layer fabric evaporator (DLE) with efficient multi-stage thermal management. DLE enables multiple solar absorptions, promotes cold evaporation, and optimizes thermal management. The airflow was utilized after structure engineering for enhanced energy evaporation efficiency. The evaporation rate can reach 2.86 kg·m−2·h−1 under 1 sun (1 kW·m−2), and 6.26 kg·m−2·h−1 at a wind speed of 3 m·s−1. After a long duration of outdoor operation, the average daily evaporation rate remains stable at over 8.9 kg·m−2, and the removal rate of metal ions in seawater reaches 99%. Overall, DLE with efficient and durable three-dimensional multi-stage thermal management exhibits excellent practicality for solar desalination. Full article
(This article belongs to the Special Issue Properties of Textiles and Fabrics and Their Processing)
Show Figures

Figure 1

18 pages, 3392 KiB  
Article
Windthrow Impact on Alpine Forest Humipedon: Soil Microarthropod Communities and Humus Dynamics Five Years after an Extreme Windstorm Event
by Francesca Visentin, Sara Remelli, Augusto Zanella and Cristina Menta
Land 2024, 13(9), 1458; https://doi.org/10.3390/land13091458 (registering DOI) - 7 Sep 2024
Abstract
The ecological impact of windthrow disturbance on humipedons and soil microarthropod communities is examined in two areas of the Italian Alps (Val di Fassa and Cansiglio) five years after the Vaia Storm. The following soil coverage conditions were identified: herbaceous vegetation (G), decaying [...] Read more.
The ecological impact of windthrow disturbance on humipedons and soil microarthropod communities is examined in two areas of the Italian Alps (Val di Fassa and Cansiglio) five years after the Vaia Storm. The following soil coverage conditions were identified: herbaceous vegetation (G), decaying wood (W), no vegetation (B) in windthrow areas; and these were compared with conditions in adjacent undisturbed intact forests (IF) and, only in Val di Fassa, with permanent meadows (M). Soil pH, soil organic matter content (SOM), humus systems and microarthropod communities were analyzed. In Val di Fassa, SOM loss was observed in windthrow areas vs. IF, moving toward a Mull humus system, while G evolved toward M-like conditions, W maintained a thicker O horizon and lower pH and B exhibited severe soil erosion and the lowest SOM. In Cansiglio, windthrow areas showed a slower transition to a Mull system, with a trend toward increasing pH and decreasing SOM. A clear relationship between microarthropod communities and humus systems could not be established because the consistency and biological origins of the humus diagnostic horizons were not considered. Microarthropod communities under different conditions exhibited significant dissimilarity, with varying responses across groups; Shannon and QBS-ar indices remained stable except for a significant decrease in B. Community dissimilarity thus appears to be enhanced by post-windthrow disturbance, suggesting that destructive windstorms may also present an opportunity for enriched microarthropod diversity. Full article
(This article belongs to the Special Issue The Impact of Extreme Weather on Land Degradation and Conservation)
24 pages, 3120 KiB  
Article
Comparing Large-Eddy Simulation and Gaussian Plume Model to Sensor Measurements of an Urban Smoke Plume
by Dominic Clements, Matthew Coburn, Simon J. Cox, Florentin M. J. Bulot, Zheng-Tong Xie and Christina Vanderwel
Atmosphere 2024, 15(9), 1089; https://doi.org/10.3390/atmos15091089 (registering DOI) - 7 Sep 2024
Abstract
The fast prediction of the extent and impact of accidental air pollution releases is important to enable a quick and informed response, especially in cities. Despite this importance, only a small number of case studies are available studying the dispersion of air pollutants [...] Read more.
The fast prediction of the extent and impact of accidental air pollution releases is important to enable a quick and informed response, especially in cities. Despite this importance, only a small number of case studies are available studying the dispersion of air pollutants from fires in a short distance (O(1 km)) in urban areas. While monitoring pollution levels in Southampton, UK, using low-cost sensors, a fire broke out from an outbuilding containing roughly 3000 reels of highly flammable cine nitrate film and movie equipment, which resulted in high values of PM2.5 being measured by the sensors approximately 1500 m downstream of the fire site. This provided a unique opportunity to evaluate urban air pollution dispersion models using observed data for PM2.5 and the meteorological conditions. Two numerical approaches were used to simulate the plume from the transient fire: a high-fidelity computational fluid dynamics model with large-eddy simulation (LES) embedded in the open-source package OpenFOAM, and a lower-fidelity Gaussian plume model implemented in a commercial software package: the Atmospheric Dispersion Modeling System (ADMS). Both numerical models were able to quantitatively reproduce consistent spatial and temporal profiles of the PM2.5 concentration at approximately 1500 m downstream of the fire site. Considering the unavoidable large uncertainties, a comparison between the sensor measurements and the numerical predictions was carried out, leading to an approximate estimation of the emission rate, temperature, and the start and duration of the fire. The estimation of the fire start time was consistent with the local authority report. The LES data showed that the fire lasted for at least 80 min at an emission rate of 50 g/s of PM2.5. The emission was significantly greater than a `normal’ house fire reported in the literature, suggesting the crucial importance of the emission estimation and monitoring of PM2.5 concentration in such incidents. Finally, we discuss the advantages and limitations of the two numerical approaches, aiming to suggest the selection of fast-response numerical models at various compromised levels of accuracy, efficiency and cost. Full article
(This article belongs to the Special Issue Advances in Urban Air Pollution Observation and Simulation)
19 pages, 12053 KiB  
Article
A Comprehensive Study on the Mid-Infrared Variability of Blazars
by Xuemei Zhang, Zhipeng Hu, Weitian Huang and Lisheng Mao
Universe 2024, 10(9), 360; https://doi.org/10.3390/universe10090360 (registering DOI) - 7 Sep 2024
Abstract
We present a comprehensive investigation of mid-infrared (MIR) flux variability at 3.4 μm (W1 band) for a large sample of 3816 blazars, using Wide-field Infrared Survey Explorer (WISE) data through December 2022. The sample consists of 1740 flat-spectrum radio quasars (FSRQs), 1281 BL [...] Read more.
We present a comprehensive investigation of mid-infrared (MIR) flux variability at 3.4 μm (W1 band) for a large sample of 3816 blazars, using Wide-field Infrared Survey Explorer (WISE) data through December 2022. The sample consists of 1740 flat-spectrum radio quasars (FSRQs), 1281 BL Lac objects (BL Lacs), and 795 blazars of uncertain type (BCUs). Considering Fermi Large Area Telescope detection, we classify 2331 as Fermi blazars and 1485 as non-Fermi blazars. Additionally, based on synchrotron peak frequency, the sample includes 2264 low-synchrotron peaked (LSP), 512 intermediate-synchrotron peaked (ISP), and 655 high-synchrotron peaked (HSP) sources. We conduct a comparative analysis of short- and long-term intrinsic variability amplitude (σm), duty cycle (DC), and ensemble structure function (ESF) across blazar subclasses. The median short-term σm values were 0.1810.106+0.153, 0.1040.054+0.101, 0.1350.076+0.154, 0.1730.097+0.158, 0.1770.100+0.156, 0.0960.050+0.109, and 0.1060.058+0.100 mag for FSRQs, BL Lacs, Fermi blazars, non-Fermi blazars, LSPs, ISPs, and HSPs, respectively. The median DC values were 71.0322.48+14.17, 64.0222.86+16.97, 68.9625.52+15.66, 69.4022.17+14.42, 71.2421.36+14.25, 63.0333.19+16.93, and 64.6324.26+15.88 percent for the same subclasses. The median long-term σm values were 0.1370.105+0.408, 0.1710.132+0.206, 0.2820.184+0.332, 0.0710.062+0.143, 0.2180.174+0.386, 0.1730.132+0.208, and 0.1010.077+0.161 mag for the same subclasses, respectively. Our results reveal significant differences in 3.4 μm flux variability among these subclasses. FSRQs (LSPs) exhibit larger σm and DC values compared to BL Lacs (ISPs and HSPs). Fermi blazars display higher long-term σm but lower short-term σm relative to non-Fermi blazars, while DC distributions between the two groups are similar. ESF analysis further confirms the greater variability of FSRQs, LSPs, and Fermi blazars across a wide range of time scales compared to BL Lacs, ISPs/HSPs, and non-Fermi blazars. These findings highlight a close correlation between MIR variability and blazar properties, providing valuable insights into the underlying physical mechanisms responsible for their emission. Full article
(This article belongs to the Section Galaxies and Clusters)
Show Figures

Figure 1

14 pages, 1025 KiB  
Article
Aerobiology of Olive Pollen (Olea europaea L.) in the Atmosphere of the Iberian Peninsula
by Cláudia Penedos, Guillermo Salamanca, Beatriz Tavares, João Fonseca, Pedro Carreiro-Martins, Rodrigo Rodrigues-Alves, Ángel Moral de Gregorio, Antonio Valero and Manuel Branco Ferreira
Atmosphere 2024, 15(9), 1087; https://doi.org/10.3390/atmos15091087 (registering DOI) - 7 Sep 2024
Abstract
Olea europaea L. pollen is one of the main causes of pollinosis and respiratory diseases in the Iberian Peninsula (IP). The aim of this study was to provide a pollen calendar in different regions of the IP, which could help allergists and allergic [...] Read more.
Olea europaea L. pollen is one of the main causes of pollinosis and respiratory diseases in the Iberian Peninsula (IP). The aim of this study was to provide a pollen calendar in different regions of the IP, which could help allergists and allergic patients in the management of Olea europaea allergic diseases, and to update/complement what has already been reported on olive trees’ aeropalynology in this region. Airborne Olea pollen dynamics were analyzed over a period of 8 years in a total of 21 localities, 7 in Portugal and 14 in Spain. Airborne pollen monitoring was carried out using the Hirst-type spore trap method and following the recommendations of the Quality Control Working Group of the European Aerobiology Society. The daily pollen count, the annual pollen profile, the Annual Pollen Integral (APIn), the Seasonal Pollen Integral (SPIn) and the Pollen Peak, all expressed in number of pollen grains per cubic metre of air, together with the main pollen season and its characteristics, the Start Day, the End Day and the length of the pollen season, were calculated for each sampling station. Differences in mean Olea pollen concentration between odd and even years were also analyzed. On average, the main pollen season (MPS) started in April/May and ended in June, with Pollen Peaks recorded in May, except in Burgos, where it was recorded in June. The longest MPS occurred in Lisbon, Oviedo and Valencia (53 days) and the shortest in Vitoria (25 days). A high daily pollen concentration (i.e., >200 grains/m3) was recorded between 1 and 38 days along the year in all sampling stations of the southwest quadrant of the IP and in Jaén. A biannual pattern, characterized by alternating years of high and low pollen production, was found in the southwest of the IP. In conclusion, the study provided a deeper understanding of the pollination behaviour of olive trees in the IP and allowed the establishment of a representative Olea pollen calendar for this region. In addition, our results suggest the usefulness of investigating more detailed relationships between annual Olea pollen, allergen sensitization and symptoms, both for allergists involved in the study and management of allergic respiratory diseases caused by this species and for the self-management of disease in allergic subjects. Full article
(This article belongs to the Section Air Quality and Health)
Show Figures

Figure 1

21 pages, 6611 KiB  
Article
Shear Behavior of High-Strength and Lightweight Cementitious Composites Containing Hollow Glass Microspheres and Carbon Nanotubes
by Dongmin Lee, Seong-Cheol Lee, Oh-Sung Kwon and Sung-Won Yoo
Buildings 2024, 14(9), 2824; https://doi.org/10.3390/buildings14092824 (registering DOI) - 7 Sep 2024
Abstract
In this study, an experimental program was conducted to investigate the shear behavior of beams made of high-strength and lightweight cementitious composites (HS-LWCCs) containing hollow glass microspheres and carbon nanotubes. The compressive strength and dry density of the HS-LWCCs were 87.8 MPa and1.52 [...] Read more.
In this study, an experimental program was conducted to investigate the shear behavior of beams made of high-strength and lightweight cementitious composites (HS-LWCCs) containing hollow glass microspheres and carbon nanotubes. The compressive strength and dry density of the HS-LWCCs were 87.8 MPa and1.52 t/m3, respectively. To investigate their shear behavior, HS-LWCC beams with longitudinal rebars were fabricated. In this test program, the longitudinal and shear reinforcement ratios were considered as the test variables. The HS-LWCC beams were compared with ordinary high-strength concrete (HSC) beams with a compressive strength of 89.3 MPa to determine their differences; the beams had the same reinforcement configuration. The test results indicated that the initial stiffness and shear capacity of the HS-LWCC beams were lower than those of the HSC beams. These results suggested that the low shear resistance of the HS-LWCC beams led to brittle failure. This was attributed to the beams’ low elastic modulus under compression and the absence of a coarse aggregate. Furthermore, the difference in the shear capacity of the HSC and HS-LWCC beams slightly decreased as the shear reinforcement ratio increased. The diagonal compression strut angle and diagonal crack angle of the HS-LWCC beams with shear reinforcement were more inclined than those of the HSC beams. This indicated that the lower shear resistance of the HS-LWCCs could be more effectively compensated for when shear reinforcement is provided and the diagonal crack angle is more inclined. The ultimate shear capacities measured in the tests were compared with various shear design provisions, including those of ACI-318, EC2, and CSA A23.3. This comparison showed that the current shear design provisions considerably overestimate the contribution of concrete to the shear capacity of HS-LWCC beams. Full article
(This article belongs to the Special Issue Study on the Durability of Construction Materials and Structures)
Show Figures

Figure 1

8 pages, 210 KiB  
Article
Impact of Chronic Beryllium Exposure on Liver and Lung Function and Hematologic Parameters
by Jing Dai, Xinlin Bi, Hui Yuan, Qingyu Meng, Yina Yang, Xueqin Wang, Xiaoying Ma, Chunguang Ding and Fen Wang
Atmosphere 2024, 15(9), 1086; https://doi.org/10.3390/atmos15091086 (registering DOI) - 7 Sep 2024
Abstract
Beryllium is a lightweight metal that is toxic to humans. The critical health effects related to beryllium exposure are liver toxicity, immune system toxicity, and chronic beryllium disease (CBD). This study investigated the effects of occupational beryllium exposure on liver and lung function [...] Read more.
Beryllium is a lightweight metal that is toxic to humans. The critical health effects related to beryllium exposure are liver toxicity, immune system toxicity, and chronic beryllium disease (CBD). This study investigated the effects of occupational beryllium exposure on liver and lung function and hematologic parameters among beryllium smelter workers. A cross-sectional study was performed by comparing 65 exposed workers and 34 non-exposed workers. Health information was collected through questionnaire surveys and biochemical tests. The concentration of urinary beryllium was determined by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The findings indicated that the urinary beryllium levels of the exposed workers and the controls were 0.48 (0.115, 1.19) μg/mL and 0.0125 (0.005, 0.005) μg/mL, respectively (p < 0.001). Compared with the controls, the exposed workers showed a significant increase in serum alanine aminotransferase (ALT) level, hemoglobin (HGB) concentration, white blood cell (WBC) count, red blood cell (RBC) count, and systolic and diastolic blood pressure (SBP, DBP) (p < 0.05). Furthermore, the HGB concentration and ALT level were significantly correlated with the concentration of beryllium in urine (p < 0.05). The exposed workers had increased urinary concentrations of beryllium, in contrast to the control subjects. Moreover, the urinary beryllium levels among the exposed workers are much higher than that in the Chinese general population. Beryllium-exposed workers may be at risk of liver and hematologic impairments. Full article
(This article belongs to the Section Air Quality and Health)
16 pages, 3740 KiB  
Article
Quantification of Airborne Particulate Matter and Trace Element Deposition on Hedera helix and Senecio cineraria Leaves
by Anabel Saran, Mariano Javier Mendez, Diego Gabriel Much, Valeria Imperato, Sofie Thijs, Jaco Vangronsveld and Luciano Jose Merini
Plants 2024, 13(17), 2519; https://doi.org/10.3390/plants13172519 (registering DOI) - 7 Sep 2024
Abstract
In both developed and developing countries, atmospheric pollution with particulate matter (PM) remains an important issue. Despite the health effects of poor air quality, studies on air pollution are often limited by the high costs of continuous monitoring and the need for extensive [...] Read more.
In both developed and developing countries, atmospheric pollution with particulate matter (PM) remains an important issue. Despite the health effects of poor air quality, studies on air pollution are often limited by the high costs of continuous monitoring and the need for extensive sampling. Furthermore, these particles are often enriched with potentially toxic trace elements and organic pollutants. This study evaluates both the composition of atmospheric dust accumulated during a certain timespan on Hedera helix and Senecio cineraria leaves and the potential for their use as bio-monitors. The test plants were positioned near automatic air quality monitoring stations at four different sites with respectively high, moderate and low traffic intensity. The gravimetric deposition of PM10 and PM2.5 on leaves was compared with data recorded by the monitoring stations and related to the weather conditions reported by Argentina’s National Meteorological Service. To determine the presence of trace elements enriching the PM deposited on leaves, two analytical techniques were applied: XRF (not destructive) and ICP (destructive). The results indicated that only in the unpaved street location (site 2) did PM10 and PM2.5 concentrations (90 µg m−3 and 9 µg m−3) in the air exceed more than five times WHO guidelines (15 µg m−3 and 5 µg m−3). However, several trace elements were found to be enriching PM deposited on leaves from all sites. Predominantly, increased concentrations of Cd, Cu, Ti, Mn, Zn and Fe were found, which were associated with construction, traffic and unpaved street sources. Furthermore, based on its capability to sequester above 2800 µg cm−2 of PM10, 2450 µg cm−2 of PM2.5 and trace elements, Senecio cineraria can be taken into consideration for adoption as a bio-monitor or even for PM mitigation. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

29 pages, 4359 KiB  
Article
FMEA-TSTM-NNGA: A Novel Optimization Framework Integrating Failure Mode and Effect Analysis, the Taguchi Method, a Neural Network, and a Genetic Algorithm for Improving the Resistance in Dynamic Random Access Memory Components
by Chia-Ming Lin and Shang-Liang Chen
Mathematics 2024, 12(17), 2773; https://doi.org/10.3390/math12172773 (registering DOI) - 7 Sep 2024
Abstract
Dynamic random access memory (DRAM) serves as a critical component in medical equipment. Given the exacting standards demanded by medical equipment products, manufacturers face pressure to improve their product quality. The electrical characteristics of these products are based on the resistance value of [...] Read more.
Dynamic random access memory (DRAM) serves as a critical component in medical equipment. Given the exacting standards demanded by medical equipment products, manufacturers face pressure to improve their product quality. The electrical characteristics of these products are based on the resistance value of the DRAM components. Hence, the purpose of this study is to optimize the resistance value of DRAM components in medical equipment. We proposed a novel FMEA-TSTM-NNGA framework that integrates failure mode and effect analysis (FMEA), the two-stage Taguchi method (TSTM), neural networks (NN), and genetic algorithms (GA) to optimize the manufacturing process. Moreover, the proposed FMEA-TSTM-NNGA framework achieved a substantial reduction in experimental trials, cutting the required number by a factor of 85.3 when compared to the grid search method. Our framework successfully identified optimal manufacturing condition settings for the resistance values of DRAM components: Depo time = 27 s, Depo O2 flow = 151 sccm, ARC-LTO etch time = 43 s, ARC-LTO etch pressure = 97 mTorr, Ox-SiCO etch time = 91 s, Ox-SiCO gas ratio = 22%, and Polish time = 84 s. The results helped the case company improve the resistance value of DRAM components from 191.1 × 10−3 Ohm to 176.84 × 10−3 Ohm, which is closer to the target value of 176.5 × 10−3 Ohm. The proposed FMEA-TSTM-NNGA framework is designed to operate efficiently on resource-constrained, facilitating real-time adjustments to production attributes. This capability enables DRAM manufacturers to swiftly optimize product quality. Full article
Show Figures

Figure 1

40 pages, 2180 KiB  
Article
Unveiling Arthropod Responses to Climate Change: A Functional Trait Analysis in Intensive Pastures
by Sophie Wallon, François Rigal, Catarina D. Melo, Rui B. Elias and Paulo A. V. Borges
Insects 2024, 15(9), 677; https://doi.org/10.3390/insects15090677 (registering DOI) - 7 Sep 2024
Abstract
This study investigates the impact of elevated temperatures on arthropod communities in intensively managed pastures on the volcanic island of Terceira, Azores (Portugal), using a functional trait approach. Open Top Chambers (OTCs) were employed to simulate increased temperatures, and the functional traits of [...] Read more.
This study investigates the impact of elevated temperatures on arthropod communities in intensively managed pastures on the volcanic island of Terceira, Azores (Portugal), using a functional trait approach. Open Top Chambers (OTCs) were employed to simulate increased temperatures, and the functional traits of ground dwelling arthropods were analyzed along a small elevation gradient (180–400 m) during winter and summer. Key findings include lower abundances of herbivores, coprophagous organisms, detritivores, and fungivores at high elevations in summer, with predators showing a peak at middle elevations. Larger-bodied arthropods were more prevalent at higher elevations during winter, while beetles exhibited distinct ecological traits, with larger species peaking at middle elevations. The OTCs significantly affected the arthropod communities, increasing the abundance of herbivores, predators, coprophagous organisms, and fungivores during winter by alleviating environmental stressors. Notably, iridescent beetles decreased with elevation and were more common inside OTCs at lower elevations, suggesting a thermoregulatory advantage. The study underscores the importance of considering functional traits in assessing the impacts of climate change on arthropod communities and highlights the complex, species-specific nature of their responses to environmental changes. Full article
(This article belongs to the Section Insect Ecology, Diversity and Conservation)
Show Figures

Figure 1

19 pages, 9439 KiB  
Article
MFAD-RTDETR: A Multi-Frequency Aggregate Diffusion Feature Flow Composite Model for Printed Circuit Board Defect Detection
by Zhihua Xie and Xiaowei Zou
Electronics 2024, 13(17), 3557; https://doi.org/10.3390/electronics13173557 (registering DOI) - 7 Sep 2024
Abstract
To address the challenges of excessive model parameters and low detection accuracy in printed circuit board (PCB) defect detection, this paper proposes a novel PCB defect detection model based on the improved RTDETR (Real-Time Detection, Embedding and Tracking) method, named MFAD-RTDETR. Specifically, the [...] Read more.
To address the challenges of excessive model parameters and low detection accuracy in printed circuit board (PCB) defect detection, this paper proposes a novel PCB defect detection model based on the improved RTDETR (Real-Time Detection, Embedding and Tracking) method, named MFAD-RTDETR. Specifically, the proposed model introduces the designed Detail Feature Retainer (DFR) into the original RTDETR backbone to capture and retain local details. Subsequently, based on the Mamba architecture, the Visual State Space (VSS) module is integrated to enhance global attention while reducing the original quadratic complexity to a linear level. Furthermore, by exploiting the deformable attention mechanism, which dynamically adjusts reference points, the model achieves precise localization of target defects and improves the accuracy of the transformer in complex visual tasks. Meanwhile, a receptive field synthesis mechanism is incorporated to enrich multi-scale semantic information and reduce parameter complexity. In addition, the scheme proposes a novel Multi-frequency Aggregation and Diffusion feature composite paradigm (MFAD-feature composite paradigm), which consists of the Aggregation Diffusion Fusion (ADF) module and the Refiner Feature Composition (RFC) module. It aims to strengthen features with fine-grained awareness while preserving a certain level of global attention. Finally, the Wise IoU (WIoU) dynamic nonmonotonic focusing mechanism is used to reduce competition among high-quality anchor boxes and mitigate the effects of the harmful gradients from low-quality examples, thereby concentrating on anchor boxes of average quality to promote the overall performance of the detector. Extensive experiments are conducted on the PCB defect dataset released by Peking University to validate the effectiveness of the proposed model. The experimental results show that our approach achieves the 97.0% and 51.0% performance in mean Average Precision (mAP)@0.5 and [email protected]:0.95, respectively, which significantly outperforms the original RTDETR. Moreover, the model reduces the number of parameters by approximately 18.2% compared to the original RTDETR. Full article
(This article belongs to the Special Issue Deep Learning for Computer Vision Application)
Show Figures

Figure 1

20 pages, 1764 KiB  
Article
In Situ Antimicrobial Properties of Sabinene Hydrate, a Secondary Plant Metabolite
by Asta Judžentienė, Dalė Pečiulytė and Irena Nedveckytė
Molecules 2024, 29(17), 4252; https://doi.org/10.3390/molecules29174252 (registering DOI) - 7 Sep 2024
Abstract
The objective of this research was to investigate natural products for their potential against pathogenic microorganisms. Sabinene hydrate (SH), a monoterpenoid, is synthesised by numerous different plants as a secondary metabolite. At present, there is a lack of definite investigations regarding the antimicrobial [...] Read more.
The objective of this research was to investigate natural products for their potential against pathogenic microorganisms. Sabinene hydrate (SH), a monoterpenoid, is synthesised by numerous different plants as a secondary metabolite. At present, there is a lack of definite investigations regarding the antimicrobial activity of SH itself and its different isomers. The antimicrobial effects of commercially available SH (composed mainly of trans-isomer) were evaluated within a range of concentrations in three types of contact tests: solid and vapor diffusion and the macro-broth dilution method. Moreover, the effects of SH on the rate of linear growth and spore germination were also examined. Ethanolic SH solutions were tested against an array of microorganisms, including blue-stain fungi (Ceratocystis polonica, Ophiostoma bicolor, O. penicillatum), frequently originating from bark beetle galleries; three fungal strains (Musicillium theobromae, Plectosphaerella cucumerina, and Trichoderma sp.) isolated from a sapwood underneath bark beetle galleries (Ips typographus) on spruce (Picea abies) stems; Verticillium fungicola, isolated from diseased I. typographus larvae; two Gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus), two Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa); five yeasts (Candida albicans, C. krusei, C. parapsilosis, Saccharomyces cerevisiae, and Rhodotorula muscilaginosa), and two saprophytic fungi (Aspergillus niger and Penicillium notatum). In solid agar disc diffusion tests, Gram-positive bacteria exhibited greater susceptibility to SH than Gram-negative bacteria, followed by yeasts and fungi. The most resistant to SH in both the disc diffusion and broth macro-dilution methods were P. aeruginosa, A. niger, and Trichoderma sp. strains. Blue-stain fungi and fungi isolated from the Picea sapwood were the most resistant among the fungal strains tested. The minimum inhibition concentrations (MICs) generated by SH and determined using a disc volatilization method were dependent on the fungal species and played an important role in the development of microorganism inhibition. The two Gram-positive bacteria, B. subtilis and S. aureus (whose MICs were 0.0312 and 0.0625 mg/mL, respectively), were the organisms most susceptible to SH, followed by the Gram-negative bacterium, E. coli (MIC = 0.125 mg/mL) and two yeasts, C. albicans and C. kruei (MIC was 0.125 mg/mL and 0.25 mg/mL, respectively). C. parapsilosis (MIC = 0.75 mg/mL) was the yeast most resistant to SH. The investigation of antimicrobial properties of plant secondary metabolites is important for the development of a new generation of fungicides. Full article
(This article belongs to the Special Issue Research on Chemical Composition and Activity of Natural Products)
Show Figures

Figure 1

12 pages, 249 KiB  
Article
Assessment of the Nutrient Value and In Vitro Rumen Fermentation Characteristics of Garlic Peel, Sweet Potato Vine, and Cotton Straw
by Huiru Chen, Qianqian Sun, Changxin Tian, Xiangfang Tang, Ying Ren and Wenxun Chen
Fermentation 2024, 10(9), 464; https://doi.org/10.3390/fermentation10090464 (registering DOI) - 7 Sep 2024
Abstract
This experiment was conducted to determine the nutrient composition of three agricultural by-products, namely garlic peel, sweet potato vine, and cotton straw, calculate their relative feeding value, effective energy value, and other indexes, and comprehensively evaluate their nutrient value by combining with rumen [...] Read more.
This experiment was conducted to determine the nutrient composition of three agricultural by-products, namely garlic peel, sweet potato vine, and cotton straw, calculate their relative feeding value, effective energy value, and other indexes, and comprehensively evaluate their nutrient value by combining with rumen in vitro fermentation technology, with the aim of providing data references for the development and utilization of non-conventional feed resources for ruminants. The results showed that: 1) the dry matter (DM), ash, ether extract (EE), and crude protein (CP) contents of cotton straw were significantly higher than the other two feeds (p < 0.05), while the acid detergent fiber (ADF) and neutral detergent fiber (NDF) contents of garlic peel were highly significantly higher than the others (p < 0.05); 2) the relative feed value (DMI, DDM, TDN, RFV, and RFQ) and effective energy value (GE, DE, ME, NEm, NEg, and NEL) indexes of cotton straw were significantly higher than garlic peel and sweet potato vine (p < 0.01); 3) after 48 h of in vitro fermentation, the dry matter degradation rate (IVDMD) of sweet potato vine was significantly higher than the other two feeds (p < 0.01), and the cumulative gas productions (mL) and estimated gas parameters (a, b, a + b, and c) of sweet potato vine were significantly (p < 0.01) higher than those of garlic peel and cotton straw; 4) the sweet potato vine had lower pH but higher NH3-N compared to garlic peel and cotton straw (p < 0.05). The sweet potato vine had higher propionate, iso-butyrate, butyrate, iso-valerate, and total VFA than the other two roughages, which also had the lowest acetate-to-propionate ratio. Garlic peel produced the lowest acetate, while it produced the highest valerate (p < 0.05). These findings demonstrate that all three by-products have high potential as livestock feed based on their nutritive value parameters. Comparatively, sweet potato vines exhibit higher feeding value due to their relatively moderate NDF content and superior rumen fermentation performance. Full article
(This article belongs to the Special Issue In Vitro Fermentation, 3rd Edition)
26 pages, 12046 KiB  
Article
Exploring the Opportunities and Gaps in the Transformation of Modern Rural Housing in Southern China to Net Zero Energy Buildings
by Dawei Xia, Zonghan Chen, Jialiang Guo and Yukai Zou
Buildings 2024, 14(9), 2822; https://doi.org/10.3390/buildings14092822 (registering DOI) - 7 Sep 2024
Abstract
This study explores modern residential buildings in rural areas of Wuhan and Guangzhou to assess the feasibility of achieving net zero energy buildings (NZEBs) through the transformation of existing buildings in southern China’s hot-summer–cold-winter and hot-summer–warm-winter regions. Energy simulations under various climatic scenarios [...] Read more.
This study explores modern residential buildings in rural areas of Wuhan and Guangzhou to assess the feasibility of achieving net zero energy buildings (NZEBs) through the transformation of existing buildings in southern China’s hot-summer–cold-winter and hot-summer–warm-winter regions. Energy simulations under various climatic scenarios identify effective energy-saving measures, such as the use of photovoltaic power generation. The results highlight substantial renovation potential, with energy reductions of approximately 85 kWh/m² (RCP2.6), 90 kWh/m² (RCP4.5), and 115 kWh/m² (RCP8.5). Living patterns significantly influence energy use, especially in buildings with more rooms, where the gaps in the energy demand with net zero standards can reach 560.56 kWh. At the monthly scale, different climate scenarios impact the feasibility of achieving NZEBs, particularly under RCP8.5, where eight rural housing types fail to meet the requirements, with six exceeding 200 kWh energy deficits and the largest energy deficit occurs in June 2090 in Guangzhou, reaching 592.53 kWh, while under RCP2.6, only two buildings with more rooms fail to meet NZE. In summary, in the hot-summer cold-winter region, the energy demand is higher but so is the solar yield. Therefore, under the most adverse RCP8.5 scenario, NZEBs are achievable for 9 months of the year, which is 2 months more compared to Guangzhou under similar conditions. Even after net zero transformation, new rural housing will face greater energy-saving challenges in future climatic conditions, especially under higher concentration pathways. Full article
Show Figures

Figure 1

15 pages, 1533 KiB  
Article
10-Gingerol Increases Antioxidant Enzymes and Attenuates Lipopolysaccharide-Induced Inflammation by Modulating Adipokines in 3T3-L1 Adipocytes
by María Elizabeth Preciado-Ortiz, Erika Martínez-López, José Pedraza-Chaverri, Omar Noel Medina-Campos, Roberto Rodríguez-Echevarría, Samantha Desireé Reyes-Pérez and Juan José Rivera-Valdés
Antioxidants 2024, 13(9), 1093; https://doi.org/10.3390/antiox13091093 (registering DOI) - 7 Sep 2024
Abstract
Background: Obesity increases reactive oxygen species production and alters adipokines levels, resulting in a low-grade chronic inflammation state, which contributes to tissue metabolic dysfunction. 10-gingerol, a phenol present in ginger, has shown potential anti-obesogenic effects in vitro. However, the antioxidant and anti-inflammatory properties [...] Read more.
Background: Obesity increases reactive oxygen species production and alters adipokines levels, resulting in a low-grade chronic inflammation state, which contributes to tissue metabolic dysfunction. 10-gingerol, a phenol present in ginger, has shown potential anti-obesogenic effects in vitro. However, the antioxidant and anti-inflammatory properties of 10-gingerol have not been approached. The aim of this study was to investigate the effects of 10-gingerol on antioxidant enzymes’ expression and adipokine production in 3T3-L1 adipocytes in response to lipopolysaccharide (LPS)-induced inflammation. Methods: 10-gingerol antioxidant capacity was assessed through Oxygen Radical Absorbance Capacity (ORAC) , Ferric Reducing Antioxidant Power (FRAP), and radical scavenging activity of 2,2-diphenyl-2-picrylhydrazyl (DPPH) assays. 3T3-L1 cells were differentiated and stimulated with 100 ng/mL LPSs. Then, 15 µg/mL 10-gingerol was added for 48 h. The mRNA expression and protein abundance of antioxidant enzymes were evaluated by qPCR and Western blot, respectively. Adipokine levels were determined by ELISA. Results: 10-gingerol showed low FRAP and DPPH values but a moderate ORAC value. Moreover, 10-gingerol increased Gpx1 and Sod1 but downregulated Cat expression. Additionally, 10-gingerol significantly increased CAT and GPx1 levels but not SOD-1. Finally, adiponectin and leptin concentrations were increased while resistin and tumor necrosis factor alpha (TNFα) were decreased by 10-gingerol. Conclusions: 10-gingerol presented antioxidant potential by increasing antioxidant enzymes and attenuated LPS-induced inflammation by modulating adipokines in 3T3-L1 adipocytes. Full article
Show Figures

Figure 1

Back to TopTop