Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (86)

Search Parameters:
Keywords = Melanoma brain metastasis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 566 KiB  
Review
Prevention of Brain Metastases: A New Frontier
by Alessia Pellerino, Tara Marie Davidson, Shreyas S. Bellur, Manmeet S. Ahluwalia, Hussein Tawbi, Roberta Rudà and Riccardo Soffietti
Cancers 2024, 16(11), 2134; https://doi.org/10.3390/cancers16112134 - 4 Jun 2024
Viewed by 323
Abstract
This review discusses the topic of prevention of brain metastases from the most frequent solid tumor types, i.e., lung cancer, breast cancer and melanoma. Within each tumor type, the risk of brain metastasis is related to disease status and molecular subtype (i.e., EGFR-mutant [...] Read more.
This review discusses the topic of prevention of brain metastases from the most frequent solid tumor types, i.e., lung cancer, breast cancer and melanoma. Within each tumor type, the risk of brain metastasis is related to disease status and molecular subtype (i.e., EGFR-mutant non-small cell lung cancer, HER2-positive and triple-negative breast cancer, BRAF and NRAF-mutant melanoma). Prophylactic cranial irradiation is the standard of care in patients in small cell lung cancer responsive to chemotherapy but at the price of late neurocognitive decline. More recently, several molecular agents with the capability to target molecular alterations driving tumor growth have proven as effective in the prevention of secondary relapse into the brain in clinical trials. This is the case for EGFR-mutant or ALK-rearranged non-small cell lung cancer inhibitors, tucatinib and trastuzumab–deruxtecan for HER2-positive breast cancer and BRAF inhibitors for melanoma. The need for screening with an MRI in asymptomatic patients at risk of brain metastases is emphasized. Full article
(This article belongs to the Section Cancer Metastasis)
10 pages, 568 KiB  
Review
How Schwann Cells Are Involved in Brain Metastasis
by JuliAnne Allgood, Avery Roe and Jessica E. Pullan
Neuroglia 2024, 5(2), 155-164; https://doi.org/10.3390/neuroglia5020012 - 1 Jun 2024
Viewed by 374
Abstract
The current lack of a comprehensive understanding of brain metastasis mechanisms presents a significant gap in cancer research. This review outlines the role that Schwann cells (SCs) have in this process. SCs are already known for their role in myelination and nerve repair [...] Read more.
The current lack of a comprehensive understanding of brain metastasis mechanisms presents a significant gap in cancer research. This review outlines the role that Schwann cells (SCs) have in this process. SCs are already known for their role in myelination and nerve repair within the peripheral nervous system (PNS), but there is less information on their function in facilitating the transport and activation of neoplastic cells to aid in the invasion of the blood–brain barrier and brain. Detailed insights into SCs’ interactions with various cancers, including lung, breast, melanoma, colon, kidney, and pancreatic cancers, reveal how these cells are coerced into repair-like phenotypes to accelerate cancer spread and modulate immune responses. By outlining SCs’ involvement in perineural invasion and BBB modification, this review highlights their functions in facilitating brain metastasis. Full article
Show Figures

Figure 1

23 pages, 361 KiB  
Review
Melanoma Management: Exploring Staging, Prognosis, and Treatment Innovations
by Walid Shalata, Zoe Gabrielle Attal, Adam Solomon, Sondos Shalata, Omar Abu Saleh, Lena Tourkey, Fahed Abu Salamah, Ibrahim Alatawneh and Alexander Yakobson
Int. J. Mol. Sci. 2024, 25(11), 5794; https://doi.org/10.3390/ijms25115794 - 26 May 2024
Viewed by 501
Abstract
Melanoma, a malignant neoplasm originating from melanocytes, stands as one of the most prevalent cancers globally, ranking fifth in terms of estimated new cases in recent years. Its aggressive nature and propensity for metastasis pose significant challenges in oncology. Recent advancements have led [...] Read more.
Melanoma, a malignant neoplasm originating from melanocytes, stands as one of the most prevalent cancers globally, ranking fifth in terms of estimated new cases in recent years. Its aggressive nature and propensity for metastasis pose significant challenges in oncology. Recent advancements have led to a notable shift towards targeted therapies, driven by a deeper understanding of cutaneous tumor pathogenesis. Immunotherapy and tyrosine kinase inhibitors have emerged as promising strategies, demonstrating the potential to improve clinical outcomes across all disease stages, including neoadjuvant, adjuvant, and metastatic settings. Notably, there has been a groundbreaking development in the treatment of brain metastasis, historically associated with poor prognosis in oncology but showcasing impressive results in melanoma patients. This review article provides a comprehensive synthesis of the most recent knowledge on staging and prognostic factors while highlighting emerging therapeutic modalities, with a particular focus on neoadjuvant and adjuvant strategies, notably immunotherapy and targeted therapies, including the ongoing trials. Full article
(This article belongs to the Special Issue Molecular Advances in Melanoma Therapy)
12 pages, 1190 KiB  
Article
Sex Differences in Odds of Brain Metastasis and Outcomes by Brain Metastasis Status after Advanced Melanoma Diagnosis
by Gino Cioffi, Mustafa S. Ascha, Kristin A. Waite, Mantas Dmukauskas, Xiaoliang Wang, Trevor J. Royce, Gregory S. Calip, Timothy Waxweiler, Chad G. Rusthoven, Brian D. Kavanagh and Jill S. Barnholtz-Sloan
Cancers 2024, 16(9), 1771; https://doi.org/10.3390/cancers16091771 - 3 May 2024
Viewed by 1646
Abstract
Sex differences in cancer are well-established. However, less is known about sex differences in diagnosis of brain metastasis and outcomes among patients with advanced melanoma. Using a United States nationwide electronic health record-derived de-identified database, we evaluated patients diagnosed with advanced melanoma from [...] Read more.
Sex differences in cancer are well-established. However, less is known about sex differences in diagnosis of brain metastasis and outcomes among patients with advanced melanoma. Using a United States nationwide electronic health record-derived de-identified database, we evaluated patients diagnosed with advanced melanoma from 1 January 2011–30 July 2022 who received an oncologist-defined rule-based first line of therapy (n = 7969, 33% female according to EHR, 35% w/documentation of brain metastases). The odds of documented brain metastasis diagnosis were calculated using multivariable logistic regression adjusted for age, practice type, diagnosis period (pre/post-2017), ECOG performance status, anatomic site of melanoma, group stage, documentation of non-brain metastases prior to first-line of treatment, and BRAF positive status. Real-world overall survival (rwOS) and progression-free survival (rwPFS) starting from first-line initiation were assessed by sex, accounting for brain metastasis diagnosis as a time-varying covariate using the Cox proportional hazards model, with the same adjustments as the logistic model, excluding group stage, while also adjusting for race, socioeconomic status, and insurance status. Adjusted analysis revealed males with advanced melanoma were 22% more likely to receive a brain metastasis diagnosis compared to females (adjusted odds ratio [aOR]: 1.22, 95% confidence interval [CI]: 1.09, 1.36). Males with brain metastases had worse rwOS (aHR: 1.15, 95% CI: 1.04, 1.28) but not worse rwPFS (adjusted hazard ratio [aHR]: 1.04, 95% CI: 0.95, 1.14) following first-line treatment initiation. Among patients with advanced melanoma who were not diagnosed with brain metastases, survival was not different by sex (rwOS aHR: 1.06 [95% CI: 0.97, 1.16], rwPFS aHR: 1.02 [95% CI: 0.94, 1.1]). This study showed that males had greater odds of brain metastasis and, among those with brain metastasis, poorer rwOS compared to females, while there were no sex differences in clinical outcomes for those with advanced melanoma without brain metastasis. Full article
(This article belongs to the Section Cancer Epidemiology and Prevention)
Show Figures

Figure 1

14 pages, 3273 KiB  
Article
In Vitro and In Vivo Studies of Melanoma Cell Migration by Antagonistic Mimetics of Adhesion Molecule L1CAM
by Stefano Vito Boccadamo Pompili, Sophia Fanzini, Melitta Schachner and Suzie Chen
Int. J. Mol. Sci. 2024, 25(9), 4811; https://doi.org/10.3390/ijms25094811 - 28 Apr 2024
Viewed by 594
Abstract
Melanoma, the deadliest type of skin cancer, has a high propensity to metastasize to other organs, including the brain, lymph nodes, lungs, and bones. While progress has been made in managing melanoma with targeted and immune therapies, many patients do not benefit from [...] Read more.
Melanoma, the deadliest type of skin cancer, has a high propensity to metastasize to other organs, including the brain, lymph nodes, lungs, and bones. While progress has been made in managing melanoma with targeted and immune therapies, many patients do not benefit from these current treatment modalities. Tumor cell migration is the initial step for invasion and metastasis. A better understanding of the molecular mechanisms underlying metastasis is crucial for developing therapeutic strategies for metastatic diseases, including melanoma. The cell adhesion molecule L1CAM (CD171, in short L1) is upregulated in many human cancers, enhancing tumor cell migration. Earlier studies showed that the small-molecule antagonistic mimetics of L1 suppress glioblastoma cell migration in vitro. This study aims to evaluate if L1 mimetic antagonists can inhibit melanoma cell migration in vitro and in vivo. We showed that two antagonistic mimetics of L1, anagrelide and 2-hydroxy-5-fluoropyrimidine (2H5F), reduced melanoma cell migration in vitro. In in vivo allograft studies, only 2H5F-treated female mice showed a decrease in tumor volume. Full article
Show Figures

Figure 1

14 pages, 3265 KiB  
Article
Peak Resembling N-acetylaspartate (NAA) on Magnetic Resonance Spectroscopy of Brain Metastases
by Jelena Ostojic, Dusko Kozic, Milana Panjkovic, Biljana Georgievski-Brkic, Dusan Dragicevic, Aleksandra Lovrenski and Jasmina Boban
Medicina 2024, 60(4), 662; https://doi.org/10.3390/medicina60040662 - 19 Apr 2024
Viewed by 860
Abstract
Background and Objectives: Differentiating between a high-grade glioma (HGG) and solitary cerebral metastasis presents a challenge when using standard magnetic resonance imaging (MRI) alone. Magnetic resonance spectroscopy (MRS), an advanced MRI technique, may assist in resolving this diagnostic dilemma. N-acetylaspartate (NAA), an [...] Read more.
Background and Objectives: Differentiating between a high-grade glioma (HGG) and solitary cerebral metastasis presents a challenge when using standard magnetic resonance imaging (MRI) alone. Magnetic resonance spectroscopy (MRS), an advanced MRI technique, may assist in resolving this diagnostic dilemma. N-acetylaspartate (NAA), an amino acid found uniquely in the central nervous system and in high concentrations in neurons, typically suggests HGG over metastatic lesions in spectra from ring-enhancing lesions. This study investigates exceptions to this norm. Materials and Methods: We conducted an MRS study on 49 histologically confirmed and previously untreated patients with brain metastases, employing single-voxel (SVS) techniques with short and long echo times, as well as magnetic resonance spectroscopic imaging (MRSI). Results: In our cohort, 44 out of 49 (90%) patients demonstrated a typical MR spectroscopic profile consistent with secondary deposits: a Cho peak, very low or absent Cr, absence of NAA, and the presence of lipids. A peak at approximately 2 ppm, termed the “NAA-like peak”, was present in spectra obtained with both short and long echo times. Among the MRS data from 49 individuals, we observed a peak at 2.0 ppm in five brain metastases from mucinous carcinoma of the breast, mucinous non-small-cell lung adenocarcinoma, two metastatic melanomas, and one metastatic non-small-cell lung cancer. Pathohistological verification of mucin in two of these five cases suggested this peak likely represents N-acetyl glycoproteins, indicative of mucin expression in cancer cells. Conclusions: The identification of a prominent peak at 2.0 ppm could be a valuable diagnostic marker for distinguishing single ring-enhancing lesions, potentially associated with mucin-expressing metastases, offering a new avenue for diagnostic specificity in challenging cases. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

17 pages, 3186 KiB  
Systematic Review
Melanoma Brain Metastases: Immunotherapy or Targeted Therapy? A Systematic Review and Meta-Analyses
by Livia Onofrio, Aurora Gaeta, Oriana D’Ecclesiis, Giovanni Cugliari, Sara Gandini and Paola Queirolo
Appl. Sci. 2024, 14(6), 2222; https://doi.org/10.3390/app14062222 - 7 Mar 2024
Viewed by 946
Abstract
Background. Brain metastases are one of the leading causes of death in melanoma patients. This systematic review and meta-analysis aimed to look at the variables that affect melanoma patients’ intracranial treatment responses to immunotherapy and targeted therapy. Methods. A systematic search [...] Read more.
Background. Brain metastases are one of the leading causes of death in melanoma patients. This systematic review and meta-analysis aimed to look at the variables that affect melanoma patients’ intracranial treatment responses to immunotherapy and targeted therapy. Methods. A systematic search of PubMed and Scopus up to December 2023 was conducted to identify trials investigating treatment response of melanoma brain metastasis. This meta-analysis presents summary estimates (SEs) of treatment response and odd ratios (ORs) for the comparison between symptomatic and asymptomatic metastases. Generalised linear mixed models were used for the SE of the proportion of clinical responses and 95% CIs are reported. We investigated between-study heterogeneity using meta-regression. Results. We included 19 independent clinical trials for a total of 1074 patients with brain metastases. The SE of the overall response was 36% 95%CI [27%; 47%], I2 = 84%, similar to the SE for symptomatic metastases: SE = 29% 95%CI [16%; 47%], I2 = 80%. A significantly higher response of symptomatic metastases was observed between patients who had previously received immunotherapy compared to those who had not (47% vs. 9%, p-value = 0.001). The SE was greater for asymptomatic metastases (38% 95%CI [29%; 49%], I2 = 80%), and among these, patients that received the combo-immunotherapy importantly responded more than those who had received monotherapy (45% vs. 26.1%, p-value = 0.002). The major limit of our analysis is the absence of data about the specific intracranial response separately in asymptomatic and symptomatic patients in seven studies. Conclusions. This study shows the importance of starting immunotherapy as early as possible in asymptomatic patients. Randomised trials with greater statistical power are needed to find the best strategies for symptomatic and asymptomatic brain metastases. Full article
(This article belongs to the Special Issue Computational Approaches for Cancer Research)
Show Figures

Figure 1

26 pages, 1854 KiB  
Review
Breast Tumor Metastasis and Its Microenvironment: It Takes Both Seed and Soil to Grow a Tumor and Target It for Treatment
by Shirin Bonni, David N. Brindley, M. Dean Chamberlain, Nima Daneshvar-Baghbadorani, Andrew Freywald, Denise G. Hemmings, Sabine Hombach-Klonisch, Thomas Klonisch, Afshin Raouf, Carrie Simone Shemanko, Diana Topolnitska, Kaitlyn Visser, Franco J. Vizeacoumar, Edwin Wang and Spencer B. Gibson
Cancers 2024, 16(5), 911; https://doi.org/10.3390/cancers16050911 - 23 Feb 2024
Viewed by 1498
Abstract
Metastasis remains a major challenge in treating breast cancer. Breast tumors metastasize to organ-specific locations such as the brain, lungs, and bone, but why some organs are favored over others remains unclear. Breast tumors also show heterogeneity, plasticity, and distinct microenvironments. This contributes [...] Read more.
Metastasis remains a major challenge in treating breast cancer. Breast tumors metastasize to organ-specific locations such as the brain, lungs, and bone, but why some organs are favored over others remains unclear. Breast tumors also show heterogeneity, plasticity, and distinct microenvironments. This contributes to treatment failure and relapse. The interaction of breast cancer cells with their metastatic microenvironment has led to the concept that primary breast cancer cells act as seeds, whereas the metastatic tissue microenvironment (TME) is the soil. Improving our understanding of this interaction could lead to better treatment strategies for metastatic breast cancer. Targeted treatments for different subtypes of breast cancers have improved overall patient survival, even with metastasis. However, these targeted treatments are based upon the biology of the primary tumor and often these patients’ relapse, after therapy, with metastatic tumors. The advent of immunotherapy allowed the immune system to target metastatic tumors. Unfortunately, immunotherapy has not been as effective in metastatic breast cancer relative to other cancers with metastases, such as melanoma. This review will describe the heterogeneic nature of breast cancer cells and their microenvironments. The distinct properties of metastatic breast cancer cells and their microenvironments that allow interactions, especially in bone and brain metastasis, will also be described. Finally, we will review immunotherapy approaches to treat metastatic breast tumors and discuss future therapeutic approaches to improve treatments for metastatic breast cancer. Full article
(This article belongs to the Special Issue Targeted Therapies for Cancer Metastasis)
Show Figures

Figure 1

12 pages, 3185 KiB  
Article
Prognostic Value of Baseline 18F-FDG PET/CT to Predict Brain Metastasis Development in Melanoma Patients
by Forough Kalantari, Seyed Ali Mirshahvalad, Magdalena Hoellwerth, Gregor Schweighofer-Zwink, Ursula Huber-Schönauer, Wolfgang Hitzl, Gundula Rendl, Peter Koelblinger, Christian Pirich and Mohsen Beheshti
Cancers 2024, 16(1), 127; https://doi.org/10.3390/cancers16010127 - 26 Dec 2023
Viewed by 1800
Abstract
To investigate the value of 18F-FDG-PET/CT in predicting the occurrence of brain metastases in melanoma patients, in this retrospective study 201 consecutive patients with pathology-proven melanoma, between 2008 and 2021, were reviewed. Those who underwent 18F-FDG-PET/CT for initial staging were considered [...] Read more.
To investigate the value of 18F-FDG-PET/CT in predicting the occurrence of brain metastases in melanoma patients, in this retrospective study 201 consecutive patients with pathology-proven melanoma, between 2008 and 2021, were reviewed. Those who underwent 18F-FDG-PET/CT for initial staging were considered eligible. Baseline assessment included histopathology, 18F-FDG-PET/CT, and brain MRI. Also, all patients had serial follow-ups for diagnosing brain metastasis development. Baseline 18F-FDG-PET/CT parameters were analysed using competing risk regression models to analyze their correlation with the occurrence of brain metastases. Overall, 159 patients entered the study. The median follow-up was six years. Among clinical variables, the initial M-stage and TNM-stage were significantly correlated with brain metastasis. Regarding 18F-FDG-PET/CT parameters, regional metastatic lymph node uptake values, as well as prominent SULmax (pSULmax) and prominent SUVmean (pSUVmean), were significantly correlated with the outcome. Cumulative incidences were 10% (6.3–16%), 31% (24.4–38.9%), and 35.2% (28.5–43.5%) after 1, 5, and 10 years. There were significant correlations between pSULmax (p-value < 0.001) and pSULpeak (p-value < 0.001) and the occurrence of brain metastases. The higher these values, the sooner the patient developed brain metastases. Thus, baseline 18F-FDG-PET/CT may have the potential to predict brain metastasis in melanoma patients. Those with high total metabolic activity should undergo follow-up/complementary evaluations, such as brain MRI. Full article
(This article belongs to the Special Issue PET/CT in Tumor Immunotherapy Assessment)
Show Figures

Figure 1

21 pages, 4035 KiB  
Article
Targeting Translation and the Cell Cycle Inversely Affects CTC Metabolism but Not Metastasis
by Tetiana Y. Bowley, Seth D. Merkley, Irina V. Lagutina, Mireya C. Ortiz, Margaret Lee, Bernard Tawfik and Dario Marchetti
Cancers 2023, 15(21), 5263; https://doi.org/10.3390/cancers15215263 - 2 Nov 2023
Cited by 2 | Viewed by 1558
Abstract
Melanoma brain metastasis (MBM) is significantly associated with poor prognosis and is diagnosed in 80% of patients at autopsy. Circulating tumor cells (CTCs) are “seeds” of metastasis and the smallest functional units of cancer. Our multilevel approach has previously identified a CTC RPL/RPS [...] Read more.
Melanoma brain metastasis (MBM) is significantly associated with poor prognosis and is diagnosed in 80% of patients at autopsy. Circulating tumor cells (CTCs) are “seeds” of metastasis and the smallest functional units of cancer. Our multilevel approach has previously identified a CTC RPL/RPS gene signature directly linked to MBM onset. We hypothesized that targeting ribogenesis prevents MBM/metastasis in CTC-derived xenografts. We treated parallel cohorts of MBM mice with FDA-approved protein translation inhibitor omacetaxine with or without CDK4/CDK6 inhibitor palbociclib, and monitored metastatic development and cell proliferation. Necropsies and IVIS imaging showed decreased MBM/extracranial metastasis in drug-treated mice, and RNA-Seq on mouse-blood-derived CTCs revealed downregulation of four RPL/RPS genes. However, mitochondrial stress tests and RT-qPCR showed that omacetaxine and palbociclib inversely affected glycolytic metabolism, demonstrating that dual targeting of cell translation/proliferation is critical to suppress plasticity in metastasis-competent CTCs. Equally relevant, we provide the first-ever functional metabolic characterization of patient-derived circulating neoplastic cells/CTCs. Full article
(This article belongs to the Special Issue Recent Advances in Rare Cancers: From Bench to Bedside and Back)
Show Figures

Graphical abstract

26 pages, 8652 KiB  
Article
Compromised Blood-Brain Barrier Junctions Enhance Melanoma Cell Intercalation and Extravasation
by Federico Saltarin, Adrian Wegmüller, Leire Bejarano, Ece Su Ildiz, Pascale Zwicky, Andréj Vianin, Florentin Spadin, Klara Soukup, Vladimir Wischnewski, Britta Engelhardt, Urban Deutsch, Ines J. Marques, Martin Frenz, Johanna A. Joyce and Ruth Lyck
Cancers 2023, 15(20), 5071; https://doi.org/10.3390/cancers15205071 - 20 Oct 2023
Cited by 1 | Viewed by 1428
Abstract
Melanoma frequently metastasises to the brain, and a detailed understanding of the molecular and cellular mechanisms underlying melanoma cell extravasation across the blood-brain barrier (BBB) is important for preventing brain metastasis formation. Making use of primary mouse brain microvascular endothelial cells (pMBMECs) as [...] Read more.
Melanoma frequently metastasises to the brain, and a detailed understanding of the molecular and cellular mechanisms underlying melanoma cell extravasation across the blood-brain barrier (BBB) is important for preventing brain metastasis formation. Making use of primary mouse brain microvascular endothelial cells (pMBMECs) as an in vitro BBB model, we imaged the interaction of melanoma cells into pMBMEC monolayers. We observed exclusive junctional intercalation of melanoma cells and confirmed that melanoma-induced pMBMEC barrier disruption can be rescued by protease inhibition. Interleukin (IL)-1β stimulated pMBMECs or PECAM-1-knockout (-ko) pMBMECs were employed to model compromised BBB barrier properties in vitro and to determine increased melanoma cell intercalation compared to pMBMECs with intact junctions. The newly generated brain-homing melanoma cell line YUMM1.1-BrM4 was used to reveal increased in vivo extravasation of melanoma cells across the BBB of barrier-compromised PECAM-1-deficient mice compared to controls. Taken together, our data indicate that preserving BBB integrity is an important measure to limit the formation of melanoma-brain metastasis. Full article
(This article belongs to the Section Cancer Metastasis)
Show Figures

Figure 1

15 pages, 2930 KiB  
Review
The Multifaceted Functions of Prion Protein (PrPC) in Cancer
by Roland Abi Nahed, Hasan Safwan-Zaiter, Kevin Gemy, Camille Lyko, Mélanie Boudaud, Morgane Desseux, Christel Marquette, Tiphaine Barjat, Nadia Alfaidy and Mohamed Benharouga
Cancers 2023, 15(20), 4982; https://doi.org/10.3390/cancers15204982 - 13 Oct 2023
Cited by 1 | Viewed by 2336
Abstract
The cellular prion protein (PrPC) is a glycoprotein anchored to the cell surface by glycosylphosphatidylinositol (GPI). PrPC is expressed both in the brain and in peripheral tissues. Investigations on PrPC’s functions revealed its direct involvement in neurodegenerative and [...] Read more.
The cellular prion protein (PrPC) is a glycoprotein anchored to the cell surface by glycosylphosphatidylinositol (GPI). PrPC is expressed both in the brain and in peripheral tissues. Investigations on PrPC’s functions revealed its direct involvement in neurodegenerative and prion diseases, as well as in various physiological processes such as anti-oxidative functions, copper homeostasis, trans-membrane signaling, and cell adhesion. Recent findings have revealed the ectopic expression of PrPC in various cancers including gastric, melanoma, breast, colorectal, pancreatic, as well as rare cancers, where PrPC promotes cellular migration and invasion, tumor growth, and metastasis. Through its downstream signaling, PrPC has also been reported to be involved in resistance to chemotherapy and tumor cell apoptosis. This review summarizes the variance of expression of PrPC in different types of cancers and discusses its roles in their development and progression, as well as its use as a potential target to treat such cancers. Full article
(This article belongs to the Topic Advance in Tumorigenesis Research and Cancer Cell Therapy)
Show Figures

Figure 1

26 pages, 4472 KiB  
Article
Heterogeneity in the Metastatic Microenvironment: JunB-Expressing Microglia Cells as Potential Drivers of Melanoma Brain Metastasis Progression
by Orit Adir, Orit Sagi-Assif, Tsipi Meshel, Shlomit Ben-Menachem, Metsada Pasmanik-Chor, Dave S. B. Hoon, Isaac P. Witz and Sivan Izraely
Cancers 2023, 15(20), 4979; https://doi.org/10.3390/cancers15204979 - 13 Oct 2023
Cited by 1 | Viewed by 1148
Abstract
Reciprocal signaling between melanoma brain metastatic (MBM) cells and microglia reprograms the phenotype of both interaction partners, including upregulation of the transcription factor JunB in microglia. Here, we aimed to elucidate the impact of microglial JunB upregulation on MBM progression. For molecular profiling, [...] Read more.
Reciprocal signaling between melanoma brain metastatic (MBM) cells and microglia reprograms the phenotype of both interaction partners, including upregulation of the transcription factor JunB in microglia. Here, we aimed to elucidate the impact of microglial JunB upregulation on MBM progression. For molecular profiling, we employed RNA-seq and reverse-phase protein array (RPPA). To test microglial JunB functions, we generated microglia variants stably overexpressing JunB (JunBhi) or with downregulated levels of JunB (JunBlo). Melanoma-derived factors, namely leukemia inhibitory factor (LIF), controlled JunB upregulation through Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) signaling. The expression levels of JunB in melanoma-associated microglia were heterogeneous. Flow cytometry analysis revealed the existence of basal-level JunB-expressing microglia alongside microglia highly expressing JunB. Proteomic profiling revealed a differential protein expression in JunBhi and JunBlo cells, namely the expression of microglia activation markers Iba-1 and CD150, and the immunosuppressive molecules SOCS3 and PD-L1. Functionally, JunBhi microglia displayed decreased migratory capacity and phagocytic activity. JunBlo microglia reduced melanoma proliferation and migration, while JunBhi microglia preserved the ability of melanoma cells to proliferate in three-dimensional co-cultures, that was abrogated by targeting leukemia inhibitory factor receptor (LIFR) in control microglia–melanoma spheroids. Altogether, these data highlight a melanoma-mediated heterogenous effect on microglial JunB expression, dictating the nature of their functional involvement in MBM progression. Targeting microglia highly expressing JunB may potentially be utilized for MBM theranostics. Full article
(This article belongs to the Special Issue Microenvironment and Cancer Progression 2.0)
Show Figures

Figure 1

16 pages, 1382 KiB  
Article
Repeated Stereotactic Radiotherapy for Local Brain Metastases Failure or Distant Brain Recurrent: A Retrospective Study of 184 Patients
by Laure Kuntz, Clara Le Fèvre, Delphine Jarnet, Audrey Keller, Philippe Meyer, Christophe Mazzara, Hélène Cebula, Georges Noel and Delphine Antoni
Cancers 2023, 15(20), 4948; https://doi.org/10.3390/cancers15204948 - 11 Oct 2023
Cited by 1 | Viewed by 1233
Abstract
Background: The main advantages of stereotactic radiotherapy (SRT) are to delay whole-brain radiotherapy (WBRT) and to deliver ablative doses. Despite this efficacy, the risk of distant brain metastases (BM) one year after SRT ranges from 26% to 77% and 20 to 40% of [...] Read more.
Background: The main advantages of stereotactic radiotherapy (SRT) are to delay whole-brain radiotherapy (WBRT) and to deliver ablative doses. Despite this efficacy, the risk of distant brain metastases (BM) one year after SRT ranges from 26% to 77% and 20 to 40% of patients required salvage treatment. The role and consequences of reirradiation remain unclear, particularly in terms of survival. The objective was to study overall survival (OS) and neurological death-free survival (NDFS) and to specify the prognostic factors of long-term survival. Methods: we retrospectively reviewed the data of patients treated between 2010 and 2020 with at least two courses of SRT without previous WBRT. Results: In total, 184 patients were treated for 915 BMs with two-to-six SRT sessions. Additional SRT sessions were provided for local (5.6%) or distant (94.4%) BM recurrence. The median number of BMs treated per SRT was one with a median of four BMs in total. The mean time between the two SRT sessions was 8.9 months (95%CI 7.7–10.1) and there was no significant difference in the delay between the two sessions. The 6-, 12- and 24-month NDFS rates were 97%, 82% and 52%, respectively. The 6-, 12- and 24-month OS rates were 91%, 70% and 38%, respectively. OS was statistically related to the number of SRT sessions (HR = 0.48; p < 0.01), recursive partitioning analysis (HR = 1.84; p = 0.01), salvage WBRT (HR = 0.48; p = 0.01) and brain metastasis velocity (high: HR = 13.83; p < 0.01; intermediate: HR = 4.93; p < 0.01). Conclusions: Lung cancer and melanoma were associated with a lower NDFS compared to breast cancer. A low KPS, a low number of SRT sessions, synchronous extracerebral metastases, synchronous BMs, extracerebral progression at SRT1, a high BMV grade, no WBRT and local recurrence were also associated with a lower NDFS. A high KPS at SRT1 and low BMV grade are prognostic factors for better OS, regardless of the number of BM recurrence events. Full article
(This article belongs to the Special Issue The Challenge of the Treatment: Radiotherapy of Brain Metastases)
Show Figures

Figure 1

26 pages, 3961 KiB  
Review
Sternum Metastases: From Case-Identifying Strategy to Multidisciplinary Management
by Mara Carsote, Dana Terzea, Florina Vasilescu, Anca-Pati Cucu, Adrian Ciuche and Claudiu Nistor
Diagnostics 2023, 13(16), 2698; https://doi.org/10.3390/diagnostics13162698 - 17 Aug 2023
Cited by 1 | Viewed by 3337
Abstract
We aimed to overview the most recent data on sternal metastases from a multidisciplinary approach (diagnosis strategies, outcome, and histological reports). This narrative review based on a PubMed search (between January 2020 and 22 July 2023) using key words such as “sternal”, “manubrium”, [...] Read more.
We aimed to overview the most recent data on sternal metastases from a multidisciplinary approach (diagnosis strategies, outcome, and histological reports). This narrative review based on a PubMed search (between January 2020 and 22 July 2023) using key words such as “sternal”, “manubrium”, and “metastasis” within the title and/or abstract only included original papers that specifically addressed secondary sternal spreading of cancer in adults, for a total of 48 original articles (14 studies and 34 single case reports). A prior unpublished case in point is also introduced (percutaneous incisional biopsy was used to address a 10 cm sternal tumour upon first admission on an apparently healthy male). The studies (n = 14) may be classified into one of three groups: studies addressing the incidence of bone metastases (including sternum) amid different primary cancers, such as prostate cancer (N = 122 with bone metastases, 83% of them with chest wall metastases), head and neck cancers (N = 3620, 0.8% with bone metastases, and 10.34% of this subgroup with sternum involvement); and glioblastoma (N = 92 with bone metastases, 37% of them with non-vertebral metastases, including the sternum); assessment cohorts, including breast cancer (N = 410; accuracy and sensitivity of PET/CT vs. bone scintigraphy is superior with concern to sternum spreading) and bone metastases of unknown origin (N = 83, including a subgroup with sternum metastases; some features of PET/CT help the differentiation with multiple myeloma); and cohorts with various therapeutic approaches, such as palliative arterial embolization (N = 10), thymic neuroendocrine neoplasia (1/5 detected with sternum metastases), survival rates for sternum metastases vs. non-sternum chest wall involvement (N = 87), oligo-metastatic (sternal) breast cancer (3 studies, N = 16 for all of them), oligo-metastatic head and neck cancer (N = 81), conformal radiotherapy (N = 24,215, including an analysis on sternum spreading), and EBRT followed by MR-HIFU (N = 6). Core data coming from the isolated case reports (N = 34) showed a female to male ratio of 1.6; the females’ ages were between 34 and 80 (mean of 57.28) and the males’ ages varied between 33 and 79 (average of 58.78) years. The originating tumour profile revealed that the most frequent types were mammary (N = 8, all females) and thyroid (N = 9, both women and men), followed by bladder (N = 3), lung (N = 2), and kidney (N = 2). There was also one case for each of the following: adenoid cystic carcinoma of the jaw, malignant melanoma, caecum MiNEN, a brain and an extracranial meningioma, tongue carcinoma, cholangiocarcinoma, osteosarcoma, and hepatocellular carcinoma. To our knowledge, this is the most complex and the largest analysis of prior published data within the time frame of our methods. These data open up new perspectives of this intricate, dynamic, and challenging domain of sternum metastases. Awareness is a mandatory factor since the patients may have a complex multidisciplinary medical and/or surgical background or they are admitted for the first time with this condition; thus, the convolute puzzle will start from this newly detected sternal lump. Abbreviations: N = number of patients; n = number of studies; PET/CT = positron emission tomography/computed tomography; EVRT = external beam radiotherapy; MR-HIFU = magnetic resonance-guided high-intensity focused ultrasound; MiNEN = mixed neuroendocrine-non-neuroendocrine tumour. Full article
Show Figures

Figure 1

Back to TopTop